Ordering Braids

Patrick Dehornoy
with

Ivan Dynnikov

Dale Rolfsen

Bert Wiest






Preface

The present volume follows a book, “Why are braids orderable?”, written by
the same authors and published in 2002 by the Société Mathématique de France
in the series Panoramas et Synthéses. We emphasize that this is not a new edition
of that book. Although this book contains most of the material in the previous
book, it also contains a considerable amount of new material. In addition, much
of the original text has been completely rewritten, with a view to making it more
readable and up-to-date. We have been able not only to include ideas that were
unknown in 2002, but we have also benefitted from helpful comments by colleagues
and students regarding the contents of the SMF book, and we have taken their
advice to heart in writing this book.

The reader is assumed to have some basic background in group theory and
topology. However, we have attempted to make the ideas in this volume accessible
and interesting to students and seasoned professionals alike.

Really, the question “Why are braids orderable?” has not been answered to our
satisfaction, either in the book with that title, or the present volume. That is, we
do not understand precisely what makes the braid groups particularly special, so
that they enjoy an ordering which is so easy to describe, so challenging to establish
and with such subtle properties as are described in these pages. The best we can
offer is some insight into the easier question, “How are braids orderable?”

Patrick Dehornoy, Caen
Ivan Dynnikov, Moscow
Dale Rolfsen, Vancouver

Bert Wiest, Rennes

December 2007
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Introduction

Braid theory is a beautiful subject which combines the visual appeal and in-
sights of topology with the precision and power of algebra. It is relevant not only
to algebraists and topologists, but also to scientists working in many disciplines.
It even touches upon such diverse fields as polymer chemistry, molecular biology,
cryptography and robotics.

The theory of braids has been an exceptionally active mathematical subject
in recent decades. The field really caught fire in the mid 1980’s with the revo-
lutionary discoveries of Vaughan Jones [113], providing strong connections with
operator theory, statistical mechanics and utilizing many ideas which originated
from mathematical physics.

That braids have a natural ordering, compatible with their algebraic structure,
was discovered a decade later by one of the authors (P.D.), and since then it has
been intensively studied and generalized by many mathematicians, including the
authors. That phenomenon is the subject of this book.

One of the exciting aspects of this work is the rich variety of mathematical
techniques that come into play. In these pages, one will find subtle combinatorics,
applications of hyperbolic geometry, automata theory, laminations and triangu-
lations, dynamics, even unprovability results, in addition to the more traditional
methods of topology and algebra.

A meeting of two classical subjects

It was an idea whose time was overdue—the marriage of braid theory with the
theory of orderable groups. The braid groups B,, were introduced by Emil Artin [4]
in 1925—see also [5]. Indeed, many of the ideas date back to the nineteenth century,
in the works of Hurwicz, Klein, Poincaré, Riemann, and certainly other authors.
One can even find a braid sketched in the notebooks of Gauss [95]—see [174] for a
discussion about Gauss and braids, including a reproduction of the picture he drew
in his notebook.

The n-strand braid group B, has the well-known presentation—other defini-
tions will be given later:

By, ={0y,....0,_1 | 0,0; = 0;0; for |i — j| > 2, 0;0;0; = 0;0;0; for |i — j| = 1).

We use B} for the monoid with the above presentation, which is called the n-strand
braid monoid. The monoid B is included in a larger submonoid B/* of B, called
the dual braid monoid, which is associated with the presentation of B, given by
Birman, Ko and Lee in [15]—details may be found in ChapterVIIIL.

To each braid, there is an associated permutation of the set {1,...,n}, with o;
sent to (4,7 + 1), defining a homomorphism of B,, onto the symmetric group &,,.
The kernel of this mapping is the pure braid group PB,,.

ix
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The theory of ordered groups is also well over a hundred years old. One of the
basic theorems of the subject is Holder’s theorem, published in 1902 [109], that
characterizes the additive reals as the unique maximal Archimedian ordered group.
It is remarkable, and somewhat puzzling, that it has taken so long for these two
venerable subjects to come together as they now have.

A group or a monoid G is left-orderable if there exists a linear, i.e., strict total,
ordering < of its elements which is left-invariant, i.e., g < ¢ implies hg < hg'
for all g,¢’,h in G. A group is right-orderable if and only if it is left-orderable,
but the orderings are generally different; both choices appear in the literature with
roughly equal frequency. If there is a left ordering of G which also invariant under
multiplication on the right, we say that G is orderable, or for emphasis, bi-orderable.

The main theme of this book is proving and explaining the following.

THEOREM. The Artin braid group B, is left-orderable, by an ordering which is
a well-ordering when restricted to the braid monoid B} —and even to the dual braid
monoid B}*.

Despite the high degree of interest in braid theory, the importance of the left-
orderability of the braid groups, announced in 1992 [49], was not widely recognized
at first. A possible explanation for this is that the methods of proof were rather un-
familiar to most topologists, the people most interested in braid theory. As will be
seen in Chapter IV, that proof involves rather delicate combinatorial and algebraic
constructions, which were partly motivated by (while being logically independent
of) questions in set theory—see [119] for a good introduction. Subsequent com-
binatorial work brought new results and proposed new approaches: David Larue
established in [129, 128] results anticipating those of [83], Richard Laver proved
in [134] that the restriction of the braid ordering to B} is a well-ordering, Serge
Burckel gave an effective version of the latter result in [26, 27]. However, these
results were also not widely known for several years.

The challenge of finding a topological proof of left-orderability of B,, led to
the five-author paper [83], giving a completely different construction of an ordering
of B, as a mapping class group. Remarkably, it leads to exactly the same ordering

s [49]. Soon after, a new technique [180] was applied to yield yet another proof
of orderability of the braid groups—and many other mapping class groups—using
ideas of hyperbolic geometry, and moreover giving rise to many possible orderings
of the braid groups. This argument, pointed out by William Thurston, uses ideas of
Nielsen [161] from the 1920’s, and it applies to many other mapping class groups. It
is interesting to speculate whether Nielsen himself might have solved the problem,
if asked whether braid groups are left-orderable in the following language: Does
the mapping class group of an n-punctured disk act effectively on the real line
by order-preserving homeomorphisms? Nielsen had laid all the groundwork for an
affirmative answer.

More recently, a new topological approach using laminations was proposed
in [73]. In common with the Mosher normal form of [155], it relies on using
triangulations as a sort of coordinate system. Also, a combinatorial interpretation of
the results of [180] was proposed by Jonathon Funk in [92], including a connection
with the theory of topoi.

The braid groups are known to be automatic [186]. Without burdening the
reader with technical details, it should be mentioned that the ordering of B,, and
certain other surface mapping class groups (nonempty boundary) can be considered
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automatic as well, meaning roughly that it may be determined by some finite-state
automaton [179].

Very recently [42, 90], the alternating decomposition—described in Chap-
ter VII—has greatly improved our understanding of the well-ordering of the mon-
oid B, and allowed for its extension to the dual braid monoid B;}*.

Unlike the full braid groups, the pure braid groups, PB,,, can be bi-ordered [121],
by an ordering which also well-orders pure positive braids—but proves to be much
simpler than the above well-ordering of B,,. The argument relies on a completely
different approach, namely using the Magnus representation of a free group, and the
fact that PB,, is a semidirect product of free groups. Subsequent work has shown
that the braid groups B, and the pure braid groups PB,, are very different from
the point of view of orderability: in particular, for n > 5, no left-ordering of B,, can
bi-order a subgroup of finite index, such as PB,,. This was proved independently
in [177] and [71].

A convergence of approaches

As will be recalled in Chapter I1II, the orderability of a group implies various
structural consequences about that group and derived objects. The fact that B, is
left-orderable implies that it is torsion-free, which had been well known. However,
it also implies that the group ring ZB,, has no zero-divisors, which was a natural
open question. Biorderability of PB,, shows that ZPB,, embeds in a skew field. In
addition, it easily implies that the group PB, has unique roots, a result proved
in [8] by complicated combinatorial arguments, and definitely not true for B,,.

One may argue that such general results did not dramatically change our un-
derstanding of braid groups. The main point of interest, however, is not—or not
only—the mere existence of orderings on braid groups, but the particular nature
and variety of the constructions we shall present. Witness the beautiful way the
ordering of PB,, is deduced from the Magnus expansion in Chapter XV, the fasci-
nating connection between the uncountable family of orderings on B,, constructed
in Chapter XIII and the Nielsen—Thurston theory, and, chiefly, the specific proper-
ties of one particular ordering on B,,. Here we refer to the ordering of B,, sometimes
called the Dehornoy ordering in literature, which will be called the o-ordering in
this text.

Typically, it is the specific form of the braids greater than 1 in the o-ordering
that led to the new, efficient algorithms for the classical braid isotopy problem
described in Chapters V, VII, and VIII, and motivated the further study of the
algorithms described in Chapters X and XII. But what appears to be of the greatest
interest here is the remarkable convergence of many approaches to one and the
same object: many different points of view end up with the o-ordering of braids,
and this, in our opinion, is the main hint that this object has an intrinsic interest.
Just to let the reader feel the flavour of some of the results, we state below various
characterizations of the o-ordering—the terms will be defined in the appropriate
place. So, the braid 3 is smaller than the braid 4’ in the o-ordering if and only if

e in terms of braid words—the braid 7'/’ has a braid word representative where
the generator o; with smallest index appears only positively (no 0[1);

e in terms of action on self-distributive systems—for any ordered LD-system (.5, *, <),
and for any sequence x in S, we have x « 8 < x « 3';
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e in terms of braid word combinatorics—any sequence of handle reductions from
any braid word representing 37!’ ends up with a o-positive word;

e in terms of ®-splittings, assuming that 3, 3’ belong to B, —the ® -splitting of
is ShortLex-smaller than that of 3';

e in terms of ¢-splittings, assuming that 3, 3 belong to B, *—the ¢ -splitting of
is ShortLex-smaller than that of 3';

e in terms of automorphisms of a free group—for some i, the automorphism asso-
ciated with 373" maps x; to z; for j < 4, and it maps z; to a word that ends
with :z:i_l;

e in terms of free group ordering—we have 8(z,) < #'(z5,) in Foo \ {1};

e in terms of mapping class groups—the standardized curve diagram associated
with 3’ first diverges from the one associated with 8 towards the left;

e in terms of Z?"-coordinates—the first nonzero coefficient of odd index in the
sequence (0,1,...,0,1) « 371" is positive;

e in terms of Mosher’s normal form—the last flip of the Mosher normal form
of 371" occurs in the upper half-sphere;

e in terms of hyperbolic geometry—the endpoint of the lifting of 3(T,) is smaller
(as a real number) than the endpoint of the lifting of 3'(T,).

Even if the various constructions of the o-ordering depend on choosing a par-
ticular family of generators for the braid groups, namely the Artin generators o,
this convergence might suggest to call this ordering canonical or, at least, standard.
This convergence is the very subject of this text: our aim here is not to give a com-
plete study of any of the different approaches, but to try to let the reader feel the
flavour of these different approaches. More precisely—and with the exceptions of
Chapters XIII and XIV which deal with more general orderings, and of Chapter XV
which deals with ordering pure braids—our aim will be to describe the o-ordering
of braids in the various possible frameworks: algebraic, combinatorial, topological,
geometric, and to see which properties can be established by each technique.

As explained in Chapter II, exactly three properties of braids, called A, C,
and S here, are crucial to prove that the o-ordering exists and to establish its main
properties. Roughly speaking, each chapter of the subsequent text—except Chap-
ters XIII, XIV, and XV—will describe one possible approach to the question of
ordering the braids, and, in each case, explain which of the properties A, C, and S
can be proved: some approaches are relevant for establishing all three properties,
while others enable us only to prove one or two of them, possibly assuming some
other one already proved. We emphasize that, although these properties are estab-
lished in various contexts and by very different means, there is certainly no circular
reasoning involved.

However, the point of this book is not merely to prove and reprove the existence
of the braid ordering. Each of the chapters gives a different viewpoint which adds
new colours to our description and provides further results.

Organization of the text

Various equivalent definitions of the braid groups are described in Chapter I.
The o-ordering of braids is introduced in Chapter II, where its general properties
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are discussed. A number of curious examples are presented, showing that the o-
ordering has some quite unexpected properties. The well-ordering of B} is also
introduced in this chapter.

Chapter III presents various applications of the braid ordering. This includes
purely algebraic consequences of orderability, such as the zero-divisor conjecture,
but also more specific applications following from the specific properties of the o-
ordering, such as a faithfulness criterion of representations and efficient solutions
to the word problem. We point out that the braid groups provide interesting
examples and counterexamples in the theory of ordered groups. In addition, we
outline some applications to knot theory, the theory of pseudo-characters, and
certain unprovability results arising in braid theory.

The chapters which follow contain various approaches to the orderability phe-
nomenon. The combinatorial approaches are gathered in Chapters IV through IX,
while the topological approaches are presented in Chapters X to XIV.

Chapter IV introduces left self-distributive algebraic systems (LD-systems) and
the action of braids upon such systems. This is the technique whereby the or-
derability of braids was first demonstrated and the o-ordering introduced. The
chapter sketches a self-contained proof of left-orderability of B,, by establishing
Properties A, C, and S with arguments utilizing LD-systems. Here we consider
colourings of the strands of the braids, and observe that the braid relations dictate
the self-distributive law among the colours. Then we can order braids by choosing
orderable LD-systems as colours, a simple idea, although the existence of an order-
able LD-system requires a sophisticated argument. The chapter concludes with a
short discussion of the historical origins of orderable LD-systems in set theory.

A combinatorial algorithm called handle reduction is the subject of Chapter V.
This procedure, which extends the idea of word reduction in a free group, is a very
efficient procedure in practice for determining whether a braid word represents a
braid larger than 1, and incidentally gives a rapid solution to the word problem in
the braid groups. Handle reduction gives an alternative proof of Property C, under
the assumption that Property A holds.

The deep structure of the braid groups discovered by Garside [94], and its
connection with the o-ordering, are discussed in Chapter VI. The relationship is
not a simple one, but investigating the ordering of the divisors of A¢ in B, leads to
new insights into Solomon’s descent algebras. A complete description is obtained
in the case of 3-strand braids, leading to a new proof of Property C in that case.

Some quite recent developments in braid orderings are contained in Chap-
ters VII and VIII, which describe normal forms for braids which are more compat-
ible with the braid ordering than the greedy form associated with Garside theory.
Chapter VII begins with an inductive scheme called the @ -splitting, which yields
a decomposition of every positive n-strand braid into a finite sequence of positive
(n — 1)-strand braids. The main result is that, under this decomposition, the order-
ing of B} is a simple lexicographic extension of the ordering of B} ;. Most results
of the chapter rely on techniques due to S.Burckel in [27] for encoding positive
braid words by finite trees, but they are used here as a sort of black box, and their
proofs are omitted.

The dual braid monoids introduced by Birman, Ko and Lee are at the heart
of Chapter VIII. The monoid B;*, which properly includes the monoid B, for
n > 3, also has a good divisibility structure. As in Chapter VII, one introduces
the notion of ¢ -splitting, which yields a decomposition of every braid of B,;* into
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a finite sequence of of braids of B}* ;. The main result is again that, under this
decomposition, the ordering of B}* is a lexicographic extension of the ordering
of B!* |, a recent result of J. Fromentin. The consequences are similar to those of
Chapter VII, including a new proof of Property C, and a new quadratic algorithm
for comparing braids. The main interest of the approach may be that it allows
for direct, elementary proofs, by contrast to Burckel’s techniques, which use tricky
transfinite induction arguments.

Chapter IX contains an approach to the o-ordering using a very classical fact,
that the braid groups can be realized as a certain group of automorphisms of a free
group. As observed by David Larue, this method yields a quick proof of Property A,
and a partial (and not so quick) proof of Property C, as well as a simple criterion
for recognizing whether a braid is o-positive in terms of its action on the free group.
We also outline in this chapter the interpretation developed by Jonathon Funk, in
which a certain linear ordering of words in the free group is preserved under the
braid automorphisms.

We begin the topological description of the g-ordering in Chapter X. Here we
realize B,, as the mapping class group of a disk with n punctures. The braid action
can be visualized by use of curve diagrams which provide a canonical form for the
image of the real line, if the disk is regarded as the unit complex disk. This was
the first geometric argument for the left-orderability of the braid groups, and it is
remarkable that the ordering described in this way is identical with the original,
i.e., with the o-ordering. An advantage of this approach is that it also applies to
more general mapping class groups. We emphasize that Chapters IX and X are
based on very similar ideas, except that in the first one these ideas are expressed
in a more algebraic language, and in the second in a more geometric one.

In Chapter XI we study in detail a topological technique which we already en-
countered in Chapter X for explicitly constructing o-consistent representative braid
words of any given element of the braid group, namely the method of untangling, or
relaxing, curve diagrams. We discuss two examples of such algorithms: one due to
Bressaud in [19], which has a fascinating alternative description in terms of finite
state automata and word rewriting systems, and another one from [74] which leads
to a deeper understanding of the connection between the length of a braid word
and the complexity of the curve diagram of a braid. This approach can also be
interpreted in terms of Teichmiiller geometry [175].

Chapter XII continues the discussion of the o-ordering in terms of mapping
classes. However, here the geometric approach is rephrased in combinatorial terms
by use of two somewhat different devices involving triangulations. The first ap-
proach, developed in [73], uses integral laminations. One encodes the action of a
braid on the disk by counting intersections of the image of a certain triangulation
with a lamination. This leads to the shortest proof of Property A known so far,
and yet another characterization of braids larger than 1 in the o-ordering. The
second was inspired by the technique employed by Lee Mosher to establish that
mapping class groups are automatic. It develops a new canonical form for braids
and a method for determining o-ordering by means of a finite state automaton.

The discussion in Chapter XIII interprets braid orderings in terms of Nielsen—
Thurston theory. The key observation is that the universal cover of the punctured
disk has a natural embedding in the hyperbolic plane. Thereby, braids act on a
family of hyperbolic geodesics, which have a natural ordering. This point of view
provides an infinitude of inequivalent orderings of braid groups and many other
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mapping class groups. The o-ordering on B,, corresponds to choosing a particular
geodesic in HZ2.

A recent, and quite different, topological approach to orderability is taken in
Chapter XIV. Here, one considers the set of allleft orderings of a group G, and of B,,
in particular. This set is given a natural topology, forming the space LO(G), which
in general is compact and totally disconnected. We study the structure of LO(B,,)
and use this global topological approach to show that there are uncountably many
essentially different left-orderings of B,, for n > 3, all of which provide well-orderings
of B}, a phenomenon noted in Chapter XIII by completely different methods.

Chapter XV is an account of an ordering of the pure braid groups. Unlike the
full braid groups, the groups PB,, of pure braids can be given an ordering which is
invariant under multiplication on both sides. The one we investigate here is defined
algebraically, using the Artin combing technique, together with a specific ordering of
free groups using the Magnus expansion. This ordering—which is not the restriction
of the o-ordering to pure braids—has the nice property that nontrivial braids in
PB, N B} are larger than 1 and well-ordered.

The final chapter contains a number of open questions related to braid or-
derings. Various extensions of the ideas presented in the other chapters are also
discussed there.

Guidelines to the reader

An attempt has been made to keep the chapters relatively self-contained. So,
apart from Chapters I, II, and X VI, all chapters are parallel one to the other rather
than logically interdependent; therefore, after the first chapters, the reader can take
the chapters essentially in whatever order he or she likes.

We mentioned that three properties of braids play a crucial role, namely those
called A, C, and S—whose statements, as well as other basic definitions, are recalled
at the end of the book in page 311. One of our main tasks in this text will be to prove
these properties using various possible approaches. In spite of the above general
remarks, it might be useful that we propose answers to the question: which of
these approaches offers the quickest, or the most elementary, proof of Properties A,
C, and S? The answer depends of course on the mathematical preferences of the
reader. As for Property A, the shortest proofs are the one using the automorphisms
of a free group in Chapter IX, and—even shorter once the curious formulas (XII.1.1)
have been guessed—the one using laminations in Chapter XII.

As for Property C, the shortest argument is probably the one involving self-
distributivity as outlined in Chapter IV, but one may prefer the approach through
the handle reduction method of Chapter V, which uses nothing exotic and gives an
efficient algorithm in addition, or the curve diagram approach of Chapter X, which
gives a less efficient method and requires considerable effort to be made rigorous,
but appeals to a natural geometric intuition.

Finally, for Property S, the hyperbolic geometry argument of Chapter XIII is
probably the most general one, as it gives the result not only for the o-ordering,
but also for a whole family of different orderings. On the other hand, even if they
may appear intricate, the combinatorial approaches of Chapters VII and VIII give
the most precise and effective versions.

Although they are conceptually simple, the braid groups are very subtle non-
Abelian groups which have given up their secrets only reluctantly over the years.
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They will undoubtedly continue to supply us with surprises and fascination, and
so will in particular their orderings: despite the many approaches and results men-
tioned in this book, a lot of questions about braid orderings remain open today,
and further developments can be expected. For the moment, we hope that this
small text, which involves techniques of algebra, combinatorics, hyperbolic geome-
try, topology, and has even a loose connection with set theory, can illuminate some
facets of the ordering of braids.
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