Preface

Contents

vii

Part A: Ordering the Braids

I. Braids vs. Self-Distributive Systems

1.1 Braid Groups .
1.2 Braid Colourings . . . .

1.3 A Self-Distributive Operation on Braids .

1.4 Extended Braids
1.5 Notes .

II. Word Reversing

II.1 Complemented Presentations
1.2 Coherent Complements .
II1.3  Garside Elements

11.4 The Case of Braids .

II.5 Double Reversing

I1.6 Notes

III. The Braid Order

III.1 More about Braid Colourings .
II1.2 The Linear Ordering of Braids
IT11.3 Handle Reduction .

II1.4 Alternative Definitions .

III.5 Notes

.13
. 26
.35
.44

47

. 48
. o8
. 68
. 78
. 87
.94

97

. 98
106
115
127
137



iv

IV. The Order on Positive Braids

IV.1 The Case of Three Strands .
IV.2 The General Case .

1V.3 Applications

IV.4 Notes .o
IV.Appendix: Rank Tables .

Part B: Free LD-systems

V. Orders on Free LD-systems

V.1 Free Systems . . . . . .
V.2 The Absorption Property .
V.3 The Confluence Property
V.4 The Comparison Property
V.5 Canonical Orders

V.6 Applications .

V.7 Notes .

VI. Normal Forms

VI.1 Terms as Trees

VI.2 The Cuts of a Term
VI.3 The 0-Normal Form .
VI.4 The Right Normal Form
VI.5 Applications

VI.6 Notes o
VI.Appendix: The First Codes

VII. The Geometry Monoid

VII.1 Left Self-Distributivity Operators .
VII.2 Relations in the Geometry Monoid

VII.3 Syntactic Proofs
VII.4 Cuts and Collapsing .
VIL.5 Notes

VIII. The Group of Left Self-Distributivity
VIII.1 The Group G, and the Monoid M,

VIIL.2 The Blueprint of a Term
VIII.3 Order Properties in G;p, .
VIIL.4 Parabolic Subgroups
VIIIL.5 Simple Elements in M;, .
VIII.6 Notes .

CONTENTS

141

142
150
165
170
172

175

178
186
193
200
209
216
231

235

236
242
250
256
271
276
280

285

286
301
310
322
329

331

332
343
356
367
371
383



CONTENTS

IX. Progressive Expansions

IX.1
IX.2
IX.3
IX.4
IX.5
IX.6
IX.7

IX.Appendix: Other Algebralc Identltles .

The Polish Algorithm

The Content of a Term .
Perfect Terms .

Convergence Results .
Effective Decompositions .
The Embedding Conjecture .
Notes

Part C: Other LD-Systems

X. More LD-Systems

X.1
X.2
X.3
X4
X.5
X.6

The Laver Tables

Finite Monogenic LD- systems
Multi-LD-Systems
Idempotent LD-systems .
Two-Sided Self-Distributivity
Notes .

X.Appendix: The Flrst Laver Tables

XI. LD-Monoids

XI.1
XI1.2
XI.3
XI.4
XI.5
XIL.6

LD-Monoids

Completion of an LD- System
Free LD-Monoids .
Orders on Free LD- M01101ds
Extended Braids

Notes

XII. Elementary Embeddings

XII.1 Large Cardinals .
XII.2 Elementary Embeddings .

XII.3 Operations on Elementary Embeddlngs

XII.4 Finite Quotients
XIL.5 Notes

XIII. More about the Laver Tables

XIII.1 A Dictionary .
XIII.2 Computation of Rows .
XIII.3 Fast Growing Functions .
XIII.4 Lower Bounds

XIII.5 Notes .

385

386
395
401
415
421
428
436
439

443

446
457
467
472
476
480
485

489

490
498
511
517
527
534

537

538
546
553
559
568

571

572
o977
583
591
598



vi

Bibliography
List of Symbols

Index

CONTENTS

603

615

619



Preface

The aim of this book is to present recently discovered connections between
Artin’s braid groups B, and left self-distributive systems (also called LD-
systems), which are sets equipped with a binary operation satisfying the left
self-distributivity identity

z(yz) = (zy)(z2). (LD)

Such connections appeared in set theory in the 1980s and led to the discovery
in 1991 of a left invariant linear order on the braid groups.

Braids and self-distributivity have been studied for a long time. Braid groups
were introduced in the 1930s by E. Artin, and they have played an increas-
ing role in mathematics in view of their connection with many fields, such as
knot theory, algebraic combinatorics, quantum groups and the Yang—Baxter
equation, etc. LD-systems have also been considered for several decades: early
examples are mentioned in the beginning of the 20th century, and the first
general results can be traced back to Belousov in the 1960s. The existence of
a connection between braids and left self-distributivity has been observed and
used in low dimensional topology for more than twenty years, in particular in
work by Joyce, Brieskorn, Kauffman and their students. Brieskorn mentions
that the connection is already implicit in (Hurwitz 1891).

The results we shall concentrate on here rely on a new approach developed
in the late 1980s and originating from set theory. Most of the examples of
self-distributive operations known at the time were connected with conjugacy
in a group, and what set theory provided was a new example of a completely
different type—together with the hint that something deep was hidden there,
and the frustrating situation that the very existence of the example was an
unprovable statement. Developing alternative constructions without relying
on an unprovable statement has led to a new geometrical approach to self-
distributive algebra, which has made the connection with braids more striking,
and has led to a number of results about left self-distributivity, in particular
many new examples and a complete description of free LD-systems; it has also
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led to new results about braids, the most promising so far being the existence
of a natural linear order on braids.

Our story began around 1983 when the main challenge of set theory was to
establish a connection between large cardinal axioms and Projective Determi-
nacy, a structural statement that describes the Lusin hierarchy on the real line.
Most large cardinal axioms involve elementary embeddings, which are a kind
of endomorphism relevant in the context of set theory, and it was part of the
folklore that certain elementary embeddings can be equipped with a left self-
distributive operation, resulting in an intricate calculus of iterates. A proof of
Projective Determinacy using large cardinals, namely Woodin cardinals, was
given by Martin and Steel in 1985, and this proof, as well as a subsequent
alternative proof by Woodin, requires much more than computing iterates of
elementary embeddings. However, two results of the time (1986) are the au-
thor’s observation that the existence of the left self-distributive operation on
elementary embeddings is sufficient to prove Analytic Determinacy, a nontrivial
fragment of Projective Determinacy involving the first two levels of the Lusin
hierarchy, and Laver’s theorem (which appeared only later) that left division
in the LD-systems of elementary embeddings has no cycle. The former result
shows that the self-distributive operation is nontrivial in a strong sense; the
latter shows that it is quite different from the conjugacy in a group.

Motivated by the previous observations, R. Laver and the author undertook a
systematic study both of the LD-systems of elementary embeddings and of free
LD-systems. Contrary to related free systems, such as Joyce’s free quandles
or Fenn and Rourke’s free racks, the free LD-systems had not received any
attention so far, probably because examples were missing. The most significant
result obtained during this period was the existence of a left invariant linear
order on free LD-systems of rank 1 and, as a corollary, a solution to the word
problem of Identity (LD), under the hypothesis that there existed an LD-
system in which left division has no cycle; this was proved by R. Laver and the
author independently in the Spring of 1989.

The above results created a strange situation: the existence of a left invari-
ant order on free LD-systems, or the decidability of the word problem of (LD),
are effective, finitistic properties; yet, their proof required the existence of an
LD-system with a certain property, and the only known examples of such LD-
systems were the LD-systems of elementary embeddings. Now, an inevitable
consequence of Gddel’s incompleteness theorem is that the existence of an ele-
mentary embedding of the required type is an unprovable statement, actually
a higher infinity axiom. Hence the existence of an LD-system of elementary
embeddings is unprovable. Therefore, the logical status of the previous results
was unclear, and new developments were needed, either to construct alterna-
tive examples of LD-systems resorting to no set theoretical axiom, or to prove
that such axioms were needed, as is known to be in the case of Projective
Determinacy.

Here braids came into the picture, indirectly at first. The main problem was
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to study free LD-systems. As no concrete realization was available, the only
possible approach was a syntactic approach. The main idea here has been to
introduce a certain group G, which captures some geometrical properties of
the identity (LD). The group G;p happens to be an extension of the union By
of all Artin’s braid groups B,, and it has been investigated using algebraic
tools analogous to the ones Garside used for braid groups. At the end of 1991,
this study led to a proof—without any set theoretical hypothesis—that left
division in free LD-systems has no cycle and, as a natural by-product, to the
construction of a left self-distributive operation and of a left invariant linear
order on braids.

Further results both about braid ordering and about LD-systems were then
proved by several authors. First, once the explicit definition of the above-
mentioned self-distributive operation on braids became available, a shorter
proof for existence of the braid ordering could be given, as was noted by Larue
in 1992. In 1993, Laver proved that the restriction of the order to n-strand
positive braids is a well-ordering. In 1995, we derived from the braid ordering
a new efficient method for recognizing braid isotopy. In 1997, Fenn, Greene,
Rolfsen, Rourke, and Wiest reconstructed the braid order by purely topological
means, and extended the method to the mapping class group of any surface
with a nonempty boundary. More recently, Short and Wiest, building on a
suggestion by Thurston and work by Nielsen, gave another definition involving
hyperbolic geometry and an action of braids on the real line.

As for self-distributive algebra, i.e., the study of LD-systems, the main de-
velopments involve the free LD-systems, the LD-systems of elementary embed-
dings, and some finite LD-systems which we call the Laver tables. The results
about free LD-systems consist mainly in the construction of several normal
forms by Laver and the author (around 1992), and in a deepening of our under-
standing of the group G, (recent work). About the LD-systems of elementary
embeddings, a number of results were proved by Laver, Dougherty, and Jech
between 1988 and 1995 in connection with the computation of the so-called
critical ordinals and attempts to construct finitistic counterparts that do not
rely on large cardinal axioms. The Laver tables were introduced by Laver in the
1980s as finite quotients of the LD-systems of elementary embeddings. They are
fascinating objects with a formidable combinatorial complexity. Many results
about them were proved in the 1990s by Drépal. A remarkable point is that,
contrary to the existence of an LD-system with an acyclic left division, some
results about the Laver tables, proved using elementary embeddings, have not
yet received alternative combinatorial proofs, and, therefore, they still depend
on an unprovable logical axiom.

Looking at the current picture, we see that set theory is not involved in any
of the braid constructions, and one may feel that its involvement in the results
about the Laver tables simply implies that our understanding of these objects
is far from complete. However, we would argue that both the braid order and
the Laver tables are, and are to remain, applications of set theory: if the latter

ix
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had not clearly shown the way, it is more than likely that most of the results we
shall present in this monograph would not have been discovered yet. Similarly,
the existence of the braid order can now be established quickly using Larue’s
short proof that left division associated with the left self-distributive operation
on braids has no cycle: yet, it is not clear that this operation would have been
discovered without a study of the group G.p.

About this book

The current text proposes a first synthesis of this area of research. Our exposi-
tion is self-contained, and there are no prerequisites. This leads us to establish
a number of basic results, about braids, self-distributive algebra, and, to some
extent, set theory. However, the text is not a comprehensive course about these
subjects, as we have selected only those results that are needed for our specific,
mainly geometry—oriented, approach.

The text is divided into three parts, devoted to the braid order, to free LD-
systems, and to general LD-systems respectively. This order does not follow the
chronology of development, but it gives the braid applications first in order to
motivate the study of free LD-systems that comes next. Set theory is postponed
to the end, when we cannot avoid it any longer. The three parts are rather
independent, and it is possible to begin with any of them, at least for a first
glance.

Let us give a preview of each part of the book. The aim of Part A is to construct
the linear order of braids and establish its main properties. The point is the
existence of an action of braids on powers of LD-systems: if S is a given LD-
system, and b is an m-strand braid, then, for each element @ in S™, we can
define a new element @ « b by seeing @ as a set of colours put on the top of b
and @b as the resulting set of colours at the bottom of b when the colours flow
down b according to the rule

S

When one uses classical examples of LD-systems, such as the conjugacy in a
group or the barycentric mean, one deduces well-known results, such as the
representation of braids inside automorphisms of a free group, and the Burau
representation. New results appear when we use non-classical examples of LD-
systems. In particular, a linear ordering of braids appears naturally when we
use a linearly ordered LD-system (S5, <), i.e., when the colours are ordered:
the obvious idea is to extend the order to S™ lexicographically, and to define
the braid b; to be smaller than the braid by, if @« by < @« by holds for every
element @ of S™. The required compatibility condition turns out to be that the
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linear order on S satisfies a < ab for all a, b, and the main technical result that
makes the construction possible is that the free LD-system of rank 1 admits
such a linear ordering. Technically, we avoid using abstract free LD-systems
here and we resort instead to a self-distributive operation defined on braids.

Part A comprises four chapters. In Chapter I, we give an introduction
to braids, and we present quickly (and somewhat informally) the connections
between braids and self-distributivity, namely the above-mentioned action of
braids on LD-systems, and the existence of a left self-distributive operation
(called exponentiation) on braids. We also introduce what we call extended
braids.

Chapter II is a preparatory chapter in which we develop a specific combi-
natorial method for studying those groups and monoids with a presentation of
a particular syntactic form. We show that the braid groups are eligible, and
deduce a number of classical properties of these groups. The method is used
in Chapter VIII again.

Chapter III is devoted to the linear order of braids. Using the word reversing
technique of Chapter I1, we extend the action of braids on powers of LD-systems
defined in Chapter I to more general LD-systems. Admitting a general result
about monogenic LD-systems that will be proved in Chapter V, we deduce
the existence of a left invariant order on braids. We also mention alternative
definitions of this order.

In Chapter IV, we study the restriction of the braid order to positive braids,
i.e., to those braids that can be expressed without using the inverses o, Lof
the standard braid group generators. The main result is Laver’s theorem that
the restriction of the order to n-strand positive braids is a well-ordering. Here
we present Burckel’s construction, which computes the order type effectively
and provides a new normal form for positive braids.

Part B is a general study of free LD-systems. Should the associativity identity
replace left self-distributivity, the free systems would be the free semigroups,
hence rather simple objects. Free LD-systems are actually much more compli-
cated, yet they share many properties with free semigroups, and, in particular,
the property that the free system of rank 1 is equipped with a unique linear
order such that a < ab always holds: in the case of associativity, the free semi-
group of rank 1 is the set of positive integers, and the corresponding linear
order is the usual order of the integers. The core of our study consists in in-
vestigating LD-equivalence of terms. The latter are abstract expressions (or
words) involving variables, one binary operator, and parentheses, and we say
that two terms ¢, ¢’ are LD-equivalent if we can transform ¢ into ¢’ by applying
Identity (LD) once or several times. If we think of associativity again, apply-
ing the identity to a term amounts to changing the place of parentheses, so
that every equivalence class is finite, and we can select a unique representa-
tive easily, for instance by pushing all parentheses to the right. The case of
LD-equivalence is much more complicated: in general, the equivalence class of
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a term is infinite, and finding distinguished representatives is a serious task.
The main point in the approach we develop here is to put the emphasis on
geometrical features*. We introduce a certain monoid G, consisting of partial
mappings on terms, and a related group G, so that the LD-equivalence class
of a term ¢ becomes its orbit under some partial action of G,,**. All results
about braids mentioned in Part A then originate from results on G,,: the ex-
istence of the braid action on LD-systems comes from Artin’s braid group Be
being a quotient of G,; braid exponentiation originates from expressing in G,
a simple general property of left self-distributivity called absorption; the linear
ordering of braids comes from some linear preordering on G,,. The situation
can be summarized in the slogan

The geometry of left self-distributivity is a refinement of the
geometry of braids,

which is reminiscent of the well-known observation that the geometry of braids
is a refinement of the geometry of permutations: going from the symmetric
group S, to the braid group B, amounts to completing a permutation with
some information about how the transpositions have been performed; similarly,
going from B, to G, amounts to completing a braid with some additional
information about the names of the strands that have been braided, as the
diagram below may suggest:

Braiding Applying left self-distributivity
xT Yy oz T Y oz AN TYZ
A A |

N\

Part B is divided into five chapters. In Chapter V, we introduce free LD-
systems and develop a convenient framework of finite trees. We prove the
Comparison Property, which is the missing fragment in the construction of the
braid order in Chapter III, and the existence of left invariant linear orders on
free LD-systems, which implies the decidability of the word problem.

In Chapter VI, we prove unique normal form results for LD-equivalence, i.e.,
we construct families of distinguished terms so that every term is LD-equivalent
to exactly one distinguished term. This requires developing a precise analysis
of the geometry of terms. Various applications are given, in particular about
braids and their exponentiation.

* R. Laver has developed an alternative approach, briefly mentioned at the
end of Chapter VI; neither approach is subsumed in the other, as both prove
statements seemingly inaccessible to the other.
** A similar approach can be developed for every identity: in the case of asso-
ciativity, the corresponding group is Richard Thompson’s group F'.
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In Chapter VII, we introduce the monoid G;, by considering partial op-
erators acting on terms and specifying how and where left self-distributivity
is applied. We exhibit a family of relations, called LD-relations, which hold
in G;p, reminiscent of those relations involved in the MacLane-Stasheff pen-
tagon in the case of associativity. We check that most of the results about free
LD-systems established in Chapter V can be deduced from LD-relations.

In Chapter VIII, we introduce the group G for which LD-relations yield
a presentation. We describe the connection between G,, and G,,, and we con-
struct counterparts to the braid exponentiation and to the braid order in G,,.
In particular, we give a purely syntactical proof of the fundamental result that
left division in a free LD-system admits no cycle.

In Chapter IX, we deepen our study of the group G,, and of the associated
positive monoid M;,. By refining the results of Chapter VI, we prove par-
tial results about the Polish Algorithm and the Embedding Conjecture: The
Polish Algorithm is a natural syntactic method for deciding LD-equivalence of
terms, and its termination is one of the most puzzling open questions of the
subject. The Embedding Conjecture claims that the monoid M;, embeds in
the group Gip, a counterpart to Garside’s result that the braid monoid B, em-
beds in the group B,,. This conjecture is equivalent to a number of properties
of left self-distributivity.

Part C contains further developments about LD-systems. We did not try to
be exhaustive, and we concentrated on some special families of LD-systems,
in particular the Laver tables and the LD-systems of elementary embeddings.
The Laver tables form an infinite family Ay, Ay, ... of finite monogenic LD-
systems. The LD-system A, has 2" elements, and it is the unique LD-system
with domain {1,2,...,2"} satisfying a*1 = a+1 mod 2" for every a; projection
modulo 2™ defines a surjective homomorphism of A,,+1 onto A,, for every n, so
the family (A, ), is an inverse system. On the other hand, ranks are special
sets with the weird property that every mapping of R into itself can be seen as
an element of R, and elementary embeddings are defined as nontrivial injective
mappings that preserve every notion that is definable from the membership
relation €. Let us say that a rank R is self-similar if there exists an elementary
embedding of R into itself which is not the identity. The point is that, if  and j
are elementary embeddings of some self-similar rank R into itself, then, as ¢ ap-
plies to every element of R and j can be seen as an element of R, we can apply i
to j, thus obtaining a new elementary embedding denoted i[j]. By construc-
tion, the bracket operation on elementary embeddings is left self-distributive,
and the main result is that the Laver tables A, are natural quotients of the
LD-systems of elementary embeddings thus obtained. This connection results
in a dictionary between elementary embeddings in set theory and values in the
Laver tables. In particular, the Laver—Steel theorem, a deep well-foundedness
result about elementary embeddings, translates into the result that the number
of values occurring in the first row of A,, tends to infinity with n. The puzzling

xiii
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point is that no direct proof of the latter combinatorial statement has been
discovered so far. So, as the existence of a self-similar rank is an unprovable
axiom, the logical status of this statement remains open.

Part C consists of four chapters. In Chapter X, we introduce the Laver
tables, we present Drapal’s classification of finite monogenic LD-systems, and
we mention other families of LD-systems, such as idempotent and two-sided
self-distributive LD-systems.

In Chapter XI, we study LD-monoids, which are LD-systems equipped with
an additional compatible associative operation. We solve the natural problem
of completing a given LD-system into an LD-monoid, and we give a complete
description of free LD-monoids. We also study the LD-monoid of extended
braids introduced in Chapter I.

In Chapter XII, we describe the LD-systems of elementary embeddings.
Here, we give a short self-contained introduction to the relevant facts needed
from set theory, and show how self-distributivity naturally appears. Using a
well-foundedness argument—the core of set theory—we establish the Laver—
Steel theorem, which is crucial in further applications.

In Chapter XIII, we return to the Laver tables and we give a speculative
conclusion to the book. We construct the above mentioned dictionary between
elementary embeddings and Laver tables. Building on the unprovable hypoth-
esis postulating the existence of a self-similar rank, we deduce results about
the values in A,,, and we show why a direct combinatorial proof of the latter
results has to be very complicated.

The methods used here are mostly algebraic and combinatorial in nature. The
emphasis is put on words, rather than on the elements of a monoid, a group,
or an LD-system they represent. Only such an approach allows us to study
fine features which are not visible in the monoid, the group or the LD-system
because the relations they involve are not compatible with the congruence
defining the considered monoid, group, or LD-system. For instance, the notion
of braid word reversing introduced in Chapter II is a refinement of the standard
notion of braid word equivalence, and both induce equality of braids. However,
using the former relation rather than the latter is crucial for defining the action
of braids on non-classical LD-systems and deriving applications such as the
braid order. This perhaps explains why such an action had not been considered
before.

Exercises appear at the end of most sections, usually with the aim of men-
tioning in a short way further results (a lot of them correspond to unpublished
material).

Historical remarks and proper credits are given in the notes at the end
of each chapter. One precision is in order. The current text is deliberately
centered on the author’s approach to the subject—with the noticeable exception
of Chapters IV, X, XII, and XIII, which rely on work by Burckel, Laver, Drépal,
and Dougherty. However, we by no means claim that all unattributed results
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are ours: a number of them is part of the folklore, and there is no doubt that
Richard Laver has known a lot of them for many years.

It is a pleasure to express my thanks to P. Ageron, G. Basset, S. Burckel,
A. Drapal, A. Kanamori, R. Laver, B. Leclerc, J. Lescot, A. Sossinsky, and
B. Wiest for valuable discussions, comments and corrections. I owe special
thanks to T. Kepka, who prepared the historical notes at the end of Chapter X,
to M. Picantin, who found uncountably many mistakes in the manuscript, and
to C. Kassel, who suggested a great number of improvements.

December 1999
Patrick Dehornoy
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Braids vs.
Self-Distributive Systems
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This chapter gives a quick introduction to our main subject, namely the con-
nection between braids and self-distributive operations. Our presentation is
based on the concrete idea of colouring the strands of a braid, and left self-
distributivity arises as a natural compatibility condition. At this early stage,
some of the constructions may look artificial or strange: it will be one of the
aims of the subsequent chapters, in particular in Part B of this book, to explain
them and hopefully make all of them natural.

Section 1 contains an elementary introduction to Artin’s braid groups. We
establish the standard presentation of the braid group, a basis for further al-
gebraic developments. In Section 2, we describe an action of braids on those
algebraic systems that involve a self-distributive operation. We review the
classical examples of such systems, and mention the braid properties obtained
using the action. We also describe a non-classical example involving injec-
tions. In Section 3, we show how a self-distributive operation, called braid
exponentiation, can be constructed inside Artin’s braid group B, by using
braid colourings. We present some related self-distributive systems, and we
prove that left division associated with braid exponentiation has no cycle, a
crucial result for subsequent order properties. Finally, in Section 4, we con-
sider LD-monoids, which are structures involving both a left self-distributive
operation and a compatible associative product. LD-monoids naturally appear
when colouring braid diagrams. We construct such a structure on a partial
topological completion of the braid group B, corresponding to the intuitive
idea of strands vanishing at infinity.
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II.1 Complemented Presentations . . . . . . . . . . . . .48
1.2 Coherent Complements . . . . . . . . . . . . . . . .58
1.3 Garside Elements . . . . . . . . . . . . . . . . . .68
I1.4 The Case of Braids . . . . . . . . . . . . . . ... .78
II.5 Double Reversing . . . . . . . . . . . . ... .. .87
II6 Notes . . . . . . . . . . . . . . . . ... ....91

The aim of this preparatory chapter is triple. Firstly, we wish to give a “mod-
ern” proof of the basic algebraic properties of braid groups. The second aim is
to introduce a specific combinatorial technique, called word reversing, which is
needed in Chapter III to extend the braid action of Chapter I on LD-systems.
The third aim is to develop the techinque of word reversing in a general frame-
work, so as to be able to apply it to a certain group G, in Chapter VIII.
The chapter is organized as follows. In Section 1, we consider monoid pre-
sentations of a particular form, of which the standard presentation of B, is a
typical example, and we define word reversing as a possible method for solving
the word problem. In every case, word reversing gives a sufficient condition for
two words to represent the same element of the monoid. The condition how-
ever is not necessary in general: there can exist pairs of words for which the
process does not converge, or it does but it gives a wrong answer. In Sections 2
and 3, we give criteria for avoiding such problems. In Section 2, we introduce
coherence, which guarantees that word reversing gives a correct answer. We
show that, when an additional Noetherianity condition is satisfied, coherence
is a consequence of a local assumption which can be checked effectively. When
these conditions are satisfied, the considered monoid admits a nice theory of
left divisibility, and word reversing is connected with the computation of right
lem’s. In Section 3, we consider the termination of word reversing, and, again,
we give a sufficient condition, namely the existence of a special element that
we call a Garside element. Under such conditions, the monoid embeds in a
group of fractions, the latter is torsion free and its word problem is solvable



by a double word reversing. In Sections 4 and 5, we show that all technical
hypotheses considered in Sections 2 and 3 are satisfied in the case of braid
groups, and deduce a number of algebraic properties of the monoids B, and
the groups B,,.

The Braid
Order

III.1 More about Braid Colourings . . . . . . . . . . . . .98
III1.2 The Linear Ordering of Braids . . . . . . . . . . . . 106
II1.3 Handle Reduction . . . . . . . . . . . . . . . . . 115
III.4 Alternative Definitions . . . . . . . . . . . . . . . 127
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In this chapter, we construct a linear ordering of the braids. This linear ordering
appears canonical in several respects; in particular, the braids larger than 1 are
characterized as those braids admitting an expression where the generator with
smaller index appears positively only, i.e., where some letter o, occurs, but the
letter o, ! does not, nor does any letter 0'2:1 with & < ¢. The order is decidable,
i.e., there exists an effective algorithm that compares any two given braid
words, it is compatible with multiplication on one side, and the set By, of all
braids is order isomorphic to the rationals.

The organization of the chapter is as follows. In Section 1, we show how to
define a partial action of braids on the powers of an arbitrary left cancellative
LD-system using the word reversing technique of Chapter II. In Section 2, we
construct the braid order. To this end, we introduce special braids as those
braids that can be obtained from the unit braid using the exponentiation of
Section 1.3, and, by using a general property of monogenic LD-systems that
will be established in Chapter V, we first construct a linear order on special
braids. Then, using the partial action of braids on the LD-system consisting of
special braids equipped with braid exponentiation, we extend the linear order
on special braids into a linear order <, on arbitrary braids. In Section 3, we



describe a geometrical algorithm that compares braids with respect to <,. This
algorithm is very efficient in practice. In Section 4, we give three alternative
definitions of <, one in terms of automorphisms of a free group, one in terms
of homeomorphisms of a punctured disk, and, finally, one in terms of an action
of braids on the real line connected with hyperbolic geometry.
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We investigate now the restriction of the linear braid order of Chapter III
to positive braids, i.e., to those braids that admit an expression where no
letter o;” L occurs. The main result is Laver’s theorem that the restriction of <,
to B;f is a well ordering. Here we follow Burckel’s approach, which associates
with every positive braid a normal form consisting in a finite tree; the order of
positive braids is then a lexicographical ordering for the associated trees, and
one deduces that the order type of (B, <,) is the ordinal w*"~

As the general construction is intricate, we first consider the special case
of 3-strand braids in Section 1, and give a complete proof in this case. Here,
things are very simple, as the involved trees can be identified with sequences
of integers. In Section 2, we describe the general case, which is similar yet
combinatorially more complicated. In Section 3, we give some applications of
the properties of the order on positive braids, in particular, we prove that the
linear order <, extends the subword order of positive words, and we present a
conjecture of Laver about the action of braids on braids. In an appendix, we
give the first elements in the well ordering on By, together with the associated
trees and their ordinal rank.
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Here, we begin our study of free LD-systems, which will be continued in the
following four chapters. The main result of this chapter is that every free LD-
system admits a canonical linear ordering. We deduce a solution for the word
problem of left self-distributivity, and a simple criterion for recognizing free
LD-systems.

The chapter is organized as follows. In Section 1, we recall the general con-
struction of free algebraic systems, and we describe free LD-quasigroups. In
Section 2, we introduce the notion of LD-equivalent terms, and we establish a
general property of monogenic LD-systems called absorption by right powers.
In Section 3, we introduce the notion of being an LD-expansion, a refinement
of being LD-equivalent, and we show that two terms are LD-equivalent if and
only if they admit a common LD-expansion (confluence property). This result
is used in Section 4 to establish the comparison property used in Chapter III
when constructing the braid order. In Section 5, we use the iterated left di-
visibility relation to construct a linear order on every free LD-system. Finally,
in Section 6, we deduce that the word problem of the left self-distributivity
identity is solvable and we establish Laver’s criterion for a given LD-system to
be free. This leads to realizations of the free LD-system of rank 1 inside the
braid group By, and of the free LD-systems of any rank inside some extension
of Bs.
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In Chapter V, we solved the word problem of LD-equivalence by constructing
an effective algorithm directly recognizing whether two given terms are LD-
equivalent. Here, we prove normal form results: we construct several families
of distinguished terms such that every term is LD-equivalent to exactly one
term in the family. This gives alternative solutions to the word problem, as
two terms are LD-equivalent if and only if their normal forms are equal, but
also new applications.

The main technical notion is that of a cut of a term. For ¢; a fixed term, we
define a cut of ¢y to be a term obtained from ¢y by ignoring what lies at the
right of some variable. So, there are as many cuts in ¢y as there are occurrences
of variables. Then, we define a fractional cut of ¢y to be an iterated product of
cuts of ty that, in some sense, interpolates between the cuts of tg. If there are
n occurrences of variables in ¢, the cuts of ¢y can be numbered 1, ..., n, and,
then, the fractional cuts of ¢y can be specified by rational numbers between 1
and n, typically 2.1 or 3.101. The main result of the chapter states that every
term t satisfying ¢ c,, to is LD-equivalent to a unique fractional cut of tg,
naturally called the tp-normal form of ¢, and, therefore, the LD-class of ¢ can
be specified by a rational number as above. The result extends to convenient
infinite terms tg, and, in particular, every term in 77 admits a well-defined
z*°-normal form.

The chapter comprises five sections. In Section 1, we develop a geometrical
framework for working with terms viewed as binary trees, and, in particular, for
specifying the subterms by using addresses. In Section 2, we introduce the cuts



of a term, and establish their basic properties, in particular their behaviour in
LD-expansions. In Section 3, we prove a first normal form result. We introduce
the notion of a J-normal term, and prove that every term is LD-equivalent to
a J-normal term. The remarkably simple argument relies on the absorption
property of Section V.2. In Section 4, we introduce a new family of normal
terms connected with the fractional cuts alluded above. The proof that every
term is LD-equivalent to a normal term starts from the existence of the 0-
normal form. Section 5 is devoted to applications of the previous results: we
prove that the inequality b C ab holds for all a,b in the free LD-system FLDq,
we study left division in FLD;, and we deduce a complete description of special
braids.

Vii

The Geometry
Monoid

VII.1 Left Self-Distributivity Operators . . . . . . . . . . 286
VIIL.2 Relations in the Geometry Monoid . . . . . . . . . 301
VIL.3 Syntactic Proofs . . . . . . . . . . . . . . ... 310
VIIL.4 Cuts and Collapsing . . . . . . . . . . . . . . . . 322
VIL5 Notes . . . . . . . . . . . . . . . .. .. ... 329

Studying free LD-systems amounts to studying LD-equivalence of terms. Now
t =, t' holds if ¢t can be transformed into ¢’ by iteratively applying the left
self-distributivity identity, which can be seen as applying some operator that
specifies where and how (from left to right or from right to left) the identity
is applied. Applying the identity several times amounts to composing the
associated operators. So we obtain a monoid of (partial) operators acting on
terms, so that the LD-equivalence class of a term is its orbit under the action.
The aim of this chapter is to study the monoid G, ,, involved in this action, which
we call the geometry monoid of (LD) as it captures a number of geometrical
relations involving left self-distributivity.



The chapter is organized as follows. In Section 1, we introduce the oper-
ators LD,, and the monoid G,, they generate. We describe the domain and
image of LD,,, and we interpret the product in G, as a term unification pro-
cess. In Section 2, we use geometric arguments to build a list of relations, called
LD-relations, that hold in the monoid G,,. We do not prove that LD-relations
form a presentation of G, but we show in Section 3 and 4 how to use them
to re-prove a number of previously known properties of left self-distributivity.
In particular, we give a syntactic proof of the confluence property, i.e., one
that resorts to LD-relations only. To this end, we introduce for each term ¢ a
distinguished word A; which describes the passage from t to ¢, and which is
directly reminiscent of Garside’s braid word A,,..
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The geometry monoid G,,, that describes the action of the left self-distributivity
identity on terms is not a group, and, contrary to the case of associativity, we
cannot obtain a group by merely using a projection. However, we know a family
of relations holding in G,,,, namely these LD-relations that define =%, and we
have observed that many properties of G,, can be established by using these
relations exclusively. In this chapter, we investigate the abstract group Gip
for which LD-relations form a presentation. The hypothesis that G., must
resemble G,,, is kept as a leading principle, and indeed we can show that all
geometrical parameters defined in G,,, admit counterparts in G,,. On the other



hand, the group G, turns out to be an extension of the braid group B,,—this
being the precise content of our slogan: “The geometry of left self-distributivity
is an extension of the geometry of braids.” Many results about G, and By,
originate in this connection. In particular, braid exponentiation and braid
ordering come from an operation and a relation on G,, that somehow explain
them and make their construction natural.

Technically, the group G, behaves like a sort of generalized Artin group. It
shares several properties with such groups, yet a number of technical problems
arise from G, contrary to Bs,, not being a direct limit of finite type groups.

The divisions of the chapter are as follows. In Section 1, we introduce the
group G, and the corresponding monoid M,,. We observe that the braid
group B, is a quotient of G,,, a result connected with the action of braids
on left self-distributive systems. We also observe that the presentation of G,
is associated with a complement, and verify that this complement satisfies all
conditions of Chapter II. In Section 2, we embed T3 into G.p by using the
absorption property of Chapter V to associate with every term a distinguished
word that describes its construction. We deduce a complete description of
the connection between G, and G.p, and explain how braid exponentiation
arises. By extending the approach to the case of several variables, we show
how charged braids then appear naturally. In Section 3, we introduce two dif-
ferent (pre)-orders on the group G,. The first is a preorder connected with the
braid ordering, and using it gives a purely syntactical proof for the acyclicity
property of free LD-systems, one that does not use braid exponentiation. The
second relation is a linear ordering on G, which is compatible with multipli-
cation on both sides. In Section 4, we show that shifting the addresses gives a
family of injective endomorphisms of G.p, which amounts to determining cer-
tain parabolic subgroups of G;,. Finally, we introduce in Section 5 the notion
of a simple element in the monoid M, ,, which is an exact analog of the notion
of a simple braid in BX,. We establish in particular a normal form result in M,
which directly extends the braid normal form of Chapter II.
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In this chapter, we deepen our study of left self-distributivity and, describing
the geometry of the terms 9%t more closely, we prove partial results about
the convergence of the Polish Algorithm and the Embedding Conjecture. The
Polish Algorithm is a natural syntactic method for deciding LD-equivalence of
terms, and the question of whether it always converges is one of the most puz-
zling open questions about left self-distributivity. The Embedding Conjecture
claims that the monoid M;, embeds in the group G,,. The main technical
notion in the chapter is the notion of a progressive LD-expansion, a particu-
lar kind of LD-expansion where self-distributivity is applied to positions that
move from from left to right only. Its interest lies in the uniqueness properties
it entails.

The organization of the chapter is as follows. In Section 1, we introduce
the Polish Algorithm and the notion of a progressive word. In Section 2, we
define the notion of an element of FLD,, appearing in a term, and we study
an associated covering relation. In Section 3, we continue the analysis of the
terms O*t initiated in Chapter VI. We prove that the latter terms satisfy a
strong self-similarity property called perfectness, and we deduce partial results
about the practical determination of the tp-normal form of a term. In Sec-
tion 4, we deduce convergence results for the Polish Algorithm; we establish in
particular that the algorithm always converges when running on terms that are
C.po-comparable to injective terms. We also extend the results established in
Section VIIL.5 for simple elements of M,,, to a more general notion of degree k
elements where 9%t replaces 0t. In Section 5, we establish explicit decompo-
sitions for the elements A;, which we recall are the counterparts to Garside’s
braids A,. In Section 6, we prove a number of particular instances of the
Embedding Conjecture by establishing the existence of certain sets of terms
called confluent families. Finally, we conclude this chapter and Part B with a
brief appendix describing what remains from the current approach when the
left self-distributivity identity is replaced with another algebraic identity, in
particular associativity.
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So far we have described several examples of LD-systems: conjugacy of a group,
braid exponentiation, injection bracket. In this chapter, we give new examples,
and mention some general results about LD-systems, and about those special
families obtained by prescribing additional identities.

The organization of the chapter is as follows. In Section 1, we introduce an
infinite family of finite monogenic LD-systems that we call the Laver tables.
For each n, there exists one Laver table with 2™ elements, and these tables
organize into a projective system. Here we establish their basic properties. In
Section 2, we sketch Drépal’s result that every finite monogenic LD-system can
be constructed from a Laver table using some uniform scheme. In Section 3,
we introduce multi-LD-systems, which are sets equipped with several mutually
left distributive operations, and we describe free multi-LD-systems in terms of
free LD-systems. In Section 4, we consider idempotents in LD-systems, and
LDI-systems, which are those LD-systems where every element is idempotent.
We establish Joyce’s result that group conjugacy is axiomatized by the ax-
ioms of LD-quasigroups plus idempotency when both “aba~'” and “a~'ba”
are considered, and Larue’s result that group conjugacy is not axiomatized by
(LD) plus idempotency when “aba=!” only is used. Finally, in Section 5, we
consider LRD-systems, which are those LD-systems that also satisfy the right
self-distributivity law. The main result relates divisible LRD-systems with
commutative Moufang loops. In an appendix, we explicitly display the Laver
tables A, for n < 6, and, partially, for n < 10.
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A number of LD-systems can be equipped with a second, associative operation
connected to the self-distributive operation by several mixed identities. Here
we study such double structures, called LD-monoids. In particular, we discuss
the question of completing a given LD-system into an LD-monoid. We give two
solutions, and deduce a complete description of free LD-monoids. The global
conclusion is that the self-distributive operation is the core of the structure,
and that adding an associative product is essentially trivial. However, the case
of braid exponentiation is not so simple, and applying the above mentioned
completion scheme requires considering the extended braids of Section I.4.

The chapter is organized as follows. In Section 1, we give examples of LD-
monoids, and discuss the problem of completing a given monoid into an LD-
monoid. In Section 2, we address the problem of embedding a given LD-system
into an LD-monoid; we describe a universal solution called the free completion,
as well as another completion defined using composition of left translations.
The construction applies in particular to the Laver tables. In Section 3, we
show that the free LD-system FLDy embeds in the free LD-monoid based
on X, and that the latter can be constructed inside FLDx. This enables us
in particular to solve the word problem of free LD-monoids. In Section 4, we
deduce that every free LD-monoid admits canonical linear orderings. As for
free LD-systems, the existence of such orderings leads to a freeness criterion
and to various algebraic properties like left cancellativity. Finally, in Section 5,
we come back to the LD-monoid of extended braids as defined in Chapter I,
and show that it includes many free LD-monoids of rank 1.
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Here, we describe some left self-distributive structures that appear in set the-
ory when mappings called elementary embeddings are iterated. We try to give
a self-contained exposition of the subject by extracting those minimal results
necessary for the construction, and assuming no knowledge of set theory. How-
ever, the chapter can be used as a black box leading to exportable results
like Proposition 4.11. Actually, it can even be skipped, for it only consists in
one more example—but one that has played a crucial role in the subject, and
still does, as some of the algebraic results it leads to have so far received no
alternative proof, as we shall see in Chapter XIII.

The organization of the chapter is as follows. In Section 1, we introduce large
cardinals in set theory. In Section 2, we define the notions of an elementary
embedding and of a self-similar rank, and we explain why the existence of
such objects cannot be proved in ordinary mathematics. We associate with
every nontrivial elementary embedding a distinguished ordinal called its critical
ordinal. In Section 3, we show how a left self-distributive operation arises on
elementary embeddings associated with a self-similar rank. The main result
here is the Laver—Steel theorem, a deep consequence of the fact that ordinals
are well ordered: it asserts that the critical ordinals of a certain type of sequence
of elementary embeddings have no upper bound. Using this result, one shows
that left division in the LD-system constructed above has no cycle. Finally, we
study in Section 4 the finite quotients of this LD-system, and the Laver tables
of Chapter X appear naturally.
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In this chapter, we come back to the finite Laver tables introduced in Chap-
ter X. We show how using the results of set theory established in Chapter XII
gives new properties of A,,, in particular the result that the period in the first
row of A, goes to infinity with n. The unusual point here is that the result is
established using the existence of a self-similar rank as an hypothesis, and we
know that this is an unprovable logical statement. Thus the previous argument
is not a proof in the usual sense, and another proof has to be found, typically
a combinatorial argument involving only intrinsically finite objects. Unfortu-
nately (or fortunately...), no such proof is known to date, and it is only known
that such a proof, if it exists, has to be very complicated in some sense.

The chapter is organized as follows. In Section 1, we construct a dictionary
between the iterations of an elementary embedding as described in Chapter XII
and the finite tables A, of Section X.1, and we use it to translate the Laver—
Steel theorem into results about the systems A,,. In Section 2, we sketch partial
combinatorial results toward those properties established in Section 1 using
elementary embeddings. In Section 3, we come back to elementary embeddings,
and we show that computing some critical ordinals requires using fast growing
functions on the integers. Finally, in Section 4, we deduce from the previous
results a huge lower bound for the least n such that the period in the first
row of A, goes beyond 16. The existence of such bounds suggests that no
simple combinatorial proof of the results of Section 1 is likely to exist, which is
confirmed by the result that no such proof can be formalized inside the logical
system called Primitive Recursive Arithmetic.



