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0. Introduction

The existence of a measurable cardinal is known to be the weakest hypothesis
which ailows the construction a transitive ultrapower of a model of ZFC with
respect to some ultrafilter belonging to this model. We thus start with an universe
Ny satisfying ZFC and a «-complete ultrafilter % on a cardinal x which is in N,
and construct following Gaifman and Kunen the decreasing sequence (N, )., Of
the transitive iterated ultrapowers of N, with respect to %, together with the
corresponding elementary embeddings i, for « < 8. It has been observed that the
intersection of the w first ultrapowers of N, is a model of ZFC including N,,.
Likewise if for any limit A we set M, = {1, N,, then M, is a model of ZF
including N,. Bukovsky showed by general methods that M, is a generic exten-
sion of N,. On the other hand Prikry constructed starting with a normal ultrafilter
a set of conditions which forces a measurable cardinal to become singular of
cofinality w, and R. Solovay observed that, when % is normal, the sequence
(0K )neo 1S in M, and is Prikry-generic over N,. It was natural to conjecture that
M,, is exactly the Prikry-extension N, [(ig.&), 0l

In this work, we prove this conjecture which has also been established
independently by Bukovsky [3] by a method different from ours, and study much
more generally the models M, for A kmit and their connections with Prikry
extensions, without any normality hypothesis.

The main results are as follows:

Theorem A. There exists a set of conditions € constructed from AU such that:
(i) € reduces to Prikry’ forcing just when (and only when) U is selective.
However all the usual properties of Prikry’ forcing hold for € in the general case;
(i) M, is an “universal” €-extension in the following sense: if G is No-generic
over € and ¢(a) is any formula with parameters in Ny, then N[Gled(a) iff
M, Edlip.a).

Theorem B, There exists a sequence (x.).con of ordinals such that x., = io .k when
(and only when) U is normal, and, for any A limit, exactly one of the following
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110 P. Dehornoy

holds:

() a < AN, Fcf A= w, and M, = N,.

G A=ato, and (Xesn)neo 15 Ny-generic over i€ and M, is the generic
extension Ny [(Xa sl cwl

(iii) Voo <A A#£ @+, N Fcf A =, and there is a set G, of N, -generic sequences
over i€, and a map i, definable in M, such that M, =N\[iy 1 4.]. M, is a
quasi-generic extension of Ny, but no generic extension of M, included in N, can
satisfy AC. Furthermore the elements of %, are all subsequences {up to a finite
number of terms) of (Xu)aer

The basic tools we employ for studying the models M, are “‘arithmetic”
properties of the composition of the embeddings i,, which are developed in
Chapter 2; for large values of A we nced moreover a rather precise study of the
notion of support for an clement of N,, and this is done in Chapter 8. Chapter 3 is
devoted to the proof of Theorem B(ii). We establish in Chapter 4 an useful lemma
which is used in Chapter 5 to prove the part of Theorem B(iii) dealing with the
axiom of choice in M,. The forcing conditions € are introduced in Section 6, and
Theorem. A is proved there. Chapter 7 is devoted to a complete study of the
generic sequences over g, € which are in M, when % is equivalent to a power of
a normal ultrafilter. Finally Theorem B(i) is proved in Chapter 9, and the end of
Theorem B(ii) is proved in Chapter 10.

The logical connections between various chapters are indicated in the following
diagram:
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I wish to thank here K. McAloon, S. Grigorieff, and A. Louveau for many
stimulating conversations on the subject matter of this work.

1. Construction of the models

We recall the construction of the iterated ultrapowers of a model of ZFC with
the help of a complete ultrafilter on a measurable cardinal. We follow the
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presentation and as much as possible the notations of Kunen’s work, but we give
a special emphasis to the introduction in Section 1.4 of the sequence (x,)..on
which will provide us the basic tool for studying the ultrapowers when the ground
ultrafilier is not normal. We have tried to make complete those proofs which do
not appear, or appear in a different form, in [8L

1.0.

As usual, we reserve small greek letters {except ) for ordinals, or finite
sequences of ordinals when set as bold face characters. We use s, t for sequences
of ordinals (of any length).

For any ordered set X, we let [X]" be the set of strictly increasing n-tuples of
elements of X, and set [X]** =J, [X]'. We make no distinction between an
order preserving map of an ordinal p into another » and its range, which is a
subset of v of order type p. This will allow us to speak of the union of two
members s and ¢ of [»]™, which is the injection whose range is the union of the
ranges of s and 1, etc,

1.1, Functions and subsets with finite supports

Our ground model will be a transitive model of ZFC denoted N,. We let M
denote an inner model of Ny, i.e. a class for N,, which is a model of ZF (see [7]),
which is transitive, and contains On. Let I be any set of M.

If w=<v and e is an order preserving map : — v we can for any s I* define
the composed map se € I* in the usual way:

se{&) = s{e(¢)).

Then let f: I* — M : we construct
e f: ["— M by setting
e % f(s) = f(se).

We extend this definition to the subsets of I* Jooking at them as at functions from
I* to 2, Le. for X included in I*, we define e = X included in 1" by

scex X iff sec X,

Definition. (i) Fn, (M, I} is the class of M of functions f with domain I® such that
there exist ee[a]* and g a function with domain I'! and range in M, with
f=exg

(i) P, (M, I} is the set in M of all subsets X of I* such that there exist e e [a]<*
and Y a subset of I, with X=¢»*Y,

1.2. Powers of wltrafilters

Assume that in M, % is an ultrafilter on I.
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Definition. (i) We first construct  inductively ¥, P} by: Xe¥, ifi
£ XEc¥Ye ¥, _; where XE={n: E€"'nec X}
(ii) Then for any e we construct ¥V, =P, (M, D by: X=e=Ye ¥V, il Ye¥,,.

1.3, The models N,

For the remainder of the paper, we assume that & is measurable in Ny, and % is
any x-complete (free) ultrafilter on «.

Theorem 1. There exists an unique sequence of transitive classes {(N.), .o, stich
that:

(i) N, is an inner model of ZFC of N, including On;

(ii) there is a surjection m, from Fn, (Ny, k) onto N, such thai, for any formula
D(vy, ..., v,), N, satisfies Pl fym.f,) iff sex™: NoFD(f (s) - +f,(s))} is in
U,

(iii) if e : a— B is an increasing injection, the map i, from N, to N defined by
i f=mge=fis an elementary embedding;

(iv) if A is Limit, then (N,, i) is a direct limit of the system (N,, i) where i,z is

the embedding i, corresponding to e =1id,,.

The proof is in [8]. The well-foundedness of the models is a consequence of the
closure of U under arbitrary countable intersections. Let us recall the proof of
(iv): assume A limit and x is a member of N,. There is ¢ in [A1"° and g : k' —= N,
such that x =me = g. Since A is limit, there is & <A such that ¢ <e (we mean:
max ¢ <a}, and s0 x =mid, *exg=ipmer g

1.4. The sequences (x,) and (x.)

As usual, we set:
Definition. «, =i« =m [s—k].
Lemma 1, Forall B=a, we have i,z | V.. NN, =id.

Proof. We show by induction on p <k, that i,z [ V,, "N, =id. The only non-
trivial case is from p to p +1; assume i, [ V., NN, =idand xe V,,,; N N,. Since
x is included in V,, for all yex we have y =i,;y. Now i,, is elementary, thus if
yEX, f,pyeipx. Finally for yex, yeipx, hence x<i,px. Conversely assume
y €ix. Choose eef[a]™, feFn, [Ny, k], ¢ €[B]™, geFna[Ny, k] such that
x=m.ex*f, y=mge * g We may clearly assume that e=e'MNa, and set e'=eUe,
where e, <[«, 8]. By hypothesis, y € i,gX, so

{sTtex"P  g(se"te,) e fsedre Uy, p,
or

{sN et g0 e f()} e Upepue,-
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Since N, k|x|<k,, we get
{s e |f(s)| < i}e Uy,

Now by the «-completeness of @y, there is h : «!®'— Nj, such that
{s"te el o(s" ) = h(s) e Upoy oy

This means that y = i,zm,e = h. Morcover
{sexr": his)ef(s)e U,

so m.e# hex. Hence by hypothesis i,,mexh=mexh, ie. y=1i,ycx. We thus
proved that any y in ipx is in &, i.e. i,px € x. Finally x =i ,x, and the lemma is
proved.

Corollary. If fe Fn, (N, x) is such that for all s in «*f(s)<k, then for all B=a

wals "t f(s)]=m.f.

This enables us to set:

Definition. We let x, be m,. [s—s(a)], that is also ma[s+—>s(a)}] for any g=
a1,

We notice that for any a =B, xg = l,yX.. and in particular x, = iy x0. Let us
recall:

Definition. U is said to be normal iff « = mid.

We immediately notice that for any ey, is equal to k, just in case that U is
normal. The sequence (x,) is the modification of the sequence (x,) which is
suitable for studying non-normal ultrafilters,

In particular, we get without toil the following result:

Lemma 2. (“normal form lemma”). Assume ec|a]™ and g:«"'— Ny; then
Tal * 8 = lp,8(X), Where X, = (X, * *Xo,) il €= {2+ -,

Proof. We have: {s:(s,g(s))eglc¥,, hence {scx*:(se,g(se))ecgleU, Thus
(m.[sr>se], m[s—glse))em.[s—>g], ie. (x., 7.e*g)€ip.g as desired.

1.5. The ultrafilter iq, %

By the elementarity of iy, i % is in N, a k. -complete ultrafilter on x,. We
thus are able to calculate in N, the iterated ultrapowers of the universe (i.e. N,)
with i, AU We show now that for any 8 the $-th ultrapower of N, with 7, U is
exactly N,z This legitimates the term of iterated ultrapowers for the N,’'s.
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The next lemma is proved in [8]:

Lemma 1. Assume w,fe P (N,, x.); then @ feig U, iff {s"1ex“™ 1tef(she
Guu+n'

Lemma 2, Assume N kFec[B]°” and dom g=«"' and f=e=g, and let x be
ine+08(Xare ) Then N satisfies “x is the image of f in the B-th ultrapower of the
universe by ig, U,

Proof. Let II be the application from Fng(N,, x,) to N, defined by [If=
lua+88(Xase) Where f is such that, in N, f=e =g By Mostowski’s isomorphism
theorem, we get the conclusion if we show that IT does not depend upon the
choices of e and g, that the range of IT is transitive in Ny and that Uf =I1f" (resp.
e) if and only if {s: f(s) = f (9} € (i, Ug) (resp. ).

First notice that the third point implies the first one, and that the range of II is
included in N, 5. Conversely, let y be in N,,,,. There are e in [o]™, ' in [B]7*
and g : k"1 N, such that, using the normal form,

y= an‘+Bg(Xean')
= iaa +8 [( qug(Xe ):I(Xe'):
since by Section 1.4, Lemma 1, i .\ aX. = Xe- NOW i0,8(x. ) is a member of N, and
we have shown that y is in the range of IT; this range is therefore N, .z, and so it
is transitive.

Now assume that f, f* are members of Fig(N,, «,) and f=e=xg, f'=e=g'in N,
with g=n,E=xG, g'=m E=G'. Define F, F' by: F(s"1)= G{EE)(t{a+e)) and
F(s"t)= G'(sEXtla+e)) for st in k*"8, We get:

IIfz icm+Bg(Xﬂ+e)
= iEl(l+B [iOﬂG(XE)-I(Xﬂ+e)
= i0u+BG(XE)(Xﬂ+e)
= "'Ta+|t3[S 1> G(sE)t{a + E))]
= Tkt
Hence
Hf=If iff {s"t: F(st) = F'(st)} € Uy 15
iff {s: {r: F(s"0)=F'(st)} e Up}e U,
iff {sex®:{tex’: GGEEN)=G'(se)()} e WUt eU,
iff {tex!: g(t)=g' ()} €ip M., by Lemma 1
iff {texf: f()=F(0}e (e

and we are done since the proof would be the same for €.
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Theorem 3. (i) The B-th ultrapower of N, by i U is N..g with canonical
embedding 1., .a;

(i)} if e =B, then Ng S N,;

(iil} X..p is the value of x, calculaied in N,.

Proof. As in the proof of the preceding lemma, the 8-th ultrapower of N, is the
range of the map IT, which we have seen to be N,.5. Now let ye N, and x be
lna+py: bY @ special case of Lemma 2, N, satisfies “x =iogy”. Then, N is the
(B —a)-th ultrapower of N, if a=<p, so it is included in it. Finally, we get the
value of x5 in N, when applying Lemma 2 to the function s+>s(g) in N,,.

1.6. The nodels M,

Proposition 1. Let A be any limit ordinal and M, be N, ., N,. Then, M, is an
inner model (of ZT) of each of the N, for a <<A.

Proof. The class M, is transitive, closed under Godel’s operations, and definable
in N, for a <A. We get the result (see {7] Section 1.4) when showing that for any
8V, N M, belongs to M,. For notice that, if X is V, NM,, then for any a <<A, N,
satisfies “X is V, N M,_.”, so X isin N, for all « <A, and X is in M,.

The study of the models M, will be the main topic of this work. For the
moment, let us notice that for any limit A, N, is included in M, since it is included
in each N,, @ <A. More precisely, we have:

Proposition 2. Assune A limit; then N, is an inner model of M,.

Proof. With the notations of [7] N, satisfies ZF (M,, N, ), and for all 8V, N,
belongs to M, since it belongs to each N, for a <A, So, by Lemma 2 of Section
1.4 in [7] we get that N, is an inner model (of ZF) of M,.

1.7. The connection between U and (x.)

We extend here well-known relation between i, % and the sequence (k)
obtained in [8] for normal %.
First recall:

Lemma 1. Assume xS N, and |x|<k; then x € Nj.

Proof. Let (x.)... be an enumeration of the elements of x; choose for cach
aex f, :k— N, such that x, = m,f,. We set F(&)={f, (&) : o <k(£)} where k is
such that 7 k = «. Then x = F.

Corollary 2. V., "N, =V, for any «; in particular P (k) N, = P (k) N Ny.
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Proof. If xe V,, x =iy, x by Section 1.4, Lemma I,so xe N,. If xe V_,,, xc V_,
hence x< N, and |v|=k, so xeV, NN, Now, k+1<k, so V., NN, =
V.1 NN, for any a=1,

Proposition 3. Assume n e w, and e e[a]"; then, for any X in P(x™), X is in U, iff
x. belongs to i, X.

Proof. Xe®, iff {£:£cX}e¥U, iff {secxk™:secX}eq, iff m [s—sele
. ls X, Le iff x, €ig, X

In particutar X<« is in U iff iy, X

Proposition 4. Assume A limit and X € P(x, )N N,. Then, X €in, U iff X contains
all x., @« A, for some A cofinal in A.

Proof. We show that if X belongs to iy, @, there is a ¥ <A such that X contains
all x., v =<« <A, For since N, is the direct limit of the N,, ¥ <A, we may choose y
and Y in iy, % such that X =i, Y. We apply the last proposition in N, : since Y is
in in, U, x,.s belongs to i, Y for all <A —+, that is x, belongs to X for all «,
y=o <A

2. Combination of elementary embeddings

Here we summarize some arithmetic properties of the applications i, and their
composition,

Let x be any element of Ny : y =iy, X is in N, so it is in N, and then falls in the
domain of i;,. We thus may raise such questions as: what is i,(i,,x}?, what is
[10,{{0,,X)? etc. For the convenience, the composition of maps will be denoted only
by juxtaposition in the usual inverse order, i.c. i ,i,,, is the composition of i, and
i1y after, ip5ig,,(x) =1i5{in, (x)).

2.1. Continuity and cardinalities
Lemma 1, If X is limit, then k, =sup, -, .
This is proved in [8], as well as the following results.

Lemma 2. (i) For all v, B, we have |iy,8|=<|v||B8|";
(ii) If B is a cardinal greater than 2%, then = k.

Proposition 3. The map i, is continuous at 8 iff of B# k.
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Proof. (i) If cf B<k, let (a,),., a cofinal sequence in 8 with <. Then
Top {0 )y < = gy, ), <, Since v <k,
Hence iy,8 = ig,(sup,, «,) =sup,, iy, {a,) =sup, is,q, = SUP, g iny.

(ii) TFcf B =k, let B =sup, ., «,. Put f: S a); then Vi <k, o f > ig,e,, but
on the other hand = f<i, B.

(ifi) If ¢f B>k, let ¢ be any element of io,B: £E=m,e#g where g: k"B
Since cf B>k, there is & < B such that im g < «, and &<l e

2.2. Composition

Proposition 1. Let « <8 and vy <8 be any ordinals. Then the following diagrant is
correct (in the sense that the arrows effectively map the first class into the second)
and commutative;

i
B
Nﬂ+v — Ng Fiagy
LI, +5J “nﬂaﬂ_m i,55

bap
N, y5 *Ng +i,gh

Proof. Assume that x €Nyyy and y =i, .57 Then, by Section 1.5, Theorem 3,
N, satisfies: “x is in the y-th ultrapower of the universe and y is its image in the
8-th ultrapower”. Transporting that under lag, We get that Ny satisfies: “i,gx is in
the i,zv-th ultrapower of the universe and Lpy is its image in the i48-th
ultrapower”, that is, stated in Ny:

p¥ € Npoi oy and 0y =5 i st slep.

This last equality is precisely the commutativity of the diagram.

We now mention a few particular cases of the preceding simple, but useful fact.

Corollary 2, (i) For any B, 8, we have loplos = logrizs If Moreover 8 <, then
ioglos = lop +s- In particular iy, = (ig,)" and iy iq, = T

(il For any B, 8, we have fapKs = Kg s and iopXs = Xt

(i) If a<=gB and B+8 =38, then faplng = la; 5.

Proof, (i) Applying Proposition 1 with a =y =0, we get iyglos = lgg+insiop, thus
fnalos = fop+igs SiNCe fOr any eig, oz = ig,.

(i) Remember that w, = iz and x5 = iysxo.

(iiiy Applying Proposition 1 with y =0, we get luglos = fpgai slop = lopar s SiNCE
B+5=35, we have igB+i,,6=1i,,8, and a fortiori B+ fapl = [0 since B =<i,,.B.
Finally i zigs = i0i, ,5-
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Lemma 3. Assume « <a': then there exists y such that iy, = io o, iff @' —a@eim

oa:

Proof. By the previous results in,lo, = foa+iy SO laloy = foar ff ' —a = igy.
As a consequence notice that the relation between a and a’ “a=a’ and
a'—acim iy,"” is an order relation.

2.3. Limits

Lemma 1. If A is limit, then for any 8 the sequence (i,,0).-, is eventually
constant.

Proof. If a<a <A, we have {,0=1,,i,,0. Since 8=i,,8, we conclude that
I20=i,,0. Thus the sequence (i ,0).., is decreasing, hence it is eventually
constant.

Proposition 2. If A is [imit, there is an ordinal £(A)> A such that for all x in N, the
sequence (i,,X), <, is eventually constant and its limit is iy,

Proof. The sequence (A —«), ., is decreasing, hence it is eventually constant.
Choose «" and & such that for all =« (and <A)e+8=A. Then let x be a
member of N,. There exists p =« (and <A} and y a member of N, such that
X =iy =T,y Now for all a such that u <<« <A we have:

X = Iad ¥
= Ipnlai.ey by splitting i,
= loninatsluay DY definition of &
= hoti.skaduay by Section 2.2 Proposition 1 applied with y=0
and A in the place of 8
= harinsthnY T harsX

By Lemma 1, the sequence (i,28).<x is eventually constant. We set g(A)=
A +lim,, ., i,8, which is also, by construction of 8§, A +lim, ., i,,(A —«). Then
assume « big enough (o ensure that g <o <A and A +i,8 =£(A), we get:

I = heyX, which is the desired result.
Example, For any x in N, the sequence (i,.x3}... is eventually constant and its
limit is iy, ;oX.
2.4, Simple ordinals

For the convenience of the calculations in the next sections, we introduce a
class of ordinals enjoying some stability properties. The result 4 below will allow
us to restrict ourselves to the case of simple ordinals without loss of generality.
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Definition. We say that A is simple if it is indecomposable {i.c. if @ <A implies
a+A=A) and if e <A implies ig, A = A.

Example. The first simple ordinals are:

the indecomposable ordinals below «: w, w?, ..., wy,...

the first fixed point of the application 0+»k,, that is the supremum of «, k., k.,
etc....

Lemma 1. If A is a strong limit cardinal of cofinality #«, A is simple,

Proof. Assume A >k, Since cf A#«k, if <A we have igA =supg., ip B, and
lig.B| =|B]*|e]<<A, hence, if B<A, ix B <A, thus ig,A=<tA, and A is simple.

Lemma 2, If A is simple and >k, then «, = A.

Proof. By hypothesis NgkEA > «. Hence for any «, N, FigA>«k, Hence A=

SUP ke = K.

Definition. Assume cf A =@} we say that the sequence (@, ), .. 15 good below A if
it is increasing and cofinal in A, and moreover satisfies at least one of the following
conditions:

(i) for all n «, is simple;

(ii) for all n a, <k;

(i) for all m, n, m <\n «, is indecomposable and iy, o, = ¢, 1.
Proposition 3, (i) The class of simple ordinals is unbounded and 8-closed for all
regular 8+ k.

(i) If A is simple, then A is limit of simple ordinals, or ¢f A =w and there is a
good sequence below A (the two cases do not exclude each other . . ).

Proof. Assume 8 regular #«, and A =sup, ¢, where (a,), o is an increasing
sequence of simple ordinals. Then A is simple itself: for if a <A there is p e @
such that @ <a,,-, and so a+a,- =, and a fortiori o + A = A. Moreover

fgA = SUPIg, @, = SUP igo@®, = SUp g, ¢, = SUp o, =A.
ned [T TR ] JTR TR ] (TR TR ]

Suppose now that there exists a greatest simple ordinal below A, say o (we
allow A to be e to prove (i)).

Ist Case. A <k. Since o <k, oo is simple and greater than «, so a*w = A, and
cf A =o.
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2nd Case. A > k. By Lemma 2, A =k,, thus if 3<<A we have x; <A. We put
ay=0, a;=«,,, (where a is always the greatest simple below A), and by
induction e, = iy, a,. Clearly «, is indecomposable since « is, and so is each of
the «, by the elementarity of i,, . Moreover the sequence (a),., is strictly
increasing: for notice that ¢, ;> e, is equivalent to «,>a,. This last point we
NOW Prove: oy = fg, 0] = igg Koy = Koyt ot 17 0 = K since a; =a+1>a im-
plies a; + iy, a+1>a+1.

Now we check by induction on n that: ¥m [9a, Xy = 1y This is true for n =1 by
definition. Then fnu"”a,,,:ioimlmam = Loy i, O SIDCE @, 1S indecomposable,
hence iy, e, is, and a, +i,, o, is equal to iy, o, Now recall Section 2.2 to show
that foe i n = foia, foa, - Finally we have: ig, o, = ina, foe, @ = foe, @0 (induction
hypothesis) = a, ., +;, and we are done. We finish when proving that A =sup, a,:
for it suffices to show that sup, «, is simple, since the simplicity of A implies that
for all i «, << A. But sup, e, is indecomposable since each a, is, and if a <sup, o,
there is n such that o <Cea,, hence iy, (sup, a,)=sup, i, Ssup, i, o, =
SUP,, &, -4, = SUP, &, and we are done.

We thus have shown that, if A is simple and not limit of simple ordinals,
cf(A) =@ and we constructed a good sequence below A.

We show now that any limit ordinal is seen as simple when looked at from
close enough.

Proposition 4. For any linit A there exists a <A such that for all 8, a<<B <A, Ny
satisfies: “A—ca=X—B is simple”; moreover if X = ,, then A =X —a >k, and if
A <k, then A —a <kg

Proof. As in Section 2.3 first notice that the sequence (A —v), -, is eventually
constant since it is decreasing. Hence there is 6 and p such that for any w,
f=y<<A, A =vy+p We claim that p is indecomposable. For if v< g, we have
@+v<@tp=A hence A=0+v+p=0-+p, thus p=v+pu Now the sequence
(i), < Is eventually constant since it is decreasing: hence there is « such that
for every v, a=y<A, ihp=i,p. We may morcover assume that a=6, so
a+p=A Forany v, a=sy<<A, ip=i,u, which is i,i, u, thus by the injectivity
of i, we get p =i, . We have shown that for any 8 <y i, ,s¢t = u, which means
that in N, @ is fixed under each iy, & << . Since p is indecomposable, this shows
that p =A—e is simple in N,.

Now assume o < 3 <CA: since A —« is indecomposable, we have A ~a=A — 8.
Then N, satisfies “A —a is simple”, so Nj satisfies: “i (A —a) is simple”, but
iap(A —a@)=A —a since B—a<A—aq, so N, satisfies “A—a is simple”. Then if
A =Ky, A is indecomposable, therefore A =X —q, and for any B <A =k, > k.
Finally assume A <<k, : we prove that A —a <k,. For A —« is simple in N, thus
either A —a <k, or N, satisfics “A —a is «,_,”, that is in Ny A =@ = i na) =
Ky But A —a =i <<k,, a contradiction, so A —a <k, and the proof is finished.
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3. The passage from N to M,
The following fact has been observed for a long time:
Lemwna 1. The sequences (k) ., and (x,), ., are members of M., but not of N,

Proof. For any p i, [(k, )yco] is in N, since (K, ). i8 in Ny (since U is): but this
sequence is exactly (k,),=p NOW (k,),e. i in N, as well as (x,),=, since they
differ only by a finite number of terms. Finally (k, ), .., is in M, and by the same
way (x,)hee 18 in M,

On the other hand, they cannot be in N, for k, = sup,, k,, = sup,, x,, is regular in
N, being measurable in this model.

It was then very natural to raise the question whether M,, is precisely the model
generated by (k,)ncw OF bY (X )recw Over N,. We prove here this second point.
For the connection with the first one, see chapter 7, where it is shown that the
answer may be “yes” or “no” (but of course is “‘yes” for 4 normal since in that
Case X, = Ky

When no confusion is possible, we drop the subscript “ew” when writing
w-sequences: we shall note (x.), for (xu)nco

Theorem 2, The model M, is exactly N [(x.). |-

Proof. Since {y,), is a well ordered set, N, {(x,.), ] (which has a precise sense since
N,, is an inner model of our ground model N, see for instance [7] satisfies AC
as well as N,. By a well-known result, it suffices then to show that M, and
N_[{x.)..] have the same subsets of On. By Lemma 1, N_[(x.),] is included in
M,. We fix any # and X a subset of 8 in M, and claim that X belongs to
N[ ]

Since X is in M, it is in N,, for all n, so there is (AC) a sequence of functions

f. k™ —> Ny, such that for every n X=m.f, =ionf.(¥o' * *Xu-1) in normal form.
Hence we get

!muX = imu{i()nfn (XO. ) .Xu—l)]!
= iOmfn(XO. ) 'Xn—!)s

since i, (o' " "Xae1) = (Xo" = " Xa_1). Now, the sequence (ip.f, ), 18 fo. (i), 80 it 1S in
N, and finally the sequence (i,,,X), is in N, [(x,),]. It is easy to prove now that X
itself is in N_[(x,},.]: in fact for any ordinal p, by Section 2.3 Proposition 2, the
sequence (i, 1), is eventually constant, and its limit is i, But then “p e X7
is equivalent to “for n big enough i, . belongs to i, X", and hence to: “for n big
enough i, .p€i,,X , what means that

X={pet:AmVn=umi, pei.X}
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We are done, since i, [ ¢ isin N, and (i, X), in N_[(x,)..] as we saw above.
Hence M, and N, [(x,),] have the same subsets of On, and are equal.

Corollary 3. M, satisfies AC.

Notice as a particular case: if 4 is normal, then M, is N_[{(x,),]. Applying
Theorem 2 in Ny, we get:

Corollaxy 4. For any p, M, =N, L0 cu)nl-

4. Geiting N, from N, and 9.

We prove here that adjoining % to any N, constructs the whole model N,,. This
result will be used in the next section. Notice that it is obvious if N,=L{%].

4.1.

We first point out that if a << the way from N, to N, cannot be generic, nor
quasi-generic (see [7]).

Lemma 1. Assume a < f3; then there are arbitrary large ordinals which are beths in
N and are not in N,.

Proof. We may assume « = 0. Fix any -y limit and bigger than $, and set yv =21,
v={1,.2)". @ is strong limit, so it is simple. We claim that ig,» = ». Since » is
regular, igaV =SUpg, igsf, and for 0 <v |ieg0|=|B| |81 <|B] (2,:29* =2 42- SO
iogl <1, and iyewv =< v. Now, N, satisfies: “There are 2° J-cardinals between p and
v”, while Nj satisfies: “There are 2% 2-cardinals between igzp and iggr”. Since
loalt = @, iggv = v and (2%)5, > 2%, N, and Ny cannot have the same J-numbers.

Corollary. Assume o <f: then N, is neither a generic nor a quasi-generic exten-
sion of Ng.
4.2,

For all &, we can construct the inner model N,[%U] of Ny. We prove that N_[%]

is in fact N,.

Lemma 1. For any «, p, 0, iy, [ 1 belongs to N [U].

Proof. In N,[%], % is a x-complete ultrafilter on k, since P(k)NN_[%U]=
PLe) YN =P (k)N N,. We can thus construct in N, [4] the iterated ultrapowers
of the universe with 4. Let us write i5, the elementary embedding associated with
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the 6-th such ultrapower, We shall prove that iy, [ On=1i}, | On for every 8, and
this yields the lemma since for all 8, p, 5, [ 1t is a set of N [%]. We introduce
three properties:

Ayiforall Gige tp=1i,tp

B,: for all 0 ige } e N[U]

C,: for all n p*" AN [U]= " NN,
We shall prove that (Vv <<pA ) B, 2> C, =2 A,.

1st Step. Vv <pA,= B,
If p=v+1, ige [ it =ige I v U, inept) € N [U]
If o is limit, igq [ 0= U,cn fne [ ve N[U]

2nd Step. B, = C,:
Fix f: x"—pu. By hypothesis iy, [ e N, [AU] Let j be the inverse function in
N_[%] of iy, | 1 (which is injective). Now iy, [ belongs to N, hence to N,[%], as
well as the composed map j. (ig fN k™ xOn). But for £ in ", ig.f(E) = e [FE)]
since £ =1, &, and j(iy fE)) = - in.[f(E)]= f(€). Hence f is § - (i f N k" XOn), and
s is in N [4U].

3rd Step. C, 2 A,:
Fix any ¢, For any f in Fng(N,, k) with vatues in g, there are ec[6]™ and
g e p' such that in Ny, f=e =g We look at two maps from Fn,(Np, €)M g™ to
Ng: 7, and [ such that if f=e+g and IIf =x, then N, [AU] satisfies “x = m,f
where f'=e=g"”. This has a sense since g is by hypothesis in N_[%] while f is
perhaps not. ‘The image of my 18 fysit, SO is transitive in Ny, the image of IT is g,
s0 is transitive in N_[%], hence in Ny. We show that these images are isomorphic:
for myf, = mef» iff g, =g, (mod. U,) (where f,=e=*g,, f=e#*g,, and n=|e[}, iff
N, [ar] satisfies: “g, =g, mod. U,”, since U, is the same when calculated in N,
and in N, [] f X, [U] satisfies: “mqe * g, = mee * g7, i.e. iff [If; =IIf,. Likewise
for . This shows that IT does not depend upon the choice of e and g, and then by
Mostowki’s theorem that 7, =II. Applying this result to constant f gives what we
called A,.

Theorem 2. The model N_[WU] is Ny for every a.

Proof. We show that every subset X of any ordinal g which is in Ny is in N,[%].
For X is also {£ e o g, & Cip X}: by the last lemma i, [ p is in N[%], and i3, X
is in N, hence in N,[%], so X itself is in N,[¥%].

4.3,
We now give various forms of the preceding results which will be of some help

in the next parts.

Theorem 1. Assume A limit and > A, If M is a model which includes N, and
contains an infinite subset of {xa : B <A}, it includes N,
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Proof. Assume M contains an infinite subset R of {x, : B <A}, and let «, be the
supremum of the o least elements of R. By Section 1.7. Corollary 2, P(x,)N
N, =Pk, }NN,, so this set belongs to M. Now by Section 1.7. Proposition 4, the
set of M defined as {X e P(x,)NN,: XNR is infinite} is exactly i, ¥, which is
thus a member of M. We now apply the Theorem 2 of last paragraph in N,, to get
that M includes N, ; since y=<A, a fortiori M includes N,.

Corollary 2. If M is @ model which includes N,, and contains an infinite botnded
subset of {xa : B <<a}, M is not a generic extension of N, (nor a quasi-generic one).

Proof. Choose a A limit such that M contains an infinite subset of {x; : <A} and
A <<a. By the last theorem, M includes N, so by the results of the first paragraph
M is not a generic extension of N, since there are arbitrary large ordinals which
are 2's in N, and are not in N,, nor a fortiori in M.

4.4

Theorem 1. For any «, M, is exactly N_[(x.),.]-

Proof. By the last results N, [(x,), ] includes N, hence N, [(x.),.], which is M, as
showed in Section 3.

5. The axiom of choice in M,.

We begin our investigation of the models M, for A limit, and first concentrate
on the case cf A = w. In this chapter we prove that if A is not the form & +® and is
“really” of cofinality @ (i.e. for all @ <A, A is of cofinality w in N,) then M, does
not verify AC, and in fact AC fails badly in M,. In Chapter 9 we will show that if
A Is not “really” of cofinality w, then M, =N, and so M, FAC. We assume
throughout this chapter that cf A = w.

5.1

Lemma 1. If A is simple, then any good sequence below A is in M,.

Proof. If A <k, any sequence below X is in V,, hence in N,. If A >« and (a,,),, is
good below A such that «, is simple for each n, then for any p we have:
{00 (@ nsp = (@ )y 80 (@, )5, is in N, as well as (a,),,, and (a,), is in M,. If
A>wx and (a,), is good such that for all m, n, m<n, iy, @, =a,,, then
i0a, (@) = (@) nps 50 {4, )u=p I in N, (@,), too, and (a,), is in M,.
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Proof. Assume first that A is simple. If A <k and (¢,,), is any increasing cofinal
sequence in A, we claim that («, ), belongs to M,. For any p(a ne=p 18 N
(since A <k}, and (k. )., is in N, the sequence “(k, _ Ju=p ", 80 (K D=y 18 m
N,_, as well as («, ), and the claim is proved. But in Nyk, is measur able, S0 it is
regular, and (k, ), is not in N,.

If A =k, then by Chapter 2.4, Lemma 2, A = &,. Any good sequence below A is
in M, and cannot be in N, since in N, A is measurable. Now, let A be arbitrary;
by Section 2.4. Proposition 4, there is an « <A such that N, satisfies: “A—a is
simple™., So N, satisfies “M, _, #N,_.”, that is, in N,, M, # N,.

5.2,

Let us recall that for two sequences (x,), and (x,), being eventually equal
means: InVm =n x,, = x,. We shall note this equivalence relation by =, We say
that (x,), is eventually included in {x}),, or that (x,), is an almost-sub-sequence
of (x2), if InVm=n x,, = x/,

m — Fit

Definition. For A limit, cof A is the set of the w-sequences which are strictly
increasing, cofinal in A and belong to M,.

Lemma 1. Assume o <<A: then E is in cof A iff E is increasing and N,FE—a e
cof (A —a) (where E—~a is (v, —«), f Eis (v, )}, and y—a =0 if y<a).

Proof. N,FE—a e cof (A —«) iff E—« is increasing, cofinal in (A —«) and belong
to M, , calculated in N, i.e. to M,. We are done since E is cofinal in A iff E—a
is cofinal in A —a.

Lemma 2. (i) cof AeM,;
(i) If A<k, cof AeN,;
(iii) If A is indecomposable and cof A#@, then |cof A/ =|=|Al;
(iv) If Va <<AN,Fcf A =w, then cof d=§.

Proof. (i) By Lemma 1, cof A is equiconstructible to cof™(A —a), so for all o <A
cof A is in Na.

(iiy If A <k,, there is & <A such that A —a <x,. Then N,k cof (A —a)e V,, id
est cof™(A —a)e V, NN,. By Lemma 1 we get cof Ae V.. MN,, hence cof
AeV, NN,

(iii) Assume A indecomposable and (a,), ccof A; let y<<A: for each n a, <A
and vy <A, so o, +y<A. Thus the sequence {(a, +v), is in cof A. Clearly if y# 4/
then we cannot have («, +v), = (a, + v},

{iv} By Section 2.4. Proposition 4, there is a <A, such that A —a is simple in
N,. By hypothesis N, Fcf A = w, hence N, Fef (A —a) = w. By Section 2.4, Propos-
ition 3, there exists in N, a good sequence below A —a, hence by Section 5.1,
Lemma 1, cof™ (A —a) is not empty. Therefore by Lemma 1, cof A is also not
empty.
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5.3.

First let us make the convention that for E={v,), xr is {x,.).. We put:

Definition. For A limit

(i) 4, ={g: g strictly increasing and AE ccof A g=yz}.

(i) &y in the “name™ function from 4§,/ = to cof A/=which associates the class
of E to the class of yg.

Lemma 1. 4, and X, belong to M,.

Proof. Assume a <A, and let d, the map with domain cof A/= which associates
to the class of E the class of E~a. By Section 5.2. Lemma 1, d_ is a bijection of
cof A/= onto (cof (A —a)/=)"-. Now notice that for any E in cof Ayxz_, calcu-
lated in N, IS Xa+(g-a)> SO is eventually equal to xg: this proves that for any x in
cof Af= N;'(x) is also A0 (d (x)). Since A" and d, are in N, 50 is V1!,
then A, its range %,/=, and finally %,. As a was arbitrary we are done.

Lemma 2, If A <k,, 4/= is well orderable in M,.

Proof. If A <i,, cof A is in N, by Section 5.2. Lemma 2, so cof A/= is in N,, and
since N, satisfies AC cof A/= is well orderable in N,. Finally the bijection &, of
%./= onto cof A/= is in M, by Lemma 1, so %,/= is well orderable in M,.

Proposition 3. Assume that for all a <X N_Fcf A =, and that M is a transifive
model of ZF including M, and containing a well-ordering of 4,. Then, if A is not of
the form A = p+w, there is o << such that M includes N..

Proof. By 4.3. Theorem 1., it suffices to show that M contains an infinite
bounded subset of {x, : 8 <A}, or, equivalently, that M contains an infinite subset
of {x, : B<A} of order type > w.

Since M well orders 4,, there exists in MG™ < %, such that G* meets in exactly
one point each class of %, for =. Now M well-orders also G, and on the other
hand N, (which includes M) bijects G* onto %,/=, hence, via &, onto cof A/=.
We now distinguish two cases:

1st Case. {Cof Af=|=2%,

This is possible only when A < k,. For cof A # @ by Section 5.2. Lemma 2 (iv), and
if A = &, by the (iii) part of the same lemma |cof A/=|=|A| =|«,|= «. So by the (ii)
part, we have cof A € N,. Since N, satisfies AC, we pick C in N,, C<cof A such
that C meets in exactly one point every class of cof A for =. Finally let G = G*;
we have:

(1) 1G]=|C|=2% and Ce N, and any member of cof A (resp. of %) is = to a
member of C (resp. of G).
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2nd Case. {cof Af=|> 2%,

In this case |G¥|=(2%)*; since M well orders G* we can pick in M G < G* such
that |G|=(2%)", so

(2) |G]=(2%)" and any two members of G are not =.

Now notice this general fact: if M is a transitive model of ZF included in N,
and containing V,, and if x belongs to M’ and has in M’ a cardinal 8 <«, then
6 =|x| and any function from x to © which is in N, is in M'.

For fix a bijection f': x—>@ in M’, and a bijection f: x—|x| in Ny: since M’ is
included in Nof ~'f" is in Ny, so |0 =|x}<«, and therefore f ' is in V_, and thus
in M": hence #=|x|, and 0 =|x|. Now if F: x—>w isin No, Ff'"': 0w is in V,,
hence in M’, and so is F=(Ff~")f'. We deduce from this that any function G —
is in M, and if (1) holds that any function C—w is in N,. Each member of %, is
eventually included in {x, : 8 <A} so there is a function b : G—w in Ny, hence in
M such that:

Vge GVYnz=b(g) g(nye{x; : B<Al

We put X={g(m):geG and m=b(g}: X is in M, since G and b are, X is
infinite and included in {x, : B <A}, We claim that X cannot be of order type
unless if A is of the form p+w. This will finish the proof.

First assume (1) holds and X is of order type w. For each E in C, xg is
eventually included in X, so there is a: C—w in N, hence in N,, such that VE ¢ C
Vn=a(E) xpweX. We put K={E(m): EcC and m=a(E)}. K is in N,, since
C and a are; K is infinite, and for all p in K y, is in X, The map X, 18
injective and order preserving, so if X is of order type , K is also of order type
o, and therefore K belongs to cof A. Say K =im(p,). By construction every
member of cof A is = to a member of C, hence is eventually included in K. In
particular (p, + 1), is in cof A, hence there is u such that:

Vmznp,+1leK=im(p,)
that is

n»

V”! =1 Pin +1= P+t

Finally we get A =sup,, p,, =p, +@.

Now assume (2) holds:
We look at the map: G—2(X)Xw defined by gr>(im gN X, b(g)), and claim
that it is an injection: for if b(g,)=b{g,)=n and im g, N X =im g, X we have
giln, w)=gi[n o), hence g,=g,, and g, = g, by definition of G. Now |G| > 2%
implics [P(X)|>2%, and |X|>R,, and our initial claim is proved.

Theorem 4. Assume that A is not of the form A =p+w, and for all &« <A N, Ecf
A =w; then no generic extension of M, included in N, may well order ,.

In particular M, does not well order %,, and hence does not satisfy AC, and N,
and M, have no common generic extension included in N,,.
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Proof. By the previous result, any model M extending M, and included in N,
includes some N,, « <TA, as soon as it welt orders %,. By Section 4.1. Lemma 1,
such M cannot be a generic extension of M,.

5.4,

We show now that N, and M, have the same aleph’s.
Lemma 1. V, NN, =V, 1t M, for any A limit.

Proof. V, =|J,, V., and for a <A
VK“ﬂN,\E VK“OM/\E VKuﬂNa - VkunN)&,

whence the desired equality holds.
Corollary 2. For any A limit, N, and M, have the same aleph’s below «,.

5.5,

We now follow Bukovsky’s method in [3] to prove the same equality above k,,
A being of cofinality w.

Lemma 1. Assume xeN, and |x|e=ig . Then there exisis ye Ny, lylsk-pn
such that x S ig,y.

Proof. Set x=m.e =g, g: k>N, Since |x] in N, is =iy, p, we may assume that
for all £ in «"! {g(&)|=<p. Then set y = Jc g(8). Clearly x S ig,y.

Lemma 2. Assinne fe N, f functional and for all x in dom [ [f()|™= =<k,. Then
there exists a function g such that: ¥x edom ¢ |g(x)| =« and dom { < dom i, g and
Vxedom f f(x}<[ipagx).

Proof. Set f=m.e*F with F: "= N,.
For all £ in «*'F(£) is a function and

Vxedom F(§) \F(E)x)| =«
We define g, a function with domain U dom F(E), by

gx)= U FE).

Ecxc
xedom F(E)

Clearly for all x in dom g |g(x}=k. Now assume that xedom f: write x=
mE * X with X : k™! — N, We may assume that E D¢, say E = E’e (looking at e
and E as at injections into «). Since x edom f, we have:

e X(nyedom FMEN) ey,
15}

hence {m : X(n)edom g}e U, and so x e dom ig,g.
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Finally suppose that (x,y)ef and (x, z)€ip,g: with x=m E=X, y=7m ExY,
z=m.E+Z and E = E’e. By hypothesis

{n (X)), Y(m))e F(nE') and (X(x), Z(n))e g}

is in Uz, so m: Ym)s Z(m)} is in W), and y < 2z, the lemma is proved.

Proposition 3. Assume that f is a function in M, with domain and range included
in N,. There there exist in N, functions g and gy, £, £, ... such that

(i) Vxedom f An xedom g, and f(x) = g,(x);

(i) Yxedom f xedom g and f(x) e g{x) and in Ny |g(x)|<«,.

With the notations of [3] (ii} means that Apry, an{xy) holds.

Proof. Fix an increasing cofinal sequence (o), below A, Since f is in N, as well
as any set-restriction of i, A, we define a function f, in N, by f,=
{(x, y) ¢ fli, ax) =i, ay}. Now assume that (v, y}ef:x, y are in N, so there are n,
x', ¥ such that (x, y) = (i, \X", i,x¥'), and (x, y) € f implies (x', y)€f,,, thus (x, y)e
funfie We set g, =i, ,f,, and (i) is proved.

(i) With the same notations, we apply Lemma 2 to the function x—{f, (x)},
hence getting g, in N, such that: Vxedom g/, |gi(x)|<k, and Vxedom
fox edom iy, g4 and £, (x) € ig,, ghlx). Now we put g'(x)=U, gi(x), defined for x
being in U, dom g, and finally g =is,g’. Clearly for all x in dom g [g(x)|™ =t «k,.
If x is in dom f, it is in dom g, for some n, i.e. in i, , dom f,, hence in iy, dom g},
and finally in dom g Moreover we have then: f(x)=g,(x}eing/(x) hence
f{x)e g(x), and this finishes the proof.

Theorem 4. For A of cofinality @, M, and N, have the same aleph’s.

Proof. By induction on #: by Section 5.4. Corollary 2. the result is proved for
g =<k, Now assume 8 is an N>k, in M, and N, and §<(8")*: there is a
surjection f : 89— 8 in M,. By Prop. 3 (ii). there is g : § = %P(8) in N, such that for
all <8 g(plsk, <@ and flp)eg(u). Since f is surjective we have in N,
8 U, og(p), hence [8]=6-0=0

Notice that Prop. 3(i) implies the following “covering lemma” holds between N,
and M, (A being always of cofinality e).

Proposition 5. Assume that Xe M, and X < N,. Then there is in M, a sequence
(X)), of members of N, such that for all n |X,|<|X| and X< U, X,,.

Proof. If X belongs to M, and is included in N,, it is well orderable in M, ; fix a
bijection in M, f: §— X, and apply Proposition 3 (i) to get in N, a sequence (g,,).,
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of functions with domain < & such that fe U, g,, defined by y=f,(x) iff i,y =
fli, \x) and g, =i, ,f,. Applying Section 2.2. Proposition 1, Scction 2.3. Proposi-
tion 2., we get that, for n big enough to ensure that

ianAianA = iha()k)ia,,.\: y=g,(x} iff hepny = .an)\f(i)\s{A]x)'

Now since f is in M,, the sequence (i, ,f), is in M,, and the same holds for the
sequence {g,), since any set-restriction of i,.,, belongs to M,. Finally we set
X, =g.0.

Corollary 6. For any 6, cf "8 =cf ™8, or cf 8 =w.

Remark. Using the methods of [4] instead of those of [3] as made in Proposition
3(i) one shows more precisely that for any 8 either cf ™8 =cf *8 or of 0=k,
and cf M0 = w,

6. An extension of Prikry’s forcing

In [11] Prikry introduced a notion of forcing to change to @ the cofinality of a
measurable cardinal with the help of a normal ultrafilter. We investigate here the
connection between the extensions as studied in the previous chapter and Prikry’s
ones. In fact we show that M, is a Prikry extension of N, when % is normal, or at
least selective, and we define an extended forcing to get the same result for
general U. Analogous results hold for M,, A Hmit of cofinality . But the main
result is perhaps that M, is an “‘universal” extension for the ¢xtended Prikry
forcing in the sense that to show some property in any Prikry extension it suffices
to show this property in M,. This enables us to prove without any technical
forcing work all the results listed by Prikry, and to generatize them to the
extended forcing.

6.1.
We first recall Prikry’s construction.

Definition. 2, (U), or P, is the set of ordered pairs (s, X) with s in [«]° and X
in U ordered by (s™, V)< (5, X) iff te[X]™ and Y& X.

To study %P-extensions, Prikry often uses the following Rowbottom style
property (sce for instance [35, Chapter 8]): “for any f: [k]** — v <« there is X in
% such that {fTX]"“|=Ry.” On the other when we try to show that the sequence
(x. ) i1s N, -generic over iq,%, we must assume that:

“for any Y in 4, there is X in % such that [X]*< Y.

Chapter 7 will be devoted to the study of such propertics for %. For the




Iterated ultrapowers and Prikry forcing 131

moment, let us simply notice that the second property implies the first one, and
set:

Definition. % is said to be selective iff for all Y in U, there is X in % such that
[XIcv.

It is well known that normal ultrafilters are selective, Now, we remark that the
following holds for any complete ultrafilter A%: “for any f: [«]™ — v <k, there is
a sequence (X)), with X in 4 such that |f"U, X{=N,”. This suggests replacing in
Prikry’s conditions the unique member of % by a sequence (X)), with X; in 4,

And in fact it turns out that all the proofs below can be carried out for such a
set of conditions. Nevertheless, we shall prefer a slight different presentation using
trees which makes the proofs casier to read.

6.2,
Our set of conditions will be as follows:

Definition. (i) €5 (), or €, is the set of the trees T on [x]™* such that
(a) T is closed under inclusion: s€T and r< s implies te T}
(b) there is a member of T, called s; {(“trunk” of T) satisfying: Vs € T s < 57
or Srcs and if §; <5 then {£: 87 Ee The U We order € by inclusion,
(ii) We set €°={Tec %€ sy =9}
(iii) For T in € and s we define T° in € to be {teT; tcs or s<t}.
Let us first show that 6 behaves as a kind of x-complete and normal filter.

Lemma 1. Assunte (T, ). is a family of members of 6:

() If |X|<xk and S¢ =@ for x in X, then Nycx Ty is in €;

(iiy If there is an s such that X ={te[«]™: st} and for each t 25 s =1, then
there is T in € such that sp=s and forall t2s T' < T,

Proof. (i) Assume te [ Vex Te:then {1178 Naex Tt is Naax{é:tMEe T}, s0
it belongs to % by the k-completeness.

(i) We construct T by induction on levels: first put s and all t<s in T. Now
assume { 2 s has been put in T in such a way that for all ¢/, sct' <, ¢ belongs to
T,; for each ¢/, sct' < t, Tt belongs to €, and s =1, so using (i) (but only the
w-completeness of AU), we define {£:476e T} to be {Nicrar Th. Clearly the
induction hypothesis is satisfied, since for any £ £ belongs to T,,. Finally if t"u
belongs to T, it belongs to T, which means that T* = T,, and the lemma is proved.,

As a particular case of (i} notice that T and T" are compatible ift St and Sp,
are. Notice that if we put on & the discrete topology and on x* the product
topology then to each tree T on [«]™ is associated a closed subset of k“, the set
of its branches [T], defined by s e{T] iff all initial segments of s belong to T, Let
us call U™ the set of [T] for T in %€°. Lemma 6 says that %® is the basjs of a
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x-complete filter on the closed subsets of k*. Moreover U is an extension of 4,
which is a k-complete ultrafilter on the subsets of «* with finite support, which
are precisely the clopen ones. Finally it is easy to present U as a kind of inverse
limit of the %, the arrows being the trace maps introduced below.

The next lemma shows that forcing with € is the same as Prikry’s foreing with
sequences (X;), where X, is a member of %,

Lemma 2. Assunte (X)), is a sequence such that for all I1X; < %U;; then there exists T
in %6° which is included in | J; X,

Proof. We define for X< k™ and n=m the trace of X on «" by tr,,X=
{fex” : Xfc U, .. ;. Now assume that for each n X, is a member of U, and
define: Y, = N, 2, tty, X,.. For each n Y, is a member of %, included in X, for,
if X, belongs to 4, then tr,,, X,, belongs to %, for each n<m, and tr,,,, X, =
X, (by convention). We claim that for alt k <[ Y, < tr Y} for notice that for any

sequence (A, ), -, of subsets of k! with »<k we have

tr,k( M A”) = [ try A,

= <
since @, _, is k-complete. So fix k, and arguing by induction assume Y, < try, Y);
we get

oo Yoo = [} e X,

m=l+1

ﬂ trmk ‘X;H

m=i+1

I§

=2 ﬂ trmk }(m = Yk’

m=t
and the claim is proved. We now construct T e €° by setting:
seTit Vs'css'e Y.

Assume s is in T: first if s'<s, then s’ is in T also. Next s"¢isin Tiff s" £ isin
Y1 but s isin T, so s is in Y),, hence in tr, 5 Y, that is {£: 5" &€ Yt e
9. So T is in fact in €°; now for any [, if s TN«', s belongs to Y}, hence to X,
and we are done.

As a corollary of the last lemma, it is easy to show that a closed subset X of «*
is in the filter generated by U® if and only if for all { the restriction of X to «' (i.c.
the set of restrictions to &' of elements of X) is in @,. It can be also shown that
A* and U, ®U“ generate the same filter on «*. Finally we show that 4° behaves
like a selective filter, having the following Rowbottom-style property:

Lemma 3. Let f be any function: {5 — v <«; then there is T in €° such that f is
constant on each level of T, that is, for all { |f"(TN«")|=1.
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Proof. By the completeness of ¥, construct a sequence (X;); such that for all | X|
is in @, and |f"X||=1. Then apply the last lemma,

6.3.

We now turn to study forcing with €. We first investigate the connection with
Prikry’s forcing.

Definition. (i) For s in [«]™ and X in %, we define a member T,, of € by
T.x=s"[XT"={t:t<s or i=5"1" for some t'¢ X"},
(i) & is the sct of T,y for s in [«]™ and X in %,

Lemma 1. (i} @' is isomorphic to P,
(i) & is dense in € iff U is selective.

Proof. (N1, v ST, x iff t=s"u, ue[X]™ and Y X, that is iff (1, Y)=<(s, X) in
P,

{iiy Assume U selective, and let T be any member of €: for each I {te
k' stMteTheq, So by selectivity there is X, in U such that [X;]'c
{tex:syteT} Put X=X, X is in % and 5, [X}“<T, ie. T, xcT, and
so P’ is dense in €.

Conversely, assume %’ is dense and let Y be any member of 4, ; we define (X},
by X, =LY] and X, m = X Xx™ form=1,..., n—1. For each [ X is in 4,
s0 by Section 6.2 Lemma 2 there is T in %° such that for all { TN«'< X, Since
P is dense there are s and X such that T,y < T; choose 12 n such that |s|+1 is
muttiple of n, say [s{+1=kn: we have T, xNk*" < TNk* < X, =[ YT, hence
sT[XT<[Y], so [X]' < Y; this shows that U is sclective.

6.4.
We now get characterizations for %-generic sets.

Definition, (i} For &f = %, we set g(ef)= U{s,: Ted},;
(i) For g: @—x (not necessarily in Ny) we set P(g)={Tc% :V¥ng lneT}.

The following is as it should be:

Lemma 2. Assume P is generic over €; then

(i} g(P) is a cofinal subset of k of order type o.

(ii) P is exactly P(g(P)), and in particular P and g(P) are equiconstructible over
NO.

Proof. (i) First fix o <<k: the set {T: the last term of s¢ is =a} is dense in €, so
g{P) is cofinal in k. Now let @ € g(P), and T in P such that @ ¢ 5. For any T in P,
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T and T' are compatibie, so0 St Na2s+Ne, and g(P)Na =s-Na is finite, so
g(P) is of order type w,

(ii) Assume T belongs to P and |[sy|=n. Fix any K: the set D, ={T";
|sy]=n+k} is dense in €; take T’ in PND,, and then T'<TNT, sp=
gP)tn+m with m=k, and sp-=g(PYlnt+tm™t; since T'cT, we get
g(P) l n+meT, and a fortiori g(P) | n+k ¢ T: this proves, since k was arbitrary,
that P< P{g(P)).

Conversely, assume T belongs to P(g(P)). Say sy =g | n; we shall write s for
sr. We define a map B which associates to certain trees T’ in € another tree
B(T") in € as follows: assume |s+{>n and max s=g(n— )<max s we set
teB(Tiff trcsortosand s [ 7t [, [1He T'. So B(T") is a copy of T’ with
g I n replacing the n first elements of sp. Now let D={T’;|sy|>n and
max s <max st and (Sye TS B(T )= T)}; we claim that D is dense, for if
|$4+| > 1, max s < max s, and sy € T, T is in the range of B, say T = B(T")
and T%=T' 'O T" satisfies: T* < T, |s+{3|sp| > 1, max s < max s < max s+, and
B(THeB(T"cT.

Now let T' in DNP, and say sqw=g [ n+k. Since T belongs to P(g(P)),
g P ntk, whichis g | ns [ [n,ls(), belongs to T, so we have:

VieT'(tlzn>g tn"t tn e T),

which is, since s+ { n=g | n, T'< T. By hypothesis T' is in P and P is generic, so
T is in P, and we proved that P(g(P))c P

The next lemma can be stated “Every open subset of x® for the topology
generated by € has the Ramsey property” and will enable us to give characteriza-
tions of €-generic sequences as made by Mathias in [10] for Prikry’s forcing.

Lemma 3. Assume D) is an open dense subset of €; then for each s in [k]™ there is
T in € and k € w such that sy =s and for all t in TN ™  T" belongs to D.

Proof. For t 25 we choose T, in € such that s, =1 and T, belongs to D if there
exists such T. Applying Lemma 7, we get T’ in € such that s;.=s and for every
t=sT" < T,. Since D is open, we have that, if t 25 and there isa T in € such that
sp=tand T belongs to D, then T" belongs to . We now define f: [k ] —3 by

f(6y=0, ift£€T or 125
fity=1, if teT, t2s and T"eD
fly=2, ifteT, tos and T"ZD.

By 6.1 Lemma 3, there is a T in € such that Tc T, s; =5 and f is constant on
each level of T. Since D is dense, there is T T, T in D,

Let t* be s Since T*< T, we get t*e T’ and ¥ 2.

Moreover, T* is in D, so by construction of T' T"* is in D, so f(1*)=1. Set
[t*|=|s|+k, and let t be any member of TNk"**: by construction of T, f is
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constant on the |s|+ k-th level of T, so f(t}=1, and so T" belongs to D). Since D
is open, a fortiori T* belongs to D and we are done.

Lenuma 4. The set P(g) is generic over € iff the following condition on g holds in
No: )
(%) For every ¢: [k~ — U there is n such that Vin=n glim)e efg | m).

Proof. Assume P(g) generic, and let ¢ any map: [k]"*—%. Let D={T:
Vios(t"Ee T Ec () we claim that D is dense. For we construct for any T
a subtree T' of T in D, with s, = s, by induction on levels: ("Ee T iff ("éeT
and £ee(t), Let T be a member of DNP(g), and sr=g¢ | n; for any m=n
g T mTg(m) belongs to P{g), so glm)ee(g | m).

Conversely, assume g satisfies (=), First if T and T' are in P{g), so is TNT,
and if T is in P{g) and T' includes T, then T’ is in P{g). Now assume D is an open
dense subset of €: we claim that D meets P(g). By Lemma 3, there are maps ¢:
(k] —% and k:[«k]™ o such that for all s s, =s and for all t in
G (8) N () is in D. Now define ¢: [ — U by:

o(s)={& Vs'assNEc d(sH)h
We apply to ¢ the hypothesis on g, getting n such that Vin=n g{m)e o(g | m).
Let T defined by: seT iff scgln or glncs and for all m, n<sm<ls|,
s(m)e (s | m). We claim that T belongs to € and sy =g | m. For if seT and
s'cs, then s'eT, and for 5 in T, {£&: 8" & T = ¢(s) belongs o 9. Morcover for
al m=ngimeT,so Tis in P(g).

Now suppose teT, |tj=p+1>n: by hypothesis t{p)e (1 [ p), that is by
construction of o¥s'ct tpt | pRi{p)ed(s). In particular t=¢ F p"Hp)2g | n,
so ted(g | 1), and hence T< (g | n). Let m be k(g | n): for all £in &(g [ )N
k" (g I n)' belongs to I; a fortiori since D is open, for all ¢ in TNk, T
belongs to . In particular g | n+m belongs to T, since T is in P(g), so T* "™
is in D, and it is obviously in P(g). Thus P(g) is €-generic.

Finally, we give to the last result a more handy form:

Theorem 5. P is Ny-generic over € iff P is P(g) where g satisfies the following
condition over Ny:
(=) For every decreasing . «—U there is n such that: Ym=n g(m)e

P(glm—1)).

As a particular case we get back Mathias’ result about Prikry’s forcing: “If U is
normal, then P is #-generic iff P = P'(g) (with the obvious definition of P'{(g)- - -)
and every member of U contains almost all terms of g”. For notice that in the
case of normality any family s: k— 9 may be replaced by the constant one
whose value is the diagonal intersection of im .
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Proof of Theorem. In light of Lemma 12, we just have to show that conditions
(%) and (=) are equivalent.

() implies (#*): starting from o, define @: [k]° =% by ¢(s) = (max s).
(==} implies (*): starting from ¢, define ¢ k— U decreasing by (€)= [Noaxs=e
@(s), using the x-completeness of 4. Now if g satisfics (= =), we get n such that
Vmz=nglm)edigm—1)); but max g t m=g(m—1), so glm)ce(g | m), and g
satisfies (%),

6.5.

In [3] Bukovsky has shown by Vopenka’s general methods that M, is & generic
extension of N,. We show here that the forcing involved is exactly 4, as the
sequence (x, ), turns out to be N, -generic over i,,%€.

We set 6, =iy, % = €y _(ig,U). Then we have the following general result:

Theorem 1. Assume ¢f A =w and gc %, then P(g) is N, -generic over G,.

This result can be easily deduced from Section 6.4, Theorem 5. Now since the
generalized Prikry forcing € has originalty been constructed just to allow the
proof of Theorem 1 to work even for non-normal ulirafilters, we prefer to give
here this proof.

Proof of theorem 1, Let g be a member of 4, ; there is (v,), in cof A and 5, such
that for n = ng, g(n)=x, . Let D be any dense subset of %,. There is @ << and A
dense subset of €, such that D =i,A. We may assume that & =, with n,>n,.
We set

S (A)={sex":ATecAsr=g  n,"s}

Assume that for all n §,(4) is not in 1,,%,. Then for all n k?\S,(4) is in i, %, SO
by 6.2 lemmma 2., there is T7 in € such that for all n T°N k) NS, (4) is empty. We
define T* in ¥, by seT* iff scgln, or s=gln"™t and (T
(“T*=g I n,"T). '
Assume T< T%: 5,25+, say sy =g | n,"t. By construction ¢ is in T°, so it is
not in 8j(4), hence there is no T" in A with s,+= s;: in particular T is not in 4,
and this contradicts the density of A. Hence there is n, such that S, (A)e iy, %

By Section 1.7. Proposition 3, this implies:

nat

(X'y,." LR | X'ynl*nz,l) € in-y,‘ﬁ,,z Snz(A)>

which is S, (i, . 4). Thus there is T in i, 4, such that sp=
gEm ™ Xy o5 Xy, b 1€ s =g Tyt Now let T'be i, T: T' belongs
to €,; moreover sy =i, sr=g|m+n, and T€i,, A implies T'cind=
D. It remains to verify that T’ belongs to P{g); fix any m, we show that
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g | n,+tn,+m belongs to T'. For notice that

Lit]

{sexf g lm+n,"seT}
belongs to . U, ; s0 by Section 1.7, Proposition 3.

A .
b4 r Hy +”2 (Xvnw‘z’ T Xv.,l.,.zm 1)6 Iv...u.z*fr.,mzm T!

ie.gltu+n,tme P o sYoyonasm 1o HUS € Yoy n,tme T We constructed T in
D N P{g), and so P(g) is generic over %,.

Corollary 2. If % is selective, then for all ¢ in §,, P'(g) is N-generic over P,.

6.6.

We see now how the preceding result gives us with the help of section 3 a very
powerful way to study Prikry’s extensions.

We recall some notations: if CC is a partially ordered set in M, B = B(C) the
complete Boolean algebra associated to C, we let M® be the corresponding
Boolean model; and if G is C-generic over M, for xe M|G], we choose an
element £ of M® whose value in M[G1is x, and say it a name for x; we note Val}y
the evaluation map ¥ x,

Theorem 1. Let G be any 6-generic set over Ny, ¢(vy- - -t,) any fornula and
X, X, € Ngl G 1. Assume that for any g in 9§, which coniains almost all x,, we have
M, Ed(Vale,io, Xy, - - ., Valiiyiont,); then N(GlEd(x,, ..., x,).

Proof. Assume the hypothesis. We claim that {Te %, : TIF¢(ig, Xy, . .., fouXa )} IS
dense in €,. For assume Tc%, and no T'= T forces ¢ (i, %y, ..., fg.X5,). Then
T b liguXs, - . ., dowXa). Since T is in N,, there is p and T% in €, such that
T=imT*, and we may assume that max sy <k, For every n, the sct {fex};
srteTH is in iy,V,, so by Section 1.7. Proposition 3, st (Xp - Xpsn-1)€
fpprn T7, thus s07(Xp, . -5 Xp+u—1}€ T. This proves that, if we set = st (X )uz=p
then Te P(g). Now g contains almost all the x,, so N,[P(g)l=M,, and since
TeP{g) and Tlt]¢, we have

Mm ':1 ‘i’(valyrg)f(}mfh Py valrl;rf'g)i&ui-n)s

contradicting the hypothesis.

Hence the claim is proved; and i, being an elementary embedding we
conclude that {Te%,: Tk ¢(X,,..., %)} is dense in €,, so for any G $by-generic,
we have

NolGlE${xy,. .., x,).

CoroMary 2. Let ¢ be any closed formula and G any €-generic set over Ny: then
N Gle¢ iff M, E¢. More generally if Xi- - -x, belong to Ny, NJEGlFd{xy - - -x,
lﬁ Mw?(b(i(}w'\"l: ey i(kuxu)'
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Application. Let U a «-complete ultrafilter on « in a model N, and N’ any
B (U)-generic extension of N,. Then

(i) Cardinalities are preserved;

(i) V.NN'=V_ NNy

(iii) each set of ordinals in N' can be covered in N’ by the union of @ sets of N,
of the same cardinality;

(iv} If P(g) is Ny-generic over 4, and g’ is any almost-sub-sequence of g, then
P(g") is Ng-generic over €

(v} if moreover U is selective, all these results hold for Prikry’s forcing.

Notice that these results are very easy to establish, since we need only the facts
that M, = N,_[(x.).], which uses a little part of Chapter 2, and that (x,), is
N, -generic over €

w

7. Normal and selective ultrafilters

In this part, we exactly determine the N, -generic sets over €, which belong to
M, (for A of cofinality w) when @ is equivalent (in the sense of [8]) to some finite
power of a normal ultrafilter. It is easy to show from Section 6.3. Theorem 5. that
for 9 normal, the union of two Prikry generic sets is still generic. This will fail for
€ forcing in general.

7.1.

We first recall well-known facts about normal ultrafilters.

Definition, Assume 7 is a k-complete ultrafilter on « and fr: k" — k. We set:
h=V={Xck:h'Xe¥,}

Lenma 1. (i) if w h=«k, then h =7 is a k-complete free ultrafilter on «;
(i) if wyhy=mYh,, then h =¥ =h, =V,
(ifi) if h': k—>k, then W=(h =¥ V=W h=+¥
(iv) for any f:k—k, 7" f is included in the transitive closure of 7% fh;
(v) if moreover h is injective, w}*" f is exactly 7, fh.

Proof (iv) and (v). Assume X transitive, and look at the two following maps from
*X to Ng:

I, : > f and I, : f> 1Y fh,

By the definition of h * ¥, the ranges of IT; and I1, are isomorphic, and moreover
the range of II; is transitive: we get (iv) applying Mostowski’s theorem. Further, if
h is injective, the map f> fh from “X into itself is surjective, and the image of I1,
is transitive as well as the one of I1,, so I, =11,.
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It is clear from lemma 1 that normal ultrafilters exist whenever complete ones
do: take for h any function such that 7 {h =k (¥ any complete ultrafilter on k).

By (iv), #7*¥id, =€ w¥h =k, hence h =Y is normal,

Definition. Assume ¥ is included in % (x) and (X)y (.. is a family of members of
V5 we define the diagonal intersection of the family, 4.X,, by ned X, iff
VE<mm e X, (where £<{n means max £<n).

Lemma 2. Assume ¥ normal on « and for all £ in [«]" X, is in V" then A X
is in 9.

Proof. Define f:k—[«]" by f(n)=the first £ with £<n and né X, if it exists,
(M, ..., n+n—1)if not. For all £ in [«]", X, is in %, so {n: f(n) =&} is not in %,
and 7 f is not & In particular if f,_, is the last component of f, =¥ f

11—12K$ 1.C.
 f_y = id, s0

{n: i) =n+tn—1}e, thus
{n: FE<n nE XS £ U, and its complement A X, is in V.

Lemma 3. For ¥ being a x-complete witrafilter on «, the following are equivalent:
(i) V" is selective, i.e. for any Y in ¥, there is X in ¥ such that [XT"< Y;
(ii) for any Y in ¥, there is X in V such that [XFP< Y;

(iii} for every fix—« such that w\f=«, there are f,, fo:x—>« such that

. f =, f, = mf> and f, is bijective und f, strictly increasing:

(iv) there is a bijection h such that h =7 is normal.

Proof. (i)=>(ii); (i))=> (jiii): let f: k->k such that a,f= k; for every £ in «, the set
{n: f()=f(&)} is in ¥, so {7 n: f(E)> f(n)} is in ¥,; by (ii) there is X in ¥ such
that for £<<n, & m in X, f(£)<<f(m). We can then modify f on a set of
zero-measure to make it bijective or increasing.

(iii)= (iv). Let f be any function «-»>« such that o, f=k: there exists f,
bijective such that 7, f=a,f; =«, so f,* ¥ is normal.

(iv)=(i). We first show that (i) hold for normal ¥, and then show (i) is
preserved under increasing injections. Assume ¥ normal and we argue by
induction on n: assume Y in ¥, ,. By definition {&: Y5€ ¥}< ¥,, so by induction
hypothesis there is Z in ¥ such that [Z]' c{&: Y®e ¥}. Set Y= Y®if £is in [Z]",
Y¢=« if not. By Lemma 2, A, Yy is in U;set X=ZNA,Y,, and let E"ne[ X"
Ec[X]", thus E€[Z]", hence Y= Y*e V. Since £<n and neX, ne Y= Y% so
£"neY. We are done since [X]""'< Y. Now assume () holds for ¥ and k is
strictly increasing; let Y e (h = 7),,: the set {(no * *Mu_y) : (M) * h(n,_ Ne Y}is
in ¥, so there is Z in ¥ such that for (ny - m,,.1) in [Z]* (h{ne) + -h(n,_))) is in
Y. Let X be h"Z: X is in h=¥, and if (& - -£,_)) is in [XT", there is {1y * *7,_y)
in [Z]* such that & =h{(n), i=0,..., n—1,s0 (&,..., &_,) is in Y, and this
finishes the proof.
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7.2.

We now prove that if U is selective then %, is exactly the set of N, -generic sets
over 4, in M,.

Lemma 1. Let f:k—> k be such that {&: f{§) # £} € U. Then there exists X in U such
that f X,

The proof is well-known {without any completeness).

Lemma 2. If U is selective and X € ip, U, there exists YeU and y <o such that
(0. YV = X, where Z7% means {{eZ:{>u}.

Proof. Write X = m.e = f where f:x"'—a Define £"neZ if nef§): Ze¥U, .,
so there is Y in % such that [Y]'""'< Z For all £ in [YT* Y™5< f(£), so

. [S — Y]>1-ru[s-—>s(e(n—1))] < I'TT([ [SP—)f(SE)],

that is (i, Y)Y *enc X,

Lemma 3. Assume A limit and w&{x.: . <<A}. Then if U is selective there is X e%U
such that & i X.

Proof. There is @ <A such that «, <p <k, ., and p# x,. Applying Lemma 1 in
N, we get Y in i, A such that pe i, Y. Apply 2 to get X in ¥ and v <« such
that (ipa X)™* € Y; since vy <e, xy <Kq and Xy =X, Thus p&i, Y implies
WE (iner1 XY, hence w#ip, X since p>y, and p <., implies p=
fo L€ ign X

Proposition 4. Assume geM, and P(g) is N, -generic over €,, A of cofinality .
Then if U is selective, g€ %4,.

Proof. Assume that VimInz=m g(n)€{x.;: @ <A}. By the results of Section 6.6.
every subsequence of g is still generic, so we may assume that for all 1 g(n) £{x,:
a<<A}. By Lemma 3 choose for each n X, in 4 such that g(n)€i,X,. Set
X=n,X, XeU since geN,, and for all n g(n)€i,X: this contradicts the
criterion Section 6.4. Theorem 5. Hence if P(g) is generic over %,, there is a
sequence {+, ), increasing and cofinal in A such that g is eventually equal to (x, )
If moreover g is in M,, {v,), is in M,, hence in Cof A, and g is in %,.

n

Corollary 5. If % is selective,

(i) %, is in ODNY for any A of cofinality w;

(ii) For any 9P-generic extension Ng[g] of Ny, the generic sequences over P which
are in Nofg] are exacily the almost-sub-sequences of g.
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Proof, 4, is the set of N, -generic sequences over 4, in M,, so it is ordinal
definable in M, from « and iy, %. In particular the N, -generic sequences over 4,
in M, are the alimost-sub-sequences of (x,),, which by Section 6.6. Theorem 1!.
gives (ii),

7.3,

In this paragraph, we assume that ¥ is in N a second k-complete ultrafilter on
K such that 9 = h* Y for some bijection h:k? —>k. We investigate the connec-
tion between €(4)- and €(¥)-generic sets. Notations &, # will refer to members
of k.

For simpticity constructions related to ¥ will be noted with a *, while construc-
tions related to 9 will be noted without any superscript. Applying Section 7.1.
Lemma 1 (v), we get in the same way:

Lemma 1. (i) For any g:«"— Ny and (e, - ¢ ) e[Y]™™

mexg=mrlse>g(h(s(pe)  -slpe,+p—1)),..., his(pe,) - s(pe, +p— 1]

(i) In particular N, = NZ_ and iy, =i%,, for any v; N, =N¥, M, = MY and
fon =iy for limit A

Remark. This lemma enables us to construct a counterexample to the conjecture
M, =N_[(«,),.] when % is not assumned normal. For assume ¥ normal and
WU=h=¥,. Then M, =M =N,[(x).], and «k,=i.k=iHk=kT, s0
N [x ). 1= N[&ED 1= NE5[(«%),], and it is easy fto prove that
NE[(«%).]# Ni(5), 1.

One would hope to establish a correspondence between €- and €¥-generic
sequence applying the criterion Section 6.4. Theorem 5. However, it turns out
that for p>1, it is simpler to establish a correspondence between 4 and 4%
directly as follows,

Definition. (i) For Yc«®, we set Ye ¥ iff YS[k]” and s"teY implies Y* e
o‘fpflﬂ'

(i) For Xck, we set Xe@' iff i 'Xe V",

Lemma 2. (i) Assume Te €™ and s 2sr. Then {£:s" £ T} belongs to V7,
(i) Forany Yin¥,, thereis Y' in V', Y'S Y, and the same holds for % and U'.

Proof. (i) If Te€*, s 2sr and s"Ee T, £ is strictly increasing by definition. Then
forany t s and any length n {t'ex™ :t" e Tlisin ¥, if tisin T, so {£:5"Ee T}
is in V7,

(i) Like for Section 6.2. Lemma 2, set se X' if Vs'cs s'etr
in ¥, and for s in X' and s'<s X isin ¥

.
s . Then X' is
s S0 X' s in V7,
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Lemma 3. (i) If X is in U and 6 <«, there is X' < X such that X' € %' and for £ in
X' h™'Y(€) is in [« and min h '(£)>6;

(i) If Yisin ¥V, and 8 <k, there is Y'Y such that Y < ¥, and for &€ in Y’
hi&)>a.

Proof. (i) Since [«]" is in ¥, h"[«]" is in 4; morcover {£:min £> 60} is in 7, so
{¢:£e X and h (&) e[«] and min h™'(£)> 6} is in U. We then apply Lemma | to
get X'e@l’.

(i) For any 6 <k {£: h(£)=0} is not in ¥, since h is injective, so {E:£€ Y and
h(g)> 06} is in ¥,. We then apply Lemma 1 to get Y'e ¥,

Definition. We construct A and A¥, two subsets of [k] by:

(i se Aiffs=(& and h Y& e[x] or s=5""(n, &) and h (&) e[x] and max
I ') < min h Y(&).

(i} se A% iff |s|=kp with k=2, say s =s""n"& and h(n) < h(£) or |s| is not of
the form kp with k=2,
We then construct €, 6, €€ and €5 < €T < €* by:

(i) Te%, iff for all s2s¢ in T {&:5"€e T} is in U’ and if morcover s# s,
then s€A;

(iv) Te ¥ iff |s;] is multiple of p and if s 25, in T and |s} is multipie of p, then
{€:s"EeTYis in ¥, and if s2sp in T then se A¥,

(vi Te€, iff Te€, and TS A:

Te€s iff Te€F and T< A*,

Lemma 4. (i) €, is dense in €;
(i) €7 is dense in €%,

Proof. (i) Let T be any member of €; we construct T'< T by induction on levels.
First s = sr; assume s has been put in T’; let 1 be the last term of s, 8 be max
17 (n) and X be {&; s"¢ e T}. We apply to X and 6 the Lemma 3 getting X' c X,
andset s"Ee T iff Ee X'y {&:5"¢e T} is in W', and for all s7¢ in 1", b (&) e[ ]
and min h~'(€)>max h™'(S) by construction, so s7¢ is in A, Thus T’ is in 4,,
which is dense in 4.

(i} Let T be any member of €*: we construct T'< T by induction on groups of
p levels. First choose s, 25 such that [s| is multiple of p; we set s, =5, Now
assume s has been put in T7; let m be the last p terms of s, 8 be h{y) and
Y=1{&:5"€e T}. We apply to Y and 8 the Lemma 3 (ii) getting Y’, and we set
s"EeT iff £ Y. Now Y’ is in ¥, and for all s"n"& in T'h(£)>h(y} by
construction, so s "n £ is in A% Thus T' is in €%, which is dense in €*.

Proposition 5. (i) If P(g) is generic over €, then there is n such that ¥Ym=n
h ' (g(m)e[«} and max hg(m— 1)) <min h-(g(m));

(i) If P*(g) is generic over €%, then there is n such that ¥Ym=n
hig } [mp, (m+1)p))>hig | ({m— Dp, mp)).
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Proof. Assume T is in P(g)M %€, and take n such that s, =g { (n—1); then for
all s in T such that s 251, s is in A. In particular for niz=n g } mt is in A, which
gives (i),

The proof is analogous for (ii).

Corollary 6. (i) If P(g) is generic over 6, then there is g' eventually equal to g such
that P(gYN€,<%,.

(i) If P*(g) is generic over €%, then there is g' eventually equal to g such that
PHghNE€T = €E

Proof. (i) First fix in N, a sequence s:w-—x such that for all n s } n is in A
(construct it inductively), Certainly s is bounded below k, as well as | J{h~(s(n)):
new} Since P(g) is generic over €, g is cofinal in «, and so is U{h '(g(n)):
i € w} since for any 8 <« the set {Te€:Vs2s; VEsTEe T=Dmin h 4§ >0} is
dense in €. By Proposition 5 (i) there is 1 such that Vin=n h (gl e[k and
max h~"g(m — 1))<<min h~'{g(nt)), and since U{h~"(g(n)): n€w} is cofinal in
we may assume that max h '(s(n —1)}<min h~'(g{n)). Then we set g'=
s n"g Mn o) P(g" is generic over € as well as P(g) is, and for all m g’ | i is
in A, and P(g"} is included in 6,U%\%;. The proof is parallel for €*.

Definition. (i) For T in 4% we define H*(T) as follows: if sex*?, say § =
£ TE L, we set h{s)=hiEy), ... hiE._), and put HY(T)=1"(TN |, &*).
(i) For T in €, we define H {T) to be the closure under inclusion of kT,

Claim, H" is an isomorphism from €% onto €, and H™ its inverse. For, if T is in

¥, HY(T) is included in [« since if s"E"meT h(E)<h(n). Then H*(T) is
closed under inclusion since T is. Set s4.= h(sy) (since |sr| = kp): then if s HY(T)
s 28 or s < sh. It moreover s 254, s=h{t) with te T, so {n:t"neTre ¥, and
{€:s"Ec HY (T} e U'. So H*(T) belongs to €. Now assume s "ée HY(T); s"¢ =
h(t"q), so h Y& efx] and

min 7' (£)=min n>max { =max h (s),

so s"¢ée€ A, and H (T e %..

Now assume T is in €,: H (T) is a subset of [«]™ for if s"£"ne T, then
h=' (& el[xP, h ' (n) e[« and max (&) <min h™'(n) since s"E"ne A; h™(T)
is closed under subsequence, and since T is, the closure adds no sequence of
length multiple of p. Set sf.=h~'(sp): then |s/{ is multiple of p and if se H(T)
scspors2sh If sosh, s in H{T) and |s] is multiple of p, then s =h'() with
teT: so {n:t"neTiel', thus {£:s"Ec H (TH}e¥"; hence H(T) is in €%,
Assume 5s"Ee H(T) and |s| multiple of p:s"&=h~'(¢t"h), thus max  <n, hence
h{the last p terms of s)=t<n=h{&): so s"{c A¥, and H(T) belongs to €F.

Finally it is obvious that H* is%rder preserving, and H~ is the inverse of H™;
the claim is thus proved.
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Definition. We extend to [k the definition of &t by h(g)(!)=h(g | [Ip, (I + D)p)).

Theorem 7. P(g) is generic over € iff there exisis g% such that P*(g*} is generic
over €* and g is eventually equal to hig*).

Proof, Assume P(g) generic over €: by the Corollary 6, there exists g’ such that g
is eventually equal to g’ and P(ghN¥€,c%, We define ¢* by g*l kp=
k' (g’ | k). By the choice of g’, g* is in [ |*, and we prove that P*(g¥) is generic
over €*. For let D* be a dense open subset of €%, and D¥ be D*N €. We set
D = H"D¥U%€,\%,, and claim that D is dense in €. For €, is dense in € and, if
T is in €,, H (T) is in €3; since D¥ is dense in €* there is T* in D¥T*c H(T);
since €¥ is dense in €% there is T¥ in €7F, TF< T*. Since D* is open, TF is in
D*, Moreover €% is open in €%, hence H (T)e %% and Tie €T, T5<H(T)
implies TF e €%, that is T¥e D¥. So H*(TF)e D, and is included in H*(H (T)) =
T. The claim is proved. Now since P(g’) is generic over €, there exists T e
P(g"hND. We have then T'e P(g')N€,, hence T' e €,, so T'=H"(T*) for some
T* in D¥. We claim that T%e P*(g*); for fix any k; ¢’ 1 ke T, so h™'(g' t k) e
T*=H"(T). But kg | k) is g* | kp. Finally we proved that P*(g*) meets D*,
and so P*(g*) is generic over €%,

Conversely assume P*(g*) generic over €*. By Corollary 6, there exists g™
eventually equal to g* and such that P*(g*)N%T < €%. We set g=h(g*): g is
increasing by the choice of g*, is eventually equal to h{(g*), and we prove that
P(g) is generic over %. For let D be a dense open subset of €, D, be DNE,,
D¥=H"D,NE€¥\€5. As precedently D* is dense since D is dense open; since
P*(g*) is generic over 4% there is T*eP*(g*)ND* Then HY(T* is in
P(g)n D, and P(g) is generic over 4.

74.

We apply the preceding result to generic sequences over €,. First notice that by
Section 7.3. Lemma 1. €F =i}, €% is also i, €¥, a member of N, = N¥, for any A
limit. Fix A of cofinality e.

By Section 7.3. Lemma 1. for y<{A x,, which is m[s—s(y)], is also
w3 s h(s(py): - -s(py +p—1)], that is i h(x¥, ..., x5 +,-1). By Section 6.5.
Theorem 1. applied to €5, we see that for any (v,), in cof A (x¥), is N, -generic
over €¥. Thus the previous theorem yields:

Theorem 1. Assume U=h=V,, h bijective and ¥ «-complete, and X limit
cofinality w.

Define y<A xJy4x to be the k-th term of i h*(x,), and let ¥} be the set of
sequences which are eventually equal to some sequence h{(x3),) with (v, )}, in cof
A. Then

(i) %" is in M,;
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(ii) For each g in %}, P(g) is N, -generic over 6, ;
(iii} If moreover ¥ is normal, 97 is exactly the set of the N, -generic sequences
over €, which are in M,.

Proof. (i) By Section 5.2. Lemma 1 %¥ is in M¥=M,, and 4} is the set of the
sequences which are eventually equal to some ip,fi(g) with g in ¥, by the actual
definition of x* which is as we noticed the same as precedently. Since ik is in
N, 4" is’in M,.

(ii) and (iii} result from Section 7.3,

Corollary 2. If ¥ is equivalent to the p-th power of some x-complete wlirafilter with
p=2, then if g is any Ny-generic sequence over 4:

(i) There are in Nylg] Ny-generic sequences over € which are not eventually
included in g;

(ii) There are in No[g] two Ny-generic sequences over € whose union is not
generic over €.

Proof. It suffices to look at M,. Members of ¥4, correspond in 4" to those
sequences (1,), in cof @ which satisfy [, =pli+k for k=1,..., p—1, (I1),
being itself in cof w; then it is clear that h((x™), ~,), which is generic over €,, is
not an almost-sub-sequence of (x,),, which is h((x¥),0), and that the union of
(x). and k((x),=1) is not generic over €, since it cannot satisfy the necessary
condition given by Section 7,3. Proposition 5.

Corollary 3. If Ny= L[], then there is p and h:x"— x such that for any A of
cofinality w, the set of N, -generic sequences over €, which are in M, is exactly 4.

Proof. Kunen has shown that it Ny= L[], then % is equivalent to some power
of a normal ulirafilter.

8. Support theory

Tor any « and x in N,, there are many ways representing x as the image under
7, of a finite support function. We show now that for each x in N, there is a
minimum finite subset of o which is a support for functions representing x; and of
course we call this minimum subset the support of x. We also treat the connection
between the supports at levels « and $ of an element of N, for 8 = «. The results
obtained in Section 8.2. suffice for Chapter 9. The rather complicated machinery
of Section 8.3. is needed for Chapter 10.

8.1. The existence of the support

Lemma 1. Assume a, x, e1, €, €1, g are such that x = m,e, * g, = 7€, % g,. Then
there is g: k'*:"%\— Ny such that x =, (e;Ne,) * g
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Proef. The proof is exactly what one may expect. One must simply pay attention
to the notations.

S0 assume e, # ¢, and let p the greatest ordinal which is in one, but not both, of
e; and e,, say pee\e,. Put e,=e\{n}. We claim that g, exists; «'— N, such
that x = m.,e; * g,.

We set e=e,Ue,, py=le,Npl, p=leNu} and q=|e,|—p,~1=le|-p— 1. Fi-
nally note E,, E, the injections p,+gq—p+¢q, p,+q—p+q respectively such that
e1= ek, and e, =¢E,, and also their restrictions to p; or p,.

Now by hypothesis {s €k : g,{(se,) = g,(se,)} e U, ie.

{sex™: g (sE\) = g,(sE;)}e U,
This means that X e, where X ={fe«” : X,e U} and

Xe={nex: {Lex® : g(EE, "0 "} = 2(EE, "0} e Uuq}a

since when s =£"0"C g,(sE)) = g,(§E,"n"0) and g,(sE,) = g,(£E,"0). Put Y =
{E 1 Ee X} T Eisin X, EF, isin Y, so &isin E,# Y, hence E, * Y is in ., and
Y is in %,

For a in «™, we set

&(o) =any element of X such that o=§)E,, if ey, (0,...,0) if not.
n{o)=any element of X, if oeY,0 if not.

Finally, we define g,: x***— N, by
gu(ﬂ'ng) = gl(o'ﬂ"'l(o')n@-
For o in Y, &0) is in X, hence for any 7 in Xy,

{Lext: g™ 0" = g E(0) E," D e U,

thus
{Eex: 210" 00 = g (" W(0)"D) = go(a" D} U,
hence
Yelo{n {l:gile™ 70 = glo" O} e U e U,
1.e.
{o"n " Cex g (a0 ") =g e "V} U,
and

XN =T * 8= T €u™* Eo-

Definition. For any a and xe N, we let e_{x) be the least subset e of & such that
there exists g:x"— N, satisfying x=we=g=iyg(x.). We call ¢ (x) the a-
support of x. In particular e, (x) is empty iff there exists y in N, such that x = {,,y.
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By the very definition of ¢,(x), we get:
Lemma 2. If xe N, and x can be written x = i,,£(x.), then ¢ (x)< e.

8.2. Upwards connection between supporis

Proposition 1. Assume o < and B~ €im iy,. If x € N, and if moreover for each
i e (W) N, B), we have . —a €im iy, then e, (x}< e (x).

Proof. Let v be such that igg = ip.fo, (by Section 2.2. Lemma 3) and ), ..., 1,
such that y. coores = ioe (X" "X, ) {which exist by the hypothesis on ez(x), by
Section 2.2 Lemma 3. and because x, =io.xo). Then if ¥ =-mze,(x)=f=
fnaf(Xe,0)» We have:

X = i(){if(ch(.\'}ﬂu n iﬂn( (Xp.l e Xun ))
= iUuiﬂyf(Xea(x)ﬁun an (Xu.l' ! 'Xu,‘))
= i()c: [i“'yF(Xu.] e X;_l,,)](Xcﬂ{x e )

where we set FE) )= f(n"E), so

X =g [‘IUVF(X;L,' ' 'Xu,\) M X NtJ(Xca(c)m)

Ht

SINCE X, yona 1S N k7, 50 in dom iy, [ig, Fx,, "X, }N&™ X Nl

But iy, Flx.,  x, )0 &™ XNy (where m =leg(x)N{e, B)) is a function k™ —
Ny, s0 we have written x in the form x =iy, 8(x. yne) and by 8.1. Lemma 2.
e, (X) S es(x)Ma, thus e, (x) < eg(x).

Corollary 2. (i) If B—a <k, then for all x in Nj e, (x)< eglx);
(i) If B—aeim iy, and x in Ny is such that e;(x) S o, then e (x) S eg(x).

8.3. Dowmwards connection between supports

Our aim is now to prove a converse result for supports, i.e. an inclusion of
ep(x)Nain e, (x) for o =< and x in Np. We need first establish a few lemmas.

Lemma 1. Assume xe N, and let 0, 6, & be such that 0=y, 0<0" and iypi,, =

fos theR Xt = Too(Xe 00}

Proof, Write x =iy, g(X. o). Then igex = igelin,g(Xe o) ]= l0s8{ioXe ), and
Section 8.1. Lemma 2 proves that x,,q. . S feeXe, vy Conversely since fop X, i S
im igg AN X, (i S foo'Xe, 00 WE DAVE X, (600 S 1M gy SAY Xm0 = feorXe (SinCC
x,. can only be the image of another x under iye). Now if fgX = f0s8 (Xeoiina)} =
ios8 (forX.), We get iggx =igelin,8' (X)), s0 x=ig,g'(x.), and finally e2e (x),
hence X, 2 Lao Xe -

Lemma 2, Assume xeN,: then xeim i, iff L, X =iy piaX.
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Proof. We argue in N,, and may assume p = 0. By Section 2.2. Corollary 2. if
xeim iy, then igx=i,x. Conversely assume x&im iy: then 0€e(x), so by
Lemma 1, 1€ e;(iy,x) since igyig = iy implies X.,a,,0 = loiXe, (X), hence exlip x) =
1+e¢,{x). But Lemma 1 implies also that x, . = i12x. (%) hence e;(ipx) = e (x),
and in particular 1 £ e,{i;,x), so we cannot have iy x =i,,x.

Lemma 3. Assunte p<vy: then i, ,1l0y = iys1paaiey iff y—peim i, ..

Proof. By 2.2 Proposition 1. we have:

b thoy T log i, (v—w)s

Tt s2Toy = lop+2+i sty —(n+ 100

fy—p=n<e, i, 0=1i,,20=M 80 i, 1oy =10 42k0y = loyey. Hy—p=
o, T, oy~ ) =ialy—p) and 2+10, o o(y — (e + 1)) =1,,5,0(y — ), and
using that w+8=p+38 iff §=8" we get that i, 1ip, =i, siuaaloy I fueer
(v — 1) =i, s1,0a0{y = ), that is by Lemma 2 iff y—pcim iy,.,.

Lemma 4. Assunte g <<w, y—peim i,,,, and xeN,; then i,, .\ x =i, 1, ,,x iff
Xe,co Is included in im iy, (which implies that pé e (x) since x, £im i, ).

Proof. By Lemma 3 there is & such that i, o, =i, 1, 2l0y = lps. Write x =
lOyf(Xc}{.\'])' Then lup-nx:ioafﬁ,;;wl)(qn) and lu+‘1u+2x:iOSf(h:+lu+2Xc._(.\'))a 50
B 1N = H o yaa® P 1 Xe 00 = Tu vt e2Xe e that is, by Lemma 3, iff x. ., < im

Luper1-

Our aim is to show that, under certain conditions, i cannot belong to e,(x) and
not to ¢;(x} for x in N, N N;. Lemma 4 shows that i cannot belong to e, (x) if in
the same time y,,,, is included in im i,,,;. We now turn to prove that if u does
not belong to e;(x}, then, up to changing x a little x. ., may be assumed to be
included in im i,,.,, which gives the result.

Lemma 5. Assume A is simple and < - <p, <ph <prypy <+ <, <A, Then
there is a map I which is a composition of elementary embeddings i
Hp+r &g’ <A which satisfies:

(1) Ix. = X

(i) for i=1-+-n Ix, €im i,

(i) T ign = foa.

with

ge’s

Proof. We construct I by induction from p + 1 to n. We know that i, ,,x, ., is a
X SAY dupsi Xy, = Xub,: Pt Iy=i, .o . We then have I\ x, = x, since p<<p,.,,
IiXo, = X €1M iy i isp,and fix,, =X, €im i, 4, by construction. We now
iterate this operation. First we set [, Xo, = X, for g=1-+-n, and assume that
Lo r1Xp = Xz, Weput =1, .. We have L1 x, = x,., LIix,, = x,, fori=<p,




Iterated wlirapowers and Prikry forcing 149

_ . 1 S
LIx,,. =Lix,,, since o, <p.:<ptp.s, SO Lix,, is in im i, and
LIx,, ., = Lxuy,, = Xz, is in im i, ., by construction, and so on,

28] 28 Hp+1 My Moz "0 07

!i

l Jr \ | \ 1 \ 1
‘ ,u,{ i "Hpsr  Bpaa N UPEE

ia

S N A
* ,LL? TR T Hp1 CHpa2 " Hpaa

" | |

Yo L . s \
pl ok e T Ppea

Weset I=1,_ - - LI, Clearly I iy, = ip,, since A is simple.

Lemma 7. Assume A <8, A simple, and 0 such that: Vy <A v+ 8 =i,0 = 0. Then
if y €Ny, we have e;(y}NA<ey)

Proof. Assume p <A is such that p € e,(y) and u# e, (y). We apply Lemma 5 to
ex(v)={p, - 'p,} to get I, a composition of maps i... with e=<tg'<<A such that
Iy, =x,. and Ix, ) €im i, ,. We have I iy, =iy, and by the hypothesis on @, |
lgg =ipe 10O, SiNCE Il =igesi -y DY Section 2.2, Proposition 1 and §=
g +i, (0—¢) since e <g'<<A, We put z=1Iy, and get by Lemma 1:

Xewzd) = IXL'A(V) Sim r'mL+1 (“)

and
X, (2) = Ix. i), SO 1 € e5(2) (%)

since A is simple, A —p €im i, and moreover 6 =¢—p =i, 8 since p <A: we
may then apply Lemma 4. The assertion (=) proves that i,,.,2 =i, 1.4,z and
{#=) that i,, .12 #i,.,,.22, a contradiction, so we get that every p in e,(y)NA is
in e, (y).

Proposttion 8. Assumte a=<f and f—acim iy. Then if xeN,; we have
ea(X)Nace,(x).

Proof. Assume f—a=1i,,8, and choose A simple>pf. We put y=i,x and
0= A +1i, (B —«). First notice that i, (B—a)=i,ld =i8. Now we calculate:
landog = Tarlaploa = an+i,(8-a)larloa = fog. SO by Lemma 1, we get: e,(x) = e, (v} and
Xewty) = boaXeyx)y hence eg{x)Na=e,{y)Na. Now let y<<A: we have y+0=6
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since §>A and A is simple, and then iy, 0 =iy (X +ig8)= iy A +in,innd =
A+iy 0 =6 since A is simple. Therefore, A, # satisfy the conditions of Lemma 7,
which shows that: e (x)Na =g (y)Nace (yY)Na=e¢,(x).

Corollary 9. (i) If a <B and B —a <k, then, if x € Ny, we have ¢ (x) = eqfx)Ne
(i) If a =B and B~acim iy, then, if xeN, and ex{x)S o, we have e, (x)=

es(x).

This results from Section 8.2. Proposition 1. and Section 8.3, Proposition 8.

Remark. These results are in some sense the best possible: for let x = x, = iy.x0-
Clearly e (x)=1, but for no a <« we have e {x) = because if it would be the
case we should have iy x = x, which is false since i,,x, = x,,. On the other hand
we can easily check that for a >« e, (x)={x}.

Let us finally mention this last result;

Proposition 10, Assume A simple and x € N,. Then the followings are equivalent:
(i} for all « <A ig,x =x;
(ii} there exists y such that x =iy, y;.
(i) ipaX = fp X

Proof. By Section 2.2. Proposition 1 (ii) implies (i} and (iii). Conversely, assume
xeN, and (i) holds: for all @« <A ¢,(x)=0. By 8.3. we have ¢, (x)Nac<e, (x)
hence e {x)Ma =@ for all o, so e, {x) =0, which is (ii), Now assume x £ N, and {ii)
holds: by 8.3 Lemma | e, (ixe X) = ex(x). But also vy, (ioaX) = iy Xeynys henCE
e.onlionX) N A = 0. Then (iii) implies that = ¢, (i X) N A = e, (o) X) = ey (x).

8.4. Partial supports

Assume o=@ and xe€Ng; then N, satisfies: “x belongs to the (8—a)-th
ultrapower of the universe”, so in N,x has a (8 —«)-support. Tt is determined by
the following:

Proposition 1, Assutne a <3 and x € Ng; let e = eg{x)N[a, B). Then N, satisfies:
“e—a is the (B—a)-support of x”.

Proof, First write x= iOBf(Xeﬁfx)ﬂaﬁXe) = inﬂEi()ﬂg(Xcu(_\:)ﬂa (x.} where g(E)(m)=
f(E"m). Then f0e& (Xeyorna) 18 @ function in N, and this writing shows that ¢ —a
includes the (8 —a)-support of x in N, since x, is x,_, calculated in N,.

Conversely, if N, Fx =i, F(x.), then in N, we have x = i.pFlx...) with F in
N,. Write F =i, ,G(x,): we get

X = lplloa G (Xerer)
= EUGG(XU")(X((‘FC,)J

and this shows that a = e¢'2¢;(x)MN [, B): this finishes the proof.
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9. The passage from N, to M,, A of cofinality>> @
We show here that if A is of cofinality> w then M, is exactly N,,

9.1.

Lemma 1. Assunte A [limit and X e M, such that
(iiy X< N,;
(ii} the sequence (i, X), - is eventually constant. Then X € N,.

Proof. By 2.3. Proposition 2. there exists £(A)> A such that, for all x in N,, the
sequence (i,X)a<a is eventually constant and its limit is i, v Put X ={xe N,:
IreonX €lim, oy i, X}. Any set-restriction of iy, is in Ny, and lim, ., i, X is in N,
(since by hypothesis it is some i, , X), so X’ belongs to N,. We claim that X' = X,
For let a. such that for @ = a. i, X =i,, X, and let x e N,. There is o = «. such that
IaX = Fapon X! 80 LY €1,,X is equivalent 1o i,xei, X, therefore to xe X,

Now to prove that for cf A > w M, is equal to N,, it suffices to show that for any X
in M, the sequence (i, X).., is eventually constant in that case. Then we can
argue by induction on the rank or simply use the well known result which ensures
that two models of ZF are equal as soon as they have the same sets of ordinals
and at least one of them satisfies AC.

9.2.

Lemma 1. Assume A simple and cf A >o. Then there is a sequence (@),
which is

(i) strictly increasing, continuous and cofinal in A,

(ii) such that, if cf u# x, then «, is simple. Such a sequence we shall call a good
sequence below A. '

Proof. Let (v,),-, any strictly increasing cofinal sequence under A. We put
= vp and if p is limit «, =supg., ay; if w=0+1, then @, is the least simple
ordinal greater than a, and v,. By 2.4. Proposition 3. the existence of such an
ordinal is ensured. Then a, is simple for any successor g, so it is simple for all
of cofinality # k by the closure properties of simple ordinals,

Lemma 2. Assume A simple, ¢f A>wo and («,), . is a good sequence below A.
Then if X is in M,, there is a finite subset E of A such that

Vi <ve, (X)CF.

Proof. Sct, for p<w, E, = Uy, e, (X). We show by induction on g, that E, is
the finite, and with E, we shall be done. If =6+1, then E, cE,Ue, (X) is
finite if E, is. If 1 is limit and cf p = @, choose a sequence (6,), increasing and
cofinal below . Then e, =sup,, ay, since (e, ), «,. is good. Now e, (X) is finite, so
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there is certainly n such that e, (X)<c ay and so for each m=n e, (X)<qy .
Since «,, is simple, by 8.2. Corollary 2, we have formzne, (X)< e, (X), and so
E, € E, Ue, (X) is finite if E,_ is.

If p is limit and cf ¢ >, look at the function p— @ defined by 8+>|E,|: this
function is increasing by construction, and takes its values in @ by induction
hypothesis. It is then eventually constant since ¢f w>w. So is therefore the
sequence (Ey)g-,., and E, = |J,.-, E, is finite as the E,’s are.

g

Lemma 3. Assume A simple and cf A>w; then if X is in M,, the sequence
{la X e <n IS eventually constant.

Proof. Choose a good sequence (), ., below A, There is a <A and E finite
subset of « such that for all p<v» e(,H(X) c E. Now assume that § <v and ag=a:
we show that i, X=X For since ¢, (X)<E there is g in N, such that
X = log,,, 2(xe), ANd i X = o iow,. 8 (laaXr ). NOW op ¢ is simple and a, <@gy,
SO loa,ivce,, = lowg,,» @a0d E S @, 80 i, Xe = X, and we get that i, X =X

Fix B arbitrary such that « <3 <<A: there is a successor @ such that 8 =<a, <A,
and s0 X =i, X =i, X = ,aX since o, is simple. Consequently, i, X =i,
i.pX =ignX, and we are done.

Theorem 4. If there exisis « <A such that N Ecf A > w, then M, =N,.

Proof. Assume first A simple and ¢f A >w: by 9.1. Lemma !. and by Lemma 3
any X of M, which is included in N, belongs to N,, and therefore M, = N,. Now
for any A if N Fcf A>w, then NyFcf A>w for B=a since Ny N,. By 2.4,
Proposition 4. there is a 8= « such that A — 8 is simple in N, and Ny Fcf(A —B) =
cf A>w. Therefore NgEM, _z =N, _p, that is, in Ny, M, =N,.

Remark. This proves that for ¢f A > wM, = N,. But for instance we have cf x, =w
and nevertheless M, =N, for in N, «, is regular. Notice that the hypothesis of
Theorem 4 are conserve to those of 5.3, Theorem 4, so we have alrcady proved
that for any A limit exactly one among the followings can happen:
(i) My =Ny,
(ii) A =p+w, and M, = N\[{X,+.).], @ €, generic extension:
(iii) M, #]AC,

9.3. Ultrafilters on ordinals > x

Let «” be a cardinal bigger than «: we study in this section the connection
between the sets which are «'-complete ultrafilters and those which are such in
N,.
Lemma 1. Assume that V' is a x"-complete ultrafilter on a simple ordinal 0, and
{n<<0: ip,n = n} belongs to V, where a < 0. Then ¥ NN, =iy, V.
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Proof. (Kunen). Assume Xeio J: X is me=f where f: x> Y. Since ¥ is
«*-complete, Y = [ le| f(E) belongs to ¥, and i, Y < X. Now the set {ne6:
n=iym and nec Y} belongs to ¥ also, and is included in i,,Y, hence in X
Therefore X belongs to 7.

Lemma 2. Assume thai V' is a k'-complete ultrafilter on a simple ordinal 6, and
{n<8ig.n =n} belongs to V, where k" is a cardinal and « <«'. Then, for every
function f:0—>0, there exists in N, a function g:0—8 such that
{n<d:f(n)=g(n)}t isin ¥.

Proof, For all <8 f(n) belongs to N, so it can be written as f{n)=m.e, *f,
where e, is a finite subset of . Since [[a]*”| =la|<«’ and ¥ is k'-complete, there
exist Z in ¥, which we may assume included in {n < 8: i,.n =7}, and ¢ a finite
subset of « such that for all 0 in Z f(n)=m.e =f,, where f,: k*'— 8. We now put
for £ in k. F(&)={(n, {,(£) : ne Z}U{(n, 0) : 4£ Z}, and g = m.e=*F. Clearly, g
is a function from i,.0 =8 into itself, and for n in Z g(xn) is equal to f(n).

Proposition 3. Assume that «’ is a regular cardinal > «, and V' is a «'-complete
ultrafilter on a simple ordinal 8. Then 7" NN, and therefore is in N, a «'-complete
ultrafilter on 8.

Proof. We have only to show that for all a <k’ 7NN, belongs to N, for, if
Y NN, eN,, we have also ¥NN,_.=(¥YNNINNYeN,, hence ¥ NN, be-
longs to M, , which is N by 9.2. Theorem 4. Now fix a <«’, and let Z be
{1 < 0: ipem = m}. Since 0 is simple, Z has the same cardinality as 8. Choose X in
¥ such that |0}=|X]|=10\X|, and a bijection f: 8— 8 such that f’X = Z, Then
=V is a k'-complete ultrafilter on 60, and Z belongs to f= 7" Hence by Lemma 1
{(f= V)N N, belongs to N,. Moreover by Lemma 2 there exists in N, a function g
such that {n<@: g{n)=f"'(n)} belongs to f*% By 7.1. Lemma | we get:
grf(=V)=f"=(f=V)=f""f=¥ =%, and since g belongs to N,

gx{(f=PINN)={g=({=VNNN, =V NN, belongs to N, as requested.

Proposition 4. Assumne that F is a «-complete filter on k and «’ is a regular
cardinal = k",

(D) ioe F is a basis of a k" -complete filter on k.

(i) i F is a basis of a(2%)" -complete filter just in case that there exisis n and f:
K" —> s such that F < f=4L,. In that case 1, F is a basis of a k'-complete ultrafilter
on k'

Proof. (i) Assume that {Y,)... is 4 sequence of sets in iy % Write Y, =
e, *f, where e, is a finite subset of «’ and f,: «*!— . Since cf x’'> «, there is
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v <k’ such that for all o <k e, <v. We set for £ in «:

F(&)= Qﬁ fe(s)

s<<E

for s of convenient length, For all £ in x F(£) isin % et Y be w {y}sF:Y
belongs to ig, % But let « be fixed: {s"&: F(O< (s 2{s"¢: e <& and s< &),
s0 this set belongs to . 1.y, and since e, <y {te k™ F(y)) < f(se, e MU, i.e.
adAv}*Fem e, xf, or YSY, This proves that {...Y, is in the filter
generated in Ny by i, and so i, is the basis of a k™ -complete filter on «’'.

(i1) Let (Y,).o- be an enumeration of F: (... Y, is empty (since F is of
course assumed non principal). Assume that {).ceioc Y. is not empty: there
exists thus e < k' and f: k*!'— k such that e = fei,. Y, for all @ <2%: but this
means that {& f(£)e Y,} belongs to U, and so that Y, belongs to f= %,,,. Finally
we get Fof=MN,.

Conversely, let us prove that i, ¥, is the basis of a x'-complete filter on Ny,
assume that y<«’ and for @ <+ Y, isin i, U,. We have foreach «: Y, =i, X,
with v, <<«" and X in i, U, hence for all 8 between vy, and k' {(xa, . . ., Xpsn_1)
belongs to Y,. Now since v <cf &' = «’, there exists 8 <’ such that for all & <+
Yo <B, and 50 (g ..., Xg+n_1) belongs to all Y,, a<vy, and (.-, Y. is not
empty. Finally notice that iy {f=%,) is ipof%ig. %, so for any n and f,
fo(f= ) is the basis of a x'-complete filter.

10. The passage from N, to M, in cofinality o.

When one fries to extend to any A of cofinality  the result of Chapter 3 two
difficulties arise:

(1) to define for any element of M, a kind of infinite support in 4, to play the
role of (x,.).;

{2) to prove the equality of two models without AC.

We assume until Theorem § that A is simple of cofinality @, and that (), is a
fixed good sequence below A.

10.1. The support of an element of M,
Definition. For X in M, we set: E,(X)=J, ¢, (X).

We need the machinery of Chapter 8 to show that E, (X) is of order type w and
belongs to M,.

Lemma 1. For all X in M,, E,(X) is finite or it belongs to cof A.

Proof. It is clear from the definition of a good sequence in Section 2.4, that if
m<n then «, —a,, €im iy, _, so applying 8.3. Proposition 8 we get for any X in




Iterated ultrapowers and Prikry forcing 155

M, and m=ne, (X)N, e, (X), and therefore E, (X)Na,, = gz €4, (X). So
E, (X) is finite, or it is of order type @ and cofinal in A. Moreover E, (X) is
U ke om €, (XDU Ui (e, (X3 N[, A)). By 8.4, Proposition . e, {(X)}N[a,, A]is
the support of X when viewed as an element of the (a, — «,,)-th ultrapower of
N,,. Since (a,), is a good sequence, (e, ~ @, ),-, belongs to N, , as well as
U nom (e (X) Nfa,, A)), and so E, (X) belongs to N, , and finally to M,.

Lemma 2, If X is in M,, then:
(i) if X is included in N,, then X belongs to Ny[xe, o0l
(ii) in any case, the sequence (i, ,X), belongs to Ny[xg x,] (and hence to N\[%, }).

Proof. There exists in N, a sequence (g,), of functions such that for every n
X =ipa 8u(Xp,0ne,) Since e, is included in E,(X)Na, Hence i, ,X=
iongu(XE, 0, ). The sequence (inyg,), I8 ipy (g )n SO it belongs to N,. Now we
notice that the sequence (a,), does not belong necessarily to N,, but if the
arguments of ipg, are p,-tuples of ordinals, xg (vin., 18 the set of the p, first
members of xp,x;. It is then clear that (i, ,X), is constructed from N, and x (x).
Now recall 2.3. Proposition 2: there exists €(A) such that for all x in N, the
sequence (i, ,x}, is eventually constant with limit i,,,,x. So as for 9.1, Lemma [.
we have if X is included in N, :

X={xeN:dmVnz=m i, nxei, X}
and get that X is in N,[xg, o0l since i,.q, and (i, ,X), are there.

Notice that we proved that M, and N, [%, | have the same sets of ordinals, but
of course we cannot conclude anything except for the case A = .

10.2. The map i,:

Definition. (i) For any sequence of ordinals {o,,), we denote by lim, o,, the least
o such that

dpVq=p o, <0}

(i) For any sequence (x,), we denote by (x,),, and (x,)q., the sets of
sequences which are eventually equal to (x,), and take their values in V,, NN,
and V, NN, respectively, where o is lim, rkx, and £(A) is as provided by 2.3.
Proposition 2, i.e. when A is simple s(A)=A+i, A for any n.

Notice that if (x,), takes its values in N, then (x,)q, = (X0, Iff (x,), =(x2)

Definition. For X in M,, we set {,X = (i, x X))
Lemma 1. (i) The range of i, is included in N,[%4, 1;

(ii) For all A in M,, i, | A belongs to M, ;
(iii) The map i, is injective.
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Proof. (i) is clear from 10.1. Lemma 2, Now fix A in M,. The map with domain
A xv> (i, 4 XDz 18I0 N, , since it is in this model the map x> (i, o X),m0m and
(e,), is good, hence belongs to M,. Then notice that the rank of an element of N,
is the same in Ny, in N, and in N,. So the map x> (i, \X), is in N, , and (ii} is
proved. Finally ix = ix" iff (i, xX)on = (e aX)oy i ApVg = p i x =i i x =¥,
and (iii) is proved.

We now give another clementarity property of i, in the form that will be
needed for the end of the proof.

Lemma 2, For any x, vy, z define {x, y)(e}z by:
V(x ), exVY(y.), €yV(z,), € 23pVq = plx, yu) € Z,.
Then for any X, Y, Z in M, the following are equivalent:

(i} (X, Y)eZ,
(i) (L.X, L Y)e)i 2

Proof, (X, Y)eZ is equivalent for any q to (i, X, i, \Y)€i,,Z. Now let (x,)},
(%) (z.)n be in X, Y, §,.Z respectively: there is p such that for all g=p
Xg T hapXs Vg = ln Y, 2, =1,,2Z, and we get the conclusion of the lemma.

The next lemma is a straightforward adaptation of a well known argument when
AC holds.

Lemma 3. Assume that M is a model of ZF, N,[%, ] M < M, and there is in M
a definable class € such that @ includes the range of i, and @x @ has the same
subsets in M, and in M: then M, = M,

Proof. The class € replaces the ordinals, and the map i, replaces the injection of
any set into the ordinals provided by AC. Let A be any transitive set of M,. We
define in M, asubset Z of OX@ by (X, Y)eZ iff 3X'c A IY' c A X =i X and
Y =i,Y and X'e Y’ (this is possible since i, | A belongs to M, by Lemma 1(ii)).
By hypothesis Z belongs to M. Moreover Z is extensional and well-founded, so it
collapses in M onto the e-relation on a transitive set which can be nothing but A,
and A is in M.

Lemma 4. Assume that M is a model of ZF, N\[%]cMcM,, and @ is a
definable class of M such that the restriction of i, to O is definable in M: then OX O
has the same subsets in M and in M,

Proof. Let 7 be any subset of Ox@ in M We set Z¥=
{(X, Y)e@xO0:(i,X,i,Y)e)i,Z}. By hypothesis Z* belongs to M since i, | @ is
definable in M and by Lemma 1 (i) i,Z belongs to N,[%, ], hence to M. Now by
Lemma 2 Z% is exactly Z.
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Our way is now clear: to prove that M = M, we have to construct in M a class &
such that;

(i} € includes the range of i,;
(i) i, T @ is definable in M.

We now construct such an @ in N, [i, | 4.1

Definition. (i) % is the class of triples (g, (p. )., (f..),) such that

(a) g belongs to 4, ;
(b) (p,). is an increasing unbounded sequence of natural numbers;
(© lim gNx. |=pu;
(d) (f.).. belongs to N, and for each nf, is a function with domain i~
(i) © is the class of X which are of the form X =(f,.(g { p.))s, for some
(g () (f)u) in I
(iii) 9 is the binary relation defined by: (X, Y)e T iff: (g (p.)., (f))eH

E(Gt)f € l)\g X: (fu(g r Pn)){n) and Y= ((i,\s(.\}fn(Gt r pn))((n)))(t)'
It is clear from this definition that the following hoids:

Lemma 5. % and @ are definable classes of N,[%,] and T is a definable class of
Ny [ix T4

Lemma 6. For any X in M,, i, X belongs to 0.

Proof. We take xg (x, for g Then therc exists a sequcnce {(f1),. of functions such
that for all n X =ige filXeoo M Xe,)s and s0 i X = ioafllXe,oo M Xa,). We set
(f.), = fon (f2),, and p, = the cardinality of any member of the domain of f,. Clearly
(& (P (F)) s in F and KX =(f(8 | P

Lemma 7. Assume that Xe@: then (X, Y)e J iff Y=i X.

Proof. Let (g, (p.)., (f).) be any member of # such that X =(f,(g { p. Ny, and
let (G,), be any member of iyg. We show that i{,X = ((ixco0fu(Gi | 1)) For
there is r such that:

(i) there exists (f}) in N, such that (f,), =ia(fl).;

(i} for all t=r G, is i,,g Now for t=r we have:

X= icv.?\((fu(g T pu)){n)) - (ia,)\ﬁl(ioq.\g [ pn))((n))
since the definition ensures that i, (X)) = (aaXn) oy then
in‘.\X:(ial)\ia,kfrll(Gt f pn))((n)J: (ihs(.\)ia,:\f;(Gl i P"))((n))

since by Proposition 1 i,y = bhepylan and 0 i X = (heonfu (G T Py Ti-
nally we get i, X = (i, X) = (e oufu (Gi | P)ondin, and the lemma is proved.
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We thus have proved:
Theoremn 8. If A is simple and ¢f A = w, then M, is exactly NJ[i, | 4.1

As in the previous chapters the way for extending this result to any A such that
a <A N_ Fef A = is clear from 2.4. Proposition 4. Moreover there is an obvious
bijection from %, onto 4 for any « < A. Then choose o <A such that A — e« is

simple in N, : we apply Theorem 8 in N,, and get with an easy computation:

Theorem 9. If for all & <A N, satisfies: “cf A =w”, then there exists in M, a
definable functional class i, such that M, =N,[i, | \]. Moreover rk(i,[%6,)=
K.+ 0, where e(A)=A+inl, o, iL.A.

10.3.

We now apply general forcing resulis of [7].
Proposition 1. For any limit A, N, is (HODN ™ and (HODN, )M,

Proof. Assume A simple. To prove the first result, it suffices to show that any
subset A of On which is in (ODN, )™ is in N, (since N, satisfies AC), and so0,
using 9.1. Lemma 1. it suffices to show that the sequence (i, A), ., is eventually
constant. By hypothesis there is a term t of the language of set theory and
clements a;- - -a, of N, such that M, ¥ A =t(a,* " +a,). Since a,- - -a, are in N,
there is & << A such that for all, « < <A, and for ali j=1- - -n, @; = i,za,. Now the
model N, satisfies (since A is simple): “A is the value of the term t calculated in
M, at the sets a,* * -a,,”. Hence for all 8, a =<8 <A, the model Nj satisfies: “i gA
is the value of the term ¢ calculated in M, at the sets i,ga,=a,, ..., ipga, =a,”,
and then M, Fi A =t(a, - -a,), therefore A=i,A. Finally AeN,, and N, =
(HODN, ™., The proof is similar for (HODN, Y[ using the fact that, when , is
simple N,[%,] is the same when calculated in any model N, for a <A

Now applying Theorem 9 of Section 10.2 and 9.3 Theorem 1 of [7] we obtain:

Theorem 2. If for all @ <A N, satisfies: “cf A = 0>, M, is a quasi generic extension
of N, (ie. M, and N, have a common generic extension). Moreover M, is a generic
extension of N\[%9,] (possibly a trivial one, i.e. M, equal t0), which is itself a quasi
generic extension of N,.

10.4.

We finish with a special form of 10.2 Theorem 9. for the case where A is
“little”. First recall that we proved in 5.3. Lemma 2. that, if A <k,, then %J/= is
well-orderable in M,. Is it necessarily well-orderable in N,[%, ]? We have the
following partial answer to this question.
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Theorem 1, If for all « <A N, satisfies “cf A =" and if moreover A <k,, then M,
is the least model including N,[4,} and containing a well ordering of 46,/=.

Proof, We may assume that A is simple and so <k. If a model M, N\[4. ] Mc
M,, bijects %4,/= onto some ordinal u, necessarily i <k, and so M contains every
bijection from %,/= onto a scf of N, which is in N, and in particular the name
function &, in Section 5.3. Therefore M contains a function: g—{g] from %, to
cof A such that for all g in G, g = x;; (recall that cof A belongs to N, in this case).
It remains to show that i, |%, can be calculated from this map [ ]. Now recall that
for « <A and p <A we have i,x, =x, if £<a, and i, X, = Xasi(u-ay if NOL,
hence in this last case since A <k by hypothesis i, ¥, = Xt —or-

Let always {a,, ), be the good sequence involved in the definition of i, and let g
be any member of %,. There exists r such that:

im g\Xu, = im X{g]\Xﬂ, Since g Exfg]‘
Then for all t=r, we have (identifying g and im g):
ia,?\g = ioq.\(g n on,) U iﬂ,k(g\Xﬂ,)
= Ia,_?\(g n Xﬂ,) U ict,k (X[g]\Xa,)
=(gnN Xa,) U (X[g] n [Xa,, Xo(l)) (S T

where

Xa+Cgl-ap = Xa+(e-ap * £ €[] and p=al.
Finally

Lag=(gnN Xal) U X+ qet-ans
and

hg= ((g N Xa,) U XAHEg]—a.))(l)s

so clearly i, | %, can be computed from N,, %,, (a,), and the map [ ). The
theorem is thus proved.

Notice finally that this proof does not extend to the case A =k,, for it is not
even clear that in this case cof A belongs to N,[%, ] or that %,/= is well orderable
in M, (this is probably false).
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