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ABSTRACT. An extension of the infinite braid group B∞ exactly
describes the left distributivity identities. These identities form a
decidable family. The group B∞ is closely connected with the free
left distributive structure with one generator, and inherits some
order properties with simple topological meaning. A quick com-
parison algorithm for braid words is also given.

The first aim of this paper is to construct a proof of the following result which
had been conjectured for several years

Theorem.- There is an effective algorithm for deciding whether a given identity is
or not a consequence of the left distributivity identity x(yz) = (xy)(xz).

The former status of this question was unusual. Two partial solutions have been
proposed independently in [5] and [20] by reducing the decidability to a (unique)
algebraic hypothesis known as the Irreflexivity Conjecture. This conjecture has been
shown by Richard Laver to follow from a very strong (hence unprovable) set theo-
retical axiom. The question was whether this additional assumption is necessary or
not. The opinions thereabout were divided: on one hand the connection between the
existence of very large cardinals and a purely finitistic problem like the one above
seemed strange, but on the other hand no metamathematical reason is known to
forbid such a connection and some works on distributive structures ([9]) showed that
intrinsically complex objects necessarily arise in their description.

In this paper we definitely eliminate all logical assumptions in this question and
give a solution which is purely algebraic in methods and spirit. We first introduce
an algebraic structure on left distributivity identities themselves. Definitions can be
made in such a way that the structure CLD thus constructed resembles a group. Then
one replaces the study of CLD, which has only a partial product and is incompletely

1



known at the beginning, by the study of a true group B̃∞ whose presentation is
suggested by the relations which are known to hold in CLD. The main idea is that, if
the relations used to define B̃∞ reflect the core of left distributivity, then B̃∞ should
resemble CLD, and, in particular, the results proved for CLD using the geometry of
left distributivity should have a purely algebraic counterpart in B̃∞. This actually
happens.

The group B̃∞ is an extension of the infinite braid group B∞, a property which
reflects a deep connection between braids and distributive operations. Actually B̃∞ is
a kind of ‘ramified’ version of B∞ where an infinite tree replaces the chain of integers.
Though the kernel of the projection of B̃∞ onto B∞ is very large, both groups have
very similar properties. For the study of B̃∞, we use the special form of the relations
in its presentation. The crucial points concern the decompositions of arbitrary words
as quotients of positive words. The approach we develop for these questions projects
to B∞ immediately. As an application we obtain a new algorithm for comparing braid
words which runs in quadratic time. Our method can be seen as a variant of the one
described in [23]. Its particularity is to avoid any use of a specific normal form.

With the proof of the Irreflexivity Conjecture and the properties of B̃∞, many
questions about free distributive structures are settled. In particular one obtains a
posteriori the complete description of the structure CLD, a quotient of which identifies
with a subset of B̃∞. This shows that the relations defining B̃∞ exactly reflect the
geometry of left distributivity, and in particular some ‘heptagonal identity’ has a
crucial importance. For the original problem of recognizing the consequences of left
distributivity we obtain a primitive recursive bound.

It is known that the braid groups act on distributive structures where left trans-
lations are bijective ([2]). We observe that injectivity of left translations is actually
sufficient for defining a partial action. This enables to use the free distributive struc-
tures for constructing distributive representations of B∞. Actually, the connection
between braids and distributive operations can be made complete: one constructs in-
side B∞ a realisation f of the free left distributive structure with one generator, and,
conversely, every braid can be decomposed as a product of terms in f and its trans-
lated copies. When the connection is used from braids to distribution, one obtains
a simply exponential method for recognizing the consequences of left distributivity
involving only one variable. When the connection is used from distribution to braids,
one transfers the existence of a linear ordering.

Theorem.- There exists a unique ordering on B∞ which is compatible with product
on the left and is such that every generator σi is infinitely large w. r. to all σk with
k > i. This ordering is linear, it extends the divisibility partial ordering and there is
an effective method for comparing braid words.
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The general orientation of the paper is from distributive operations to braids.
It is organized as follows. The first six sections are devoted to the proof of the de-
cidability result for the consequences of left distributivity. Section 1 constructs the
structure CLD, introduces the Irreflexivity Conjecture and revives some connected
results used in the sequel. Section 2 introduces the abstract group B̃∞ and translates
the Irreflexivity Conjecture into an assumption about the decompositions of the ele-
ments of B̃∞ into quotients of positive words. Section 3 establishes a general criterion
for proving this assumption using the specific form of the presentation. Section 4
show that B̃∞, as well as B∞, satisfy the first part of the criterion. The algorithm for
braid words comparison is described as a corollary. Section 5 introduces the geomet-
rical notions which are needed in Section 6 for the proof of the second part of the
criterion. Section 7 states the general results about distributive operations and the
structure CLD. Finally in Section 8 we investigate the distributive representations of
braid groups, and deduce the order properties of B∞ quoted above.

1. The algebraic structure of left distributivity identities.

Some algebraic structure on the set of all consequences of left distributivity
reflects the geometry of this special identity. It is known that applying associativity or
commutativity at various positions in a term gives rise to some geometrical relations,
such as Maclane’s pentagonal or hexagonal diagrams (see [22], [3]). We investigate
similar relations in the case of distributivity. The construction itself is somewhat
secondary here, the main point is the list of relations in Proposition 1 below.

Fix an infinite set Σ whose elements are called variables. The free magma gen-
erated by Σ using a single binary operation is denoted TΣ and its elements are called
terms. We write P [Q] for the product of the terms P and Q. This notation gives the
intuition that this product is the image of the term Q under some action of P , which
is convenient in the left distributive framework (see [7]). With these notations, left
distributivity is expressed as the following identity

(LD) x[y [z]] = x[y ][x[z]].

If ≈LD is the congruence on TΣ generated by the pair (x[y [z]],x[y ][x[z]]), then the
consequences of left distributivity (written with variables in Σ) are exactly the pairs
(P, Q) in T 2

Σ which satisfy P ≈LD Q. Thus the decision problem we investigate is the
word problem for the equivalence relation ≈LD on TΣ.

The endomorphisms of the free magma TΣ are substitutions: the image of any
term P under such an endomorphism τ is the term P τ obtained from P by replacing
every occurrence of every variable v in P by the term vτ . The set of all P τ when τ
ranges over EndTΣ is denoted Subst(P ). If (P, Q) and (P ′, Q′) are pairs of terms and
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there exists a substitution τ such that P ′ is P τ and Q′ is Qτ , we say that (P ′, Q′) is
an instance of (P, Q) and write

(P, Q) � (P ′, Q′).

Denote by Inst(P, Q) the set of all instances of the pair (P, Q), and by • the opposite
of composition for binary relations or mappings. It is natural to define the product
of two identities in such a way that the mapping Inst becomes a morphism into the
set of all binary relations on TΣ equipped with •. Results on terms unification (see
e.g. [13]) make such a construction possible. Assume that (P1, Q1) and (P2, Q2) are
arbitrary pairs. The relation Inst(P1, Q1)•Inst(P2, Q2) is nonempty if and only if the
sets Subst(Q1) and Subst(P2) are not disjoint. In this case there exist substitutions
τ1 and τ2 satisfying

Subst(Q1) ∩ Subst(P2) = Subst(Qτ1
1 ) = Subst(P τ2

2 ), (1)

and one has
Inst(P1, Q1) • Inst(P2, Q2) = Inst(P τ1

1 , Qτ2
2 ).

We define the product of (P1, Q1) and (P2, Q2) as the pair (P τ1
1 , Qτ2

2 ) above, thus
obtaining a partial binary operation on pairs of terms which is associative when
defined.

We consider the structure generated using this product by the translated copies
of (LD), i.e. the identities which describe the application of left distributivity in
a subterm of a given term. A convenient system of notations for such subterms
is obtained by seeing terms in TΣ as binary trees with leaves in Σ. We use finite
sequences of 0’s and 1’s as addresses for nodes in such trees. An address describes
the path in the tree from the root (whose address is the empty sequence denoted Λ)
to the considered node, going to the left or to right at a branching point according
to the fact that the next character in the address is 0 or 1. We denote by S the
free monoid of all such finite sequences (which shall be called points in the sequel).
The empty point is denoted by Λ, and the product on S by concatenation, so that 0i

denotes the product of i times 0. We fix some sequence 〈x1,x2, . . .〉 in Σ.

Definition.- For every point w in S the w-copy of the pair (LD) is the pair (LD)w

inductively defined by

(LD)w =



(x1[x2[x3]],x1[x2][x1][x3]]) if w is Λ,
(P [xn], Q[xn]) if w is 0v, (LD)v is (P, Q) and xn is

the first variable which does not
occur in (P, Q)

(x1[Pσ],x1[Qσ]) if w is 1v, (LD)v is (P, Q) and
σ is a substitution which maps
every xi to xi+1.
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The first and second components of the pair (LD)w coincide except the fact that
their subterms in position w form a copy of (LD) (up to a renaming of the variables).
For instance, we have

(LD)0 = (x1[x2[x3]][x4],x1[x2][x1[x3]][x4]),
(LD)1 = (x1[x2[x3[x4]]],x1[x2[x3]][x2[x4]]]).

For w in S, (LD)w denotes the symmetric pair of (LD)w, and CLD denotes the closure
under product of the family of all (LD)w and (LD)w where w ranges over S.

Proposition 1.- i) The consequences of left distributivity are exactly the instances
of the pairs in CLD.
ii) For every u, v, w in S, the relations

(LD)u • (LD)u1 • (LD)u = (LD)u1 • (LD)u • (LD)u1 • (LD)u0

(LD)u • (LD)u11v = (LD)u11v • (LD)u

(LD)u • (LD)u10v • (LD)u00v = (LD)u0v • (LD)u

(LD)u • (LD)u01v = (LD)u10v • (LD)u

(LD)u0v • (LD)u1w = (LD)u1w • (LD)u0v

hold in CLD.

Proof. For (i), the binary relation “(P, Q) is an instance of some pair in CLD” is a
congruence on TΣ which includes and is included in ≈LD. Point (ii) follows from a
simple verification. The last four types follow from general geometric features similar
to the ones used in the construction of critical pairs in Knuth-Bendix algorithm for
rewrite systems (see [15]). The first one (the ‘heptagonal identity’) reflects a key
property of left distributivity and is connected with the existence of an action of
braid groups on distributive structures (see Section 8).

Let us now introduce the subset C+
LD of CLD generated by the identities (LD)w

using product only (and no inverse). One verifies inductively that the first component
of any element in C+

LD is an injective term, i.e. a term where each variable occurs at
most once. It follows that the product is always defined, and that C+

LD equipped with
product is a monoid. We say that a term Q is an extension of the term P if (P, Q) is
an instance of a pair in C+

LD. We revive without proof three earlier results. They have
lead to a first approach to the word problem for ≈LD and will supply useful intuitions
in the next sections. Assume that x is a fixed element in TΣ, and denote by Tx the
submagma of TΣ generated by x. Define inductively the terms x [n] by x [1] = x and
x [n] = x[x [n−1]] for n > 1.

Lemma 2.- ([5]) If P is any term in Tx , then x [n] ≈LD P [x [n−1]] holds for n large
enough.
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Lemma 3.- ([4])Two terms in TΣ are ≈LD-equivalent if and only if they have a
common extension.

Let us write SL(P ) for the left subterm of the term P (which is defined if and
only if P is not a variable), and Si

L(P ) for the i-th iterated left subterm of P (which
is defined if and only if the leftmost branch of P viewed as a tree has length i at
least).

Lemma 4.- ([4]) Assume that the term Q is an extension of the term P , and P is
not a variable. Then there exists an integer j ≥ 1 such that Sj

L(Q) exists and is an
extension of SL(P ).

Putting these results together we obtain

Proposition 5.- (Comparison Property) Assume that P , Q are any terms in Tx .
Then there exists a term R and two integers i, j such that Si

L(R) is an extension of
P and Sj

L(R) is an extension of Q.

Proof. By Lemma 2 we know that x [n] is equivalent to P [x [n−1]] and Q[x [n−1]] for n
large enough. By Lemma 3 the latter terms must have a common extension R, and
by Lemma 4 some iterated left subterms of R are extensions respectively of the left
subterm of P [x [n−1]], which is P , and of the left subterm of Q[x [n−1]], which is Q.

For P , Q in TΣ, write P Q if P is Sk
L(Q) for some positive k, i.e. equivalently

if the word P is a prefix of the word Q. Let LD be the relation obtained from
by ≈LD-saturation: P LD Q holds if P ′ Q′ holds for some P ′, Q′ which are
≈LD-equivalent to P and Q respectively. Proposition 6 tells that two terms in Tx

which are not equivalent must be comparable with respect to LD. Now for a given
pair of terms (P, Q) there exists an effective enumeration of all pairs (P ′, Q′) such
that P ′ is an extension of P and Q′ is an extension of Q, and the question of whether
a term P ′ is a prefix of the term Q′ is obviously decidable, so that the relation LD

is certainly semi-decidable, as well as the relation ≈LD. So a sufficient condition for
the decidability of ≈LD (and LD) is that the relations ≈LD and LD are disjoint,
which can be expressed as the

Irreflexivity Conjecture.- The relation LD is irreflexive.

Another equivalent formulation is that no equivalence of the form

P ≈LD P [Q1]. . .[Qk]

may hold in Tx for k ≥ 1. This conjecture has been introduceded independently in [5]
and [20], and was already used in [4]. The approach of [20] is completely different of
the present one, but both of them finally butted against the same obstruction, which
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was considered more and more puzzling as various attacks failed. The hypothesis that
the intrinsic complexity of ≈LD could forbid an elementary proof of the irreflexivity
property has been considered. We shall show that no such obstruction exists, and
that the relation ≈LD is decidable within arithmetic.

What is missing in the above approach is some effectivity. Starting from terms
P , Q we know that there exist a big term R such that P and Q are equivalent to some
left subterms of R, but we have no control of the ranks of these left subterms. In
particular no uniqueness is obtained, and the irreflexivity property is just an external
trick to replace the lack of uniqueness. Now if the irreflexivity property is true, the
involved left subterms must be unique, and it should be possible to make the whole
construction effective. The problem is that the natural approach for developing this
effective version requires the left cancellation property in the monoid C+

LD, and that
the only known proof of this property uses in turn the irreflexivity of LD. We shall
avoid this vicious circle by making the construction in an auxiliary structure where
left cancellation is provable.

For the moment we observe that the natural way for proving the Irreflexivity
Conjecture is to use models of left distributivity. Let us call a set equipped with a
left distributive bracket an LD-magma. We say that an LD-magma g is irreflexive if
no equality

a = a[b1]. . .[bk]

holds in g for any positive k. Because the projection of any identity P ≈LD

P [Q1]. . .[Qk] would yield an equality as above, we have the following criterion.

Lemma 6.- ([20]) Assume that g is an irreflexive LD-magma. Then the Irreflexivity
Conjecture is true. Moreover all sub-LD-magmas of g with one generator are free.

Proof. The freeness of the monogenic sub-LD-magmas of g originates in the compar-
ison property: if π is a projection of Tx into g, the image of LD has to be a strict
linear ordering, and π must be injective since it preserves this ordering.

Few of the usual examples of distributive structures are relevant for the present
purpose (see [16], [24]). Most of them indeed, such as conjugacy in groups or barycen-
tric means, are idempotent and therefore fail to be irreflexive since they satisfy equali-
ties a = a[a]. Using a kind of skew conjugacy on the injections of the positive integers,
we obtained in [6] an LD-magma d where no equality a = a[b] is possible. But some
equality a = a[b1][b2] holds in d. Now in [20], Richard Laver establishes that, if the
set theoretical axiom “There exists an elementary embedding of a rank into itself”
(EE), which is a very strong large cardinal assumption (c.f. [17], [19]), is true, then
the algebra obtained by iterating the elementary embedding whose existence is a left
distibutive irreflexive (and therefore free) LD-magma. So the Irreflexivity Conjec-
ture follows from the (unprovable) axiom (EE) and set theory arises in the study of
distributive operations.
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Our proof will consist in constructing a new model of left distributivity by defin-
ing a bracket operation on (a variant of) GLD. Thus the elements of the model will
be distributivity identities. This method has some similarity with Henkin’s proof of
the completeness theorem for first order logic where one constructs a model for a set
of sentences in such a way that the elements of the model are themselves sentences.

2. An extension of the braid group.

The structure CLD is poor: the product is not everywhere defined, the pair (Q, P )
is not exactly an inverse of the pair (P, Q), we do not know whether the relations in
Proposition 1.1 make an exhaustive presentation. To avoid these disadvantages we
shall consider the abstract group which admits the above relations as a presentation.
This group will turn to be close enough to CLD to still satisfy the main properties
arising from the geometry of distributivity.

Definition.- The group B̃∞ is the group admitting a family of generators σ̃w indexed
by the set S and presented by the relations

σ̃u • σ̃u1 • σ̃u = σ̃u1 • σ̃u • σ̃u1 • σ̃u0

σ̃u • σ̃u11v = σ̃u11v • σ̃u

σ̃u • σ̃u10v • σ̃u00v = σ̃u0v • σ̃u

σ̃u • σ̃u01v = σ̃u10v • σ̃u

σ̃u0v • σ̃u1w = σ̃u1w • σ̃u0v

where u, v, w range over S.

Actually the family of all σ̃1i for i ≥ 0 generates the group B̃∞, but leads to
an ‘incomprehensible’ presentation. For any set X, we write X∗ for the free monoid
generated by X, and X

sym for the free monoid generated by the union of X and a
disjoint copy X of X. With these notations, the group B̃∞ is a quotient of the monoid
S

sym. We denote by σ̃ the projection of S
sym onto B̃∞ which maps w to σ̃w, and by ≡̃

the associated congruence on S
sym. Similarly the braid group B∞ is a quotient of N

sym

+

(where N+ denotes the set of the positive integers). We denote by σ the projection
of N

sym

+
onto B∞ which maps i to the generator σi, and by ≡ the congruence on

N
sym

+
associated with the usual presentation of B∞ from the generators σi. In this

framework the elements of N
sym

+
will simply called braid words. A first justification

for the name of the group B̃∞ is the following

Lemma1.- The braid group B∞ is a quotient of the group B̃∞.
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Proof. The morphism

� : w �→
{

i + 1 if w is 1i,
ε if w contains at least one 0,

of S
sym onto N

sym

+
induces a projection of B̃∞ onto B∞ as shows an easy examination

of the defining relations of ≡̃ and ≡.

The kernel of the projection of B̃∞ onto B∞ induced by � will be described in
Section 7. Presently we concentrate on translating the Irreflexivity Conjecture into
a statement about the group B̃∞.

By construction the structure CLD is also related with the group B̃∞. We extend
the notation of Section 1 by defining (LD)ξ to be the image of the sequence ξ under
the surjective partial morphism of a subset of S

sym onto CLD which maps w to (LD)w

for w in S. An easy induction shows that exactly the same variables occur in both
terms of each pair (P, Q) in CLD, so that the relation Inst(P, Q) is a partial injective
operator on TΣ. We shall in the sequel denote by Ω(ξ) the operator associated with
the identity (LD)ξ. For instance, the operator Ω(Λ) is the partial operator which
maps every term P [Q[R]] to the corresponding term P [Q][P [R]]. We observe that the
correspondence between (LD)ξ and Ω(ξ) is a bijection. Let us write (LD)ξ 	 (LD)ξ′

if the partial operators Ω(ξ) and Ω(ξ′) coincide on the intersection of their domains.
By 1.1 the implication

ξ ≡̃ ξ′ =⇒ (LD)ξ 	 (LD)ξ′

holds whenever (LD)ξ and (LD)ξ′ are defined. It is not a priori obvious that 	 has
to be an equivalence relation on CLD, but we shall use as a guide the idea that the
quotient CLD/	 should resemble B̃∞, which will be established in Section 7.

The point is to define a distributive bracket on some quotient of B̃∞. To this
end we associate with every term P in Tx a canonical sequence χ̃P in S

sym. We start
from a proof of Lemma 1.2. Assume for an inductive argument that the term x [n+1]

is proved to be ≈LD-equivalent both to P [x [n]] and Q[x [n]] for n large enough. Then
(for n large enough) one obtains

x [n] ≈LD P [x [n−1]] ≈LD P [Q[x [n−2]]] ≈LD P [Q][P [x [n−2]]] ≈LD P [Q][x [n−1]],

and the same property holds for the term P [Q]. The induction starts since x [n]

is equal, hence equivalent, to x[x [n−1]] for every n > 1. By Proposition 1.1, this
result implies that there must exist for every term P and every n large enough a
sequence χ̃P,n in S

sym such that the operator Ω(χ̃P,n)) maps the term x [n] to the
term P [x [n−1]]. The computation above gives for the sequences χ̃P,n the following
induction clauses

χ̃x,n = ε,

χ̃P [Q],n = χ̃P,n • 1χ̃Q,n−1 • Λ • 1χ̃P,n−1,
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where left concatenation is extended to sequences so that u(w1•. . .•wn) denotes
uw1•. . .•uwn, and ξ denotes the image of ξ under the involutory antiautomorphism
of S

sym which maps every element of S to its copy in S. This definition of χ̃P,n makes
sense whenever n is greater than the height of the term P (viewed as a binary tree).
A handy (but inessential) point is that the sequences χ̃P,n so constructed turn out
to be independent of n. This invites to define a bracket on S

sym by the formula

ξ[η] = ξ • 1η • Λ • 1ξ.

The computation above gives

Lemma 2.- Let χ̃P be the image of the term P under the bracket preserving mor-
phism of the free magma Tx into S

sym
equipped with the bracket above which maps x

to the empty sequence ε. Then the operator Ω(χ̃P ) maps x [n] to P [x [n−1]] whenever
n is greater than the height of P .

The bracket above on S
sym has no reason to be left distributive, but we observe

that, if the operator Ω(ξ) maps the term P to the term Q, then Ω(0ξ) maps P [x [n−1]]
to Q[x [n−1]], so that the operators Ω(χ̃P •0ξ) and Ω(χ̃Q) take the same value on the
term x [n], suggesting that the lack of distributivity for the bracket on S

sym is measured
by the sequence 0ξ above. This is actually true.

Lemma 3.- i) The following equivalences hold in S
sym

ξ[η][ξ[ζ]] ≡̃ ξ[η[ζ]] • 0
(ξ • 0ξ′)[η • 0η′] ≡̃ ξ[η] • 00ξ′ • 01η′.

ii) Assume that the term P is in Tx and the operator Ω(ξ) maps P to Q. Then the
equivalence

χ̃P • 0ξ ≡̃ χ̃Q

holds.

Proof. For the first formulas apply the defining relations of ≡̃. For the second point
it suffices to prove the result when the sequence ξ has length 1, i.e. is a point in S
or its inverse. By symmetry we may assume that ξ is a point w in S. The result is
proved inductively on the length of w. If w is Λ, the computation of χ̃P from χ̃P0 ,
χ̃P10 and χ̃P11 where P is P0[P10[P11]] gives the result by applying the first relation
of (i). If u is ev with e = 0 or e = 1, then the computation of χ̃P from χ̃P0 and
χ̃P1 where P is P0[P1] gives the result using the induction hypothesis and the second
formula of (i).
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Because the congruence ≡̃ is compatible with left concatenation and bar oper-
ation, the bracket on S

sym induces a welldefined bracket on the group B̃∞ (as well
as on any further quotient of B̃∞ whenever the compatibility with left concatenation
holds).

Definition.- The subgroup of B̃∞ generated by all σ̃w where w begins with 0
(resp. with 1) will be denoted H0 (resp. H1).

By the previous lemma, the bracket on B̃∞ induces a welldefined bracket on
the set of right cosets B̃∞/H0, and this bracket is left distributive. One obtains an
‘algebraic’ translation of the Irreflexivity Conjecture in B̃∞ as follows.

Proposition 4.- Assume that for k ≥ 1 the subgroup H0 does not intersect the set
(H1.σ̃Λ)k.H1. Then the Irreflexivity Conjecture is true.

Proof. By 1.6 it suffices to show that the closure of H0 in B̃∞/H0 under bracket is an
irreflexive LD-magma. This closure is the image of Tx under the mapping

ϕ : P �→ σ̃(χ̃P )H0,

so the point is to prove ϕ(P ) �= ϕ(Q), i.e.

σ̃(χ̃P • χ̃Q) /∈ H0,

whenever Q is P [Q1]. . .[Qk]. The explicit value of χ̃P •χ̃Q in the latter case is

1χ̃Q1 • Λ • 1χ̃P • 1χ̃Q2 • Λ • 1χ̃P [Q1] • . . . • 1χ̃Qk
• Λ • 1χ̃P [Q1]. . .[Qk−1],

hence σ̃(χ̃P •χ̃Q) belongs to the set (H1.σ̃Λ)k.H1.

In order to establish the condition above, we shall use more geometrical proper-
ties of left distributivity, namely the ones involved in Lemma 1.4. The idea is that the
exponent of the iterated left subterm which appears in this lemma can be computed
effectively using only the classes in B̃∞. In the sequel we use the free submonoid S∗

of S
sym generated by S. The elements of S∗ will be refered to as positive sequences.

Let us call LD-pairs the pairs of the forms {u•u1•u, u1•u•u1•u0}, {u•u11v, u11v•u},
{u•u10v•u00v, u0v•u}, {u•u01v, u10v•u}, {u0v•u1w, u1w•u0v}. We denote by ≡̃+ the
congruence on S∗ generated by all LD-pairs. Then ≡̃ is the congruence generated by
≡̃+ together with all pairs {x•x, ε} and {x•x, ε} for x in S, but there is no a priori
reason why ≡̃+ should coincide with the restriction of ≡̃ to S∗.
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Definition.- Let X be a positive sequence in S∗. For p a nonnegative integer, the
dilatation of p by X and the p-th trace of X are the integer Dil(p, X) and the positive
sequence Trp(X) inductively defined by the following rules

Dil(p, ε) = p; Trp(ε) = ε;

Dil(p, w) =
{

p + 1 if (∃i < p)(w = 0i),
p otherwise;

Trp(w) =
{

v if w = 0pv,
ε if 0p is not a prefix of w;

Dil(p, X•v) = Dil(Dil(p, X), v) Trp(X•v) = Trp(X)•TrDil(p,X)(v).

An immediate induction shows that for every sequence X the successive values of
Dil(p, X) make a strictly increasing sequence, and in particular Dil(p, X) is always at
least p. Observe that Tr0(X) is always X, and Dil(0, X) is always 0. The geometrical
intuition for these notions are given by the following effective version of Lemma 1.4.

Lemma 5.- Assume that X is a positive sequence and that Ω(X) maps P to Q.

Assume moreover that Sp
L(P ) exists, or that S

Dil(p,X)
L (Q) exists, or that Trp(X) is

nonempty. Then Ω(Trp(X)) maps Sp
L(P ) to S

Dil(p,X)
L (Q).

Proof. Use induction on the length of X, and distinguish the various possible cases
when X is just a point in S.

Using induction on the length of the positive sequence Y , one extends the product
formula of the definition, obtaining for any X, Y in S∗ the equalities

Dil(p, X • Y ) = Dil(Dil(p, X), Y ), Trp(X • Y ) = Trp(X) • TrDil(p,X)(Y ).

A similar induction shows that Trp is the p-th iterate of Tr1 (henceforth denoted by
Tr), and that the following equalities hold

Dil(p + q, X) = Dil(p, X) + Dil(q, Trp(X)), Trp+q(X) = Trp(Trq(X)).

The main result about dilatation and trace is the following compatibility with the
congruence ≡̃+. This expresses a connection with the projection on B̃∞, to be com-
pared with the compatibility with the projection on GLD claimed in Lemma 5.

Lemma 6.- Assume that X, Y are positive sequences and X ≡̃+ Y holds. Then the
formulas

Dil(p, X) = Dil(p, Y ), Trp(X) ≡̃+ Trp(Y )

hold for every p ≥ 0.

12



Proof. Using the product formulas above, it suffices to prove the result when {X, Y }
is an LD-pair. One then reduces to the case where the greatest common prefix of
the points in X and Y is Λ using the following rules

Dil(p, uZ) =
{

Dil(p − k, Z) + k if u is 0k with k ≥ p,
p otherwise;

Trp(uZ) =

{
Trp−kZ if u is 0k with k ≤ p,
vZ if u is 0pv,
ε otherwise.

A direct computation in the finitely many remaining cases completes the proof.

In the sequel, we write dil(X) for Dil(1, X). We observed that, for any terms P ,
Q, the operator Ω(χ̃P •χ̃Q) maps the term P [x [n]] to the term Q[x [n]]. By Lemma 1.3,
we know that these terms have a common extension R, so that there must exist
positive sequences X, Y in S∗ such that the operators Ω(X) and Ω(Y ) map P [x [n]]
and Q[x [n]] respectively to R, and therefore the operator Ω(X•Y ) maps P [x [n]] to
Q[x [n]]. Assume that the sequences χ̃P •χ̃Q and X•Y are ≡̃-equivalent. Lemma 2
indicates that S

dil(X)
L (R) is an extension of P , and S

dil(Y )
L (R) is an extension of Q.

So if the Irreflexivity Conjecture is true, the equality dil(X) = dil(Y ) holds exactly if
and only if the terms P and Q are ≈LD-equivalent. The previous argument is far from
complete, but it suggests to compare terms P , Q by writing χ̃P •χ̃Q as the quotient
of two positive sequences and to compare the associated dilatations. The algebraic
hypotheses which are needed for making this scheme correct are easily formulated.

Definition.- Assume that � and �+ are congruences respectively on X
sym and X∗.

We say that the pair (�,�+) has the right quotient property if every sequence ξ in
X

sym is �-equivalent to a quotient X•Y of positive sequences, and if moreover there
exists positive sequences Z, Z ′ satisfying

X • Z �+ X ′
• Z ′ , Y • Z �+ Y ′

• Z ′

whenever the positive sequences X, Y , X ′, Y ′ satisfy X•Y � X ′•Y ′.

Proposition 7.- Assume that the pair (≡̃, ≡̃+) has the right quotient property. Then
the Irreflexivity Conjecture is true.

Proof. Define the sign of an element x of B̃∞ as the sign (with value in {−1, 0,+1})
of the difference dil(X) − dil(Y ) where X, Y are positive sequences satisfying x =
σ̃(X•Y ). This makes sense because such expressions are supposed to exist, and the
right quotient property gives the independence from the choice of the decomposition.
Indeed if X•Y and X ′•Y ′ are ≡̃-equivalent, there exist Z, Z ′ satisfying

X • Z ≡̃+ X ′
• Z ′ , Y • Z ≡̃+ Y ′

• Z ′,
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so one obtains

Dil(dil(X), Z) = dil(X • Z) = dil(X ′
• Z ′) = Dil(dil(X ′), Z ′),

and similarly Dil(dil(Y ), Z) = Dil(dil(Y ′), Z ′). Because the mappings p �→ Dil(p, Z)
and p �→ Dil(p, Z ′) are injective, the order between dil(X) and dil(Y ) has to be the
same as the order between dil(X ′) and dil(Y ′).

Now we observe that, for positive sequences X, Y , X ≡̃ Y holds if and only if
X•Z ≡̃+ Y •Z holds for some positive sequence Z. Indeed X ≡̃ Y implies X•Y ≡̃ ε,
and there must exist Z, Z ′ satisfying X•Z ≡̃+ Z ′ and Y •Z ≡̃+ Z ′. It follows that, for
any positive sequences Y , Z, there must exist (positive) sequences Y ′, Z ′ satisfying
Y •Y ′ ≡̃+ Z•Z ′. Indeed there exist Y ′′, Z ′′ satisfying Y •X ≡̃ Y ′′•Z ′′, hence Y •Y ′′ ≡̃
Z•Z ′′, and, by the previous remark, one has Y •Y ′′•X ≡̃+ Z•Z ′′•X for some positive
sequence X.

Let ξ be an arbitrary sequence and w a point in S. We compare the signs of σ̃(ξ)
and σ̃(ξ•w). Choose positive sequences X, Y , Y ′, Z satisfying

ξ ≡̃ X • Y and Y • Y ′ ≡̃+ w • Z.

One has ξ•w ≡̃ X•Y ′•Z, so the sign of σ̃(ξ•w) is determined by the comparison of
the integers dil(X•Y ′) and dil(Z). One finds

dil(Z)
{

= Dil(1, Z) = dil(w • Z) = dil(Y • Y ′) if w �= Λ,
< Dil(2, Z) = dil(w • Z) = dil(Y • Y ′) if w = Λ.

If w is not Λ, the sign of σ̃(X•Y ′•Z) is the sign of σ̃(X•Y ′•Y ′•Y ), i.e. σ̃(ξ•w) and
σ̃(ξ) have the same sign. If w is Λ, the sign of σ̃(X•Y ′•Z) is +1 whenever dil(X•Y ′) ≥
dil(Y •Y ′) holds. This means that σ̃(ξ•w) has sign +1 whenever the sign of σ̃(ξ) is
0 or +1. It follows that the sign of any element in H0 is 0, while the sign of any
element in (H1.σ̃(Λ))k.H1 is +1 whenever k is positive, and therefore these sets are
disjoint.

The proof of right quotient property for the pair (≡̃, ≡̃+) will be the task of the
next sections.

3. Groups with complemented presentations.

The presentation used to define the group B̃∞ has some specific syntactical prop-
erties. In particular the LD-pairs which generate it only involve positive sequences,
and moreover for every u, v in S, positive sequences X, Y exist such that {u•X, v•Y }
is an LD-pair. We establish in this section a criterion for proving the right quotient
property for such types of congruences. The method developed below is close to Gar-
side’s analysis of the braid broups [12], and turns out to be a variant of Thurston’s
approach in [23].
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Throughout this section we assume that X is any set and that � is a congruence
on X

sym such that X
sym

/� is a group.

Definition.- Assume that f is a mapping of X2 to X∗ such that f(x, x) is ε for x in
X. We say that f is a right complement for � if the pairs {x•f(y, x), y•f(x, y)} with
x, y in X generate � when completed with all pairs {x•x, ε} and {x•x, ε}.

Example. A typical example of a congruence admitting a right complement is the
braid congruence ≡ on the set of positive integers. The complement cR is defined by

cR(i, j) =

 i if |i − j| ≥ 2,
i • j if |i − j| = 1,
ε if i = j.

We assume in the sequel that the congruence � admits the mapping f as a
right complement. We denote by �+ the congruence on X∗ generated by the pairs
{x•f(y, x), y•f(x, y)}. Clearly �+ is a refinement of the restriction of � to positive
sequences. By definition the monoid X∗/�+ admits the following weak form of right
regularity

(∀x, y ∈ X)(∃X, Y ∈ X∗)(x • X �+ y • Y ).

We try to extend this property to arbitrary positive sequences. A simple iteration is
not sufficient in general, for the termination of the process is problematic whenever
the length of the complement f(x, y) may be bigger than 1. Nevertheless the iteration,
when it terminates, leads to a welldefined unique result.

Definition.- For ξ, η in X
sym, say that ξ is 1-reducible to η (on the right and w. r. to f)

if there are two elements x, y of X and sequences ξ′, ξ′′ satisfying

ξ = ξ′ • x • y • ξ′′ , η = ξ′ • f(y, x) • f(x, y) • ξ′′.

The sequence ξ is p-reducible to η if there is a length p+1 sequence from ξ to η such
that each term is 1-reducible to the next one.

Lemma 1.- Assume that the sequence ξ is p-reducible to η and q-reducible to Y •Z,
where Y , Z are positive sequences. Then p ≤ q holds and η is (q − p)-reducible to
Y •Z.

Proof. First we observe that, if ξ is 1-reducible to η and ζ, there must exist a
sequence ξ′ and an integer p′ ≤ 1 such that both η and ζ are p′-reducible to ξ′

(where 0-reducibility means equality). Then an induction on p + q shows that, if ξ
is p-reducible to η and q-reducible to ζ, then there exists a sequence ξ′ and integers
p′ ≤ q, q′ ≤ p such that p′ + q′ = p + q holds, η is p′-reducible to ξ′ and ζ is
q′-reducible to ξ′. Now assume the hypothesis of the lemma. There must exist a
sequence ξ′ and integers p′, q′ with p+p′ = q+q′ such that η is p′-reducible to ξ′ and
Y •Z is q′-reducible to ξ′. But a sequence Y •Z is necessarily terminal with respect to
reduction, so q′ is 0, ξ′ is equal to Y •Z and p′ is q − p.
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Reduction can be illustrated using the Cayley diagram, an oriented graph where
the edges wear labels in X. A sequence in X

sym is associated with every (unoriented)
path in the graph by concatening the successive labels of its edges, with the convention
that the edge labelled x contributes x when gone over according to its orientation
and x in the opposite case. If the sequence ξ reduces to η, the welldefined number
p such that ξ is p-reducible to η holds is the number of connected domains in the
associated Cayley diagram. The figure below illustrates the reduction of 3•1•2•1•2 to
1•1•2•3•2•3•1 using the braid complement cR.

Reduction can be used to construct both �-equivalent sequences in X
sym and

�+-equivalent sequences in X∗. The following lemma shows that two paths in the
Cayley diagram with the same ends must be �-equivalent, and even �+-equivalent if
all edges are gone over positively.

Lemma 2.- If the sequence ξ reduces to η, then ξ � η holds. If X, Y , X ′, Y ′ are
positive sequences and X•Y reduces to X ′•Y ′, then X•X ′ �+ Y •Y ′ holds.

Proof. The first point follows from an easy induction since x•y is �-equivalent to
f(y, x)•f(x, y) for every x, y in X. For the second point use induction on the length
of the reduction.

Definition.- i) For ξ in X
sym, we say that ξ is fully reducible (on the right and with

respect to f) if there exist positive sequences Y , Z such that ξ reduces to Y •Z.
These (unique) positive sequences will be called respectively, if they exist, the (right)
numerator and (right) denominator of ξ (with respect to f) and denoted by Nf (ξ) and
Df (ξ). The complement mapping f is convergent if every sequence is fully reducible
with respect to f .
ii) For ξ, η in X

sym, the (right) complement of ξ in η, written Cf (ξ, η), is the numerator
of η•ξ, and the (right) join of ξ and η, written Jf (ξ, η), is the sequence ξ•Cf (η, ξ) (if
they exist).
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With these notations the equivalence

ξ � Nf (ξ) • Df (ξ)

holds for all fully reducible sequences ξ. Every positive sequence is fully reducible
and its denominator is empty.

Lemma 3.- i) For ξ in X
sym

, ξ is fully reducible if and only if ξ is fully reducible if
and only if Cf (ξ, ε) and Cf (ε, ξ) exist. In this case one has

Nf (ξ) = Df (ξ) = Cf (ξ, ε) , Df (ξ) = Nf (ξ) = Cf (ε, ξ).

ii) For ξ, η in X
sym

, Cf (ξ, η) exists if and only if ξ, η and Nf (η)•Nf (ξ) are fully
reducible. In this case Cf (ξ, η) exists and is equal to Df (η)•Cf (Nf (ξ),Nf (η)). More-
over one has

Jf (ξ, η) � Jf (η, ξ),

and, in the case of positive sequences X, Y , even

Jf (X, Y ) �+ Jf (Y, X).

For x, y in X, Cf (x, y) exists and is equal to f(x, y).
iii) For ξ, η, ζ in X

sym
, Cf (ξ, η•ζ) exists if and only if Cf (ξ, η) and Cf (Cf (ξ, η), ζ)

exist. In this case one has

Cf (ξ, η • ζ) = Cf (Cf (ξ, η), ζ) , Cf (η • ζ, ξ) = Cf (η, ξ) • Cf (ζ,Cf (ξ, η)).

Proof. Use induction on the lengths of the sequences and the fact that any subse-
quence of a fully reducible sequence must be fully reducible.

The full reducibility of a sequence in X
sym expresses the existence of a decompo-

sition as a quotient of positive sequences, which is the first part in the right quotient
property of the pair (�,�+). For the second part we need stronger assumptions. The
existence of a complement mapping for the congruence � is a rather weak hypothe-
sis which becomes interesting only when some compatibility is assumed between the
congruence �+ and the complement mapping itself viewed as a binary operation on
positive sequences. The nice point is that the most elementary occurrence of this
compatibility turns out to be a sufficient condition in good cases.

Lemma 4.- The following are equivalent
i) for every positive sequence X, the lengths of the X ′ in X∗ satisfying X �+ X ′

have a finite upper bound;
ii) there exists a �+-invariant mapping ν of X∗ to the natural numbers such that

ν(X•Y ) ≥ ν(X) + ν(Y ) holds for every X, Y and ν(x) is positive for every x in X.
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The proof is immediate. A mapping as in (ii) above will be called a norm for �+.

Definition.- The mapping f is coherent (on the right) if for every x, y, z in X, the
sequences

Cf (f(x, y), f(z, y)) and Cf (f(x, z), f(y, z))

exist and are �+-equivalent.

The following criterion is reminiscent of the one used in [12] to establish left
cancellativity for the monoid of positive braids.

Lemma 5.- Assume that f is coherent and the congruence �+ is normed. Then for
every sequences X, Y , X ′, Y ′ in X∗, the following are equivalent

i) X•X ′ �+ Y •Y ′ holds,

ii) the sequences Cf (X, Y ) and Cf (Y, X) exist and for some Z in X∗ the equiv-
alences

X ′ �+ Cf (Y, X) • Z , Y ′ �+ Cf (X, Y ) • Z

are satisfied.

Proof. By Lemma 3.ii, the second point implies the first one. Assume now that
Cf is coherent and ν is a �+-norm on X∗. Write X �+

1 Y if either X is equal to
Y or Y is obtained from X by replacing exactly one subsequence x•f(y, x) by the
corresponding pattern y•f(x, y). For p ≤ ∞ the p-th power of �+

1 is denoted by �+
p.

For k, n, p in N ∪ {∞} let Sk
n,p be the following statement

“Assume X•X ′ �+
p Y •Y ′, ν(X•X ′) ≤ n, ν(X) ≤ k and ν(Y ) ≤ k. Then

Cf (X, Y ) and Cf (Y, X) exist, and some Z in X∗ satisfies X ′ �+ Cf (Y, X)•Z
and Y ′ �+ Cf (X, Y )•Z.”

We observe that S∞
0,∞ is true since the empty sequence ε is the only positive sequence

with norm 0. The statement S1
∞,1 is a consequence of the definition of a complement

mapping. Then one shows inductively on p ≥ 1 that the conjunction of S∞
n,∞ and

S1
n+1,1 implies S1

n+1,p for every p, and therefore S1
n+1,∞. The coherence of f is used

in each step of this induction. Finally one shows inductively on k ≥ 1 that the
conjunction of S∞

n,∞ and S1
n+1,∞ implies S∞

n+1,k for every k, and therefore S∞
n+1,∞.

The existence of the norm and the formulas of Lemma 3.iii are used. Because S1
n+1,1

is true, S∞
n,∞ implies S1

n+1,∞, and therefore S∞
n+1,∞. So since S∞

1,∞ is true, S∞
∞,∞

certainly holds, which is the desired conclusion.

For positive sequences X, Y , say that X divides Y (on the right) if X �+ Y •Z
holds for some (positive) sequence Z.
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Lemma 6.- Assume that f is coherent and the congruence �+ is normed.

i) For every X, Y in X∗, X �+ Y holds if and only if Cf (X, Y ) and Cf (Y, X) both
exist and are empty i.e. if and only if X•Y reduces to ε.

ii) For every X, Y , Z in X∗, Z•X �+ Z•Y implies X �+ Y .

iii) If X divides Y and Y divides X, then X �+ Y holds. The join Jf (X, Y ) is exactly
a lower common multiple of X and Y .

iv) The congruence �+ is compatible with the binary operations Cf and Jf .

Proof. (i) Assume X �+ Y . Then X•ε �+ Y •ε holds as well, so by Lemma 5
the sequences Cf (X, Y ) and Cf (Y, X) exist and some sequence Z satisfies ε �+

Cf (Y, X)•Z �+ Cf (X, Y )•Z. The only possibility is Cf (X, Y ) = Cf (Y, X) = Z = ε.
The converse is obvious.
(ii) Assume Z•X �+ Z•Y . Then for some Z ′, the sequences X and Y are �+-
equivalent to Cf (Z, Z)•Z ′ (i.e. to Z).
(iii) Assume Y �+ X•Z and X �+ Y •Z ′. One has X �+ X•Z ′•Z, whence ε �+ Z ′•Z
by (ii). The existence of the norm implies Z = Z ′ = ε. Then the following version of
Gauss’ lemma holds: if X divides the product Y •Z, then Cf (X, Y ) exists and divides
Z. Now assume that X and Y divide Z. Some X ′, Y ′ satisfy Z �+ X•X ′ �+ Y •Y ′.
By Lemma 5 some sequence Z ′ satisfies X ′ �+ Cf (Y, X)•Z ′ and Y ′ �+ Cf (X, Y )•Z ′,
which implies

Z �+ X • Cf (Y, X) • Z ′ = Jf (X, Y ) • Z ′,

and Jf (X, Y ) divides Z.
(iv) Assume that X �+ X ′ holds and Cf (Y, X) exists. Then Y divides X•Cf (Y, X),
hence Y divides X ′•Cf (Y, X) as well. By ‘Gauss’ lemma’ Cf (Y, X ′) exists and divides
Cf (Y, X). By symmetry Cf (Y, X ′) must be �+-equivalent to Cf (Y, X). Similarly X
divides Y •Cf (X, Y ). Hence so does X ′. By Gauss’ lemma again Cf (X ′, Y ) exists,
divides Cf (X, Y ), and by symmetry, is �+-equivalent to Cf (X, Y ).

Thus the operations Cf and Jf induce welldefined (partial) operations on the
monoid X∗/�+. If f is convergent one obtains using the projection of Jf a semilattice
structure and Cf is distributive with respect to Jf . It is now easy to express the
algebraic properties we were looking for in terms of the complement mapping.

Proposition 7.- i) Assume that the congruence � admits a coherent right com-
plement mapping and that �+ is normed. Then the monoid X∗/ �+ admits left
cancellation.

ii) Assume moreover that the complement mapping is convergent. Then the monoid
X∗/�+ is right regular and the pair (�,�+) has the right quotient property.
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Proof. Owing to Lemmas 5 and 6, only the last point remains to be proved. We use
the above notations. We already observed that the existence assumption in the right
quotient property is certainly satisfied whenever every sequence is fully reducible.
In order to establish the uniqueness assumption write (X, Y ) ∼ (X ′, Y ′) if some
(positive) sequences Z, Z ′ satisfy

X • Z �+ X ′
• Z ′ , Y • Z �+ Y ′

• Z ′.

Clearly (X, Y ) ∼ (X ′, Y ′) implies X•Y � X ′•Y ′. To establish the converse implica-
tion, we prove that ξ � ξ′ implies

(Nf (ξ),Df (ξ)) ∼ (Nf (ξ′),Df (ξ′)).

This suffices to conclude since X and Y are respectively the numerator and denom-
inator of X•Y . Now the relation ∼ is transitive because the monoid X∗/�+ is right
regular. So it suffices to establish the implication for a family of particular pairs {ξ, ξ′}
which generates � as an equivalence relation. We consider the pairs {ξ•η•ζ, ξ•η′•ζ}
where {η, η′} is either a special pair, or a pair {y•y, ε}, or a pair {y•y, ε} with y in
X. In the first case, the compatibility of �+ with Cf and the formulas in Lemma 3
imply that the numerators of ξ•η•ζ and ξ•η′•ζ are �+-equivalent, and so are the
denominators. In the second case, the sequence ξ•η′•ζ is 1-reducible to ξ•η•ζ, so
their numerators and denominators are respectively equal. For the third case, set
X = Nf (ξ), X ′ = Df (ξ), Z = Nf (ζ), Z ′ = Df (ζ). By applying the formulas of
Lemma 3 and the coherence of Cf one obtains

Nf (ξ • y • y • ζ) = X • Cf (y, X ′) • (Cf (Cf (Z, y),Cf (X ′, y))
�+ X • Cf (y, X ′) • Cf (Cf (Z, X ′),Cf (y, X ′))
�+ X • Cf (Z, X ′) • Cf (Cf (y, X ′),Cf (Z, X ′))
�+ Nf (ξ • ζ) • Cf (Cf (y, Z),Cf (X ′, Z))

Df (ξ • y • y • ζ) = Z ′
• Cf (y, Z) • (Cf (Cf (X ′, y),Cf (Z, y))

�+ Z ′
• Cf (y, Z) • Cf (Cf (X ′, Z),Cf (y, Z))

�+ Z ′
• Cf (X ′, Z) • Cf (Cf (y, Z),Cf (X ′, Z))

�+ Df (ξ • ζ) • Cf (Cf (y, Z),Cf (X ′, Z))

In the three cases one obtains

(Nf (ξ • η • ζ),Df (ξ • η • ζ)) ∼ (Nf (ξ • η′
• ζ),Df (ξ • η′

• ζ)),

which completes the proof.

Further properties of the congruence �+ can be expressed in terms of the right
complement when it exists. The following criterion for the embeddability of the
monoid X∗/�+ into a group follows the classical Ore’s theorem.
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Proposition 8.- Assume that the congruence � admits a coherent and convergent
right complement mapping f and that �+ is normed. Then the following are equiv-
alent

i) the monoid X∗/�+ admits right cancellation;
ii) the congruence �+ is the restriction of � to X∗, and the monoid X∗/ �+ is

(isomorphic to) the submonoid of X
sym

/� generated by X;
iii) Cf (X, Y ) �+ Cf (Y, X) implies Cf (X, Y ) = Cf (Y, X) = ε.

Moreover, if these conditions are satisfied, the word problem for (Xsym
,�) is decid-

able.

Proof. The right quotient property for the pair (�,�+) immediately implies the
equivalence of (i) and (ii). Now assume that X, Y are positive sequence and
Cf (X, Y ) �+ Cf (Y, X) holds. Then one has

X • Cf (Y, X) �+ Y • Cf (X, Y ) �+ Y • Cf (X, Y ),

which implies X �+ Y if right cancellation is allowed, and therefore Cf (X, Y ) = ε.
Conversely assume X•Z �+ Y •Z. Define sequences Xn, Yn by

X0 = X, Y0 = Y, Xn+1 = Cf (Xn, Yn), Yn+1 = Cf (Yn, Xn).

Starting from Z−1 = X•Z, one obtains inductively by Lemma 5 positive sequences
Zn satisfying Zn−1 �+ Xn•Zn �+ Yn•Zn. By the existence of a norm the sequences
Xn and Yn have to be empty for n large enough. Now if condition (iii) holds, then
the equalities Xn+1 = Yn+1 = ε imply Xn = Yn = ε for n ≥ 1. So one deduces
X1 = Y1 = ε, which gives X0 �+ Y0, and right cancellation is allowed in X∗/�+.

For the word problem of (Xsym
,�), observe that, for any sequence ξ in X

sym,
ξ � ε is equivalent to Nf (ξ) � Df (ξ). If �+ is the restriction of � to positive
sequences, the latter relation is equivalent to the fact that Df (ξ)•Nf (ξ) is reducible
to ε. This gives an algorithmic method for deciding ξ � ε by means of a double
reduction.

4. The complement mapping for B̃∞.

We apply the method developed in the previous section to the case of the con-
gruence ≡̃ which presents the group B̃∞ as a quotient of S

sym. We say that a point x
in S is a prefix of the point y if y = xz holds for some z, and consider the mapping
c̃ of S2 to S∗ defined by

c̃(u, v) =


v if v is not a prefix of u1, or v11 is a prefix of u,
u • v • u0 if u1 = v,
ε if u = v,
v10w • v00w if u = v0w,
v01w if u = v10w.
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Lemma 1.- The mapping c̃ is a right complement for the congruence ≡̃, and is
compatible with left concatenation in S: c̃(wu, wv) is always equal to wc̃(u, v).

Proof. Easy from the examination of the LD-pairs.

In the sequel, we use the notations Ñ, D̃, C̃, J̃ to refer to the right numerator,
denominator, complement, join associated with the complement mapping c̃ on S

sym.
In order to prove that the pair (≡̃, ≡̃+) has the right quotient property, we have have
to establish the three criteria of Proposition 3.7.

Lemma 2.- The congruence ≡̃+ is normed.

Proof. We use the action of Ω on terms. Define the size of a term P as the number
of nodes in P when viewed as a tree. If Z is any positive sequence in S∗, the
transformation Ω(Z) strictly increases the size of each term in its domain. We know
that X ≡̃+ X ′ implies Ω(X) = Ω(X ′), so for any X the lengths of the sequences X ′

which are ≡̃+-equivalent to X are bounded by the difference between the sizes of the
terms Q and P where (P, Q) is any pair of terms such that Ω(X) maps P to Q.

Proposition 3.- The complement mapping c̃ is coherent.

Proof. This is a brute force verification. For all possible mutual positions of the
points u, v, w in S, we have to verify the existence and ≡̃+-equivalence of the sequences
C̃(c̃(u, v), c̃(w, v)) and C̃(c̃(u, w), c̃(v, w)) by reducing the corresponding sequences.
The number of different cases is very large, but many cases are easy (for instance if at
least two points are equal) and some symmetry can be used to remove some patterns.
If one point is prefix-incomparable with the greatest common prefix of the other two
ones, the sequences above are quickly shown to be equal. The serious case is when
one point is a prefix of the greatest common prefix of the other ones. Owing to the
compatibility of c̃ (and therefore of C̃) with left concatenation, one can assume that
the first point is Λ. We shall not give the details. It turns out that the critical case is
(not surprinsingly) the case of the triple (Λ, 1, 11) and its permutations. The explicit
values are{

C̃(c̃(Λ, 1), c̃(11, 1)) = C̃(Λ • 1 • 0, 11 • 1) = Λ • 1 • 0 • 11 • 01 • 10 • 00
C̃(c̃(Λ, 11), c̃(1, 11)) = C̃(Λ, 1 • 11 • 10) = Λ • 1 • 11 • 10 • 0 • 01 • 00

are the equivalence is easy. Similarly one obtains{
C̃(c̃(1, 11), c̃(Λ, 11)) = C̃(1 • 11 • 10,Λ) = 1 • Λ • 11 • 1 • 01 • 0
C̃(c̃(1,Λ), c̃(11,Λ)) = C̃(1 • Λ, 11) = 1 • 11 • 10 • Λ • 1 • 0

with the same conclusion.
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It follows that Proposition 3.7 applies to the monoid S∗/ ≡̃+, which therefore
admits left cancellation (a property which was quoted as the missing part in the
‘natural’ attempts to prove the Irreflexivity Conjecture using the monoid C+

LD).

We observed that the braid group B∞ is a quotient of the group B̃∞ by comparing
their presentations using the congruences ≡ and ≡̃. This compatibility extends to the
complement mappings.

Lemma 4.- The projection � is an homomorphism with respect to c̃ and cR.

Proof. A simple verification.

It follows that the complement cR is coherent, and that the pair (≡+,≡) has
the right quotient property (the equivalence ≡+ on positive braid words is certainly
normed since it merely preserves the lengths of the sequences). This corresponds
to the proof of left cancellability in the monoid B+

∞ of positive braids given in [12].
For every sequence ξ in S

sym, the cR-reduction of ξ� is the projection of the c̃-
reduction of ξ. So using the notations NR, DR, CR, JR for the (right) numerator,
denominator, complement, join associated with cR, we have the following formulas
(when the sequences are fully reducible for c̃, which will be proved to always happen
in Section 6)

(Ñ(ξ))� = NR(ξ�) (D̃(ξ))� = DR(ξ�),

(C̃(ξ, η))� = CR(ξ�, η�) (J̃(ξ, η))� = JR(ξ�, η�).

The braids relations are reversible. So, if we introduce the symmetric notion
of a left complement by using the pairs {f(y, x)•x, f(x, y)•x} instead of the pairs
{x•f(y, x), y•f(x, y)} in the definition, the congruence ≡ must admit a left comple-
ment cL as well. This left complement is defined by

cL(i, j) =

 i if |i − j| ≥ 2,
j • i if |i − j| = 1,
ε if i = j.

We shall denote by NL, DL, CL, JL the operations associated with left reductions
using cL. By [12] (or anticipating the results of Section 6), the monoid B+

∞ is regular,
hence every braid word α is fully reducible (on the left and on the right). The pair
(≡,≡+) has both the right and the left quotient properties (with the obvious definition
of the latter notion), and the following formulas are satisfied

α ≡ NR(α) • DR(α) ≡ DL(α) • NL(α),
NL(αrev) = (NR(α))rev , DL(αrev) = (DR(α))rev,
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where γrev denotes the sequence obtained from γ by reversing the order of all factors.
The above decompositions of braid words as quotients of positive sequences need
not be unique: ≡-equivalent sequences need not to have ≡+-equivalent numerators
and denominators. But when both reductions are combined, one obtains an intrinsic
decomposition. For α in N

sym

+
set{

NLR(α) = NL(NR(α)DR(α)),
DLR(α) = DL(NR(α)DR(α)).

Proposition 5.- Every braid word α satisfies α ≡ DLR(α)•NLR(α), and the classes
of NLR(α) and DLR(α) in B+

∞ only depend on the class of α in B∞.

Proof. Because the pair (≡,≡+) has the right quotient property, we know that, if α
and α′ are �-equivalent, there exist positive sequences Z, Z ′ satisfying

NR(α) • Z ≡+ NR(α′) • Z ′ and DR(α) • Z ≡+ DR(α′) • Z ′.

By definition of the left reduction, one has

NL(NR(α) • DR(α)) = NL(NR(α) • Z • Z • DR(α))

≡+ NL(NR(α′) • Z ′
• Z ′ • DR(α′))

= NL(NR(α′) • DR(α′)),

and a similar relation holds for denominators.

The previous result can be applied to extend to arbitrary braid words any normal
form defined for positive braid words (such as the ones described in [10] or [23]). But
alternatively it can be used to describe an algorithm for comparing braid words
without using any type of normal form (this suggests that the method could be
proved to be optimal in some sense).

Proposition 6.- The braid word α is ≡-equivalent to the trivial word if and only if
the words NLR(α) and DLR(α) are empty.

Proof. The empty sequence is the only positive sequence which is equivalent to ε.

The algorithmic complexity of the determination of the LR-numerator and de-
nominator will be computed at the end of Section 6. Observe that (owing to the
formulas above expressing the L-operations in terms of the R-operations) the com-
parison method above coincides with the one deduced from Proposition 3.8.
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By examining again the generating relations of ≡̃, one easily defines a left com-
plement for ≡̃. But this complement has no interest because it heavily fails to be
coherent and convergent. Actually most of the properties of B∞ can be lifted to B+

∞ ‘on
the right’, but not ‘on the left’. In particular the question of the right cancellability
in the monoid S∗/ ≡̃+ remains open for the moment.

5. Simple sequences.

It remains to prove that the complement mapping c̃ for ≡̃ is convergent, i.e. that
every reduction using c̃ must terminate. By Proposition 3.7 this property is equiva-
lent to the right regularity of the monoid S∗/ ≡̃+. Now Lemma 1.3 nearly claims that
the monoid C+

LD, which is a quotient of S∗/ ≡̃+ and is supposed to resemble it, is right
regular. Unfortunately the proof of Lemma 1.3 given in [4] uses the action on terms
and distribution in an essential way so that there is no obvious way for simply lifting
the regularity result from C+

LD to S∗/ ≡̃+. On the other hand a direct proof that every
sequence in S

sym is fully reducible is quite problematic for the lengths of the sequences
may increase in the reduction process. Garside’s solution for the similar question in
the case of braid groups Bn uses the fundamental words ∆n. Such a global tool
can be used only in finitely generated groups. This solution cannot be extended to
the case of GLD, which, in contradistinction to B∞, has no natural finitely generated
approximations. We shall see at the end of Section 6 that the method developed
below is a kind of local version of Garside’s method.

The only situation where f -reduction in X
sym clearly has to terminate is the case

where for every x, y in X the sequence f(x, y) has length 0 or 1. This hypothesis is not
satisfied in the present case since e.g. c̃(Λ, 1) is Λ•1•0. In order to fall nevertheless
in the case above, we shall determine the closure Ŝ of S under the complement C̃
and replace S by this extended set. The correct definition will come once again from
the interpretation on terms given by the operator Ω. This section is devoted to a
description of the needed geometrical notions.

We use the following notations. For any sequence ξ in S
sym such that the identity

(LD)ξ is defined, the first and the second components of the pair (LD)ξ will be called
the initial and final terms of ξ respectively, and denoted by TI(ξ) and TF (ξ). Thus
the domain and images of the operator Ω(ξ) are respectively the sets Subst(TI(ξ))
and Subst(TF (ξ)). We already observed that, if X is a positive sequence, then the
term TI(X) is an injective term (this follows inductively from the fact that TI(Λ),
which is x1[x2[x3]], is injective). The term TF (X) is certainly not injective whenever
the sequence X is not the empty sequence.

Definition.- The term P is subinjective if, for every subterm Q of P , the rightmost
variable of Q (i.e. the last variable in the word Q) occurs only once in Q.
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An injective term is subinjective, but the converse is not necessarily true. For
instance the term TF (Λ), which is x1[x2][x1[x3]], and more generally all terms TF (w)
for w in S, are subinjective but not injective. Injective terms are useful in order to
follow the geometrical evolution of occurrences when distribution transformations are
operated. A close examination of the extensions of injective terms, and in particular
of the derived terms ∂P introduced in [4] suggests the following

Definition.- A positive sequence X is Ω-simple if the term TF (X) is a subinjective
term.

The idea is that the transformation associated with an Ω-simple sequence may
not distribute a subterm of a term inside itself. For instance the sequence Λ•Λ is not
Ω-simple because in the term TF (Λ•Λ), which is x1[x2][x1][x1[x2][x3]], the subterm
x1[x2] is distributed to its own subterm x1. In the sequel we denote by varR(P ) the
rightmost variable of the term P .

Lemma 1.- Let X be a positive sequence. Then the following are equivalent:
i) the sequence X is Ω-simple;
ii) the image of every injective term under the operator Ω(X) is subinjective;
iii) the image of some injective term under the operator Ω(X) is subinjective.

Proof. In order to prove that (i) implies (ii), assume that P is any injective term in
the domain of Ω(X). There exists a substitution σ such that P is TI(X)σ and the
image Q of P under Ω(X) is TF (X)σ. If R is any subterm of Q, then either R is a
subterm of some vσ for v a variable occurring in TF (X), and R must be injective
since vσ is a subterm of the injective term P , or there exists a subterm R′ of TF (X)
such that R is R′σ. In this case varR(R) is varR(varR(R′)σ), which occurs only once
in varR(R′)σ because the latter term is a subterm of P , and therefore only once in R
because R′ is subinjective. So Q is subinjective.

In order to prove that (iii) implies (i), assume that P is an injective term and
that Ω(X) maps P to a subinjective term Q. Assume that the term TF (X) is not
subinjective. There exists a subterm R of TF (X) such that varR(R) occurs at least
twice in R. But for some substitution σ the term Q is TF (X)σ, and the variable
varR(Rσ), which is (varR(R))σ, occurs at least twice in Rσ, and therefore the term
Q is not subinjective, a contradiction.

For P in TΣ and w in S short enough, we denote by Sw(P ) the subterm of the
term P with address w. The set of all w in S such that Sw(P ) exists is called the
support of the term P and denoted by Supp(P ). Then the size of P is the cardinality
of Supp(P ).

Lemma 2.- If the term Q is an extension of the term P and Q is subinjective, then
P must be subinjective.
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Proof. Assume that Q is an extension of P , and that P is not subinjective. We show
that Q is not subinjective. Clearly it suffices to show the result for the case when
some Ω(w) maps P to Q. Assume that the subterm Su(P ) witnesses for P being not
subinjective. We have to exhibit some point v such that the subterm Sv(Q) witnesses
for the similar property in Q. One considers the various possible mutual positions of
u and w. If u and w are prefix-incomparable, then Su(Q) is equal to Su(P ), and u
is convenient. If either w0 or w10 or w11 is a prefix of u, then Q includes at least
one copy of Su(P ), this copy is not subinjective, and Q having a nonsubinjective
subterm cannot be subinjective. If u is w1, then varR(Su(P )) is varR(Sw(P )), and by
definition it occurs at least once in Su10(P ) or twice in Su11(P ) So it occurs certainly
twice in Sw(Q). The argument is similar if u is w. Finally if u is a strict prefix of
w, applying Ω(w) to P cannot duplicate the variable varR(Sv(P )) and therefore P
cannot be subinjective.

Proposition 3.- Any subsequence of an Ω-simple sequence is Ω-simple.

Proof. Assume that X, Y , Z are positive sequences and Y is not Ω-simple. Let P
be any injective term in the domain of Ω(X•Y •Z), and let Q, R respectively be the
images of P under Ω(X•Y ) and Ω(X•Y •Z). Because Y is not Ω-simple, Q cannot
be subinjective, and therefore by Lemma 2 the term R cannot be subinjective. By
Lemma 1 this proves that the sequence X•Y •Z is not Ω-simple.

For the moment we have no syntactical characterization of the Ω-simple se-
quences. But it is easy to define on a purely syntactical way a family of Ω-simple
sequences. So exactly as in Section 2 where we substituted the study of the group B̃∞

to the study of GLD, we shall replace the study of Ω-simple sequences by the study
of the special sequences mentioned above. At the end both notions will coincide.

Definition.- i) For w in S and k in N, w(k) denotes the empty sequence if k is 0 and
the sequence w1k−1•w1k−2•. . .•w1•w otherwise.

ii) The set Ŝ is the least subset of S∗ which contains the empty sequence and is
closed for every integer k under the operation

(X, Y ) �→ Λ(k) • 1X • 0Y.

A positive sequence is said to be simple if is ≡̃+-equivalent to a sequence in Ŝ.

An easy induction shows that any sequence in Ŝ has a unique decomposition as

�∏
w∈S

w(kw)

where 〈kw;w ∈ S〉 is a sequence of integers with only finitely many positive values
and � is the linear ordering on S such that u�v holds if and only if either u is a strict
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prefix of v or there exists w such that w1 is a prefix of u and w0 is a prefix of v.
Indeed it suffices to show the uniqueness of the first factor Λ(kΛ). To this end observe
that Λ occurs at most once in any element of Ŝ, and that kΛ is the rank of this unique
occurrence in the sequence (where rank 0 means no occurrence). The integer kw will
be called the index of w in X, and will be denoted by ind(w, X). Notice that S is
included in Ŝ, for Λ is clearly simple, and for every w in S the sequence wX is in Ŝ
if (and only if) X is in Ŝ.

Lemma 4.- A simple sequence is Ω-simple.

Proof. Since X ≡̃+ X ′ implies Ω(X) = Ω(X ′), it suffices to show that, if X is in Ŝ, and
Ω(X) maps some injective term P to Q, then Q is subinjective. We do it inductively
on the size of the term P . The result is obvious if P is a variable. So assume that
P is not in Σ. By definition of Ŝ, there exists an integer k and sequences X0, X1 in
Ŝ such that X is Λ(k)•1X1•0X0. Let R0[R1] be the image of P under Ω(Λ(k)). An
easy computation shows that for e = 0, 1 the term Re is injective and that its size is
strictly below the size of P . So the induction hypothesis implies that the image R′

e

of Re under Ω(Xe) is subinjective. Now Q is R′
0[R

′
1], and clearly varR(R′

1), which is
varR(P ), does not occur in R′

0. So Q is subinjective.

The notion of a simple sequence in S∗ can be projected to the positive integers
using the braid projection. The geometrical meaning of the sequences so obtained is
easily described. With obvious notations, a positive braid word A is simple if and
only if it has a decomposition

A ≡+ σ1(k1) • σ2(k2) • . . ..

Simple braids are characterized algebraically as the divisors of the fundamental words
∆n (see the end of Section 6), and geometrically by the property that they can be
arranged so that any string crosses at most once any other string (this is obvious from
the above definition). For the moment we observe that the projection of braids onto
permutations is a bjection on simple braids. Let S(N) be the group of all permutations
of the nonnegative integers which eventually coincide with identity. Denote by Φ the
product of the canonical projections of S

sym onto B̃∞, of B̃∞ onto B∞ and of B∞ onto
S(N) .

Lemma 5.- The restriction of Φ to Ŝ is surjective. Two sequences X, X ′ in Ŝ have
the same image under Φ if and only if the indices of the points 1i in X and X ′ are
equal for every i ≥ 0.

Proof. Easy induction starting from the fact that the index of Λ in X determines the
image of 0 under Φ(X).
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In terms of Ŝ one deduces the following uniqueness property. This is the first
result where a geometrical property implies a syntactical one.

Proposition 6.- Assume that X is a simple sequence. Then there exists exactly one
element X ′ of Ŝ satisfying Ω(X) = Ω(X ′).

Proof. First let us denote for P in TΣ by f(P, i) the rightmost variable of the subterm
S1i0(P ), if it exists. An easy induction shows that, if X is a positive sequence and
Ω(X) maps the term P to the term Q, then

f(Q, i) = f(P, Φ(X)(i))

holds whenever f(P, i) exists. This gives a criterion for reconstructing the sequence
X from the pair (P, Q) if X is assumed to be Ω-simple and the mapping i �→ f(P, i)
is injective (which certainly happens if P is an injective term). We claim that, if
X, Y are two elements of Ŝ such that Ω(X) and Ω(Y ) take the same value on some
injective term P , then X and Y are equal. This is proved inductively on the size
of the term P . If Ω(X) and Ω(Y ) map P to Q, the formula above shows that the
permutations Φ(X) and Φ(Y ) give equal values to all integers i such that the point
1i0 lies in the support of P . The other integers must be fixed points of Φ(X) and
Φ(Y ). By Lemma 5 this implies that the indices of Λ (and more generally of any 1i)
in X and Y are equal. Now write X = Λ(k)•1X1•0X0, Y = Λ(k)•1Y1•0Y0, and let
P0[P1] be the image of P under Ω(Λ(k)). Then for e = 0 and e = 1 the term Pe is
injective, has the same image under Ω(Xe) and Ω(Ye) and its size is strictly less than
the size of P . By induction hypothesis, this implies Xe = Ye for e = 0, 1, and we are
done.

By this result, there is no ambiguity to define in the sequel the normal form of a
simple sequence X as the unique element X ′ in Ŝ satisfying X ≡̃+ X ′. Also we shall
speak of the indices of a simple sequence as the indices in its normal form.

6. Complementation of simple sequences.

The main result of this section is the convergence of the complement mapping
associated with the congruence ≡̃ on S

sym. This result will be proved by directly
establishing that the complement of two simple sequences exist and is still simple,
so that reduction does not increase the degree of a sequence defined as the length of
its decomposition into a product of simple sequences, and therefore must eventually
terminate.
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Our main task will be to compute the product of two simple sequences and in
particular to control the fact that this product is simple or not. The process will
be inductive so that the key point is to compute the product of an arbitrary simple
sequence X and a single factor of the form 1q

(i). The following lemma determines
the two possible types of elementary products appearing in this process.

Lemma 1.- For p, k, i in N and Y in S∗, the following formulas hold

1p
(k) • Λ(i)


≡̃+ Λ(i) • 1p

(k) if i < p,
= Λ(k+i) if i = p,
is not Ω-simple if p < i ≤ p + k,
≡̃+ Λ(i) • 1p+1

(k) • 01p
(k) if i > p + k.

1p0Y • Λ(i) ≡̃+


Λ(i) • 1p0Y if i < p,
Λ(i) • 01pY if i = p,
Λ(i) • 1p+10Y • 01p0Y if i > p.

Proof. The first two cases in the first formula are easy, as well as the particular
case k = 0. For the third case, assume i = p + � with 1 ≤ � ≤ k. Let P be the
term x1[x2[. . .[xp+k+1[xp+k+2]]. . .]]. One verifies that, if Q is the image of P under
Ω(1p

(k)•1p
(�)), then the variable xp+� occurs both at 1p021�−10 and 1p01� in Q. So Q

is not subinjective, the sequence 1p
(k)•1p

(�) is not Ω-simple, and by Proposition 5.3
this implies that 1p

(k)•Λ(i), which has a non-Ω-simple subsequence, is not Ω-simple
either. For the last case, denote by F(p, k, i) the formula

1p
(k) • Λ(i) ≡̃+ Λ(i) • 1p+1

(k) • 01p
(k).

One proves F(p, k, i) for p ≥ 0, k ≥ 1 and i > p + k inductively on p. First F(0, k, i)
is proved inductively on k ≥ 1, and, to this end, F(0, 1, i) is proved inductively on i
starting from F(0, 1, 2) which is the heptagonal identity. The details are not difficult.
The second formula is proved similarly using induction on i ≥ 0.

Definition.- Assume that X is a simple sequence. Denote by X̂ the mapping on
nonnegative integers defined by

X̂(i) = i + ind(1i, X).

The integer i is admissible for X if the inequality X̂(x) < X̂(i) holds for every x < i.
The integer k is accessible to X if k is X̂(i) for some i which is admissible for X.

Lemma 2.- Assume that X is a simple sequence and i is any integer. Then either i
is admissible for X, the sequence X•Λ(i) is simple and X̂(i) is the index of Λ in this
sequence, or i is not admissible for X and the sequence X•Λ(i) is not Ω-simple.
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Proof. We may assume that X is in Ŝ and write

X =
∞∏

p=0

1p
(kp) •

0∏
p=∞

1p0Xp

(where each Xp belongs to Ŝ). By Lemma 1, we obtain

X • Λ(i) ≡̃+

∞∏
p=0

1p
(kp) • Λ(i) •

i+1∏
p=∞

1p0Xp •

0∏
p=i−1

1p+10Xp • 01iXi •

0∏
p=i−1

01p0Xp.

Now one has ∞∏
p=i

1p
(kp) • Λ(i) ≡̃+ Λ(m) •

∞∏
p=i+1

1p
(kp),

where m is i + ki, i.e. X̂(i). In order to compute the product
∏i−1

0 1p
(kp)•Λ(m), we

successively consider the products 1p
(kp)•Λ(m) for p = i − 1, . . ., p = 0 and obtain a

formula
1p

(kp) • Λ(m) ≡̃+ Λ(m) • Yp

for some (simple) Yp whenever the condition X̂(p) < m holds. So if i admissible for X
we successfully commute Λ(m) with each of 1i−1

(ki−1), . . ., Λ(k0), and the resulting
factors form a simple sequence (up to some commutations). The value for the index of
Λ in X•Λ(i) follows from the explicit value in Lemma 1. Now if one of the inequalities
fails, let r be the maximal index such that X̂(r) ≥ m holds. Then

1r+1
(kr+1) • . . . • 1i−1

(kj−1) • Λ(m)

is ≡̃+-equivalent to Λ(m)•Y
′ for some Y ′. By Lemma 1 (translated using left concate-

nation of 1r in each factor), 1r
(kr)•1r

(m−r) is not Ω-simple, and therefore by 5.3 the
sequences 1r

(kr)•Λ(m) and X•Λ(i) are not Ω-simple.

As a first application, we obtain the converse implication of Lemma 5.4.

Proposition 3.- A positive sequence in S∗ is simple if and only if it is Ω-simple.

Proof. It remains to prove that X is simple whenever it is Ω-simple. We use induction
on the size of the term TI(X), and, for a given cardinality, induction on the length of
X. The result is obvious if TI(X) has size 1 (then X must be the empty sequence),
or if X has length 1 (then X is simple). Assume that X is Ω-simple, and has
length n ≥ 2. Write X = Y •v. By 5.3 the sequence Y is Ω-simple. The term TI(X)
belongs to Subst(TI(Y )) so the size of TI(Y ) is at most the size of TI(X), and Y has
length n − 1. So by induction hypothesis Y is simple. If v is Λ, we apply Lemma 2
to conclude that either Y •v is simple, or it is not Ω-simple. In the second case X
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could not be Ω-simple, a contradiction. So Y •v and X are simple. If v is not Λ, say
v = ev′ with e = 0 or e = 1, we write Y as Λ(k)•1Y1•0Y0 for some simple sequences
Y1, Y0. If the term P lies in the domain of Ω(X), it lies in the domain of Ω(Λ(k)),
and, if Q0[Q1] is the image of P under Ω(Λ(k)), then Qe lies in the domain of Ye•v′

and its size is strictly smaller than the size of P . By applying this fact to the case of
P = TI(X), we see that the induction hypothesis holds for the sequence Ye•v′, which
has to be simple, as well as X itself.

By Proposition 5.3, the previous result implies that any subsequence of a simple
sequence is simple. No syntactical proof of this result is known, and therefore the
detour through Ω-simple sequences seems unavoidable at the present time.

If X, Y are positive sequences, there exists a unique canonical term R such that
the intersection of Subst(TI(X)) and Subst(TI(Y )), i.e. of the domains of Ω(X) and
Ω(Y ), is exactly Subst(R). This term R will be denoted TI(X, Y ).

Proposition 4.- Assume that X, Y are simple sequences. Then the sequences
C̃(X, Y ) and J̃(X, Y ) exist and are simple. The term TI(J̃(X, Y )) is exactly TI(X, Y ).
Moreover the index k of Λ in J̃(X, Y ) is the least number which is accessible both to

X and Y , and the index i of Λ in C̃(X, Y ) is the (unique) integer i which is admissible

for X and mapped to k by X̂.

Proof. We use induction on the size of TI(X, Y ). The result is clearly true if TI(X, Y )
has size 1, for in this case X and Y must to be empty. Let X, Y be arbitrary positive
sequences. Let k be the minimal number which is accessible both to X and Y .
Because the functions X̂ and Ŷ eventually coincide with the identity mapping, every
integer which is large enough is accessible to X and Y , and the number k must exist.
Let i and j be the least preimages of k with respect to X̂ and Ŷ respectively. By
Lemma 2 the integers i and j are admissible for X and Y respectively, the sequences
X•Λ(i) and Y •Λ(j) are simple and k is the index of Λ in both of them. So there exist
simple sequences Xe, Ye, for e = 0, 1 satisfying{

X • Λ(i) ≡̃+ Λ(k) • 1X1 • 0X0,
Y • Λ(j) ≡̃+ Λ(k) • 1Y1 • 0Y0.

In order to apply the induction hypothesis we have to verify that the size of TI(Xe, Ye)
is strictly below the size of TI(X, Y ) for e = 1 and e = 0. To obtain this result it
suffices to prove

TI(X, Y ) = TI(X • Λ(i), Y • Λ(j)).

Indeed this condition implies that TI(X, Y ) lies in the domains of Ω(Λ(k)•1X1•0X0)
and Ω(Λ(k)•1Y1•0Y0), and then, if Q0[Q1] is the image of TI(X, Y ) under Ω(Λ(k)),
the term Qe lies in the domains of Xe and Ye. This shows that the size of TI(Xe, Ye),
which is at most the size of Qe, is strictly below the size of TI(X, Y ).
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The condition above is trivial if k is 0. Assume k ≥ 1. We claim that at least
one of i, j is strictly smaller than k. Assume that i is equal to k. By definition of an
admissible number, we must have

X̂(k − 1) < k

and therefore the index of 1k−1 in X is 0. Let i′ be the least preimage of k− 1 under
X̂. For x smaller than i′, X̂(x) cannot be greater than k since k is admissible, and
cannot be k − 1 by definition of i′. So i′ is admissible for X, and k − 1 is accessible
to X. Now if both i and j were equal to k, k − 1 would be accessible to X and Y ,
contradicting the definition of k. We assume i < k in the sequel. This implies that
the index of 1i in X is not 0. Now observe that a term P belongs to the domain of
Ω(1p

(q)) if and only if its right height, defined as the length of its rightmost branch
when viewed as a binary tree, is at least p + q + 2, and that the right height is
invariant under any transformation Ω(ξ). So assume that P lies in the domain of
Ω(X): because of the factor 1i

(k−i) in the normal form of the sequence X, the right
height of P must be at least i + (k− i) + 2, i.e. k + 2. Therefore the term P must lie
in the domain of Ω(Λ(k)), and therefore in the domain of Ω(X•Λ(i)) and Ω(Y •Λ(j))
since i ≤ k and j ≤ k hold. So the claim is proved.

At this point we may apply the induction hypothesis to Xe and Ye for e = 0 and
e = 1. So the sequences C̃(Xe, Ye) exist and are simple, and one has

X • Λ(i) • 1C̃(Y1, X1) • 0C̃(Y0, X0) ≡̃+ Λ(k) • 1X1 • 0X0 • 1C̃(Y1, X1) • 0C̃(Y0, X0)

≡̃+ Λ(k) • 1J̃(X1, Y1) • 0J̃(X0, Y0)

≡̃+ Y • Λ(j) • 1C̃(X1, Y1) • 0C̃(X0, Y0).

This proves that X, Y have a common multiple which is moreover simple.
The inductive argument preserves the hypothesis that TI(J̃(X, Y )) is TI(X, Y ).

So it only remains to prove that the common multiple constructed above is the least
such common multiple. Write i′, j′, k′ for the indices of Λ in the simple sequences
C̃(Y, X), C̃(X, Y ), J̃(X, Y ) respectively. The formulas of Lemma 1 show that the
index of Λ never decreases when a product is operated on the right. Since the
sequence J̃(X, Y ) has to divide the sequence Λ(k)•1J̃(X1, Y1)•0J̃(X0, Y0), we must
have k′ ≤ k. But on the other hand J̃(X, Y ) is a common multiple of X and Y ,
and this implies that k′ is accessible both to X and Y and therefore k ≤ k′ holds by
minimality of k. Hence k′ and k are equal. Now X•Λ(i′) is a simple sequence and
the index of Λ in this sequence is k. By Lemma 2 the only possibility is i′ = i, and
similarly j′ = j. This completes the proof of Proposition 4.

Definition.- The degree do(ξ) of the sequence ξ in S
sym is the least number d such

that ξ can be factorized as the product of d sequences, each of which is either a simple
sequence or the inverse of a simple sequence.
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Proposition 5.- The complement c̃ is convergent, and for every sequence ξ one has

do(Ñ(ξ)) ≤ do(ξ) , do(D̃(ξ)) ≤ do(ξ).

If X, Y are positive sequences one has

do(C̃(X, Y )) ≤ do(X) , do(J̃(X, Y )) ≤ sup(do(X),do(Y )).

Proof. Immediate induction from Proposition 4.

Let us define, for X, Y in Ŝ, the sequences Ĉ(X, Y ) and Ĵ(X, Y ) as the respective
normal forms (in Ŝ) of the simple sequences C̃(X, Y ) and J̃(X, Y ). The proof of
Proposition 4 gives an inductive way for directly determining the values of Ĉ(X, Y )
and Ĵ(X, Y ), i.e. computing the corresponding lists of indices. Having determined
the minimal number k which is accessible to X and Y , and their minimal preimages
i and j under X̂ and Ŷ , one computes (using the formulas of Lemma 1) the normal
forms of X•Λ(i) and Y •Λ(j), and apply inductively the process to the ‘1-component’
and the ‘0-component’ of these sequences. Observe that the relations

σ̃
X

• σ̃
Ĉ(Y,X)

= σ̃̂
J(X,Y )

form a presentation of the group B̃∞ from the generators σ̃X with X in Ŝ. The
mapping Ĉ is a (right) complement for this presentation, which is trivially coherent
because c̃ is coherent, and convergent because it does not increase length (w. r. to
the new generators). Remark that reduction using Ĉ instead of c̃ leads to equivalent,
but not necessarily identical numerator and denominator.

When projected to braids, the previous results give the convergence of the braid
complement cR and thus a new proof of the right regularity of the monoid B+

∞ which
is local and makes no use of the universal words ∆n. With obvious notations, one
obtains a presentation of B∞ by the relations

σ
A

• σ
ĈR(B,A)

= σ̂
JR(A,B)

where A, B range over simple braid words (or, equivalently, over the permutations
in S(N)).

The reduction of a sequence X•Y with X, Y (positive) simple sequences in S
sym

or N
sym

+
will be called a simple reduction.
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Proposition 6.- i) If ξ is a sequence in S
sym

with degree m, the determination of

Ñ(ξ) and D̃(ξ) requires at most m2/4 simple reductions.
ii) If α is a braid word with degree m, the determination of NR(α) and DR(α) re-

quires at most m2/4 simple reductions, and the determination of NLR(α) and DLR(α)
requires at most m2/2 simple reductions.

Proof. Obvious from Proposition 5.

This results in a quadratic upper bound for the comparison of braid words when
one restricts to a fixed set of generators σ1, . . ., σn. Indeed it suffices to determine
once for all a table of complements for the n! simple braids involving σ1, . . ., σn (or,
better, for the corresponding lists of indices, i.e. for the permutations of {1, . . ., n}).
For an unbounded set of generators, one has to include the cost of simple reductions.
But at this point one meets with the study already made by Thurston, and we refer
to [23].

When one restricts to the case of n−1 generators, simple braid words as defined
here are easily characterized as the divisors of the halftwist ∆n (see e.g. [10]). We
observed that Garside’s approach cannot extend to B̃∞ since B̃∞ has no such finitely
generated approximations. Nevertheless we can define a local notion of maximal sim-
ple sequences using the action on terms via Ω and the derivation of terms introduced
in [4].

Definition.- For P in TΣ, the deriving sequence of P is the sequence ∆̃P inductively
defined as follows. If P is a variable, then ∆̃P is the empty sequence. Otherwise ∆̃P

is Λ(h−2)•1∆̃Q1•0∆̃Q0 where h is the right height of P and Q0[Q1] is the image of P

under Ω(Λ(h−2)). The image of the term P under the mapping Ω(∆̃P ) is denoted by
∂P and called the derived term of P .

By construction the sequence ∆̃P is in Ŝ. One could show that the present
definition of derivation is equivalent to the one used in [4].

Lemma 7.- No strict extension of a derived term ∂P may be a subinjective term.

Proof. By 5.2 it suffices to prove that R is not a subinjective term when R is the
image of ∂P under some transformation Ω(w) with w in S. Assume first that w is
Λ. By construction of the derived term, every variable occurring in P except the
rightmost one occurs both in the left and right subterms of ∂P , because the index of
Λ in ∆̃P has the maximal possible value. Let v be the rightmost variable in S10(∂P ).
Certainly v also occurs in S0(∂P ), and it follows that v , which is the rightmost
variable of S0(R), occurs at least twice in this term. Hence R cannot be subinjective.
Now assume that w is ew′ for some w′ in S and e in {0, 1}. Write ∂P as ∂P0[∂P1]
where h is the right height of P and P0[P1] is the image of P under Ω(Λ(h−2)). Then
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the subterm Se(R) is a strict extension of ∂Pe. Because the size of Pe is strictly less
than the size of P , we may apply the induction hypothesis and conclude that R is
not subinjective.

Lemma 8.- Let P be any term in TΣ. Then the positive sequences which divide ∆̃P

are exactly the simple sequences X such that the domain of Ω(X) contains P .

Proof. The term P belongs by construction to the domain of Ω(∆̃P ). The domain
of any operator Ω(X•Y ) is included in the domain of the operator Ω(X), and any
subsequence of a simple sequence is simple, hence the first condition implies the
second one. Conversely assume that X is a simple sequence and that the term P
is in the domain of Ω(X). Since the sequence ∆̃P only depends on the support of
the term P we may assume that P is an injective term. Now X and ∆̃P are simple
sequences, so by Proposition 4 the sequence J̃(∆̃P , X) is simple. By Proposition 4
again, the term P lies in the domain of Ω(J̃(∆̃P , X)), and the image of P under
Ω(J̃(∆̃P , X)), which is the image of ∂P under Ω(C̃(X, ∆̃P ), is subinjective. By
Lemma 7 this implies that C̃(X, ∆̃P ) is empty, i.e. that X divides ∆̃P .

For every term P , the simple sequences X such that P lies in the domain of
Ω(X) form a finite semilattice ŜP , and the sequence ∆̃P is the maximum of ŜP .
The projection of ŜP using � is the set of the simple sequences on σ1, . . ., σh−1,
where h is the right height of the term P . In particular the projection of ∆̃P is
the fundamental word ∆h−1. Several properties of the braids ∆n extend to the
sequences ∆̃P , and one can develop a complete theory for the semilattice of all simple
extensions of a term P , defined as the images of P under all Ω(X) where X divides
∆̃P . Generalizations involving iterated derivation lead to interesting features which
are geometric counterparts for some properties of the words ∆k

n such as the ones
established in [10].

In this paper, we shall only observe that the above results give an effective upper
bound for the complexity of reduction.

Lemma 9.- Let ξ be a degree d sequence in S
sym

. Assume that the term R lies in the
domain of Ω(ξ). Then the lengths of all positive sequences involved in the reduction
of ξ are bounded by expd(size(R)) where exp1(n) is n and expk+1(n) is 2expk(n).

Proof. Let us say that the reduction of ξ lies below the term P if P lies in the image
of any operator Ω(X) such that there is a path in the Cayley diagram associated with
the reduction of ξ which is labelled X and ends at the terminal point of the diagram.
If the reduction of ξ lies below P , then the length of any positive sequence involved in
this reduction is bounded by the size of P since every factor in the sequence strictly
increases the size of any term it is applied to. Now we observe that, if ξ has the form
X•Y with X, Y simple positive sequences, and if R belongs to the domain of Ω(X)
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and Ω(Y ), or to the domain of Ω(ξ), then the reduction of ξ is below ∂R. Iterating
this result using Proposition 4 shows that the reduction of any degree d sequence lies
below ∂dR whenever R belongs to the domain of Ω(ξ). The bound follows, since the
size of ∂R is at most 2size(R).

The previous bound is certainly not optimal.

7. The presentation of left distributivity identities.

We are now ready to state the main results of the paper.

Theorem 1.- The Irreflexivity Conjecture is true.

Proof. The congruence ≡̃ for B̃∞ admits c̃ as a complement. By 4.3 and 6.5, c̃ is
coherent and convergent. So by 3.8, the pair of congruences (≡̃, ≡̃+) has the right
quotient property. By 2.9 this implies the irreflexivity of relation LD.

This result settles a large number of technical questions about (free) LD-magmas.
We gather the most important ones below.

Theorem 2.- i) The word problem for (TΣ,≈LD) is decidable and has a primitive
recursive complexity, as well as the relation LD.

ii) Every free LD-magma admits a linear ordering < which is compatible with
left translations and satisfies x < x[y] for all x, y. In particular every free LD-magma
is left cancellative.

iii) No consequence of (LD) has the form (P, Q) where P and Q are distinct
terms with the same support.

iv) The normal forms for the elements of Tx defined in [20] and [21] always exist.
v) The algorithm described in [8] for the word problem of (TΣ,≈LD) is correct

when it terminates.

Proof. i) We have seen in Section 1 that the irreflexivity of the relation LD implies
the decidability of the word problem when only one variable is involved. Observe
that the results in Section 2 give a better method for term comparison than the
brute enumeration used in Section 1: for P , Q in Tx , P ≈LD Q holds if and only if
the equality

dil(Ñ(χ̃P • χ̃Q)) = dil(D̃(χ̃P • χ̃Q))

is true. In order to extend the comparison to more than one variable, one uses point
(iii), which is established in [4] from the Irreflexivity Conjecture. So assume that
P , Q are terms in Tx and let τ be the substitution which maps every variable to
x. First compare P τ and Qτ as above. If they are not equivalent, P and Q are
not equivalent. Otherwise denote by X and Y the numerator and denominator of
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χ̃P τ •χ̃Qτ . The images of P τ and Qτ under respectively Ω(X) and Ω(Y ) are equal, so
the images of P and Q under respectively Ω(X) and Ω(Y ) have identical supports.
By point (iii), they are equivalent if and only if they are equal, which gives a decision
method. The only expensive step in the above algorithm is the reduction of the
sequence χ̃P •χ̃Q. An easy induction shows that the length (and therefore the degree)
of the sequence χ̃P is bounded by an exponential in the size of P . By applying 6.9,
one obtains that, for terms P , Q with size less than n, the (space) complexity of the
reduction of χ̃P •χ̃Q is bounded by a tower of exponentials whose height is itself an
exponential w. r. to n (with some care one can obtain 2n). The same bound holds
for the relation LD, since P LD Q is equivalent to

dil(Ñ(χ̃P • χ̃Q)) > dil(D̃(χ̃P • χ̃Q)).

For point (ii) we know that the projection of LD onto the free LD-magma
TΣ/ ≈LD is a strict ordering, which is linear in the case of one generator. For the
general case, one extends the projection of LD to a linear ordering by using the
lexicographical extension of an arbitrary linear ordering on the generators. The
details use Lemma 1.3.

Other corollaries such as the resolution of equations in free LD-magmas, or the
lattice structure of the simple extensions of a given term involve new tools and will
be developed in forthcoming papers. For the moment we come back to the origi-
nal question of determining the consequences of left distributivity, i.e. completely
describing the partial group GLD.

Lemma 3.- Assume that (LD)ξ and (LD)ξ′ are are defined. The following are
equivalent:

i) ξ ≡̃ ξ′ holds;
ii) there exist terms P , Q in Tx such that both Ω(ξ) and Ω(ξ′) map P to Q;
iii) (LD)ξ 	 (LD)ξ′ holds.

Proof. We already observed that (i) implies (iii), so we just have to verify that (ii)
implies (i). Assume (ii). By Lemma 2.3, we have

χ̃Q ≡̃ χ̃P • 0ξ ≡̃ χ̃P • 0ξ′,

and therefore 0ξ ≡̃ 0ξ′ holds. We claim that this equivalence implies (and therefore
is equivalent to) ξ ≡̃ ξ′. For reduce ξ and ξ′ as

ξ ≡̃ X • Y , ξ′ ≡̃ X ′
• Y ′.

This implies
0ξ ≡̃ 0X • 0Y , 0ξ′ ≡̃ 0X ′

• 0Y ′.
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By the right quotient property there must exist (positive) sequences Z, Z ′ satisfying

0X • Z ≡̃+ 0X ′
• Z ′ , 0Y • Z ≡̃+ 0Y ′

• Z ′.

By Lemma 2.6 this implies

Tr(0X • Z) ≡̃+ Tr(0X ′
• Z ′) , Tr(0Y • Z) ≡̃+ Tr(0Y ′

• Z ′),

hence
X • Tr(Z) ≡̃+ X ′

• Tr(Z ′) , Y • Tr(Z) ≡̃+ Y ′
• Tr(Z ′).

Finally one obtains X•Y ≡̃ X ′•Y ′, i.e. ξ ≡̃ ξ′.

Theorem 4.- The relation 	 is an equivalence relation on CLD which is compatible
with the (partial) product, and the mapping ξ �→ (LD)ξ induces an isomorphism of

some subset of B̃∞ onto CLD/	.

The proof is immediate from Lemma 3.

Write GLD for the quotient structure CLD/	. Then GLD is a ‘partial group’, and
the realisation of GLD as a subset of B̃∞ means that the relations listed in Proposi-
tion 1.1 form (in a somehow vague sense) an exhaustive presentation for the distribu-
tivity identities.

Remark. Define an LD-category as a category equipped with a bifunctor which is left
distributive up to natural isomorphisms. Then the above presentation of CLD/	 gives
a full solution to the coherence problem associated with LD-categories. The analogue
of Mac Lanes’s pentagon in the case of associativity ([22]) is here an heptagon.

Denote by ı(GLD) the image of GLD in B̃∞. Then ı(GLD) is determined as the set
of the elements which can be written as σ̃(X•Y ) where X, Y are positive sequences
such that the images of Ω(X) and Ω(Y ) are not disjoint. Observe that any element
of B̃∞ is a conjugate of some element in ı(GLD): indeed any element of B̃∞ can be
written as σ̃(X•Y ) where X, Y are positive sequences, and σ̃(Y •X) certainly lies
in the image of ı. This image can also be defined in terms of the ‘characteristic
sequences’ χ̃P .

Proposition 5.- An element of B̃∞ lies in ı(GLD) if and only if it can be represented
by a sequence

1∏
k=∞

1k−1ξk •

∞∏
k=1

1k−1ηk

where ξ1, ξ2, . . ., η1, η2, . . . belong to the image of χ̃.
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Proof. Assume that Ω(ξ) maps the term P (of Tx) to Q. We may assume that the
right height h of P is Q is large enough so that the rightmost branch in P and Q is
the longest branch. Write

P = P1[. . .[Ph]. . .] , Q = Q1[. . .[Qh]. . .].

By construction Ω(χ̃Pk
) maps x [h−k+1] to Pk[x [h−k]] for every k between 1 and h−1.

We deduce
Ω(χ̃P1) : x [h] �−→ P1[x [h−1]]

Ω(χ̃P1 • 1χ̃P2) : x [h] �−→ P1[P2[x [h−2]]]
. . .

Ω(
h−1∏

1

1k−1χ̃Pk
) : x [h] �−→ P1[P2[. . .[x]. . .]] = P.

Similarly Ω(
∏h−1

1 1k−1χ̃Qk
) maps x [h] to Q, and the operator associated to the quo-

tient of the latter products map P to Q, as Ω(ξ) does. By Lemma 3 we conclude
that ξ is equivalent to this quotient.

Proposition 3.8 invites to study the word problem for the presentation of B̃∞ by
means of the right cancellation property for the relation ≡̃+. Although partial results
are known (in particular one can show that any generator 1i is right cancellable for
≡̃+ by lifting the cancellability for ≡+), no complete proof is known. But the action
on terms gives a direct solution.

Proposition 6.- The word problem for (Ssym
, ≡̃) is decidable.

Proof. For ξ in S
sym the relation ξ ≡̃ ε is equivalent to Ñ(ξ) ≡̃ D̃(ξ), and therefore

to Ω(Ñ(ξ)) = Ω(D̃(ξ)). Now for positive sequences X, Y , the equality of Ω(X) and
Ω(Y ) is decided by finding a term P whose support is large enough to guarantee that
P belongs to the domains of Ω(X) and Ω(Y ), and comparing the images of P under
these transformations: by Lemma 3, if the operators coincide somewhere, they must
coincide everywhere.

We finish this section with the description of the kernel of the projection of B̃∞

onto B∞. We denote by � the section of � which maps i + 1 to 1i.

Lemma 7.- i) If X is a positive sequence, there exist positive sequences Xi satisfying

X ≡̃+ X��
•

∏
i

1i0Xi.

ii) If A, B are equivalent positive braid words, there exist positive sequences Xi, Yi

satisfying

A�
•

∏
i

1i0Xi ≡̃+ B�
•

∏
i

1i0Yi.
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The proof is omitted. Let us denote by N0 the normal subgroup of B̃∞ generated
by all σ̃w where w begins with 0.

Proposition 8.- The kernel of the projection of B̃∞ onto B∞ induced by � is N0.

Proof. Use Lemma 7 and the fact that N0 is also the normal subgroup of B̃∞ generated
by all σ̃w where w contains at least one 0 (and also the normal subgroup generated
by the σ̃w such that w ends with 0).

The structure of N0 can be described more precisely. Every element of N0 can
be written as a conjugate axa where a lies in the submonoid M of B̃∞ generated
by all σ̃1i with i ≥ 0, and x lies in the subgroup K generated by the σ̃w where
w contains at least one 0. The structures of M and K are exactly known. The
monoid M is (isomorphic to) the quotient of N∗ under the congruence generated by
all pairs {i•j, j•i} with |i− j| ≥ 2. The group K is the direct sum of N copies of B̃∞.
Finally one can describe the operation on N0 in terms of the operations on M and
K. Because the product of axa and aya is clearly axya, it suffices to explain how
axa can be rewritten as byb. Such a rewriting is possible whenever the projection of
a to B+

∞ divides the projection of b and can be expressed using the operation JR.

8. Distributive representations of braid groups.

In this section we apply the previous results about free distributive structures
to obtain new properties of braid groups using what may be called distributive re-
presentations of these groups. This study results in a close connection between the
braid group B∞ and the free LD-magma with one generator.

The braid groups act on distributive structures (see e.g. [2]). Assume first that
g is any set equipped with a bracket, and define a right action Θg of positive braid
words (i.e. elements of N+) on sequences from g by

Θg(i) : 〈a1, a2, . . .〉 �−→ 〈a1, a2, . . ., αi[ai+1], ai, ai+2, . . .〉.

The congruence ≡+ is compatible with this action if and only if the bracket on g is
left distributive. Indeed the first component of the images of 〈a1, a2, . . .〉 under 2•1•2
and 1•2•1 are respectively a1[a2[a3]] and a1[a2][a1[a3]].
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Remark. The heptagonal identity is another expression of the existence of the action
above. Denote by F the mapping of TΣ to T N

Σ defined by

F : P �→ 〈S0(P ),S10(P ),S110(P ), . . .〉

(take x when S1i0(P ) is no longer defined). Then ΘTΣ(i) is the image of Ω(1i−1)
under F : if Ω(1i−1) maps P to Q, then ΘTΣ(i) maps F (P ) to F (Q). Because the
bracket on TΣ is not left distributive, the operators ΘTΣ(i•i−1•i) and ΘTΣ(i−1•i•i−1)
do not coincide, but, if 〈Q1, Q2, . . .〉 and 〈Q′

1, Q
′
2, . . .〉 are the respective images of

some sequence 〈P1, P2, . . .〉, the existence of the action on LD-magmas means that
there must exist, for every k ≥ 1, a sequence ξk (possibly depending on P ) such that
Ω(ξk) maps Qk to Q′

k. The choice

ξj =
{

Λ if j = i ,
ε otherwise ,

is convenient and gives rise to the relation

Ω(1i−1
• 1i

• 1i−1) = Ω(1i
• 1i−1

• 1i
• 1i−10)

(and more generally to the formula of Lemma 7.7).

The natural hypothesis for extending the action to arbitrary braids is to assume
that left translations in the LD-magma g are bijective, so that g is an automorphic
set (in [2]) or a rack (in [11]). Actually, if we only assume that left translations in
g are injective, i.e. that g is a left cancellative LD-magma, we obtain a partial but
welldefined action of arbitrary sequences by

Θg(ı) : 〈a1, a2, . . .〉 �−→ 〈a1, a2, . . ., ai+1, c, ai+2, . . .〉

where c is the unique element of g satisfying ai+1[c] = ai if such an element exists.

The geometrical meaning of the action Θg is clear. We associate with the strings
of the braids labels which belong to g, and these labels change at each crossing
according to the rules

a b a[b] a

a[b] a a b

In the sequel the sequences in gN are called g-labellings, and we say that a g-
labelling �a is admissible for the braid word α if �a belongs to the domain of Θg(α).
The corresponding image is denoted by (�a)α.
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Lemma 1.- Assume that g is a left cancellative LD-magma. For every finite family
of braid words α1, . . ., αp, there exists a g-labelling which is admissible for α1, . . .,
αp. Moreover α ≡ α′ implies (�c)α = (�c)α′

for every g-labelling �c which is both α-
and α′-admissible.

Proof. If A, B are positive words, then Θg(A) and Θg(B) are defined everywhere
on gN . By construction the domain of Θg(A) includes the image of Θg(A), and so
does the domain of Θg(A•B) since by construction ((�a)A)Ā is �a. We claim that, if
α is L-reducible (= reducible on the left) to β, then Θg(α) includes Θg(β) (as a set
of pairs). This will show that Θg(α) includes Θg(DL(α)•NL(α)), and therefore that
the domain of Θg(α) includes the image of Θg(DL(α)). To prove the claim, we may
assume that α is 1-reducible to β, and even that α is i• for some nonnegative integers
i, j. The critical case is for |i − j| = 1. Assume e.g. α = 1•2, so that β is 2•1•2•1.
The hypothesis that 〈a1, a2, . . .〉 is admissible for 2•1 implies that there exist c1 and
c2 in g satisfying a2 = a3[c2] and a1 = a3[c1]. It follows that 〈a1[a2], a1, a3, . . .〉 is
admissible for 2, and one has

(〈a1, a2, a3, a4, . . .〉)1•2 = 〈a1[a2], a3, c1, a4, . . .) = (〈a1, a2, a3, a4, . . .〉)2•1•2•1.

For the extension to several words α1, . . ., αp, we just have to verify that the
images of Θg(DL(α1)), . . ., Θg(DL(αp)) cannot be disjoint. But the intersection of
these images include the image of Θg(A), where A is the left lowest common multiple
of DL(α1)), . . ., DL(αp)) (i.e. their product w. r. to JL).

A similar argument shows that, if α is R-reducible (= reducible on the right) to
β, then Θg(α) is included in Θg(β). Now assume that α and α′ are ≡-equivalent and
�a is admissible for α and α′. There exist positive sequences A, B, A′, B′ such that α
is R-reducible to A•B and α′ is R-reducible to A′•B′. By the right quotient property
there exist positive sequences C, C ′ satisfying A•C ≡ A′•C ′ and B•C ≡ B′•C ′. Now
�a is admissible for A•B and A′•B′. Using the invariance of Θg with respect to
equivalence of positive sequences we have

(�a)α = (�a)A•B = ((�a)A•C)C•B = ((�a)A′•C′
)C′•B′

= (�a)A′•B′
= (�a)α′

.

Observe that the previous argument is needed because, if one uses an arbitrary se-
quence of words witnessing for the equivalence of α and α′, one cannot assume that
�a is admissible for all intermediate terms.

Thus the image of a g-labelling under a braid is welldefined when it exists.
The Burau representation and therefore the Alexander polynomial of a braid can be
constructed using the labellings associated with the barycentric LD-magma whose
bracket is defined by

a[b] = (1 − t)a + tb,

while the Wirtinger presentation for the fundamental group of the complement of the
closure of the braid is associated with the LD-magma whose bracket is the conjugacy
in a free group.
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The specific properties of the free LD-magmas (which are now known to be left
cancellative), in particular the existence of linear orderings, lead to new applications.
In the sequel f denotes the free LD-magma with one generator, and <f denotes its
canonical linear ordering (c.f. Theorem 7.2). The class of the term P in f is denoted
by Ṗ .

Definition.- A braid is σi-positive if it has a decomposition (w. r. to the generators
σk) where σi occurs, but σ−1

i does not.

Proposition 2.- The generator σi occurs in every decomposition of a σi-positive
braid; in particular a σi-positive braid cannot be trivial.

Proof. Assume that α is a braid word. Let 〈a0
1, a

0
2, . . .〉 be an α-admissible f-labelling.

Define inductively sequences 〈ap
1, a

p
2, . . .〉 by

〈ap+1
1 , ap+1

2 , . . .〉 = 〈ap
1, a

p
2, . . .〉xp ,

where x1,. . .,xn are the successive elements of α (in N+ ∪ N+). By applying the
distributivity one obtains

ap+1
1 [. . .[ap+1

i [ẋ]]. . .] =
{

ap
1[. . .[a

p
i [ẋ]]. . .] if xp �= i, ı,

ap
1[. . .[a

p
i [a

p
i+1][ẋ]]. . .] if xp = i.

Now for any a1, . . ., ai+1 in f, one has

ai <f ai[ai+1]

by definition of the ordering <f, which implies

ai[ẋ] <f ai[ai+1][ẋ]

because a[ẋ] is easily proved to be an immediate successor of a for <f, and

a1[. . .[ai[ẋ]]. . .] <f a1[. . .[ai[ai+1][ẋ]]. . .]

because <f is compatible with bracket on the left. If i occurs in α but ı does not, we
deduce

a0
1[a

0
2[. . .[a

0
i [ẋ]]. . .]] <f an

1 [an
2 [. . .[an

i [ẋ]]. . .]],

while α ≡ ε would imply a0
k = an

k for every k, and therefore

a0
1[a

0
2[. . .[a

0
i [ẋ]]. . .]] = an

1 [an
2 [. . .[an

i [ẋ]]. . .]],

a contradiction.
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The closure of a σi-positive braid is a link diagram K with the property that
some closed curve intersects K only at positive crossings. Since no conjugate of a
σi-positive braid may be trivial, we may state that any link diagram with the above
property cannot be regularly isotopic to the unknot. (The corresponding property
for ambient isotopy is trivially false: take the closure of σi.)

So far we introduced a representation of B∞ using f. Conversely we can apply
the previous result to represent f in B∞. In the sequel, we denote by s the ‘shift’
endomorphism of B∞ which maps every σi to the corresponding σi+1.

Proposition 3.- The bracket on B∞ defined by

x[y] = x.s(y).σ1.s(x)

is left distributive and irreflexive. Thus the closure of any braid under this bracket
is free.

Proof. The bracket on B∞ is the projection under (the morphism induced by) � of the
bracket defined in Section 2 on B̃∞. Because the kernel of this morphism, which is
N0, includes the subgroup H0, the bracket must be left distributive. For irreflexivity,
we obtain as in 2.5

x.(x[y1]. . .[yk]) = s(y1).σ1.s(x.y2).σ1.s(x[y1]). . .s(yk).σ1.s(x[y1]. . .[yk−1]).

The second member is σ1-positive for k ≥ 1, so by Proposition 2 the equality

x = x[y1]. . .[yk]

is impossible. One concludes using Lemma 1.6.

The property of braids stated as Proposition 2 is a topological version of the
Irreflexivity Conjecture. Indeed it implies the above construction of an irreflexive
LD-magma, and therefore by 1.6 the conjecture itself. Thus a direct argument for
Proposition 2 could replace the construction of Sections 2 to 6 for the Irreflexivity
Conjecture (but not for the more precise results of 7.2.ii and 7.4). No such proof
is known up to now. Observe that we cannot replace the subgroup H0 by the nor-
mal subgroup N0 in 2.4 in order to complete the proof of irreflexivity inside B∞:
some elements of N0 have sign +1, and thus N0 cannot be directly separated from
(H1.σ̃Λ)k.H1 using the argument of Proposition 2.7.

Remark. The quotients of B∞ inherit the left distributive structure when the projec-
tion is compatible with the shift endomorphism. When projecting onto the permu-
tations of the integers, the quotient bracket happens to be isomorphic to the bracket
on the injections of the positive integers constructed in [6]. It is known that the
corresponding monogenic LD-magmas d are not free. Extension to the case of Hecke
algebras could give rise to new examples. When collapsing as far as the integers
using the exponent sum, the associated bracket is the ‘trivial’ bracket on Z defined
by a[b] = b + 1.
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For P in Tx , we denote by χP the braid word inductively defined by

χx = ε,

χP [Q] = χP • s(χQ) • 1 • s(χP )

(using s for words with the obvious meaning). Proposition 3 tells that the terms P , Q
are ≈LD-equivalent terms if and only if the braid words χP and χQ are ≡-equivalent.
The image of χ is the free sub-LD-magma of B∞ generated by 1. It will be simply
denoted f, so that Ṗ is exactly σ(χP ) for every term P . Observe that χP is the
projection of χ̃P under �, and that this projection is but a copy since all factors in
χ̃P have the form 1i or 1i. The figure below illustrates the inductive definition of the
words χP and the formula

〈1, 1, 1, . . .〉χP = 〈Ṗ , 1, 1, . . .〉
which immediately follows.

1 1 1 1 1

χP

Ṗ 1 1 1 1

s(χQ)

Q̇ 1 1 1

Ṗ

s(χP )

˙P [Q] 1 1 1 1

The above results give an immediate solution to the problem of defining canonical
representatives with respect to the congruence ≈LD: use any normal form of the braid
word χP as a representative for the class of the term P . This however is only a partial
solution which does not diminish the interest of the results in [20] and [21] since it
does not select a distinguished term in each class (the usual normal forms of a χP

braid word need not be χP words themselves).

Theorem 4.- The relation ≈LD on Tx lies in the complexity class EXPTIME.

Proof. The length of χ(P ) is bounded by an exponential w. r. to the size of P , since
the inductive definition gives

length(χP [Q]) = 2.length(χP ) + length(χQ) + 1.

Braid comparison has a polynomial complexity.
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Extension to the multivariate case would require a similar realization for free
LD-magmas with several generators. No such realization is known, so that the only
presently known upper bound for comparison of arbitrary terms remains the primitive
recursive bound stated in Theorem 7.2.

Definition.- An f-labelling is finite if it has only finitely many components not equal
to 1. The constant labelling 〈1, 1, . . .〉 is denoted �1. For 〈a1, a2, . . .〉 a finite f-labelling,
one sets

Π(〈a1, a2, . . .〉) =
∞∏

k=1

sk−1(ak).

Lemma 5.- i) For every finite f-labelling �c, there exists a braid word γ such that
σ(γ) = Π(�c) and (�1)γ = �c.
ii) The equality

Π((�c)α) = Π(�c).σ(α)

holds for every braid word α and every α-admissible finite f-labelling �c.

Proof. i) Assume that �c is 〈c1, c2, . . .〉 and choose terms R1, R2,. . . such that ck is
σ(χRk

) for k ≥ 1. We observed that the labelling �1 is admissible for χRk
and that

(�1)χRk is 〈ck, 1, 1, . . .〉. So we have we obtain

(�1)χR1•s(χR2 ) = 〈c1, c2, 1, . . .〉,

and the formula with γ =
∏

k sk−1(χRk
) follows using an easy induction.

ii) It suffices to prove the formula for the case of a single factor say i. Now

Π(〈c1, c2, . . .〉i) = Π(〈c1, c2, . . ., ci[ci+1], ci, ci+2, . . .〉
= c1.s(c2). . .si−1(ci[ci+1]).si(ci).si+1(ci+2). . .

= c1.s(c2). . .si−1(ci).si(ci+1).σi.s
i(ci).si(ci).si+1(ci+2). . .

= c1.s(c2). . .si−1(ci).si(ci+1).σi.s
i+1(ci+2). . .

= Π(〈c1, c2, . . .〉).σi,

because the factor σi commutes with all sk−1(ck) for k ≥ i + 2. .

Proposition 6.- i) The partial action Θf is strongly faithful in the following sense:
if there exists at least one finite f-labbeling �c which is both α- and α′-admissible and
(�c)α is equal to (�c)α′

, then α ≡ α′ holds.
ii) The mapping Π is injective, and every positive braid has a unique expression

as Π(�a) where �a is a finite f-labelling which is �1-admissible.
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Proof. The first point follows from the formula in Lemma 5.ii, which also shows that
any braid σ(α) can be expressed as the quotient of two braids in the image of Π. In
particular, if A is a positive word, σ(A) = (�1)A holds. The injectivity of Π follows
from the formula of Lemma 5.i. .

Using RL-numerator and denominator, one obtains a canonical decomposition
for an arbitrary braid as the quotient of two braids in the image of Π, i.e. as the
quotient of two finite sequences in f. Observe that the decomposition so described
corresponds to some combing of the braids, and is very easily obtained: for a positive
word A, apply Θf(A) to the sequence �1 (i.e. apply Ω(A�) to x [n] for n large enough),
and determine the corresponding χ-sequences. Actually we do not obtain in this
way normal forms in B∞ or B+

∞ since a normal decomposition for the elements of f

presupposes a normal decomposition of braids (or alternatively a direct normal form
for terms w. r. to ≈LD, like in [20] or [21]). Observe also that B+

∞ is included in the
image of Π, but that the converse inclusion is false: for instance 1[1][1] is σ2

1σ−1
2 ,

which cannot be expressed by a positive word.

In Section 4 we proved that the divisibility relation induces a (semi)lattice struc-
ture on B+

∞ . The extension of this partial ordering to B∞ is also introduced and
intensively used in [23] and [10]. The distributive representations of B∞ enable to
extend this partial ordering to a linear ordering. We begin with two lemmas about
positive braids.

Definition.- Two terms P , Q in TΣ are strongly inequivalent if they have the form

P = R1[. . .[Rp[y ]]. . .] , Q = R1[. . .[Rp[z]]. . .]

where y and z are distinct variables.

Because the rightmost variable in a term is ≈LD-invariant, strongly inequivalent
terms must be inequivalent.

Lemma 7.- Assume that P ′, Q′ are strongly inequivalent and satisfy P ′
LD P and

Q′
LD Q. Then P and Q are not equivalent.

Proof. Assume P ≈LD Q. By three calls to Lemma 1.3 there exists a common
extension R of P and Q such that some iterated left subterms of R say P ′′ and Q′′

are extensions of P ′ and Q′ respectively. Let y (resp. z) be the rightmost variable of
P ′ and P ′′ (resp. Q′ and Q′′). The terms P ′′ and Q′′ cannot coincide since they dont
have the same rightmost variable. Assume P ′′ Q′′. Let Q̂′′ be the term obtained
from Q′′ by replacing the rightmost occurrence of z by y . Now Q̂′′ is equivalent to
the term obtained from Q′ by replacing the rightmost occurrence of z by y , which is
P ′ by hypothesis. So Q̂′′ must be equivalent to its (strict) prefix P ′′, contradicting
the irreflexivity of LD.
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If ≺ is any relation on a set X, ≺∗ denotes the lexicographical extension of ≺
to XN : 〈x1, x2, . . .〉 ≺∗ 〈y1, y2, . . .〉 holds if xi ≺ yi holds for the minimal i such that
xi and yi are not equal.

Lemma 8.- For every positive braid words A, B, the inequality (�1)A <∗
f (�1)B holds

if and only if the inequality (�c)A <∗
f (�c)B holds for at least one finite f-labelling �c if

and only if this inequality holds for every finite f-labelling �c.

Proof. Assume (�1)A <∗
f (�1)B . We denote by fΣ the free LD-magma TΣ/≈LD. The

relation LD induces a (strict) partial ordering denoted <fΣ on fΣ. We claim that

〈ẋ1, ẋ2, . . .〉A <∗
fΣ

〈ẋ1, ẋ2, . . .〉B

holds, where Ṗ denotes the class P in fΣ. Any mapping of Σ into f extends to a
morphism of fΣ into f which is compatible with the orderings <fΣ and <f, so for
every f-labelling 〈c1, c2, . . .〉 we deduce

(〈c1, c2, . . .〉)A <∗
f (〈c1, c2, . . .〉)B

from the inequality above by mapping xi to ci.
To prove the claim, choose n large enough so that no factor greater than

n − 1 occurs in A or B. Denote by P and Q respectively the images of the term
x1[x2[. . .[xn]. . .]] under Ω(A�) and Ω(B�), and write Pk (resp. Qk) for the subterm
S1k−10(P ) (resp. S1k−10(Q)). The substitution which maps every variable to x is
denoted τ . The hypothesis implies (and actually is equivalent to) P τ

LD
∗ Qτ , and

we have to prove P LD
∗ Q.

Consider the least i such that Pi ≈LD Qi fails. Such an i must exist, since
otherwise one would have

(〈ẋ1, ẋ2, . . .〉)A = (〈ẋ1, ẋ2, . . .〉)B

which projects onto P τ ≈LD Qτ , contradicting the hypothesis. For k < i the equiv-
alence Pk ≈LD Qk projects onto Pk

τ ≈LD Qk
τ . Because of the comparison property

for LD, three cases may occur.
If Qi

τ
LD Pi

τ holds, we obtain Qτ
LD

∗ P τ , which contradicts the hypothesis.
If Pi

τ ≈LD Qi
τ holds, choose positive sequences Z, Z ′ such that Ω(Z) and Ω(Z ′)

maps Pi
τ and Qi

τ respectively to a common extension R. Assume that Ω(Z) maps
Pi to P ′, and Ω(Z ′) maps Qi to Q′. The terms R, P ′, Q′ have the same support,
so because P ′ and Q′ are not equivalent, they must have a ‘variable disagreeement’,
i.e. there exist terms R1,. . .,Rp and distinct variables y , z such that the patterns
R1[. . .[Rp[y and R1[. . .[Rp[z are prefixes of the words P ′ and Q′. This easily implies

R1[. . .[Rp[y ]]. . .] LD P ′ and R1[. . .[Rp[z]]. . .] LD Q′,
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whence
R1[. . .[Rp[y ]]. . .] LD Pi and R1[. . .[Rp[z]]. . .] LD Qi.

Therefore one has

P1[. . .[Pi−1[R1[. . .[Rp[y ]]. . .]]]. . .] LD P

and
P1[. . .[Pi−1[R1[. . .[Rp[z]]. . .]]]. . .] LD Q.

By Lemma 7, this contradicts the equivalence P ≈LD Q which holds by construction.
So necessarily the only remaining possibility, which is Pi

τ
LD Qi

τ , holds. As
above, choose positive sequences Z, Z ′ such that Ω(Z) and Ω(Z ′) maps Pi

τ and Qi
τ

respectively to terms R, S such that one is a strict prefix of the other one. Assume
R S. Assume that Ω(Z) maps Pi to P ′, and Ω(Z ′) maps Qi to Q′. Then either
P ′ is a strict prefix of Q′, or they have a ‘variable disagreeement’. As above the latter
case is impossible. So Pi LD Qi holds, which implies P LD

∗ Q, and proves the
claim.

It follows that, for any pair of positive sequences A, B, either (�c)A <∗
f (�c)B

holds for every �c, or (�c)A = (�c)B holds for every �c, or (�c)B <∗
f (�c)A holds for every

�c. So if (�c)A <∗
f (�c)B holds for at least one �c, necessarily it holds for every �c, and

in particular for �1. The proof of Lemma 8 is complete.

We are ready to define a linear ordering on B∞ using the lexicographical extension
of <f. This ordering is constructed so that every generator σi is preponderant over
all σk with k ≥ i.

Definition.- Assume that ≺ is an ordering on a group G. For a in G, and X a
subset of G, we say that a is infinitely large w. r. to X if x ≺ yay−1 holds for every
x, y in the subgroup generated by X.

Theorem 9.- i) There exists a unique ordering < on the braid group B∞ which is
compatible with the left translations and such that, for every i, the generator σi is
infinitely large w. r. to the family of all σk with k > i.

ii) This ordering is linear and compatible with the shift endomorphism. It extends
the left divisibility ordering on B∞ and the linear ordering <f on f. There exists a
primitive recursive algorithm for comparing braid words w. r. to <.

iii) For any braid words α, β, the inequality σ(α) < σ(β) holds if and only if (�c)α <∗
f

(�c)β holds for every f-labelling �c which is admissible for α and β if and only if this
inequality holds for at least one such f-labelling.

50



Proof. Denote by B++
∞ the set of all σ(A•B) where A, B are positive words satisfying

(�1)A <∗
f (�1)B . Clearly B+

∞ is included in B++
∞ , and, because <∗

f is irreflexive, 1 does
not belong to B++

∞ . We observe that x lies in B++
∞ if and only if (�1)A <∗

f (�1)B holds
for every expression of x as σ(A•B) with A, B positive braid words. For if A•B and
A′•B′ are equivalent, there exist positive words C, C ′ satisfying

C • A ≡ C ′
• A′ , C • B ≡ C ′

• B′,

and by Lemma 8 we have the equivalences

(�1)A <∗
f (�1)B ⇐⇒ ((�1)C)A <∗

f ((�1)C)B

⇐⇒ ((�1)C′
)A′

<∗
f ((�1)C′

)B′ ⇐⇒ (�1)A <∗
f (�1)B .

Now assume that σ(A•B) and σ(A′•B′) belong to B++
∞ . Choose positive words A′′

and B′′ satisfying A′′•B ≡ B′′•A′. Using Lemma 8 again, we have

(�1)A′′•A = ((�1)A′′
)A) <∗

f ((�1)A′′
)B) = ((�1)B′′

)A′
) <∗

f ((�1)B′′
)B′

) = (�1)B′′•B′
,

and this shows that B++
∞ is stable under product. Therefore the relation < defined

on B∞ by
x < y ⇐⇒ x−1y ∈ B++

∞

is a strict ordering which is compatible with left translations and extends the left
divisibility partial ordering (defined similarly by x−1y ∈ B+

∞ ). Moreover the ordering
< is linear on B∞ because <∗

f is a linear ordering and every braid can be written
as σ(A•B) for some positive words A, B. And because (�1)α = 〈a1, a2, . . .〉 implies
〈�1〉s(α) = 〈1, a1, a2, . . .〉, the set B++

∞ is stable under s and x < y is equivalent to
s(x) < s(y).

We claim that the inequality s(x) < s(y)σ1s(z) holds for every x, y, z. It suffices
to show that any σ1-positive word belongs to B++

∞ . Now if σ(γ) is σ1-positive and
if �a is any γ-admissible f-labelling, the proof of Proposition 2 shows the inequality
�a <∗

f (�a)γ . Since < is a linear ordering, we can deduce 1 < γ provided that α ∈ B++
∞

implies the existence of at least one α-admissible labelling �c satisfying �c <∗
f (�c)α.

Let �c be (�1)DL(α): �c is (DL(α)•NL(α))-admissible, and one has

�c = (�1)DL(α) <∗
f (�1)NL(α) = (�c)DL(α)•NL(α).

But α is L-reducible to DL(α)•NL(α), so by the proof of Lemma 1 we know that �c

is α-admissible and that (�c)α is equal to (�c)DL(α)•NL(α). Thus σ1 is infinitely large
w. r. to the image of s, and therefore w. r. to the family of all σk with k > 2. Because
< is compatible with s, this implies the similar property for the other generators,
and finishes the proof of the existence of the ordering.
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According to the definition of B++
∞ , the comparison of σ(α) to 1 consists in

reducing α on the left, applying Θf(DL(α)) and Θf(NL(α)) to �1 and comparing
the results w. r. to <∗

f . The last two steps respectively correspond to applying
the transformations Ω(DL(α)�) and Ω(NL(α)�) to a term x [n] with n large enough,
and comparing the successive right subterms of the images w. r. to LD using the
reduction in B̃∞ of the associated χ̃-sequences. By Theorem 7.2 the complexity of
this method is bounded by a tower of exponentials.

In order to prove the uniqueness, assume that <′ is any ordering on B∞ which
is compatible with left translations and such that σi is infinitely large w. r. to the
family of all σk with k > i. We claim that 1 <′ x holds for every σ1-positive braid
x. This is proved using induction on the number k of σ1 in a decomposition of x.
For k = 1, s(z′−1

z−1) <′ s(z′−1
σ1s(z′) implies 1 <′ s(z)σ1s(z′). For the induction,

1 <′ y implies s(z)σ1 <′ s(z)σ1y and therefore 1 <′ s(z)σ1y since 1 <′ s(z)σ1 holds.
Assume now that a, b belong to f and α <f b holds. We can choose terms

P , Q such that a is σ(χP ), b is σ(χQ) and P Q holds. By the computation
of Proposition 3, we know that a−1b (which is σ(χP •χQ)) is σ1-positive. By the
previous claim, 1 <′ a−1b, and therefore a <′ b, hold. So <f is the restriction of <′

to f. Moreover we observe that, under the same hypotheses, as(x) <′ bs(y) holds for
every x, y, since s(x−1)a−1bs(y) is σ1-positive as well. We deduce the implication

〈a1, a2, . . .〉 <∗
f 〈b1, b2, . . .〉 =⇒ Π(〈a1, a2, . . .〉) <′ Π(〈b1, b2, . . .〉)

for all finite f-labellings 〈a1, a2, . . .〉, 〈b1, b2, . . .〉. Indeed the case of a1 <f b1 has
been settled above. Assume a1 = b1 and a2 <f b2. By applying s everywhere in the
preceeding proof, we obtain similarly

s(Π(〈a2, a3, . . .〉)) <′ s(Π(〈b2, b3, . . .〉)),

which implies
a1s(Π(〈a2, a3, . . .〉)) <′ a1s(Π(〈b2, b3, . . .〉)),

i.e.
Π(〈a1, a2, . . .〉) <′ Π(〈b1, b2, . . .〉).

This argument can clearly be iterated. Finally, because <∗
f is a linear ordering, we

obtain the equivalence of �a <∗
f

�b and Π(�a) <′ Π(�b) for every �a, �b in f(N) .
Now assume that �c is any finite f-labelling which is admissible for both α and

β. By applying the formula of Lemma 5.ii and the equivalence above we have

(�c)α <∗
f (�c)β ⇐⇒ Π((�c)α) <′ Π((�c)β)

⇐⇒ Π(�c).σ(α) <′ Π(�c).σ(β) ⇐⇒ σ(α) <′ σ(β).

It follows that <′ and < coincide since we have seen that σ(α) < σ(β) implies the
existence of at least one f-labelling �c satisfying (�c)α <∗

f (�c)β . This completes the
proof of Theorem 9.
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As for Proposition 2, the detour through distributive structures and the extended
group B̃∞ is the only way presently known for proving the existence of the ordering <
on B∞. In particular, the irreflexivity of < on B∞ is another form of the irreflexivity
property for LD.

Denoting by ω, ω∗ and η the order types of the natural numbers, of the negative
integers and of the rationals, one easily shows that the order type of <f is ω(1 + η),
so that the order type of B+

∞ equipped with < is (ω(1 + η))ω∗
. The order type of B∞

equipped with < is η. We hope that new comparison algorithms for LD will soon
improve the rough complexity bound established for braid words comparison.

As a final remark, observe that the LD-magma B∞ is certainly left cancellative,
so that we can use braids themselves to label braids. The extension of 6.i and 9.iii
(replacing <f by <) to finite B∞-labellings is immediate since the formula of 5.ii holds
for B∞-labellings as well as for f-labellings.
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[3] P. Cartier, Développements récents sur les groupes de tresses, applications à
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