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We study the free groupoids satisfying the identity x. (y . z) = (x . y) . (x. z) and show that the 

canonical congruence generating them as quotients of free algebras is associated with a confluent 

system of elementary transformations. Some properties of the monoid generated by these trans- 

formations are established. 

Introduction 

In this paper we investigate general left autodistributive groupoids, namely sets 

endowed with a binary operation, say . , satisfying the following identity: 

x.(y.z)=(x*y).(x.z). 

Such structures will be called for short distributive groupoids in the sequel (we 

also propose to use the term ‘clump’). We concentrate on the properties of free 

distributive groupoids; standard arguments provide a description of such objects as 

quotients of free sets of terms (or magmas in the terminology of [l]) under the con- 

gruence * generated by the rewriting rule 

x~(_Y*z)+(x~y)~(x~z). 

This general framework does not solve however the numerous questions that can 

be raised about the free distributive groupoids and *. In particular the word 

problem for ++, i.e. the problem of getting a procedure for deciding whether two 

given terms are equivalent for cf, seems to be difficult, and we cannot solve it for 

the moment. Nevertheless we establish in this paper several results that can be 

viewed as first steps in this direction. In particular, we prove the following: 

Theorem. Let +* be the smallest transitive relation that is compatible with the 
binary operation and includes the rewriting rule + above, then +* is a confluent 
relation. 

* This work was partially supported by a CNRS grant PRC mathematiques & informatique. 

0022-4049/89/$3.50 0 1989, Elsevier Science Publishers B.V. (North-Holland) 



124 P. Dehornoy 

It follows that two terms are equivalent for t* if and only if they can be developed 

into a same third one using +*. 

We think that the interest of such results is double. First, the basic rewriting rule 

+ is not a linear one (the term ‘x’ is repeated twice), so all general arguments as 

in [9] fail to prove results like the confluency of -+* (in particular the local confluency 

is not sufficient for getting the global one), and therefore a rather precise study of 

the monoid t5 generated by the transformation + and its translated copies is needed; 

we hope that some of the tools introduced here could have some intrinsic interest. 

Secondly, the paper tries to give a better understanding of the free distributive 

groupoids (and, therefore, of the general ones). Special families of distributive 

groupoids have been intensively studied for several decades. In particular classifica- 

tion results and connections with various mathematical objects such as Moufang 

loops or Steiner triple systems have been established, but in those cases, additional 

axioms are generally requested, like idempotency [8], median axiom [ 121 or existence 

of inverses [13]. On the other hand, it seems that the most general autodistributive 

groupoids have not been much studied, probably because few examples of such 

structures appeared naturally. Our actual interest for them precisely originates in the 

recent appearance in set theory of a ‘mysterious’ distributive groupoid. One can 

present it roughly as follows. 

When models of ZF are dealt with, the convenient notion corresponding to the 

homomorphisms in algebra is the notion of an elementary embedding. If iv&M’ are 

two models of ZF, an elementary embedding of A4 into M’ is a mapping 

such that, for every first-order formula F&r, . . . ,x,) using E and every n-tuple 

(a r, . . . , a, > made by members of M, F(a,, . . . , a,) is true in A4 iff F( ja,, . . . , ja,) is 

true in M’. It follows that such a mapping is a homomorphism with respect to every 

operation or relation that is first-order definable from the membership relation E , for 

instance equality (a, = a2 holds in A4 iff ja, =ja, holds in M’), membership (aI E a2 
holds in M iff ja, e ja, holds in M’), but as well integer addition ((a,, a2, a3> E IN3 
and a, = a2 + a3 hold in A4 iff (ja,, ja,, ja3 > E N3 and ja, = ja2 + ja3 hold in M’) since 

integer addition is definable in ZF set theory, or application of a mapping to a 

member of its domain (‘f is a mapping’ and b =f(a) hold in A4 iff ‘jf is a mapping’ 

and jb = jf(ja) hold in M’). Notice that the last equality can be rewritten as 

j (f(4) = jf(j4, (*I 

is typographically the left distributivity of the operation x, y -+x(y); but, of 

course, in this formula, f and a are members of A4 while j is a mapping of A4 

into M’. 

When only one model M of ZF is studied, one naturally introduces the notion of 

an elementary embedding of M into itself. The identity mapping of M is trivially 

such an elementary embedding. It happens that nontrivial (i.e. distinct of identity) 
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elementary embeddings need not exist for all models, but in fact the hypotheses 

asserting the existence of various kinds of elementary embeddings proved in the last 

two decades to be the most powerful tools in order to describe and to classify the 

models of ZF set theory, according to works by Silver, Jensen, Woodin, Martin and 

Steel in particular (see [ll] or [lo] for an introduction). One of the hypotheses 

above, that will be referred to as (X), asserts the existence of an elementary embed- 

ding, say j, of a model A4 into itself that is a class for M, which means, roughly 

speaking, that j itself can be viewed as a member of A4 (in fact, in that case, A4 has 

to be restricted to be only a convenient part of a model of ZF). It follows that j can 

be applied to itself, providing a new object j(j) that proves to be an elementary 

embedding of M into itself as well, and the construction can be repeated to get, for 

instance, new elementary embeddings j(j(j)) or j(j)(j) . . . Let i denote the family 

of all elementary embeddings one gets in this way: the identity (*) above applies in 

particular when its three entries are arbitrary members of j, and this means that i 

is a distributive groupoid (generated byj). So, under the assumption (.x), one ob- 

tains a groupoid (or several ones, since it is not known whether different elementary 

embeddings give raise to isomorphic structures), and, as no other relation is known 

in j, it is rather natural to conjecture that i is in fact a free distributive groupoid, 

but, up to now, few arguments corroborate this conjecture; precisely a natural way 

for attacking the problem is to show that the properties proved in i also hold in the 

free distributive groupoid, and this paper is a preliminary step in this direction. In 

any case, the groupoid i is quite a strange object (see [6]), and the above conjecture 

would imply a fascinating complexity for the free distributive groupoids. We can 

still mention that the above analysis has already been used in set theory, namely in 

[4] the purely algebraic framework developed in [3] is used to show that the deter- 

minacy property for coanalytic subsets of the real line essentially rests upon the 

groupoid structure of j. 

Finally let us quote some other examples of monogenic distributive groupoids. 

First, three finite projections of i with respectively 2, 4 and 8 elements are known 

(notice that the tables of these groupoids have been constructed using j, that is a 

purely hypothetic object - in particular Godel’s second incompleteness theorem dis- 

misses any hope of even proving that its existence is not contradictory - but then 

these tables are finite, the distributivity axiom is easily verified and therefore the 

resulting groupoids do not have any more hypothetic character). Secondly, using 

some ideas from the definition of j, one can get a groupoid structure on the set SX 

of all one-one mappings of any set X into itself and construct in this way nontrivial 

examples of monogenic distributive groupoids [5]. 

The paper is divided into five sections. The first one sets notations and introduces 

the basic relation +* and the structural monoid L9. In the second one, some com- 

mutation relations are proved in r9. In the third one, the confluence of +* is 

established. The fourth section improves this result to an intrinsic relation in I_!+. The 

last section briefly discusses some further questions on the structure of +* and ti. 
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1. Description of r9 and -+* 

In order to handle easily with terms in non-associative structures, it will be useful 

to consider these terms as binary trees - exactly as, in the associative case, terms are 

represented by strings. A point in a tree will be specified by its address, consisting 

of a finite sequence of O’s and 1’s. More precisely, our notations will be as follows. 

S denotes the set (0, l}* of all such finite sequences, the empty sequence in S is 

denoted by A; for U, u in S, the product (concatenation) of U, u is denoted by UU, 

and S is endowed with the usual order c defined by 

UC u iff (Xw)(u=uw). 

We also use the notion of the left-right ordering on S that is defined in an obvious 

way for incomparable members of S (w.r. to c): for every U, u, w in S, UOU is on 

the left of ulw. 

It will be convenient to consider a binary tree on C as a maximal finite set of pair- 

wise incomparable members of S (w.r. to C) - the addresses of the leaves of the tree 
- together with a member of Z associated to each of these addresses - i.e. a label 

in Z for each leaf of the tree. Formally, this leads to the following recursive 

definition: 

Definition 1.1. Let 2 be any set; 

(i) assume that S, T are (partial) mappings of S into 2; define a new mapping 

SA T as follows: 

(SA T)(u) = a iff (%)((u =Ou and S(u) = a) or (U = 1 u and T(u) = a)). 

(ii) gz, the set of all (binary) trees on Z, is the smallest set of partial mappings 

of S into Z that is closed under A and contains { (/1, a)} for every a in 2’. 

It immediately follows from this definition that, in order to prove that some 

property holds for every member of E?,r, it suffices to prove that the property is 

preserved under A and holds for all ((4, a)} with a in 25‘. 

We shall identify, for a in Z, the term a with the tree {(/1,a)}, so gz is nothing 

but the set of all terms constructed from Z using the binary operator A (i.e. is a free 

magma generated by _Z in the terminology of [l]) - since every tree that is not in 

_Z can be written is a unique way as the product of two trees with smaller car- 

dinalities of their domains. Now if we associate to each tree T a graph Z-r such 

that, for a in S, r, has only one point labelled a, and rs,,r is exactly 

we get the usual geometrical representation of trees. 
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Example. Assume that a, b are in C; then { (0, a), (10,6), (11, a)} is a tree T, on Z, 

and the corresponding term is al\(b/\a), while the associated graph is 

a 

In other words, T, has three leaves, whose addresses are 0, 10, 11, and the leaf 10 

for instance is labelled ‘b’. 

Definition 1.2. Let T be any member of gz. 

(i) The domain of T will be denoted by ITI (ITI is a subset of S), and the set 

{UES: (zIUES\{/1})( uu E ITI)} will be denoted by ITI” (the strict interior of IT]); 

(ii) T is extended to a mapping of / T( U 1 T(” to 8, (still denoted by T) by 

defining, for u in I TI”, T(u) to be the subtree of T whose root is ‘in u’. 

For instance, if To is the tree quoted above, ITo1 is (0, 10,l l}, ITolo is {/1, l}, 

T,(lO) is b while T,(l) is b Aa. We notice that T= T(A) always holds, and that 

T= T(O)/\ T(1) holds for every T such that ITI is not {A} (i.e. T is not in 2). If a 

is in Z, and T is in VZz, every member of T-‘(a) will be called an occurrence of a 

in T. In the example above, a has two occurrences in T, namely 0 and 11. The set 

of all members of Z having at least one occurrence in T is exactly the image of T, 

written Im T. 
We are now ready to introduce some rewriting rules on VZ, in order to compel 

the wished autodistributivity conditions. Clearly we have to identify trees (i.e. 

terms) such that the second one is obtained by replacing in the first one some subtree 

with the form xr\(yr\z) by the corresponding subtree (x/\y)/\(x/\z). So we set: 

Definition 1.3. Let _Z be any set; 

(i) for u in s, U; is the partial mapping of gz into itself such that T is in 

Dom U; iff ul is in / T1” and, in this case, the image Tui of T under U; is 

determined by: 

i 

T(o) if u and u are incomparable (for c), 

(TUz’)(u) ‘= (T(uO)A T(uIO))A(T(UO)A T(ul1)) if u is U. 

(ii) rSz denotes the monoid generated by all ui’s for u in s using reverse com- 

position (we write (pw for vocp). 

It is easy to verify that this definition makes sense; the effect of U; is distributing 

the left factor T(u0) to each of the right factors T(ulO), T(ul1). For instance if T, 

is, as above, aA(bAa), T, is in DomA; and TAi is (aAb)A(aAa). 

Now things are exactly as they should be, and standard arguments show: 

Proposition 1.4. Let Z be any set; for S, T in ~3’~ write S-+, T (resp. S-i T) if T 
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is Sui for some u in 55 (resp. T is Syl for some v, in Vz); let tfz be the equivalence 
relation generated by -2; then 

(i) -E is the reflexive transitive closure of += and is a partial ordering on gz 
that is compatible with A; 

(ii) tfz is a congruence with respect to A, and (gz/ttz, A/“=) is a free distribu- 
tive groupoid generated by (a copy of) 2. 

Proof. (i) If v, is in Lpz and is not the identity mapping, the cardinality of ITvl is 

strictly larger than the cardinality of ITI for every Tin Dom v, so -i is antisym- 

metric (and the converse relation +s is noetherian). Next we have for all trees S, T: 

S/QTu;)=(SI\T)(lu);, (&;)A T=(Sr\ T)(Ou);, 

SO -‘= and then -2 are compatible with A. 

(ii) S Hz. T holds iff there exists a finite sequence <UO, . . . , Uzk) such that S is U,, 

Tis U,, and, for i<k, Uz,+z U,,,, and Uzi+l -2 Uzi+ 1 hold. SO the compatibility 

of -2 with A implies the same property for ez. Next for all S, T, U in gz we have 

(SAT)A(SAU)=(SA(TAU))A~, 

hence 

SA(TAU)++,(SAT)A(SAU) 

holds, and ‘6’z/*z with A/-, is a distributive groupoid. Now, for a in 2, a is in 

the domain of no u,’ so a is alone in its class under t*=. Finally let (c, l ) be any 

distributive groupoid and let rr be any mapping of 2 into c; II is extended to gz in 

the obvious way: 

Certainly n is compatible with t*= since (c, 0) is a distributive groupoid, therefore 

n induces a morphism of gz/w2 to c. This morphism is unique since Z generates 

gz. 0 

Before going on, we notice that most of the notions introduced above are essen- 

tially independent of the choice of a particular set Z: 

Lemma 1.5. Assume that .Z is included in .Z’; 
(i) for every u in S, ui is u:,ttZz; 

(ii) for all S, T in gz, S jz. T (resp. S-p T, S +z T) holds iff S uz T (resp. 
S +;, T, S *x8 T) holds. 

In order to control the geometrical behaviour of the transformations in tiz, we 

introduce the following notion of inheritance: 

Definition 1.6. (i) For u in S, u + is the partial mapping of !S into its powerset such 

that u is in Dom u+ iff u is not included in ul, and, in this case, the image of u 
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under u+, denoted by v/u’ is defined by: 

iv> if U, u are incompatible (for C) or u includes u 11; 

v/u+ := (UOl w} if v is tllOw; 

(uOOw,~lOw} if v is uOw. 

This notation is extended to subsets of S by defining, for A included in S, A/u’ 
to be the union of all D/U+ for v in A provided that v/u+ is defined for all v in A. 

(ii) t.!? denotes the monoid generated by all u”s for u in S using reverse composi- 

tion; for v, in 19 and v in S, the members of v/v are called the heirs of v under p. 

We also extend the notations in Definitions 1.3 and 1.6 to finite sequences from 

!S as follows: if a is in S* (the set of all finite sequences from S) and is nonempty, 

say a=(u,, . . . . uk), then (Y+ (resp. ai) denotes UT . . . ukf (resp. UT =... ulZ). 

When some transformation say oi is performed on a tree S in %z, certain sub- 

trees S(v) of S are translated and/or several times copied, but not intrinsically 

modified: then v/a+ is intended to be the set of the addresses in So+ of these 

copies of S(v). More precisely, one can show, using an easy induction on the length 

of cr in S*: 

Lemma 1.7. Let a be in S*, and Z be any set; 
(i) if v/a+ is defined, then, for every w in S, (vw)/a+ is defined and is (v/a+)w 

- where Aw stands for {uw: UEA}; 
(ii) for T in gz, T is in Dom ai iff 1 Tl is in Dom a’; in that case, /Tail is 

lTl/a+, and, iffvisin(ITjUIT~“)nDoma+, (Tai)( w) = T(v) holds for every w in 

v/CX+; 

(iii) v/a’ is defined iff there exists some tree T such that 1 Tl contains v and 
lTl/a+ is defined. 

We immediately deduce: 

Proposition 1.8. If 2 has at least two members, then the monoid Gz is isomorphic 
to the monoid 8. 

Proof. The mappings a -, a+ and a + ai are projections of S* onto t5 and tiZ 

respectively (we map of course the empty sequence on the identity mapping). 

Assume that at =/3+ holds: Lemma 1.7(ii) implies that Dom oi is equal to 

Dom /3;; let T be in Dom ai, by Lemma 1.7(ii) again, ITall is equal to ITp,fl; 
finally let w be in /Tail: there exists u in I Tl such that w is in v/a+, whence 

G%,‘)(w) = T(u) = (T,;)(w). 

So Tai and Tbi coincide, and oi =fli hold s. We get by factorization a projection 

of r_!I on Ls, in any case. Now assume moreover that .Z has at least two members, say 
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a and b, and assume that os =/3; holds. Assume that u/a+ is defined. By Lemma 

1.7(iii) we get T such that 1 Tl/a+ and therefore Tai are defined and u is in 1 Tl. If 

u/p+ were not defined, then ITI//?' could not be defined, so (by Lemma 1.7(ii)) 

Tpi would not exist, a contradiction. So u/b+ exists. We may request moreover 

that u be the only occurrence of a in T (all the other leaves of Tare labelled 6). As 

Tai and T/3; are equal, we get: 

u/a+={w~IT~~I:Ta~(w)=a}=u/P+, 

so a+ is equal to p+, and the projection above is an isomorphism. 0 

A natural question is asking whether Proposition 1.8 holds when .Z has only one 

member. Some indications thereabout will be given in Section 5. For the moment, 

owing to Lemma 1.5 and Proposition 1.8, we shall drop the subscript 2 in the 

denotations of +, +*, * and, assuming that 2 is a (fixed) infinite set, write cr+ 

for ai. 

We conclude this introductory section with the following remark: assume 

that UT . . . U: =ui? . . . uz holds in L9, then, for every w in S, (wu)’ . . . (wuk)+ = 

(wui)+ 1.. (wu,)+ holds (use induction on w). Therefore there is no problem in 

defining, for v, in L9 and w in s, a new member WY, of ~9 by WV := (wu,)’ . . . (wuk)+ 

if q is Ui+ . . . ukf. 

2. Commutation relations in rP 

Our aim is now to prove the confluency of -+*, i.e. to prove that, if S+* T, and 

S+* T, hold in %=, then T,p* U and T, +* II hold for some tree U. So, when 

(x1, a2 are given in s* and S in Dom CY: tl Dom al, we have to find pl, p2 such that 

holds. In other words, when a,, a2 are given in s* and Tin the image of Dom ol 

under a:, we have to find pi, p2 such that 

Ta,-ct;=T&+& 

holds, where (Y- denotes the inverse mapping of a+ (this makes sense as a+ is 

one-one). So we wish to transform the sequence cr,c$ where the ‘negative’ terms 

precede the ‘positive’ ones into a new sequence with inversed signs. To do that, we 

try to let the positive terms migrate to the left through the negative ones. In this 

approach, we need some commutation relations in 8, and the natural first step is 

to consider the case of sequences a,, o2 with lenght 1. This step is easily carried out. 

Lemma 2.1. If u, v are incomparable members of S, then u’ and v’ commute in 6’. 

The proof is straightforward, as U+ and v+ act on disjoint subtrees of their argu- 

ment. As a consequence, we notice that, if A is a (finite) set of pairwise incom- 
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parable elements 

induction shows that the heirs of any point are (when in- 

comparable. 

Lemma 2.2. Assume that V/P is defined; then the following relation holds in L9: 

v+(D = q7(v/yl)+. 

Proof. Represent a, as a+ for some (Y in s* and use induction on the length of (Y. 

For the basic step, i.e. p=u+ for some u in s, a picture makes the formula clear. 

0 

Proposition 2.3. For every u, v, w in $5, the following relations holds in L?: 

(uov)+(Ul w)’ = (241 w)+(uov)+; u+(uOlw)+=(ulOw)+u+; 

U+(Ullw)+=(Ullw)+U+; U +(u00w)+(u10w)+ = (Uow)+U +; 

U+(Ul)+u+ =(ul>+u+(ul)+(uO)+. 

Proof. The first relation is a rewriting of Lemma 2.1, while the following three rela- 

tions are particular cases of Lemma 2.2. The last one is more mysterious, but it 

should become more natural later and, for the moment, it can be directly veri- 

fied. 0 

Corollary 2.4. (i) For every u, v in s, there exist 9, t,u in L9 such that u+q~ = V’I+V 
holds. 

(ii) If S + TI and S + T, hold in Ez, then TI +* U and T2 +* U hold for some 
tree U. 

Proof. It suffices to notice that Proposition 2.3 provides a convenient relation for 

all possible mutual positions of U, v in s; indeed the last four relations cover all pos- 

sible cases for V>U, namely v>ulO, ~2~11, v>ull, ~2~0, and v=ul. The case 

u > v is symmetric, the case u = v is obvious, and finally the case of incomparable 

U, v follows from the first relation. 0 

This first result is encouraging but we are far from being done. We have proved 

in fact the local confluency of -+*, but of course the relation +* is not noetherian 

and there is no reason why local confluency should imply a global one. The critical 

point is that the preceding corollary furnishes a method for commuting one positive 

term and one negative term in a sequence of transformations, but in doing so several 
new positive and negative terms can appear and the termination of an iterated 

application is quite problematic. However, easy experiments show that, even when 

starting with short expressions, very long sequences can appear: for instance the 
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process succeeds in transforming /1- l+ l+ l+ l+l+ into a pi+&-sequence, but the 

resulting sequence has more than lo3 terms. 

So we shall in the sequel develop a new approach involving more powerful com- 

mutation relations in t9. This however does not dismiss any hope of a direct proof 

for the termination of the iterated process above - for instance by constructing 

some parameter with values in a well-ordered set that should decrease in the process, 

like in [9]. This point remains open. 

Another open (and related) question is to know whether (S, 8) is an exact presen- 

tation of r9, where ‘8 is the set of all relations quoted in Proposition 2.3. 

We now introduce some more tools. The first one is the following natural and 

easy notion of an endomorphism. 

Definition 2.5. (i) An endomorphism of 6’z is any mapping (T of gz into itself such 

that, for all S, T in qz, the following equality holds: 

(Sr\T)a = Sar\To; 

the set of all endomorphisms of gz will be denoted by End gz. 

(ii) %i denotes th e subset of gz made by all one-one trees (when viewed as map- 

pings of s to L’), i.e. trees with pairwise distinct labels. 

Lemma 2.6. (i) Every mapping of _Z into ‘ST2 can be extended to an endomorphism 
in a unique way; 

(ii) if T is So for some o in End V$, then 1 S / ’ is included in 1 T 1’ and, for every 
v in ISI U ISI”, T(v) is S( ) v a; moreover, if Sy, is definedfor some v, in 19, Ta, is de- 
fined as well and TCJI is equal to Spa; 

(iii) conversely if S is in %i and IS 1’ is included in 1 TI”, then T is So for some 
o in End VZz; 

(iv) assume that o, o’ are in End V& and that for every s occuring in S there 
exists some qs in L9 such that su’ is saps; then the following equality holds: 

The proofs are easy (for (iv), use induction on S). 

We introduce now a new binary operation on gz. 

Definition 2.7. For S, T in gz, we let S 0 T be To, where cr is the endomorphism 

such that, for every s in 2, so is SAS. 

The effect of @ on (S, T) is to distribute S in T as many times as possible (while 

/1+ distributes only once). For instance if So is d and TO is ar\(br\a), SO @ TO is 
(dAa)A((dAb)A(dAa)). It should be clear that Sr\T+*S@T holds; we shall 

describe precisely the way for getting S @ T from S A T. 
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Lemma 2.8. For T in E”, define inductively Ti in r9 by 

T+ :=( id if T is in .Z; 

fl+(OT(O)+)( 1 T( 1)‘) otherwise; 

(i) for all z U in gz, U is in Dom T+ iff ITI” is included in lU(l)l”. 

(ii) for all S, T in E?=, one has 

S@ T= (Sr\T)T+. 

Proof. Use induction on T. If T is in Z, (i) and (ii) are obvious. Assume the results 

proved for T(0) and T(1); then: 

UE Dom T+ 

iff UEDomA+ and UA’~Dom(0T(0)+)(1T(l)~) 

iff l~]Ul” and U/1+(O)EDomT(O)+ and UA+(l)EDomT(l)+ 

iff AE lU(l>l’ and jT(O)l” c IU/1’(O)(l)l” and IT(l c lU/l’(l)(l)l’ 

iff /I E j U(l)l’ and IT(O c jU(lO)l’ and /T(l)l” c j U(ll)l” 

iff ITI” 5. lU(l)l’. 

SOT= To (where sa=Sns for s in Z) 

= T(O)ar\T(l)a = (S@ T(O))/\@@ T(1)) 

= (SAT(O))T(O)+A(SAT(~))T(~)+ 

= (SAT(O))A(SAT(~))(OT(O)+)(~T(~)+) 

= (SA(T(O)AT(~)))I~+(OT(O)+)(~T(~)+) 

= (SAT)T+. 0 

We notice that Tt corresponds to enumerating all points of IT lo using the linear 

ordering on $5 that extends both the inclusion and the left-right partial orderings (of 

course any linear extension of the inclusion would be convenient since the order of 

points that are incomparable with respect to c does not matter owing to Lemma 

2.1). In the example above, iTo1 is {/1, l}, so Tl is At l+. 

We are now ready to extend the results of Proposition 2.3. 

Lemma 2.9. Assume that 9, I+U are in V and T is in Dom I+V; then the following equali- 
ties hold: 

(9 T+ WgT, (w0~) = (Oyl)T+; 

(ii) T+v/ = (lw)(Tw)+. 

Proof. (i) We apply Lemma 2.2. An easy induction shows that, for every T, the set 

O/T+ is defined and is equal to 1 T I 0 (i.e. to { w0: w E / Tj}): this is however natural 
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as the intended effect of T+ is to distribute the left factor ‘0’ to the left of each leaf 

of T. By Lemma 1.7(i), we conclude that for every u, (Ou)/T+ is defined and is 

equal to jT 1 Ou. So Lemma 2.2 yields 

(Ov)T+ = (OUT)+... (Ouk-d+T+ w$T, (wO+)+. 

So iterating the process, we get 

(Op)T+ = T+ n (wOu,)+... n (wO+)+. 
WE ITI WE ITI 

Finally we notice that the members of 1 T 1, and therefore their successors in s, are 

pairwise incomparable, so applying Lemma 2.1 we may group the terms that cor- 

respond to the same w in 1 T 1, getting the desired formula. 

(ii) The principle is as follows: distributing the left factor everywhere in T and 

afterwards applying v/ is the same as first applying I+V to the right factor and then 

distributing the left factor at the corresponding places, i.e. in Tty. Going into some 

detail is perhaps preferable. Let U be any member of Dom T+I,v. We can assume 

w.1.o.g. that T is in K?,$ (since only ITI is really used), so by Lemma 2.6(iii) and 

2.8(i) we know that U is (anT)a for some cr in End %‘= and some a in Z with no 

occurrence in T. We then get, applying Lemmas 2.6(ii), 2.8(ii) and Definition 2.7, 

UT’ = (a/\T)aT’ = (aAT)T+a = (a@T)a = Tro, 

where T is defined by sr := a As for s in _Z. So we have: 

UT’y/ = Tracy = Tt,ms (by Lemma 2.6(ii)) 

= (a 0 Tt,u)o (by Definition 2.7) 

= (ar\Ty/)(Tty)‘o (by Lemma 2.800) 

= (a A T)(lv)(TW)+o 

= (ar\T)a(lty)(Ty)+ (by Lemma 2.6(ii)) 

= U(LV)(TW)+, 

so U is in Dom(lW)(Tv)+ and the desired equality holds. On the other hand, if U 

is in Dom(lW)(Ty/)+, U(1) must be in Dom y and U(lt,~) must be in Dom(Tv)‘, 

i.e. ITyl” is included in BUD”, that is lU(l)wl”. This implies that ITI” is 

included in j U(l)l” (for I+Y preserves inclusion), so U is in Dom T+. Next UT+ is To 

for some o, and therefore UT+ is in Dom I,V: finally U is in Dom T+t,u, and the 

proof is complete. 0 

With Lemma 2.9, we are able to commute sequences with the three particular 

types T+, Orp and lly (and therefore to transform any sequence T-(09) or T-(1~) 

into a p:pz-sequence using the terminology introduced at the beginning of this 

section). This however is not yet sufficient to transform an arbitrary sequence. 
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3. Derivation 

We introduce now the key notion of the confluency proof: for every tree T, we 
prove the existence of a canonical sequence of trees (@T; k E N) such that akT is 

an upper bound (w.r. to -*) of all images Ta+‘s with length(o) at most equal to k. 

Definition 3.1. The mapping a (‘derivation’) of V& into itself is defined by the fol- 

lowing inductive clauses: 

T 
aT:= 

if T is in Z, 

aT(0) 0 otherwise 

aT(u) denotes a(T(u))). 

We write will verify that 

((aAb)A (aAc))A((aAb)A (aAd)). We shall prove the following: 

Proposition 3.2. If T is in Dom a+ and k is at least the length of a, then 

Ta+ +* akT holds. 

Corollary 3.3. (i) The relation +* is confluent. 
(ii) T, c* T2 holds iff T, -+* U and T2 +* U hold for some U. 

Proof. Let al, a2 be arbitrary members of S* and assume that S is in Dom a: n 
Dom ai ; let k be the supremum of the lengths of al, a2. By Proposition 3.2, 

Sa: +* akS and Sac -+*akS hold, and Corollary 3.3 is proved. 0 

The proof of Proposition 3.2 will be split into four lemmas. 

Lemma 3.4. For every Tin gz, T-+* L3T holds, and, moreover, if T is in Dom A+, 

there exists a such that JT is Ta’ and A is the first term of a. 

Proof. Induction on T; if T is in C, the result is clear; assume that aT(0) is T(O)p, 
and aT(1) is T(l)q, for some ~o,~l in t9. We get 

ar = aT(0) 0 aT(1) 

= (aT(O)AaT(l))(aT(l))+ (Lemma 2.8(ii)) 

= (T(O)poAT(l)yl,)(aT(l))+ = T(O~o)(lMaT(l))+ 

= TV, 

where v, is (O~o)(l~i)(aT(l))‘. If T is in DomA’, T(1) is not in .Z, so (T(l))+ is 

not the identity mapping. We can therefore apply Lemma 2.9: as aT(1) is T(l)cp,, 

we get 
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and we are done, since the first term of T(l)+ is precisely ,4+. 0 

Lemma 3.5. If T in Dom u+, then Tu+ +* aT holds. 

Proof. Induction on (the length of) u. If u is /1, the result was proved in Lemma 

3.4. Assume that u is 00 and the result holds for u. Let T belong to Dom u+: cer- 

tainly T is not in 2, and T(0) is in Dom u+, so T(O)o+ +* aT(0) follows from the 

induction hypothesis. Now we get, applying the compatibility of -+* with A, Lemma 

2.8(ii) and Lemma 3.4: 

Tu+ = T(O)u+AT(l)+*~T(O)AT(l) +* aT(O)AaT(l) +* aT(0) @ aT(1) 

= aT. 

The proof is analogous when u is Iv. Cl 

We are done for one-step transformations. Getting further still requests some 

more work. 

Lemma 3.6. If T in Dam/l’, then aT+*a(T/l’) holds. 

Proof. Set U:=aT(O), V:=aT(lO), W=aT(ll) and define endomorphisms 0, 7, 6’ 

by so:= UAs, s7:= VAS, se:=(U@ V)As for s in .Z. We have 

ar = U@ (V@ W) = Wsa, 

a(T/1+) = (U@ V) @ (U@ W) = woe. 

Owing to Lemma 2.6(iv), it suffices, in order to prove aT-+*a(T/1+), i.e. 

W7a -+* WaB, to show that, for every s in Z, ~70 +* scn9 holds. Now this follows 

from a direct computation: 

sac = (UAS)~ = UeASo = ((U@ V)AU)U+A((U@ V)AS) 

= (VGA U) U+A(V~AS) = (VIA U)A(VOAS>(OU+) 

= (VoA(UAs))/l+(OU+) = (voAso)/l+(ou+) = Sro/l+(OU+). 

So the proof is complete. q 

Lemma 3.1. The mapping a is increasing with respect to +*. 

Proof. It suffices to show that, if T is in Dom u+, then aT+* a(Tu+) holds. This 

is proved using induction on the length of u. If u is /1, the result has been proved 

in Lemma 3.6. Assume that u is Ou and the result is proved for u. Let T belong to 

Dom u+: T(0) is in Dom u+, aT(0) +* a(T(0) u+) follows from the induction hypo- 
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thesis. Now aT is aT( and a(Tu’) is aT(l)r where (T and T are defined by 

sa:=~3T(O)r\s, ss:=a(T(O)u+)r\s for s in _Z. As so+*sr holds for every s, 

aT-+*a(Tu’) follows from Lemma 2.6(iv). Likewise, if u is lo and T is in 

Dom u+, aT is aT( while a(Tu+) is a(T(l)o+)o where sa:=aT(O)/\s, so 
aT+* a(Tu+) follows from aT(1) +*a(T(l)o’) and Lemma 2.6(ii). q 

It is now straightforward to prove Proposition 3.2 inductively on the length of 

(x: assume that a is /3”(u) and k is at least the length of cr; if T is in Dom a+, T 
is certainly in Damp+, and T/3+ +*#-l T implies 

Tat = Tpfu+j*a(TP+)j*a(ak~‘T) = akT. 

Remarks 3.8. (i) Starting from a,, a2 and S in Dom CX: n Dom a:, we get sequen- 

ces pi, jIZ such that 

hold, where k is the supremum of the lengths of a,, cr2. Of course we cannot claim 

that the sequences PI, pz constructed in this way are the shortest possible ones (they 

are not unique however. ..), but we get an upper bound for the minimal possible 

lengths of the ‘commuting sequences’. First the (minimal) length of the (Y’S such that 

aT is Tcw+ is approximately bounded by (#I Tl)2 (where #A denotes the cardinality 

of A). Now the bounds for #IaT] are 

and these bounds are reached (for arbitrary large trees). So the only upper bound 

we can expect for the lengths of the (Y’S such that akT is Ta+ is a tower of k expo- 

nentials. These values are coherent with the ‘experimental’ ones. 

(ii) It is natural to ask whether akT is exactly a least upper bound for all Ta”s 
with length (a) at most k: this is not true in general. 

4. Uniform confluency of --)* 

We proved in the preceding section that, for all pl, v)~ in t9, and S in Dom ‘pl fl 

Dom v)~, there exist v/~, v/2 in t9 such that Sy?, wI is equal to Sp2w2. We will now 

show that I,V, and w2 above can be chosen is an uniform way that does not depend 

on the particular tree S. So we can enounce the following neat result (diamond 

property for 8): 

Theorem 4.1. For all pl, p2 in 8, there exist cvl, w2 in ~9 such that ~1 WI = ~2~2 holds 
and, moreover, Dom cpl I+V~ is exactly Dom IPI n Dom (~2. 

The proof uses two auxiliary results. The first one is easy and provides a charac- 

terization of Dom v, for 9 in 8. 
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Lemma 4.2. For every q~ in L?, there exists a tree S, in gz such that T is in Dom v, 

iff lS,I” is included in ITI”. 

Proof. We represent p and a+ and use induction on the length of (Y. The basic step 

follows from the following observation: for A included in !55 and u in s, there exists 

B such that, for every T in Dom u+, A is included in 1 Tu+l’ iff B is included in 

1 T lo. This in turn is proved inductively on the length of u. 0 

Proposition 4.3. If T is in %i, the mapping cp+ Tyl is one-one on (9~ L9: 
TE Dom p}. 

Let us prove Theorem 4.1 from Lemma 4.2 and Proposition 4.3. By Lemma 4.2, 

we get trees Si, S2 such that T is in Dom vi n Dom p2 iff /St 1” and IS,l” are in- 

cluded in j T 1 O. It is easy to construct another tree S such that /S lo is IS, j” U j S2 1’. 

We moreover request that S be in EZi (recall that Z is infinite). So we are sure (by 

Lemma 2.6(iii)) that T is in Dom p1 fl Dom v)~ iff T is Sa for some endomorphism 

o. By Corollary 3.3, v/i, v/2 exist in r_9 such that SV, w1 = Sq2w2 holds. Using Propo- 

sition 4.3, we get vi vi =(p2v2. Moreover if T is So, certainly T is in Dom vlwI, so 

Dom ~1~ fl Dom p2 is included in Dom pi I,v~. The converse inclusion is clear, and 

Theorem 4.1 is proved. 

We now turn to the proof of Proposition 4.3 and, first, introduce some con- 

venient notions. The proof below is rather tedious, but no other one is known. The 

point is to get a criterion to prove that some particular relation S +* T does not hold. 

Therefore we try to control certain properties that are preserved under -+*. 

Definition 4.4. Assume that +X is a subset of %,r; 

(i) Q/ is said to be stable if the following three implications hold: 

(#) SATE 4?/ implies Sr\(Tr\ U) E %; 
(##) SATE %Y implies SA(UAT)E uz1; 

(###) TE 4?/ and S-+* T imply SE Q; 

(ii) for u in s in gz, we say that u is Q-good for T if u is in IT / and there exists 

w in s and 1 in IN such that I L 1, u = ~0’ and T(w) E %! hold. 

We notice that, for any distinct w, w’ in s (and a in s*), the sets w/(Y+ and 

~‘/a+ are disjoint when defined, so, for every v, there exists at most one w such 

that u is in w/a’: such a w will be denoted by v/a- if it exists. 

Lemma 4.5. Assume that ozd is stable and v is %-good for Ta’; then v/C exists 
and is Q-good for T. 

Proof. It suffices to prove the result for a in s, say cr= (u). As u is in ITu+l, we 
know (Lemma 1.7(ii)) that u/u- exists and is in IT /. Write u’ for u/u- and choose 
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w,l witnessing for the &-goodness of u for Tu+. Now define w’ by: 

I 

w/u - if w> ~0 or w> ul or U, w are incomparable, 

w’*- U .- if w=uO or w=ul, 

W if wcu. 

Notice that w’ is always defined in this way. We claim that, for some 1’11, u’ is 

~‘0” and T(w’) is in a. 

Case 1. w/u- is defined. Then w is in WI/U+, so T(w’) is equal to (Tu+)(w), and 

therefore is in a, while wO’/u- is ~‘0’ (using Lemma 1.7(i)), so u’ is exactly w/O’. 

Case2. w=uO. Then T(w’) is T(u), that is (Tut)(wO)~((Tu’)(wl)AT(ull)); 

(Tut)(wO)A(Tu+)(wl) is assumed to be in a, so (#) implies that T(u) is in %Y as 

well. Moreover, u’ is uO”, i.e. w/O’. 

Case 3. w=ul. Then T(w’) is T(u), that is (Tu’)(wO)~(T(ulO)~(Tu~)(wl)) 
and, as above, we conclude that T(u) is in % using (##). Moreover, u’ is uO’, i.e. 

W’O’. 

Case 4. u is wuo for some uo. Then (Tu+)(w) is (T(wu,)+)(w), that is T(w)ul, so 
T(w) --+* (Tu+)(w) holds. By (###) we conclude that T(w) (i.e. T(w’)) is in a. 

Next we notice that either u is incomparable with u or u includes ~00 (because u is 

in 1 Tu+l and u is ~0’ with 12 1). In the first case, we have u’= u = wO’= ~‘0’; in the 

second one, we have u’= wO’-* = ~‘0’~‘. So the proof is complete. 

Now the point is the following technical result: 

Lemma 4.6. Let v, be any member of V; assume that for some CT in End gz the tree 
So is in gj fl Dom v, and that Say, is in the image of a; then S itself must lie in 
Dom 9. 

Proof. We assume that So is in K?’ fl Dom v, but S is not in Dom p, and prove that 

Say, cannot be in the image of 0 provided that ao is in %i for every a in Im S. First 

choose a decomposition a’u+P+ of a, such that S is in Dom cz+ but So+ is not in 

Dom u+: Say, is equal to Scz+ou+p+ (Lemma 2.6(ii)), and the pair (Sa+, u+p+) 

satisfies the same hypotheses as the pair (S, p), so we may replace S by So+ and v, 

by u+/3+. In other words, we may assume without loss of generality that a+ is the 

identity. Now So is certainly in Dom U+ (for Sa is in Dom p), while S is not: hence 

ul lies in 1 Sa 1’ \ jS 1’. Let w be the unique member of 1 S I that is included in ul , 

and let a be S(w). Let I,m be the integers (>O) such that ~10’ and ulrn+’ are in 

ISal, and let 6, c be the values of S(ulO’), S(ulm+‘) respectively (see Fig. 1). 

The assumption of ao being in %i implies that b and c must be distinct, and that 

moreover c occurs neither in Sa(ul0) nor in Sa(u0). It follows that c does not occur 

in Sou+(uO), so, if we let Q be the set of all trees in which c occurs at least once, 

uOlO’-’ is an occurrence of b in Sou+ that is not w-good for Sou+. Clearly % is 

stable, so Lemma 4.5 implies that at least one occurrence of b in Sou+/3+ cannot 
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a0 

Fig. 1. 

be @-good for s(su’/~+. But this prevents SOU+~+ from being in the image of o 

since any occurrence of b in a tree Ua with Im U included in Im S appears in fact 

in a subtree equal to ao (for b does not occur in any other SO with s occuring in 

S) and therefore is %-good for Ua. 0 

We can now establish Proposition 4.3. Assume that T is in gi fl Dom v, 17 Dom I,Y 

and Tp = Ttp holds. By Lemma 4.2, we get S in gi such that, for every U in gz, 

up is defined iff 1 S /’ is included in 1 U I’, i.e. (Lemma 2.6(iii)) iff U is Sr for some 

endomorphism T. So in particular T must be So for some 0 and we get (Lemma 

2.6(ii)) 
Sarp = Tip = Tu/ = Sat,~ = SI,VO. 

So, as Sa is in gi, Lemma 4.6 forces S itself to be in Dom cp, and then we get 

Sva = SrJia. 

Now we are sure that Im SG and Im S’CJ are disjoint for distinct s, s’ occuring in 

S; an easy induction shows that in this case Syla = St,~a implies Sy, = SI,V. Finally, if 

U is any member of Dom v/, U is St for some r, so U is in Dom p and we have 

uu, = Sry, = Sy7r = Sl/R = Stc// = uI//. 

A symmetric proof would show that Dom I// is included in Dom 9, so the equality 

holds, and we are done. 

5. Getting q~ from T and T~J 

It seems that the word problem for * is a difficult question. The aim of this last 

section is to discuss the connection between various natural questions about c*, +* 
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and t!J that could be viewed as first steps toward this word problem. These questions 

are related with the problem of recognizing a member p of rP when only a single pair 

(T, Tp) is given. 

Lemma 5.1. The following statements are equivalent: 

(Ci) If ITI/ and IT21 are equal, then T, ct T, holds (if and) only if T, and T2 
are equal; 

(Cii) For any T in gz, the mapping V, + 1 Tpl is one-one on {V E 8: TE Dom p}; 

(Ciii) For any T in gz, the mapping V, + Ty, is one-one on {u, E 8: TE Dom p} ; 

(Ci,) For any nonempty set Z, the monoid Vz is isomorphic to ~9. 

Proof. (Ci) * (Cii). Assume ITp, 1 = lTp21. Choose S in %i such that ISI is equal 

to 1 T I. Then Sy7,, Sv, are defined and clearly we have I Syl, I = I Tql I = I Tp21 = I Sy7, I 

and Sp, tf SpZ. So by (Ci) we deduce Sv, = SvZ and by Proposition 4.3 we conclude 

43 = v)2* 

(Cii) * (Ciii). Obvious. 

(Ciii) * (Ci,). Owing to Proposition 1.8, the only interesting case is when LY has 

only one member, say a. So assume 0; =pi. Choose T in ‘F& fl Dom a+ fl Dom p’; 

then we get 

SO by (Ciii) we have c-w+=~ +, i.e. a+ -+ CX~ is one-one, and tiL is isomorphic to Lp. 

(Ci,) * (Ci). Assume that T,, T2 are in some ‘??=, and that 1 T, I = 1 T2 I and 

Tl c-) T, hold; there exist rp,, q)2 in tiZ such that Tlp, and T2p2 are equal. Choose any 

a in .Z, and define u to map every member of .Z to a: T,o and T,o are equal, as 

well as T,a~, and T,ay?,. It follows that (~,t’&‘~,l and ~2W(,) are equal, so, if (Ci,) 
is assumed and therefore 81,) is isomorphic to 8x, p1 and ~7~ itself are equal, and 

finally T,, T2 are equal, i.e. (Ci) holds. q 

Although we conjecture that (Ci)-(C,) are true, we are not able to prove them 

presently; we shall only establish a very paradoxical consequence of their negation. 

Proposition 5.2. If (Ci)-(C,) are false, then there exists two trees S, T and an in- 
teger 12 1 such that S+* T, S+* T(O’), and therefore Ttt T(0’) hold. 

The only known fact is that I= 1 is impossible in the formula above (the proof 

uses an auxiliary groupoid, see [5]). Before proving Proposition 5.2, we state two 

lemmas: 

Lemma 5.3. If S+* T holds, then for every k such that S(Ok) is defined, there 
exists I? k such that S(Ok) +* T(0’) holds. 

Lemma 5.4. For every v in T5, there exists v, in Lp such that 



142 P. Dehornoy 

(i) v/p exists and is (Okl’} for some k, I; 
(ii) for w on the left of v, w/a, exists and contains exactly one point on the left 

of Ok 1’; moreover the left-right ordering of various such w’s is the same as the left- 
right ordering of their left heirs mentioned above; 

(iii) for w on the right of v, w/y, exists and contains no point on the left of Okl’. 

Proof. Use induction on the number of inversions in v, i.e. the number of pairs 

. . . 1 . ..o... that can be extracted from v. If v is v’lOv”, applying v’+ leads to 

v/v’+ = (~‘01 v”}, and ~‘01~” has one inversion less than v. Moreover, conditions 

(ii) and (iii) are preserved under the action of v’+, so we can iterate the pro- 

cess. 0 

We turn to the proof of Proposition 5.2. Assume that (Ci) is false, and choose 

S,,Sz in FZz such that jS,l = IS,l, S, c-* S, and S, #S, holds. Let v be the leftmost 

point in IS,1 such that S,(v), say a,, is not S,(v), say a2. Using Lemma 5.4, we get 
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v, in L9 such T, :=S,cp, T,:=&v). Clearly 

we have IT,J=lT21, T,e*T,, T, # T2 and the leftmost discrepancy between T, and 

T2 is at Okl’, for all points on the left of Okl’ come from points on the left of v in 

S. It follows that the only discrepancy between T,(Ok) and T,(Ok) is their rightmost 

label, namely ai for T,(Ok) and a2 for T2(Ok) (Fig. 2). 

Now T, c* T2 holds so there exists some U such that T, +* U and T2 +* U hold. 

According to Lemma 5.3, there exist (1/i, w2 in 6’ and I,, I2 in N such that U(Oh) is 

T(Ok)vi for i=1,2. Notice that I, =I2 is impossible, for it implies T,(Ok)- T,(Ok) 
and this contradicts the fact that T,(Ok) and T2(Ok) have distinct rightmost labels 

and that the rightmost labels of the trees are preserved under +* and therefore under 

++. We assume I, <I*, set S := T2(Ok) and let T be the result of replacing in U(O’l) 

the rightmost occurrence of a, by u2. Certainly U(O’z) is T(O’), where I is 1, - I,, so 
we have T(0’) =Sv2. Finally, we deduce T= SW, from U(O’l) = T,(Ok)v, for the 

only changes between these equalities of trees concern the rightmost labels. So 

S-+*Tand S+” T(0’) are proved, and the proof of Proposition 5.2 is carried out. 

We conclude this paper with the proof of a particular case of (Cii). Instead of 

considering restrictions to particular trees as in Proposition 4.3 (which proves the 

instances of (Ci) and (Ciii) that correspond to trees in gi), we consider now restric- 

tions to particular subsets of 8. 

Definition 5.5. 0, be submonoid of generated by (lk)+‘s for 0 (lo 

/1). 

The ~9, is because any of ~9 be written a product 

terms in and in translated copies rY,. 

Lemma (i) Any of t3 be written &O~o)(lO~l) . . (l”Oq,) cp 
in (and cpo,...,cpk 8); 

(ii) member of cm be as (lKl)+. . . (lKn)+ with kj 5 k,+.I + 1 for 
every i. 

Of course in (i), PO, . . . , pn can in turn be written using 8,. Notice that the writing 

may not be unique, for /1+1+/1+ and (l+A+l’)O+ are two writings of the same 

member of L9 in the form above. 

Proof. (i) Start with any nonempty sequence a; our aim is to let the terms (lk)’ 

migrate to the left in of. We just have to cross terms like (VOW)‘, and therefore 

we use the following relations (established in 2.3): 

(lk)‘(l’Ow)’ if jrk+2 or j<k, 

(ljow)+(lk)+ = (l~)+(l~Olw)+ if j=k+l, 

(lk)‘(lkOO~)t(lk+lO~)+ if j=k. 
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The migrating term (l”)+ is not multiplied, so the process terminates, and one gets 

a+ = @3’ for some 9 in t9i and p such that every term in /I contains at least one 

zero. Using Lemma 2.1, it is then easy to group the terms of /I in the wished form. 

(ii) Represent ( lkl)+ . . . (lkfl)+ by the sequence (k ,,...,k,) in IN* and let Q; be the 

partial mapping of k4* into itself defined by 

ei(ki ... k,) = (k,, . . . . k;-,,ki+l,k;,k,+2,..., k,) if nri+l and k,zk;+,+2. 

Let +I be the reflexive transitive closure of the union of all @i’s for i 2 0. Then +I is 

a noetherian relation on tr, *, for the parameter v defined by v(k, . . . k,) = C (n - i) k; 
decreases under +I. Next J is a confluent relation: it suffices to verify local con- 

fluency. Now ei and Qj commute if Ii-j 1 is at least 2. The only nontrivial case 

concerns ei and ei+i, for instance e. and el. If (ko, kl, k,, . . . > is in Dom e. tl 

Dom ei, certainly k, I k, + 2 and k. 2 k, + 2 hold, and one verifies that ~~~~~~ = 

Q~Q~,Q~ holds. So (as in Sections 2 and 3 for **) we conclude that the relation +I 

is confluent. Therefore it satisfies the Church-Rosser property and we get for 

every sequence a normal form (kl, . . . , k,) with kirk;+,+1 for every i<n. This 

reduction translates to L9i, since (lk)‘(lk’)+=(lk’)+(lk)+ holds whenever k’ is 

rk+2. q 

Proposition 5.7. For any T in ‘67=, the mapping v, + / TcP is one-one on {v E t!9, : 
TE Dom v}; 

In fact, we shall prove the following technical form: 

Lemma 5.8. Let 8; be the submonoid of 8, made by all terms whose reduced 
writing (in the sense of Lemma 5.6(ii)) ends with A+; then the mappings: 

and 
p+ 1Tpl on {v,EL?,: TEDomyl} 

v,+ l(Tq~)(O)l on {v,E~;: TEDomp} 

are one-one. 

Proof. We first establish some auxiliary formulas. Assume that p is in r9,; then the 

reduced writing of v, (according to Lemma 5.6(ii)) has the following form: 

v, = (l~oM+(l~M+ . . . A+(lV,) 

where po, . . . , pn _ 1 are in Lq; and pn is in r!?i ; moreover 9 is in t9; iff vn is the identity 

mapping. Assume that TV is defined, and put: 

To := c q+, := T;(lp;)/l+ for Oli<n; 

we claim that the following holds: 

Tp(O” + ‘) = T(0); Tp(O”-‘1) = (7;(1)~;) for OSi<n; 

TV(~) = T,(l)q,. 
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These formulas are proved inductively on n. If n is 0, i.e. (p is lq,, then clearly 

TV(O) is T(0) and TV(~) is T(l)p,. Now assume the formula proved for I+V with cor- 

responding parameter I n - 1 and let 9 be as above. Let v/ be (1%)/l+. . . /l+(lq,_,). 

If T is in Dom p, certainly T is in Dom I,U and, for 0 I i < n - 1, the associated q’s 

coincide. As Tu, is TvA+(lp,,), we get using the induction hypothesis: 

Tq$O”+‘) = T~uI+(O”+~) = TI,v(O”) = T(O), 

Tyl(O”-‘1) = Tt,~A+(o”-‘l) = TI,Y(O”~‘-‘~) = (Tj(l)~i)(0) for O<i<n-1, 

T&01) = T0+(01) = Tw(l0) = TV(~)(O) = (T,-,(l)~l)(O), 

T&l) = T,(l~,)(l) = T,,(l)%. 

So the claim is proved. Now we shall prove that, starting from T and ITy?J, we are 

able to find the value of ~1, i.e. the values of n and q,,, . . . , tpn as above. The proof 

uses induction on A(T), defined to be the length of the rightmost branch of T. First 

we recall that 2 is invariant under + .(and therefore under -*). If A(T) is 0 or 1, 

T is in the domain of no v, in 8, so there is nothing to prove. In any case, we notice 

that /1+ increments the length of the leftmost branch and, therefore, when ITI and 

ITvll (or only IT( and IT(o(O)l) are given, the integer n above is exactly the differ- 

ence between the lengths of the left branches of TV(O) and T(0). It follows that the 

result is proved for A(T) = 2, for in that case the only p’s in L!J such that Ty, is defined 

are precisely the /Itn’s. 

Assume that the result of the lemma is proved for all S with A(S)<A(T), and 

assume that T and 1 Tu, 1 are given. First n is computed as above. Next, using the for- 

mulas established at the beginning, we get: 

l(T(l)~,)(O)l = IT&O”l)l. 

As T(1) and jT&O”l)l are known, and v. is in r9;, the induction hypothesis asserts 

that p. is determined, for A(T(1)) is A(T) - 1. The formulas also give: 

I(T,(l)&(O)l = IPMO”-‘111. 

But now, as p. is known, T, is determined, lTq~(O”~‘l)l is given, and CJ+ is in 1_9;, 

so the induction hypothesis asserts that q1 is determined, for A(T,(l)) is still 

A(T) - 1. And the process goes on . . . . At the end, CJ+- 1 is determined from T,_, 
and 1Tcp(Ol)l. Finally, Ty7(1) is T,(l)(p,, so qn is determined from T, and IT&l)l. 

If v is in LP[, the last step is avoided, and therefore only ITcp(O)l is used in the 

algorithm above. So the proof is complete. Cl 

The previous proof is surprising for it does not only establish that v,+ Ty, is 

one-one on 8, but it also provides an effective algorithm that computes v, from j T I 

and ITtp/. The existence of such an algorithm in the genera1 case is a fascinating 

question. A possible recursive approach could try to compute from ) T ( and ( TI,U / 
a member v, of 8, such that p is (the) left factor of I,Y as provided in Lemma 5.6(i). 
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We just notice that the length of such a 9 is easily 

p:%“-rN by 
determined. For, define 

0 
p(T) := 

if T is in 2, 

A(T(0)) +,~u(T(l)) otherwise. 

It will be immediately proved that p(Tu+) is ,u(T) + 1 if U+ is in t9i, and is p(T) 

otherwise. So fi is a counter for the number of transformations of Lpi that are per- 

formed (and therefore in the writing of Lemma 5.6(i) the length of v, is uniquely 

determined). 

Note added in proof. Further results on the word problem in free distributive group- 

oids are announced in P. Dehornoy, Sur la structure des gerbes libres, C.R. Acad. 

Sci. Paris Ser. I 309 (1989) 143-148. 
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