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A Normal Form
for the Free Left Distributive Law.

Patrick DEHORNOY

ABSTRACT. We construct a new normal form for one variable
terms up to left distributivity. The proof that this normal form
exists for every term is considerably simpler than the corre-
sponding proof for the forms previously introduced by Richard
Laver. In particular the determination of the present normal
form can be made in a primitive recursive way.

Throughout the paper W denotes the set of all wellformed terms constructed
using a single variable a and a single binary operator •, i.e. the free algebra gen-
erated by a. Practically we shall use right Polish notation, thus writing PQ• for
the product of P and Q. Now we denote by =LD the least congruence on W which
forces the left distributivity identity

PQR•• =LD PQ•PR•• (LD)

The quotient W/ =LD is the free left distributive algebra (LD-algebra) generated
by a.

The study of free LD-algebras has revealed interesting connections both with
the set theory of large cardinals (see [10], [12], [4], [7], [8]) and with the topology of
braids (see [5], [9], [6]). In particular the decidability of the relation =LD, i.e. the
word problem for the standard presentation of the free LD-algebra with one gener-
ator, proved to be a rather delicate question. It has been solved independently in
[3] and [10] assuming some auxiliary assumption which Laver in [10] deduced from
a very strong logical assumption. Subsequently this assumption was eliminated
in [5], and the proof was completed within elementary arithmetic resulting in an
exponential complexity for the relation =LD.
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The method of [10] for deciding =LD-equivalence of terms consists in intro-
ducing a unique normal form. A very delicate inductive proof is used to establish
that normal forms always exist. In particular the reduction of a given term to
the normal form seems to have a high complexity and there is no evidence that
it should be even a primitive recursive process. On the other hand the method of
[3] and [5] is simpler but it directly compares terms with respect to =LD without
refering to any normal form. Therefore it seems weaker in terms of applications.

The aim of this paper is to propose a new normal form using the ideas of
[3]. Compared with the approach of [10], the present method uses an additional
ingredient, namely a filtration connected with the notion of derivation defined
in [2]. An integer degree is associated with this filtration, and it allows simple
inductive proofs. The existence and uniqueness of the normal form then appears
as nearly immediate, and the reduction of an arbitrary term to its normal form is
a primitive recursive process. Moreover this normal form seems to be well fitted
for applications. We therefore hope that it could be a useful tool in the quickly
developing study of left distributive laws and their applications.

The author wishes to thank the referee for the precision of his report and the
quality of his suggestions for improving the readability of the- text.

1. The expanded form

If P , Q are in W, the equivalence P =LD Q holds if and only if one can transform
P into Q using a finite sequence of elementary transformations, each of which
consists either in replacing some subterm P1P2P3•• by the corresponding subterm
P1P2•P1P3•• or in replacing some subterm P1P2•P1P3•• by the corresponding
subterm P1P2P3••. We shall write P =k

LD Q if at most k such elementary trans-
formations are used. Also we say that Q is an extension (resp. a 1-extension) of P
if no transformation of the second type is used (resp. if no transformation of the
second type and at most 1 transformation of the first type is used). A key point is
the existence of a canonical common extension ∂P for all 1-extensions of a given
term P (the term ∂P thought as a ‘smallest’ common extension of all 1-extensions
of P , allthough this need not be readily true). In order to describe the opera-
tion ∂, let us first introduce, for any pair of terms Q, R, the new term dist(Q, R)
obtained from R by replacing each occurrence of a in R by Qa•, i.e. by distribut-
ing Q everywhere in R. Thus the operation dist is defined inductively by the
rules

dist(Q, a) = Qa•, dist(Q, R′R′′•) = dist(Q, R′)dist(Q, R′′)•.
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Observe that dist(Q, R) is certainly always =LD-equivalent to QR•. The idea for
constructing ∂P is to use an induction on the size of P , so that, if P is P ′P ′′•,
the derivative of P is obtained by distributing everywhere (in the sense of dist)
the derivative of P ′ in the derivative of P ′′.

Definition. For every term P , the derived term ∂P is constructed inductively by
the rules ∂a = a and ∂(PP ′•) = dist(∂P, ∂P ′).

The basic properties of derivation are established in [2]. We shall use here the
following ones.

Lemma 1. ([2]) i) For each term P , the term ∂P is an extension of all 1-extensions
of P .

ii) If P ′ is an extension of P , then ∂P ′ is an extension of ∂P .

Corollary 2. For any terms P , Q, the term ∂kP is an extension of Q whenever
Q =k

LD P holds.

Proof. The property is obvious for k = 0. Assume R =1
LD Q =k

LD P . Then ∂Q is
an extension of R both if Q is a 1-extension of R (since ∂Q is an extension of Q)
and if R is a 1-extension of Q (by Lemma 1.i). By induction hypothesis ∂kP is an
extension of Q, and by Lemma 1.ii this implies that ∂k+1P is an extension of ∂Q,
and therefore of R. �

Since terms are words, there exists a natural notion of prefix: we say that the
term Q is a prefix of P , and write Q � P if, for some word Z, the word P is equal
to QZ. The main result about prefixes is the following

Proposition 3. ([5]) If Q is a strict prefix of P , then Q is not =LD-equivalent
to P .

It is convenient to introduce an following easy generalization of the notion of
prefix of a term. By the wellknown properties of the Polish notation, not all word
prefixes of a term P need be wellformed terms, but for every such word prefix X
there exists a unique integer n such that X•n is a wellformed term. The terms
obtained this way from a term P will be called the cuts of P , which corresponds
to the following

Definition. The cuts of a term are inductively defined as follows. The unique
cut of a is a. The cuts of PP ′• are the cuts of P and all terms of the form PQ•
where Q is a cut of P ′.
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An equivalent definition is immediate induction shows that every prefix of
a term is a cut of that term. Also observe that the relation ‘being a cut of’ is
transitive. A more precise study of the cuts of a term will be made in Section 2.
Presently we shall only use some very basic properties.

Lemma 4. i) If P ′ is an extension of P , then for every cut Q of P some cut of
P ′ is an extension of Q.

ii) If Q is a cut of P , then ∂Q is a prefix of ∂P .
iii) The cuts of any term are pairwise =LD-unequivalent.

Proof. For (i) we may assume that P ′ is a 1-extension of P , and then argue
inductively on the length of P . Everything is obvious if P is a. Otherwise write
P as P1P2• and P ′ as P ′

1P
′
2•. If P ′

1 is a non trivial 1-extension of P1, then P ′
2

must be equal to P2. If Q is a cut of P1, then by induction hypothesis some cut
of P ′

1, and therefore of P ′, is an extension of Q. If Q is P1Q2• where Q2 is a cut
of P2, then P ′

1Q2• is a cut of P ′ and a 1-extension of Q. So the result holds for
P ′. The proof is similar if P ′

1 is equal to P1 and P ′
2 is a 1-extension of P2. The

remaining case is when P is P1P2P3•• and P ′ is P1P2•P1P3••. In this case the
result is clear is Q is either a cut of P1 or P1Q2• where Q2 is a cut of P2. Finally
if Q is P1P2Q3•• where Q3 is a cut of P3, then P1P2•P1Q3•• is a 1-extension of
Q and is a cut of P ′.

For (ii) the property is obvious when P is a. If P is P1P2•, an obvious
induction shows that ∂P1 is a prefix of ∂P . So if Q is a cut of P1, ∂Q is by
induction hypothesis a prefix of ∂P1, and therefore of ∂P . Now if Q is P1Q2•
where Q2 is a cut of P2, then by induction hypothesis ∂Q2 is a prefix of ∂P2, and
this easily implies that dist(∂P1, ∂Q2) is a prefix of dist(∂P1, ∂P2), which is the
desired result.

Finally if Q, Q′ are distinct cuts of P , ∂Q and ∂Q′ are distinct prefixes of
∂P , and, by Proposition 3, they are =LD-unequivalent. This gives the result since
Q and Q′ are =LD-equivalent to ∂Q and ∂Q′ respectively. �

We are ready to introduce the terms which will be used as unique represen-
tatives for the =LD-classes.

Definition. For P in W and k ≥ 0, P -EFk is the set of all cuts of ∂kP , P -
EF0 is P -EF0 and, for k ≥ 1, P -EFk is the subset of P -EFk made by the cuts of
∂kP which are not the image under ∂ of some term in P -EFk−1. A term Q is a
P -expanded term if it belongs to some set P -EFk with k ≥ 0.

The above definition of P -EFk makes sense by Lemma 4.ii: if Q belongs to
P -EFk−1, then ∂Q (which is =LD-equivalent to Q) belongs to P -EFk. So P -EFk is
the set of all ‘really new’ cuts of ∂kP .
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Example. Let P be the term aaaa•••. Then the elements of P -EF0 are the cuts
of P , which are

a, aa•, aaa•• and P .
The elements of P -EF1 are the cuts of ∂P which are not derived from the latter
ones. There are 4 such ‘new’ cuts, namely

aa•a•, aa•aa••a•, aa•aa••aa•• and aa•aa••aa•a••.
There are 42 cuts in ∂2P , among which 34 are new. The first (i.e. shortest) ones
are

aa•a•a•, aa•a•aa••, aa•a•aa•a••a•a•, etc. . .

It is very easy to state a first normal form result concerning the P -expanded
form. The =LD-saturation of the prefix relation � will be denoted by �LD. So
Q �LD P means that there exist terms P ′, Q′ satisfying Q′ =LD Q, P ′ =LD P and
Q′ � P ′. It has been shown in [3] and [10] that the relation �LD induces a linear
ordering on W/ =LD. This however will also follow from the results of Section 3.
Observe that the relations �, � and <Lex coincide on each set P -EFk.

Theorem 5. (existence and uniqueness of the P -expanded form) Let P be a
fixed term. Then any term Q satisfying Q �LD P is =LD-equivalent to a unique
P -expanded term.

Proof. Assume P =LD P ′, Q =LD Q′ and Q′ � P ′. By Corollary 2 the term ∂jQ′ is
an extension of Q for some j. Let P ′′ be the term obtained from P ′ by substituting
the prefix ∂jQ′ to the prefix Q′. Then P ′′ is =LD-equivalent to P ′, and therefore to
P . So for some k the term ∂kP is an extension of P ′′. Now by Lemma 4.i some cut
R of ∂kP is an extension of the cut ∂jQ′ of P ′′, and, by transitivity of extension,
it also is an extension of Q. If R belongs to P -EFk, we are done. Otherwise we
apply to R the inverse mapping ∂ of ∂ as many times as possible and eventually
obtain an element of P -EFk′ for some k′ below k. Since ∂ preserves the =LD-class,
we have obtained a P -expanded term which is =LD-equivalent to Q.

The uniqueness follows from Lemma 4.iii. Indeed let Q, R be distinct P -
expanded terms. Assume that Q belongs to P -EFk and R belongs to P -EF�.
Assume � ≤ k. Then ∂k−�R belongs to P -EFk, is =LD-equivalent to R and is
certainly different from Q since, in the case � < k, it does not belong to P -EFk.
By construction either Q is a strict cut of ∂k−�R, or ∂k−�R is a strict cut of Q. In
both cases we conclude that these terms cannot be =LD-equivalent. �

Thus we have obtained a unique normal form result for the terms Q satisfying
the condition Q �LD P . The unique =LD-equivalent P -expanded term which is =LD-
equivalent to a term Q will be called the P -expanded form of Q.
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The restriction to an initial segment of (W,�LD) can be easily dropped as
follows. First assume that P is a cut of P ′. Then all cuts of P are cuts of P ′, and,
by Lemma 4.ii, ∂kP is a prefix of ∂kP ′ for every k ≥ 1, so that every P -expanded
term is still a P ′-expanded term, and, more precisely, the P -expanded terms make
an initial segment of the P ′-expanded terms with respect to �LD. So for Q �LD P ,
the P ′-expanded form of Q is the P -expanded form of Q.

Now, for a word X built on the alphabet {a, •}, define the weight of X to be
the integer |X|a−|X|•, where |X|s is the number of s’s occurring in X. The terms
are exactly the words with weight 1 of which any nonempty prefix has weight ≥ 1.
Now a term Q is a cut of a term P if the word Q† obtained from Q by deleting
all final •’s is a prefix of P .

Definition. i) An infinite term is an infinite word P built on the alphabet {a, •}
(i.e. a sequence of elements of {a, •} indexed by the natural numbers) such that
the weight of any prefix of P is ≥ 1. The set of all finite or infinite terms is denoted
by W̃.

ii) For P in W̃ and Q in W, we say that Q is a cut of P if the word Q† is a
prefix of the word P , and that Q �LD P holds if Q �LD Q′ holds for some cut Q′

of P . The term P is cofinal in (W, �LD) if Q �LD P holds for every (finite) term Q.

The compatibility of these definitions in the case of finite terms is obvious.
Clearly the cuts of any (finite or infinite) term P are pairwise comparable (with
respect to the relation ‘being a cut of’). So by the argument above we can define
for an infinite term P the P -expanded terms to be all Q-expanded terms where
Q is a cut of P . By Lemma 4.ii, there is no ambiguity in defining the derivation
of an infinite term P as the infinite term admitting as prefixes the terms derived
from the cuts of P . Then the P -expanded terms still are the cuts of P , augmented
with the ‘new cuts’ of ∂P , augmented with the ‘new cuts’ of ∂2P , etc. . .

Definition. i) For every finite term R, Rω is the infinite term RRR. . .. An infinite
term P is eventually constant if for some finite term R the term P coincides with
Rω up to a finite prefix.

ii) For every finite term R, R[n] is the term Rn•n−1.

Observe that, for any n, the term R[n] is a cut of the infinite term Rω.

Proposition 6. Every eventually constant (infinite) term is cofinal in (W,�LD).

Proof. We first consider the case of the infinite term aω. We have to show that
the cuts of aω, i.e. the terms a[n], are cofinal in (W,�LD). For Q in W, define the
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height h(Q) and the complexity c(Q) of Q by h(a) = 1, c(a) = 0 and

h(QQ′•) = sup(h(Q),h(Q′)) + 1 c(QQ′•) = 2c(Q) + c(Q′) + 1.

We claim that, for any term Q, the equivalence

a[n] =c(Q)
LD Qa[n−1]• (1)

holds for every n ≥ h(Q), which implies Q �LD a[h(Q)]. The equivalence (∗) is
proved inductively on Q. If Q is a, (∗) is an equality. Assume that (∗) holds for
Q and Q′, and that n is h(QQ′•) at least. Applying the induction hypothesis we
have

a[n] =c(Q)
LD Qa[n−1]• =c(Q′)

LD QQ′a[n−2]•• =1
LD QQ′•Qa[n−2]•• =c(Q)

LD QQ′•a[n−1]••,

which establishes (1) for QQ′•.
Now let R be any finite term. Then the terms R[n] are cofinal in the sequence

of all a[i]’s. Actually we show inductively on R that, if f(R) is the number of
final •’s in R, the equivalence

R[n] =LD a[n+f(R)] (2)

holds for n ≥ h(R). The result is obvious if R is a. Assume that (2) is proved for
R and R′. For n ≥ h(RR′•) we have

(RR′•)[n] =LD RR′[n]• =LD Ra[n+f(R′)]• =LD RR[n+f(R′)−f(R)]•
=LD R[n+f(R′)−f(R)+1] =LD a[n+f(R′)+1],

which is the desired formula since f(RR′•) is f(R′)+1. This shows that the terms
R[n] are cofinal in (W,�LD). Finally if P is infinite and eventually coincides with
Rω, it must have the form P1. . .PiRR. . . for some terms P1, . . ., Pi. Then for
every n the term P1. . .PiR

[n]•i is a cut of P . Now this term is =LD-equivalent to
(P1. . .PiR•i)[n], and by applying the preceding result to the term P1. . .PiR•i we
know that the sequence of all (P1. . .PiR•i)[n]’s is cofinal in (W,�LD). �

Not every infinite term is cofinal in (W,�LD): for instance the cuts of the
term aa•a•a•a•. . . all lie below aaa••. In this counterexample the weights of the
prefixes are bounded, but Richard Laver has constructed a non cofinal term of the
form P1P2P3. . .. No exact description of the cofinal infinite terms is known.

The previous result establishes not only the existence of the P -expanded form
but also yields an upper complexity bound for its computation.
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Theorem 7. (existence and complexity of the P -expanded form) Assume that P
is an infinite eventually constant term. Then every (finite) term has a P -expanded
form, and the function which maps a term to its P -expanded form lies in the
complexity class DSPACE(exp∗(O(2n))), where exp∗ is the iterated exponential
defined by exp∗(0) = 1, exp∗(x + 1) = 2exp∗(x).

Proof. The existence is immediate from Proposition 6. For the complexity we begin
with the special case of aω. Let Q be any term. In the proof of Proposition 6, we
have established the equivalence

a[h(Q)] =c(Q)
LD Qa[h(Q)−1]. (1)

It follows that some cut of ∂c(Q)a[h(Q)] is an extension of Q. This shows that the
a[h(Q)]-expanded form of Q exists, but, more, that this form belongs to a[h(Q)]-EFk

for some k ≤ c(Q). Thus the determination of the aω-expanded form of Q can be
made by exhaustively enumerating all extensions of Q whose size is less than the
size of ∂c(Q)a[h(Q)] and testing equality of terms. For a term Q with length n (as
a word), the height of Q is below (n + 1)/2, and the complexity of Q is below 2n.
For R with length N , the length of ∂R is bounded by 2N , so one obtains that the
size of ∂c(Q)a[h(Q)] is bounded by exp∗(O(2n)) with exp∗ is as above.

Now let R be any finite term. To extend result from a to R, it suffices to
prove that, for some constant α, the equivalence

R[h(Q)] =c(Q)+αh(Q)
LD QR[h(Q)−1] (2)

holds for every sufficiently large term Q. Now (2) follows from (1) provided that
there exists a constant β (depending on R) such that

R[n] =βn
LD a[n+(R)] (3)

holds for every n large enough. We prove this ‘quantitative’ version of formula (2)
in the proof of Proposition 6 inductively on R. The result is obvious if R is a. So
assume that R is R′R′′• and (3) is proved for R′ and R′′ with respective constants
β′ and β′′. We successively obtain for n large enough (actually for n ≥ h(R))

R[n] = R′R′′•. . .R′R′′••n =n
LD R′R′′[n]•

=β′′n
LD R′a[n+f(R′′)]

=β′n
LD R′R′[n+f(R′′)−f(R′)] = R′[n+f(R′′)−f(R′)+1]

=β′n
LD a[n+f(R′′)+1] = a[n+f(R)].

This establishes the formula (with b = 2β′ + β′′ + 1), and completes the proof. �
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2. The geometry of derivation

Although it theoretically gives a unique representative for every =LD-equivalence
class, the expanded form is not a very useful tool. The main reason is that no
simple intrinsic characterization of the expanded terms is known and that the
comparison of P -expanded terms with respect to �LD is not easy. Also the length
of the expanded form of even very simple terms is hopelessly large, which makes
any practical use difficult.

But the expanded terms are very good intermediates toward a better normal
form. Indeed it now suffices to construct simple normal terms to represent the
expanded terms, and the results of Section 1 will guarantee that these normal
terms will be representatives for all terms.

The main technical task will be to connect the cuts of a term ∂P with the
cuts of the term P . This will heavily rely on the geometry of the terms and of left
distributivity.

As in [2] and [5], it will be convenient to consider terms as binary trees accord-
ing to the usual convention that PQ• is the tree admitting P as a left subtree and
Q as a right subtree. We use finite sequences of 0’s and 1’s as addresses for nodes
in such trees. The set of such sequences is denoted by S, and the empty sequence
(the address of the root of the tree) is denoted by Λ. We shall denote respectively
by 0∗ and 1∗ the subsets of S made by all 0i and all 1i for i a nonnegative integer.
For P in W, the set of all addresses of the leaves of P is called the support of that
term, and is denoted by Supp P . With obvious notations we have the following
inductive relations

Supp a = {Λ}
Supp(PP ′•) = 0(Supp P ) ∪ 1(Supp P ′)

For instance the support of the term a[4] (i.e. aaaa•••) is the set {0, 10, 110, 111}.
There are exactly as many points in the support of P as occurrences of the charac-
ter a in P viewed as a word. Observe that this address system does not necessar-
ily extend to infinite terms since such terms may have an infinitely long leftmost
branch. However it could easily be adapted by considering addresses of the form
0

i
u with u in S and 0 is an inverse of 0.

Because there is a bijection between the support of P and the occurrences of
the character a in the word P , and another bijection between these occurrences
and the various cuts of P , we can use the elements of Supp P to index the cuts
of P : the idea is that cut(P, u) will be the cut of P obtained by cutting P at the
occurrence of a which has address u and completing with as many •’s as is needed
to obtain a well-formed term. Formally we start with the following
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Definition. i) Let P be any (finite) term. For u in the support of P , the term
cut(P, u) is defined as follows: cut(a, Λ) is a, cut(P ′P ′′•, u) is cut(P ′, v) if u is 0v
and is P ′cut(P ′′, w)• if u is 1w.

ii) The relation <Lex is the lexicographical extension to W̃ of the ordering on
{a, •} defined by • <Lex a.

iii) For u, v in S, we write u < v, and say that u is on the left of v, if some w
satisfies both w0 � u and w1 � v.

We naturally denote by �LD the =LD-saturation of the strict prefix relation �.
We establish inductively that the mapping cut has the desired properties.

Lemma 1. For every term P the function u �→ cut(P, u) is a bijection of Supp P
onto the set of all cuts of P . Moreover for u, v in Supp P the following are
equivalent

i) u < v;
ii) cut(P, u) �LD cut(P, v);
iii) cut(P, u) <Lex cut(P, v).

Proof. That the cuts of P are exactly the terms cut(P, u) for u in the support of
P is established by an easy induction on P . Now because < is a linear ordering on
Supp P and both �LD (by Lemma 1.4.iii) and <Lex are linear orderings on the cuts of
P , it suffices to show that (i) implies (ii) and (iii). Now u < v implies that cut(P, u)
is a cut of cut(P, v): because the relation ‘is a cut of’ is transitive, it suffices to
establish the implication when v is the immediate successor of u in Supp P . But
in this case u and v have the form w0i and w10j for some w, i, j, and the property
follows from the definition. Then u < v implies cut(P, u) <Lex cut(P, v) since, by
the construction of cuts as words, a cut of a term always preceds that term with
respect to the lexicographical ordering. By Lemma 1.4.ii the fact that cut(P, u)
is a cut of cut(P, v) implies that ∂cut(P, u) is a prefix of ∂cut(P, v), and therefore
that cut(P, u) �LD cut(P, v) holds. �

It could be useful in the sequel to have a following geometrical intuition of the
cuts (which can be verified using an easy induction). Starting from the term P
viewed as a binary tree, the tree cut(P, u) is obtained from P by deleting the part
of that tree which lies on the right of u and lifting the remaining subtrees so that
the branching index remains 1 at each inner node. More precisely, if u1, . . ., up

are the prefixes of u such that u10, . . ., up0 are not prefixes of u, and if P1, . . .,
Pp are the subtrees of P with root at u10, . . ., up0 respectively, then cut(P, u) is
exactly P1. . .Ppa•p.

The first step in the study of the cuts of ∂P is naturally the study of the cuts
of a term dist(Q, R) in terms of the cuts of Q and R. This is easy.
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Lemma 2. Let Q, R be arbitrary terms in W.
i) The support of dist(Q, R) is the set

(Supp R)1 ∪ (Supp R)0(Supp Q).

ii) For v in Supp Q and w in Supp R one has

cut(dist(Q, R), w1) = dist(Q, cut(R, w)),
cut(dist(Q, R), w0v) = dist(Q, R1). . .dist(Q, Rr)cut(Q, v)•r

where cut(R, w) is R1. . .Rra•r.

Proof. The result is rather clear owing to the geometrical construction of dist(Q, R)
as the tree obtained from R by substituting the tree Qa• to every occurrence of a
in R. For a formal proof use induction on R. If R is a, dist(Q, R) is just Qa•,
the only cut of R is a itself and everything is obvious. Assume R = R′R′′•. The
formula for the support is easy. Assume that v lies in the support of Q, and w in
the support of R′. Then 0w belongs to Supp R, and one has

cut(dist(Q, R), 0w1) = cut(dist(Q, R′), w1)
= dist(Q, cut(R′, w)) (ind. hyp. for R′)
= dist(Q, cut(R, 0w))

cut(dist(Q, R), 0w0v) = cut(dist(Q, R′), w0v)
= dist(Q, R′

1). . .dist(Q, R′
r)cut(Q, v)•r

by induction hypothesis for R′ assuming cut(R′, w) = R′
1. . .R

′
ra•r. Now

cut(R, 0w) is equal to cut(R′, w), so one has obtained the desired formula.
Assume now that w lies in the support of R′′, so that 1w belongs to the

support of R.

cut(dist(Q, R), 1w1) = dist(Q, R′)cut(dist(Q, R′′), w1)•
= dist(Q, R′)dist(Q, cut(R′′, w))• (ind. hyp. for R′′)
= dist(Q, R′cut(R′′, w)•)
= dist(Q, cut(R, 1w))

cut(dist(Q, R), 1w0v) = dist(Q, R′)cut(dist(Q, R′′), w0v)•
= dist(Q, R′)dist(Q, R′′

1 ). . .dist(Q, R′′
r )cut(Q, v)•r+1

by induction hypothesis for R′′ assuming cut(R′′, w) = R′′
1 . . .R′′

r a•r. Now
cut(R, 1w) is R′cut(R′′, w)•, that is R′R′′

1 . . .R′′
r a•r+1, and the formula has the

desired form. �
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We now introduce the key geometrical notion for the sequel.

Definition. i) For u, v in S, write u � v if w1j0 � u and w0 � v hold for some
integer j and some w in S.

ii) A descent of P is a finite sequence 〈u1, . . ., up〉 in Supp P satisfying the
condition u1 � u2 � . . . � up. The set of all descents of P is denotes by DescP .

iii) Let P be a (finite) term, and u be an element of Supp P . Let w be the
maximal prefix of u which does not end with 1. The point θP (u) is the <-least
point in Supp P which admits w as a prefix, i.e. the only point in Supp P ∩w0∗.

Lemma 3. For any term P and u, v in the support of P , u � v is equivalent to
θP (u) > v.

The proof is straightforward. Observe that � is an ordering on S, and that
u � v implies u > v since θP (u) ≤ u always holds. We shall denote by <∗ the
lexicographical extension of the order < to the finite sequences in S. Observe that
for any term P , the rightmost point in Supp P has the form 1i. Then 〈1i〉 is the
only descent of P where 1i occurs, and this descent is the last element of DescP
with respect to <∗. The point 1i will be refered to in the sequel as the final point
of Supp P , and similarly the descent 〈1i〉 will be refered to as the final descent
of P .

Example. The <∗-increasing enumeration of Desc(aaaa•••) is
〈0〉, 〈10〉, 〈10, 0〉, 〈110〉, 〈110, 0〉, 〈110, 10〉, 〈110, 10, 0〉, 〈111〉.

We turn to the description of the correspondence between the support of ∂P
and the descents of P . It could be useful to have the following geometrical in-
tuition of this correspondence. When left distributivity is applied to transform a
term . . .P ′P ′′P ′′′••. . . into . . .P ′P ′′•P ′P ′′′••. . ., we can imagine that the second
subterm P ′ is obtained by letting the original P ′ cross the subterm P ′′, or, more
precisely, the rightmost variable of P ′′. Let us start with a term P whose vari-
ables are pairwise distinct. Consider any point w in the support of ∂P . Then
in a transformation from P to ∂P the variable x which occurs at w in ∂P has
crossed a certain number of variables of P , say x1, . . ., xp−1. The set of these vari-
ables does not depend on the way the transformation has been operated: actually
{x1, . . ., xp−1} is the set of the rightmost variables of the subterms of ∂P with
roots at w10, . . ., wp−10, where w1, . . ., wp−1 are the prefixes of w such that w11,
. . ., wp−11 are also prefixes of w but w does not belong to wi1∗ (so that w � w10,
. . ., w � wp−10 holds). Now if u1, . . ., up are the addresses of the variables x1,
. . ., xp−1, x in the support of P enumerated in <-decreasing order, 〈u1, . . ., up〉 is
a descent of P and is the image of w in the above mentioned correspondence.

12
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Example. (see Figure 1) Assume that P is abcd•••. Then ∂P is ab•ac••ab•ad•••.
Consider the point 110 in Supp ∂P : the variable at this point is a, which has
address 0 in P . There are two prefixes wi of 110 such that wi1 is a prefix of 110,
namely Λ and 1, and the rightmost variables of the terms below 0 and 10 in ∂P are
c and b, with respective addresses 110 and 10 in P . So the point 110 of Supp ∂P
corresponds to the descent 〈110, 10, 0〉 of P .

In order to obtain sufficiently precise statements for the sequel, we shall have
to make the above correspondence completely explicit, which requires some tedious
bur easy inductive verifications. For u in S, we denote by |u|1 the number of 1’s
in u. We add two points −∞ and +∞ to S with the convention that +∞ � u
holds for every u in S \ 1∗ and u > −∞ holds for every u in S.

Definition. Let P be any term. For u1, . . ., up in S ∪ {±∞} let

ϕP (u1, . . ., up) = 0δP (u1,u2)10δP (u2,u3)1. . .10δP (up−1,up)

where
δP (u, v) = card{x ∈ Supp P ;u � x > v}.

For 〈u1, . . ., up〉 a non final descent of P , let

ΦP (〈u1, . . ., up〉) = ϕP (+∞, u1, . . ., up)01|up|1 ,

ΨP (〈u1, . . ., up〉) = ϕP (+∞, u1, . . ., up,−∞),

and extend ΦP by ΦP (〈1i〉) = 1i where 〈1i〉 is the final descent of P .

The main technical point is the existence of a bijective correspondence be-
tween the points of ∂P and the descents of P both in terms of addresses and of
the associated cuts.

13



Lemma 4. Let P be any term in W.
i) The mapping ΦP is an increasing bijection of the set DescP ordered by <∗

onto Supp ∂P ordered by <. Moreover for every non final descent α of P , the
immediate successor of ΦP (α) in Supp ∂P is ΨP (α).

ii) For every descent 〈u1, . . ., up〉 of P one has

cut(∂P, ΦP (〈u1, . . ., up〉)) = ∂cut(P, u1). . .∂cut(P, up)•p−1,

and, if 〈u1, . . ., up〉 is not final,

cut(∂P, ΨP (〈u1, . . ., up〉)) = ∂cut(P, u1). . .∂cut(P, up)a•p.

Proof. Use induction on P . If P is a, the only descent of P is 〈Λ〉, ΦP (〈Λ〉) is by
definition Λ, ∂P is a and everything is obvious. Assume from now on that P is
QR• and the properties hold for Q and R. We have with obvious notations (using
� for concatenation of sequences)

DescP = 1(DescnfR)�0(DescQ) ∪ 0(DescQ) ∪ 1(DescR)

where DescnfR denotes the set of all non final descents of R. For w non final in
Supp R and v non final in Supp Q, one has

δP (1w, 0v) = δR(w,−∞) + 1 + δQ(+∞, v),

and this formula still holds if w is +∞ or v is −∞. So for 〈w1, . . ., wr〉 a non final
descent of R and 〈v1, . . ., vq〉 a non final descent of Q, one obtains

ϕP (〈+∞, 1w1, . . ., 1wr, 0v1, . . ., 0vq〉) = ϕR(〈+∞, w1, . . ., wr〉)0ϕQ(〈v1, . . ., vq〉)

and therefore

ΦP (〈1w1, . . ., 1wr, 0v1, . . ., 0vq〉) = ΨR(〈w1, . . ., wr〉)0ΦQ(〈v1, . . ., vq〉),
ΨP (〈1w1, . . ., 1wr, 0v1, . . ., 0vq〉) = ΨR(〈w1, . . ., wr〉)0ΨQ(〈v1, . . ., vq〉).

Similarly one has

ΦP (〈1w1, . . ., 1wr〉) = ΦR(〈w1, . . ., wr〉)1
ΨP (〈1w1, . . ., 1wr〉) = ΨR(〈w1, . . ., wr〉)0j ,

ΦP (〈0v1, . . ., 0vq〉) = 0kΦQ(〈v1, . . ., vq〉)
ΨP (〈0v1, . . ., 0vq〉) = 0kΨQ(〈v1, . . ., vq〉),
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where j and k are the cardinals of the supports of Q and R respectively. Then if
v is the final point of Supp Q, one has

δP (1w, 0v) = δR(w,−∞),

which gives for 〈v〉 the final descent of Q

ϕP (〈+∞, 1w1, . . ., 1wr, 0v〉) = ϕR(〈+∞, w1, . . ., wr,−∞〉),

whence

ΦP (〈1w1, . . ., 1wr, 0v〉) = ΨR(〈w1, . . ., wr〉)01|v|1 = ΨR(〈w1, . . ., wr〉)0ΦQ(〈v〉),
ΨP (〈1w1, . . ., 1wr, 0v〉) = ΨR(〈w1, . . ., wr〉)1.

Similarly one obtains (with k as above)

ΦP (〈0v〉) = 0k1|v|1 = 0kΦQ(〈v〉),
ΨP (〈0v〉) = 0k−11.

Finally, if 〈w〉 is the final descent of R, then 〈1w〉 is the final descent of P , and we
directly obtain

ΦP (〈1w〉) = ΦR(〈w〉)1.

The explicit formulas above show that the image of ΦP is made of all ΨR(γ)0ΦQ(β)
for γ in DescnfR and β in DescQ, together with all 0kΦQ(β) for β in DescQ and all
ΨR(γ)1 for γ in DescR. An immediate induction will show that, for any term R,
the point 0k−1 belongs to the support of ∂R, and is its <-least element. Therefore
the induction hypothesis implies that the image of ΨR augmented with 0k−1 is
exactly the support of ∂R, and the image of ΦP is

(Supp ∂R)0(Supp ∂Q) ∪ (Supp ∂R)1,

which, by Lemma 2.i, is the support of dist(∂Q, ∂R), i.e. of ∂P .
By a parallel argument one proves that the image of ΨP is all of Supp ∂P

except its <-least element (i.e. 0cardSupp P−1). By construction ΦP (α) < ΨP (α)
holds for any non final descent α of P . Moreover since ΦP (α) and ΨP (α) always
have the form w01i and w10j for some w, i, j, no point u may satisfy ΦP (α) < u <
ΨP (α), so that ΨP (α) is certainly the immediate successor of ΦP (α) in Supp ∂P .
Finally its is easy to verify the following relations

ΦP (0β) < ΦP (1γ) < ΦP (1γ�0β) for β in DescQ and γ in DescR,
ΦP (1γ�0β) < ΦP (1γ′�0β′) for β, β′ in DescQ and γ, γ′ in DescR satisfying

ΦR(γ) < ΦR(γ′),
ΦP (1γ�0β) < ΦP (1γ�0β′) for γ in DescR and β, β′ in DescQ satisfying

ΦQ(β) < ΦQ(β′),
so that ΦP must be increasing whenever ΦQ and ΦR are. This finishes the proof
of (i).
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Assume now that 〈w1, . . ., wr〉 is a non final descent of R, and 〈v1, . . ., vq〉 is
a non final descent of Q. One has as above

cut(∂P, ΦP (〈1w1, . . ., 1wr, 0v1, . . ., 0vq〉)
= cut(∂P, ΨR(〈w1, . . ., wr〉)0ΦQ(〈v1, . . ., vq〉)).

By the induction hypothesis cut(∂R, ΨR〈w1, . . ., wr〉) is equal to

∂cut(R, w1). . .∂cut(R, wr)a•r

and cut(∂Q, FQ(〈v1, . . ., vq〉) is equal to ∂cut(Q, v1). . .∂cut(Q, vq)•q−1, hence by
Lemma 2.ii one obtains

cut(∂P, ΦP (〈1w1, . . ., 1wr, 0v1, . . ., 0vq〉) =
dist(∂Q, ∂cut(R, w1)). . .dist(∂Q, ∂cut(R, wr))∂cut(Q, v1). . .∂cut(Q, vq)•r+q−1.

Now dist(∂Q, ∂cut(R, w)) is the derived term of Qcut(R, w)•, and the latter term
is cut(P, 1w). On the other hand cut(Q, v) is equal to cut(P, 0v). Therefore the
last term is equal to

∂cut(P, 1w1). . .∂cut(P, 1wr)∂cut(P, 0v1), . . ., ∂cut(P, 0vq)•r+q−1,

which is the desired form. The adaptation to the case of cut(∂P, ΦP (〈0v1, . . ., 0vq〉))
is straightforward. For the case of a descent 〈1w1, . . ., 1wr〉, one obtains

cut(∂P, ΦP (〈1w1, . . ., 1wr〉)) = cut(∂P, ΦR(〈w1, . . ., wr〉)1),

hence by Lemma 2.ii and the induction hypothesis

cut(∂P, ΦP (〈1w1, . . ., 1wr〉)) = dist(∂Q, cut(∂R, ΦR(〈w1, . . ., wr〉)1))

= dist(∂Q, cut(R, w1)). . .dist(∂Q, cut(R, wr))•r−1

= ∂cut(P, 1w1). . .∂cut(P, 1wr)•r−1

,

which proves the formula for ΦP . The proof for ΨP is similar. The only new case
is the case of a descent 〈1w1, . . ., 1wr〉. One obtains

cut(∂P, ΨP (〈1w1, . . ., 1wr〉)) = cut(∂P, ΨR(〈w1, . . ., wr〉)00j−1)).

By induction hypothesis cut(R, ΨR(〈w1, . . ., wr〉)) must be

∂cut(R, w1). . .∂cut(R, wr)a•r,

so by Lemma 2.ii. the term above is equal to

dist(∂Q, cut(R, w1)). . .dist(∂Q, cut(R, wr))∂cut(Q, 0j−1•r.

Now cut(∂Q, 0j−1) is certainly a, so the final formula is

cut(∂P, ΨP (〈1w1, . . ., 1wr〉)) = ∂cut(P, 1w1). . .∂cut(P, 1wr)a•r,

as we wished. �
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Example. (similar to the preceding one) Let P be the term aaaa•••. Then
〈110, 10, 0〉 is a descent of P , and ΦP (〈110, 10, 0〉〉 is 110. Now cut(∂P, 110) is
aa•aa••aa•a••, which is equal to cut(P, 110)cut(P, 10)cut(P, 0)••.

It is now easy to characterize the cuts of ∂P which come from some cut of P .

Lemma 5. Let P be any term. For v in the support of ∂P the following are
equivalent

i) cut(∂P, v) is =LD-equivalent to some cut of P ;
ii) v is ΦP (〈u〉) for some u in the support of P ;
iii) v belongs to 0∗1∗.

Proof. Since by Lemma 4 the term cut(∂P, ΦP (〈u〉)) is always =LD-equivalent to
cut(P, u) and two different cuts of ∂P cannot be =LD-equivalent, the equivalence
of (i) and (ii) is obvious. For (iii) observe that ΦP (〈u〉) belongs to 0∗1∗ by con-
struction, while for p ≥ 2 the point ΦP (〈u1, . . ., up〉) cannot belong to this set. �

It remains to characterize the descents of ∂P in terms of the descents of P .

Lemma 6. Let P be any term. For every descent 〈u1, . . ., up〉 of P one has

θ∂P (ΦP (〈u1, . . ., up〉)) = ΦP (〈u1, . . ., up−1, 0i〉),

where 0i is the leftmost point of Supp P .

Proof. If up is 0i, then ΦP ((〈u1, . . ., up〉) ends with 0, and θ∂P (ΦP ((〈u1, . . ., up〉))
is ΦP ((〈u1, . . ., up〉) and the formula is trivial. Now assume that up contains at
least one 1. If p is at least 2, we have

ΦP ((〈u1, . . ., up〉) = ϕP (+∞, u1, . . ., up−1)10δP (up−1,up)01|up|1

with |up|1 ≥ 1, so that for some k one has

θ∂P (ΦP ((〈u1, . . ., up〉)) = ϕP (+∞, u1, . . ., up−1)10k.

On the other hand we have

ΦP ((〈u1, . . ., up−1, 0i〉) = ϕP (+∞, u1, . . ., up−1)10δP (up−1,0i)0,

which has precisely the desired form. Finally if p is 1, ΦP (〈u1〉) belongs to 0∗1∗, so
that θ∂P (ΦP (〈u1〉)) is the leftmost point 0k of Supp ∂P , which is also ΦP (〈0i〉). �

The description of the correspondence between the points and cuts of ∂P and
the points and cuts of P is now complete.
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3. The normal form

Our aim is to obtain a canonical description for the expanded terms, i.e. for
the cuts of the iterated derived terms ∂kP . An inductive scheme is given by
Lemma 2.4. Indeed the cuts of ∂kP are expressed in terms of the cuts of ∂k−1P ,
which in turn are expressed in terms of the cuts of ∂k−2P , and so on. Eventually
one reaches the cuts of P , which will be considered as atomic objects. The terms
obtained by removing all ∂’s in decompositions as above will be called P -normal
terms. They will turn out be behave very nicely.

In order to work with the cuts of P considered as atomic, it is convenient to
introduce for every term P a set of new variables indexed by the cuts of P . A
term constructed using these variables and the operator • will be called a P -term,
and the set of all P -terms will be denoted by WP . We shall denote by (Q) the
variable associated with Q.

Definition. Let P be a fixed term. For every term Q, the P -factorization of Q
is the P -term (Q)P defined by{

(Q)P = (Q) if Q is a cut of P ,
(Q′)P (Q′′)P • if Q is not a cut of P and Q is Q′Q′′•.

The P -factorization of any term exists since a is always a cut of P . For every
P -term Q, the evaluation of Q is the term obtained by replacing each new variable
by the corresponding term, i.e. simply by removing all parentheses from Q. Ob-
serve that any term is equal to the evaluation of its P -factorization. If we order P -
terms by the lexicographical extension of the ordering satisying • <Lex (Q) for each
variable (Q) and (Q) <Lex (Q′) if and only if Q <Lex Q′ holds, then P -factorization
and evaluation preserve <Lex . Observe that these definitions immediately extend
to the case of an infinite term P .

Example. The aω-terms are the terms involving the variables (a), (aa•), (aaa••),
etc. . . Let Q be the term aaa••a•aa••: the aω-factorization of Q is the term
(aaa••)(a)•(aa•)• whose length is 5. Observe that (Q)aω is not the only aω-term
whose evaluation is Q: for instance (a)(aa•)•(a)•(aa•)• is another such aω-term.

Definition. i) The degree of a term Q is the maximal number of 0’s occurring in
some point in the support of Q.

ii) Let P be a (finite or infinite) term, and Q be a term in W. The P -degree
dP (Q) of Q is the degree of the term (Q)P .
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The height of the term Q is the maximal number of 0’s and 1’s occurring in
some point of the support of Q. So the degree of a term is a kind of ‘left height’.
The aω-degree of the term Q considered in the example above is 2 since the support
of (Q)aω is {00, 01, 1}. With the notion of P -degree, we can introduce the crucial
notion of P -head of a term. We begin with finite terms.

Definition. Let P be a finite term in W. For any term Q in W, the P -head
ΘP (Q) is defined by

ΘP (Q) =


cut(P, θP (u)) if dP (Q) = 0 and Q is cut(P, u),
Q1. . .Qqa•q if dP (Q) ≥ 1 and Q is Q1. . .QqQq+1•q

with dP (Qq) = dP (Q)−1 ≥ dP (Qq+1).

The definition makes sense since the expression of a term Q as Q1. . .QqQq+1•q

with dP (Qq) = dP (Q)−1 ≥ dP (Qq+1) is unique. The idea is that the P -head of
Q is obtained (for terms with P -degree at least 1) by keeping the ‘complicated
part’ of Q (with respect to P -degree) and collapsing the simple final part to a.
For instance the a[3]-head of the term aaa••a•aa•• considered above is the term
aaa••a•a• since the index ‘q’ is 1 in this case. Observe that ΘP (Q) is always a
cut of Q, which implies ΘP (Q) ≤Lex Q and ΘP (Q) �LD Q. The extension to infinite
terms is easy thanks to the following compatibility result.

Lemma 1. Assume that P is a cut of P ′, and that Q is a proper cut of P . Then
ΘP (Q) and ΘP ′(Q) coincide.

Proof. The result is vacuously true if P is a. The point is that, if P is cut(P ′, u)
and Q is cut(P ′, v′) (with v < u), then Q is cut(P, v) where v is obtained from v′

as follows. Write v′ as u′0w where u′ is the maximal common prefix to u and v′.
Then v is 1|u

′|10w. Let R be the subterm of P ′ whose root has address u′0. Then
R′ is also the subterm of P whose root has address 1|u

′|10, and both ΘP (Q) and
ΘP ′(Q) are cut(P ′, u′0θR(w)). �

Definition. Let P be a (finite or infinite) term in W̃.
i) P -NF0 is the set of all cuts of P ;
ii) for k ≥ 0, P -NFk+1 is the set of all terms of the form Q1. . .Qq+1•q where

q is at least 1, Q1, . . ., Qq belong to P -NFk, Qq+1 belongs to the union P -NFk of
all P -NF� for � ≤ k and, for j ≤ q the condition ΘP (Qj) >Lex Qj+1 holds.
The elements of any set P -NFk are called P -normal terms.

Example. As above the case of the infinite term aω will be fundamental, and
we make the convention that reference term when omitted is supposed to be aω.
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Then the normal terms of degree 0 are exactly the terms a[n]. For any n the
head of a[n] is a[n] itself: for any n′ > n, the term a[n] is cut(a[n′], 1n−10) and
θa[n′](1n−10) is 1n−10. So the condition Θ(a[n]) >Lex a[m] is equivalent to n > m,
and the normal terms of degree 1 are the terms a[n1]a[n2]. . .a[nq+1]•q with q ≥ 1
and n1 > n2 > . . . > nq+1. The table below represents the first elements of NF2

(with respect to <Lex). Actually the terms written below are the factorization of
these normal terms using a for (a), b for (aa•), c for (aaa••). For every k ≥ 0 the
first element of NFk+1 is ba•(a•)k.

NF0 a b c
NF1 ba• ca•
NF2 ba•a• ba•b• ca•a• ca•b• ca•ba•• ca•ba•a••

. . .

. . . cb• cba••
ca•ba•b•• ca•c• cb•a• cb•b• cb•ba• cb•ba•a•• cb•ba•b•• cb•c•

Lemma 2. Assume that Q belongs to P -NFk. Then
i) Q has P -degree k;
ii) (Q)P cannot be a strict prefix of (the P -factorization of) any term in

P -NFk.

Proof. It is clear that the P -degree of Q is at most k. For proving that this
degree cannot be strictly below k, the point is to show that no new ‘cut group-
ing’ may happen in the P -factorization of a term in P -NFk compared with the
P -factorization of its components in P -NFk−1. Clearly it suffices to show the
property in the case k = 1, i.e. to show that no term in P -NF1 may be a cut of P .
A term in P -NF1 has the form

cut(P, u1). . .cut(P, uq+1)•q

with ΘP (cut(P, uj)) >Lex cut(P, uj+1) for j ≤ q. By Lemma 2.1 the latter condition
is equivalent to θP (uj) > uj+1, i.e. to uj � uj+1. So it is sufficient to prove the
following

Claim. If P is any term and 〈u1, . . ., uq+1〉 is a descent of P , then no cut of P
may be =LD-equivalent to the product cut(P, u1). . .cut(P, uq+1)•q.

We prove this property by showing that the above product is a ‘new’ cut in
some extension of P , which, by Lemma 1.4, establishes that it cannot be a cut
of P , nor even either be =LD-equivalent to a cut of P . We shall first assume q = 1.
Because u1 � u2 is assumed, there exists points w, v1, v2 and an integer j such
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that u1 is w1j0v1 and u2 is w0v2. For simplicity we assume w = Λ. We construct
successive extensions P ′, P ′′, . . . of P . In each case there will exist unique points
u′

i, u′′
i , . . . satisfying

cut(P, ui) =LD cut(P ′, u′
i) =LD cut(P ′′, u′′

i ). . .

for i = 1, 2. We choose the extensions so that these points have special geometrical
properties. The first step is to obtain P ′ with u′

1 = 10v1, u′
2 = u2 (by applying

distribution successively at 1j−1, 1j−2, . . ., 1). The second step is to obtain P ′′

with u′′
1 = 101k, u′′

2 = u2 for some k. Now if P ′′′ is obtained from P ′′ by applying
distributivity at Λ, one obtains

cut(P ′′′, 1u2) =LD cut(P ′′, 101k)cut(P ′′, u2)• =LD cut(P, u1)cut(P, u2)•,

which gives the result since cut(P ′′′, 1u2) is a ‘new’ cut of P ′′′ (i.e. a cut which
is not =LD-equivalent to any cut in P ′′). The method can be extended to q ≥ 2
iteratively.

Finally point (ii) follows, because every term whose Q is a strict prefix has
the form QR1•R2•. . ., and therefore has P -degree at least k + 1 provided that it
is P -normal. �

Remark. If Q, Q′ are distinct cuts of P , the term Q may be a prefix of
the term Q′, but the atomic term (Q)P is certainly not a prefix of the atomic
term (Q′)P : it is therefore essential to use the P -factorization in this matter (as
well as at every place in the sequel where prefixes are concerned).

If Q is in P -NFk+1, then ΘP (Q) must be Q1. . .Qqa•q where Q1. . .QqQq+1•q

is the decomposition as in the definition. Thus the integer q is unambiguously
defined, and the decomposition is unique. It will be refered to as the P -normal
decomposition of Q. We shall now easily establish that the P -normal terms are
representatives for the P -expanded terms.

Definition. Assume that P is in W. For every P -expanded term Q, the P -
reduction ||Q||

P
is the term defined as follows. If Q is a cut of P , then ||Q||

P
is Q.

If Q is a cut of ∂k+1P , then

||Q||
P

= ||Q1||P . . .||Qq+1||P•
q

where Q is cut(∂kP, u), u is Φ∂kP (〈v1, . . ., vq+1〉) and Qj is cut(∂kP, vj).

Lemma 3. Assume that P is a cut of P ′. Then the P ′-reduction and the P -
reduction of any P -expanded term coincide.
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Proof. If Q is a cut of P , Q is a cut of P ′ too and the result is obvious. If Q is a
cut of ∂kP with k ≥ 1, then ∂kP is a prefix of ∂kP ′. There exists some integer i
verifying

cut(∂kP, u) = cut(∂kP ′, 0iu)

for any u in the support of P . The explicit value shows that there exists a new
integer j such that for any descent 〈u1, . . ., up〉 of ∂kP one has

ΦP ′(〈0iu1, . . ., 0iup〉) = 0jΦP (〈u1, . . ., up〉).

It follows that for any cut Q of ∂k+1P , the cuts Q1, . . ., Qq+1 appearing in the
P -reduction of Q coincide with the ones appearing in the P ′-reduction of Q. So
inductively the P -reduction and the P ′-reduction coincide. �

Therefore there will be no problem to consider the P -reduction even for an
infinite term P . The main technical argument is now the following

Lemma 4. i) For any P -expanded term Q, the term ||Q||
P

is =LD-equivalent to Q.

ii) P -reduction bijectively maps P -EFk onto P -NFk, and P -EFk onto P -NFk.

iii) P -reduction preserves the ordering <Lex on each set P -EFk.

iv) For every Q in P -EFk one has

||Θ∂kP (Q)||
P

= ΘP (||Q||
P
).

Proof. We may assume that P is a finite term. The results will be proved for
the restriction of P -reduction to P -EFk inductively on k ≥ 0. For the cuts of P ,
everything is obvious since P -reduction is the identity mapping. From now on
we assume that the results are proved for P -EFk. Let Q be a cut of ∂k+1P , say
cut(∂k+1P, v). Then v is the image under Φ∂kP of some descent 〈v1, . . ., vq+1〉 of
∂kP . Writing Qj for cut(∂kP, vj), we have by definition

||Q||
P

= ||Q1||P . . .||Qq+1||P•
q.

By induction hypothesis, ||Qj ||P =LD Qj holds for every j. Now by Lemma 2.4 we
have

Q =LD Q1. . .Qq+1•q,

and this is enough to deduce ||Q||
P

=LD Q. So point (i) is proved for k+1. Observe
that the injectivity of P -reduction on P -EFk+1 follows since we know that the
elements of P -EFk+1 are pairwise =LD-unequivalent.

Next let us assume that the parameter q above is 0. By Lemma 2.5 this
happens exactly if the term Q is the image under derivation of some term in P -
EFk, i.e. if Q is in P -EFk+1 \ P -EFk+1. Then ||Q||

P
is ||Q1||P , which by induction
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hypothesis belongs to P -NFk. So ||Q||
P

belongs to P -NFk+1 \ P -NFk+1. Now
assume that q is at least 1. By induction hypothesis the terms ||Qj ||P belong to
P -NFk. If k is 0, ||Q1||P , . . ., ||Qq||P automatically belong to P -NFk (which is
P -NFk). Assume k ≥ 1. By definition of a descent the points vj with j ≤ q satisfy
vj � vq+1, and therefore they cannot belong to 0∗1∗ (if w belongs to 0∗1∗, w � w′

holds for no w′). Then Lemma 2.5 implies that the terms Q1, . . ., Qq cannot come
from ∂k−1P , i.e. that they belong to P -EFk. So by induction hypothesis we can
conclude that ||Q1||P , . . ., ||Qq||P belong to P -NFk. In order to conclude that ||Q||

P
belongs to P -NFk+1, it remains to prove the condition

ΘP (||Qj ||P) >Lex ||Qj+1||P
for j = 1, . . ., q. By hypothesis vj � vj+1, and therefore θP (vj) > vj+1, hold. By
Lemma 2.1 this implies

Θ∂kP (Qj) = cut(∂kP, θP (vj)) >Lex Qj+1.

By induction hypothesis we deduce

||Θ∂kP (Qj)||P >Lex ||Qj+1||P ,

and we know that ||Θ∂kP (Qj ||P) is ΘP (||Qj ||P), so the desired inequality holds, and
||Q||

P
belongs to P -NFk+1.

The next (easy) step is to verify that any term Q′ in P -NFk+1 is the image
of some term in P -EFk+1 under reduction. Let Q′

1. . .Q
′
q+1•q be the normal de-

composition of Q. By induction hypothesis, there exist points v1, . . ., vq+1 in the
support of ∂kP such that, for j ≤ q + 1, Q′

j is ||Qj ||P where Qj is cut(∂kP, vj).
Moreover the relation ΘP (Q′

j) >Lex Q′
j+1 implies Θ∂kP (Qj) >Lex Qj+1 by the same

argument as above, and this implies vj � vj+1. Hence 〈v1, . . ., vq+1〉 is a descent of
∂kP , and clearly Q′ is the reduction of the term cut(∂k+1P , Φ∂kP (〈v1, . . ., vq+1〉)).
So the proof of (ii) for k + 1 is complete.

Let us now assume that Q, Q′ belong to P -EFk+1 and Q <Lex Q′ holds. We
use the same notations as above for Q and the obviously corresponding ones for
Q′. By Lemma 2.4 one has

〈v1, . . ., vq+1〉 <∗ 〈v′1, . . ., v′q′+1〉.

The first possibility is that 〈v1, . . ., vq+1〉 is a strict prefix of 〈v′1, . . ., v′q′+1〉. Then
the word Q1. . .Qq+1 is a strict prefix of the word Q′

1. . .Q
′
q′+1, and the word

||Q1||P . . .||Qq+1||P is a strict prefix of the word ||Q′
1||P . . .||Q′

q′+1||P . By a simple
weight argument this implies

||Q1||P . . .||Qq+1||P•
q <Lex ||Q′

1||P . . .||Q′
q′+1||P•

q′
,
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i.e. ||Q||
P

<Lex ||Q′||
P
. The second possibility is that for some r ≤ inf(q, q′) one has

vj = v′j for j < r and vr < v′r. This implies Qj = Q′
j , and therefore ||Qj ||P = ||Q′

j ||P
for j < r, and Qr <Lex Q′

r, whence, by induction hypothesis, ||Qr||P <Lex ||Q′
r||P .

By Lemma 2.ii this implies ||Q||
P

<Lex ||Q′||
P

since ||Qr||P cannot be a strict prefix
of ||Q′

r||P . The proof of (iii) for k + 1 is complete, since the restriction of <Lex to
P -EFk+1 is a linear ordering.

It remains to compute the P -head of the term ||Q||
P
. By definition it is

(always with the same notations) ||Q1||P . . .||Qq||Pa•q since ||Qq||P has P -degree k
and ||Qq+1||P has P -degree at most k. On the other hand lemma 2.6 tells that
θ∂k+1P (v) is Φ∂kP (θP (〈v1, . . ., vq, 0i〉) where 0i is the leftmost point in the support
of ∂kP . So the term Θ∂k+1P (Q) is

cut(∂k+1P, Φ∂kP (〈v1, . . ., vq, 0i〉).

By construction the P -reduction of this term is ||Q1||P . . .||Qq||Pa•q, for cut(∂kP, 0i)
is a. This establishes point (iv) for k + 1, and finishes the proof. �

From the previous result and the results of Section 1 we immediately deduce
the main result of this paper.

Theorem 5. (existence, uniqueness and complexity of the normal form) i) Let P
be any finite or infinite term. Every term Q satisfying Q �LD P is =LD-equivalent
to exactly one P -normal term, which will be called the P -normal form of Q.

ii) For P -normal terms, the ordering �LD coincide with the lexicographical
ordering <Lex .

iii) If P is an eventually constant infinite term, the P -normal form of any
term exists, and the function which maps a term to its P -normal form lies in the
complexity class DSPACE(exp∗(O(2n))).

The result is clear from Lemma 4. In particular the P -reduction of a term
of length N only used terms with length ≤ N , which justifies the bound of (iii)
above.

The inductive construction of normal terms is satisfactory and unambiguous
since the normal decomposition is unique. But it does not give a direct geometrical
criterion for recognizing normal terms. We shall now establish such a criterion.

Lemma 6. Assume that R and R′ are P -normal terms and (R′)P is a prefix
of (R)P . Then, for every P -normal term Q with dP (Q) ≤ dP (R′), Q >Lex R′ is
equivalent to Q >Lex R.
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Proof. Because R ≥Lex R′ holds by definition, the direct implication is obvious. The
converse one is a crucial property of normal terms. Let k be the P -degree of R′.
It suffices to prove the result for the case when R has P -degree k + 1, the general
case then follows inductively. Let R1. . .Rr+1•r be the P -normal decomposition
of R. By hypothesis R′ is R1. By restricting to a sufficiently large cut of P if
necessary we may assume that P is a finite term. Then there exists points w1,. . .,
wr+1 in the support of ∂kP such that Rj is ||cut(∂kP, wj)||P for j = 1, . . ., r + 1.
By construction R is

||cut(∂k+1P, Φ∂kP (〈w1, . . ., wr+1〉)||P .

Now by hypothesis the P -degree of Q is ≤ k, which means that for some v in the
support of ∂kP the term Q is is ||cut(∂kP, v)||

P
. Then Q >Lex R′ implies v > w1,

and therefore 〈v〉 <∗ 〈w1, . . ., wr+1〉. By Lemma 2.3 we deduce

cut(∂k+1P, Φ∂kP (〈v〉) >Lex cut(∂k+1P, Φ∂kP (〈w1, . . ., wr+1〉).

Applying P -reduction yields Q >Lex R, as was claimed. �

Remark. The preceding result does not say anything about the cuts of P since
by Lemma 2 (R′)P being a strict prefix of (R)P prevents R from being a cut of P .

Definition. i) A term QR• with positive P -degree is P -descending if the condi-
tions dP (Q) ≥ dP (R) − 1 and ΘP (Q) >Lex R hold.

ii) For A included in S, the interior of A is the set of all strict prefixes of
points in A. A subterm of Q is P -inner if the address of its root belongs to the
interior of the support of (Q)P .

Example. Let Q be the term aaa••a•aa••. Since the aω-factorization of Q is
(aaa••)(a)•(aa•)•, the aω-inner subterms of Q comprise Q itself and aaa••a•, but
not aa•. Observe that Q is aω-descending: the P -degree of aaa••a• and aa• are
respectively 1 and 0, and Θaω (aaa••a•) is aaa••a• itself, which is lexicographically
after aa•.

Theorem 7. (geometric characterization of P -normal terms) A term Q is P -
normal if and only if each P -inner subterm of Q is P -descending.

Proof. First we prove inductively on k that every P -inner subterm of a term
in P -NFk is P -descending. If Q is a cut of P , then Q has no P -inner subterm
and the property is vacuously true. Assume it proved for k, and let Q belong
to P -NFk+1. Let Q1. . .Qq+1•q be the normal decomposition of Q. By induction
hypothesis every P -inner subterm of Q1, . . ., Qq+1 is P -descending. It remains
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to show that the terms Qj . . .Qq+1•q−j+1 are P -descending, and clearly it suffices
to make the verification for j = 1, i.e. to prove that Q itself is P -descending.
Now by construction the P -degree of Q2. . .Qq+1•q−1 is at most k + 1, while the
P -degree of Q1 is exactly k. Moreover one has ΘP (Q1) >Lex Q2 by definition of
P -normal terms. By Lemma 5 this implies ΘP (Q1) >Lex Q2. . .Qq+1•q−1, and Q is
P -descending. So the property holds for k + 1.

Conversely assume that Q is a term with P -degree k + 1 such that every P -
inner subterm of Q is P -descending. Write Q as Q1. . .Qq+1•q where Q1. . .Qqa•q

is ΘP (Q). All P -inner subterms of Q1, . . ., Qq+1 are P -descending and Q1, . . .,
Qq+1 have P -degree at most k, so by the induction hypothesis we conclude that
Q1, . . ., Qq+1 are P -normal. By construction Qq has P -degree exactly k, so it
belongs to P -NFk, and necessarily the same holds for Q1, . . ., Qq−1 because of
the degree assumptions in Q. Also Qq+1 has P -degree at most k and therefore
belongs to P -NFk. Now the condition that Qj . . .Qq+1•q−j+1 is P -descending
implies ΘP (Qj) >Lex Qj+1. . .Qq+1•p−j , and, by the trivial direction of Lemma 5,
ΘP (Qj) >Lex Qj+1. It follows that Q belongs to P -NFk+1, which finishes the
proof. �

Example. The descent condition solves some delicate questions which appear
when one tries to select ‘by hand’ =LD-representatives. For instance the term
cb•ca•• is not normal (its normal form is cba••), while the ‘similar’ term cba••ca••
is normal (and its contracted form cba•a•• is not).

We finish this section with alternative descriptions of the P -normal terms
which we shall use later. We introduce a variant of the notion of P -head of a
term.

Definition. Let P be a finite term. For any term Q in W distinct of a, the term
Θ′

P (Q) is defined by

Θ′
P (Q) =


cut(P, v) if dP (Q) = 0, Q is cut(P, u) and v is the immediate

predecessor of θP (u) in Supp P ,
Q1. . .Qq•q−1 if dP (Q) ≥ 1 and Q is Q1. . .QqQq+1•q

with dP (Qq) = dP (Q)−1 ≥ dP (Qq+1).

We already observed that the term ΘP (Q) is always a cut of Q. So is the
term Θ′

P (Q).

Lemma 8. Assume that Q is P -normal. Then the term Θ′
P (Q) is the immediate

predecessor of ΘP (Q) in the family of all cuts of Q ordered by <Lex .
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Proof. If Q is a cut of P , the property is true by definition. Now assume that
the P -degree of Q is k + 1. Then there exists a descent 〈v1, . . ., vq+1〉 of ∂kP such
that Q is the P -reduction of cut(∂k+1P, v), where v is the image of 〈v1, . . ., vq+1〉
under Φ∂kP . Write Qj for ||cut(∂kP, vj)||P . We have seen in the proof of Lemma 4
that the P -normal decomposition of Q is Q1. . .Qq+1•q, so that ΘP (Q) is the P -
reduction of

cut(∂k+1P, Φ∂kP (〈v1, . . ., vq, 0i〉),
where 0i is the leftmost point of Supp ∂kP . The same argument shows that Θ′

P (Q)
is

cut(∂k+1P, Φ∂kP (〈v1, . . ., vq〉).
The result follows, since the descent 〈v1, . . ., vq〉 is the immediate predecessor of
the descent 〈v1, . . ., vq, 0i〉 in the set Desc∂kP ordered by <∗. �

As for ΘP the extension of Θ′
P to the case of an infinite term P is easy.

By Theorem 7 we know that a product QR• can be P -normal only if Q and
R are P -normal and dP (Q) is at least dP (R)−1. We shall separates the cases
dP (Q) ≥ dP (R) and dP (Q) = dP (R)−1.

Proposition 9. Assume that Q, R are P -normal with dP (Q) ≥ dP (R). Then
the following are equivalent

i) QR• is P -normal;
ii) ΘP (Q) >Lex R holds;
iii) Θ′

P (Q) ≥Lex R holds;
Moreover, if dP (Q) is at least 1, the above conditions are equivalent to

iv) Q >Lex R holds and, if Q1. . .Qq+1•q is the P -normal decomposition of Q,
the word (Q1)P . . .(Qq)P is not a strict prefix of (R)P .

Proof. The equivalence of (i) and (ii) is the very definition of P -normal terms.
Since Θ′

P (Q) <Lex ΘP (Q) always holds, clearly (iii) implies (ii). Let k be the P -
degree of Q. By construction there exist points v and w in the support of ∂kP such
that Q is the P -reduction of cut(∂kP, v) and R is the P -reduction of cut(∂kP, w).
Now ΘP (Q) >Lex R implies θ∂kP (v) > w, and therefore w is at most the immediate
predecessor of θ∂kP (v) in Supp ∂kP . By Lemma 7 the cut of ∂kP associated with
this immediate predecessor is exactly Θ′

P (Q). In other words ΘP (Q) >Lex R implies
Θ′

P (Q) ≥Lex R. Finally, assume that the P -degree of Q is at least 1. We use the
notations of the proof of Lemma 7 (thus writing k + 1 for the P -degree of Q).
Among all P -normal terms R with P -degree at most k +1 which satisfy Q >Lex R,
the ones which do not satisfy ΘP (Q) >Lex R are exactly the ones satisfying

Θ′
P (Q) <Lex R <Lex Q,
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which are be the P -reductions of the terms cut(∂k+1P, Φ∂kP (α)) where α is a
descent of ∂kP satisfying

〈v1, . . ., vq〉 <∗ α <∗ 〈v1, . . ., vq, vq+1〉.

These descents are exactly the descent s with the form 〈v1, . . ., vq, wq+1, . . ., wr+1〉,
and the corresponding P -normal terms have the form Q1. . .QqRq+1. . .Rr+1•r for
some (P -normal) terms Rq+1, . . ., Rr+1. �

The case of a product QR• with dP (Q) = dP (R)−1 is easily deduced from
the preceding one.

Proposition 10. Assume that Q, R are P -normal with dP (Q) = dP (R)−1. Let
R′ be the left subterm of R. Then the following are equivalent

i) QR• is P -normal;
ii) QR′• is P -normal;
iii) ΘP (Q) >Lex R′ holds;
iv) Θ′

P (Q) ≥Lex R′ holds;
Moreover, if dP (Q) is at least 1, the above conditions are equivalent to

v) Q >Lex R′ holds and, if Q1. . .Qq+1•q is the P -normal decomposition of Q,
the word (Q1)P . . .(Qq)P is not a strict prefix of (R′)P .

Proof. The equivalence of (i) and (ii) follows from the definition of P -normal
terms. The subsequent equivalences then follow from Proposition 8. �

It is easy to rephrase the geometrical characterization of P -normal terms given
in Theorem 6 using the results above. In particular Proposition 8.iv and 9.v yield
criterions which involve only the lexicographical ordering and the prefix relation.

4. Applications

The normal terms defined here do not coincide with the ones constructed by
Richard Laver in [10] and [11]. For instance (with the same notations as above), the
term cb•ca•a•• is the one law version of a normal term in the sense of [10], while
its aω-normal form is cba••cb•a••. In both cases an interesting feature is that the
restriction of the ordering �LD to (P )-normal terms coincide with the natural lex-
icographical ordering. From the technical point of view, the definition of Laver’s
normal form entails an inductive decomposition of the terms as Q1Q2•Q3•Q4•. . .
while our normal terms are decomposed as Q1Q2Q3. . .••. It could be therefore
natural to call the first one a left decomposition, leading to a left normal form,
while the second decomposition could be called a right decomposition thus leading
to a right normal form.
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We shall finish this paper with three properties of the free left distributive
law. The first one is already established in [10], and the second one could also
certainly be proved using Laver’s ‘left’ normal form. The third one is new. The
proofs below mainly appear as an illustration of what can be done using the ‘right’
P -normal terms.

We begin with a description of the action of mutiplying by P on the left for
P -normal terms.

Lemma 1. Assume that P , Q are finite terms and Q is Pω-normal. Then the (Pω-
factorization of the) Pω-normal form of PQ• is the image of (the Pω-factorization
of) Q under the substitution σ defined for terms with Pω-degree 0 by

σ : (Pncut(P, u)•n) �→ (Pn+1cut(P, u)•n+1).

Proof. For R a Pω-term write Rσ for the image of R under σ, i.e. for the term
obtained from R by replacing any variable occurring in R by its image under σ.
We shall not distinguish between a term and its Pω-factorization in the sequel.
The definition of σ makes sense since the cuts of Pω are exactly the terms of the
form Pncut(P, u)•n with n any nonnegative integer and u a point in the support
of P . It is clear that Rσ is =LD-equivalent to PR• for every cut R of Pω, and
therefore Qσ is =LD-equivalent to PQ• for any term Q. So the only point to verify
is that, if Q is Pω-normal, then Qσ is Pω-normal as well. We prove this property
inductively on Q. If Q is a cut of Pω the result is clear. Now assume that Q,
R and QR• are Pω-normal. By induction we assume that Qσ and Rσ are Pω-
normal, and it remains to show that QσRσ• is Pω-normal. We use the criterions
established at the end of Section 3. Assume dP ω (Q) ≥ dP ω (R). Then Θ′

P ω (Q) ≥Lex

R holds by Proposition 3.9. Now σ preserves the Pω-degree, and therefore the term
Θ′

P ω (Qσ) is exactly (Θ′
P ω (Q))σ (the corresponding equality is not true for ΘP ω

because of the additional a). Finally σ preserves the lexicographical ordering <Lex ,
and Θ′

P ω (Q) ≥Lex R implies Θ′
P ω (Qσ) ≥Lex Rσ, and QσRσ• is Pω-normal. The

argument is similar (using Proposition 3.10) in the case dP ω (Q) = dP ω (R)−1. �

As a first application we have the following property of the ordering �LD

(stated in [10] and also established by R. Mc Kenzie using a direct proof).

Proposition 2. For every terms P , Q in W, the relation Q �LD PQ• holds, and
therefore any strict subterm of a term is a (strict) predecessor of this term with
respect to �LD.
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Proof. Let Q′ be the Pω-normal form of Q. Then PQ• is =LD-equivalent to Q′σ,
where σ is as in Lemma 1. Now Q′ <Lex Q′σ holds, since

Pncut(P, u)•n <Lex Pn+1cut(P, u)•n+1

obviously holds for every n and u. So Q′ �LD PQ′• holds, which is equivalent to
Q �LD PQ•. �

We now repeat the analysis of Lemma 1 replacing left multiplication by P by
left multiplication by PP•.

Lemma 3. Assume that P , Q are finite terms and Q is Pω-normal. Then the
(Pω-factorization of the) Pω-normal form of PP•Q• is the image of (the Pω-
factorization of) Q under the substitution τ defined for terms with Pω-degree at
most 1 by

τ : (P 1+n1cut(P, u1)•1+n1). . .(P 1+nrcut(P, ur)•1+nr )
(cut(P, ur+1)). . .(cut(P, uq+1))•q

�→

 (P 2+n1cut(P, u1)•2+n1). . .(P 2+nrcut(P, ur)•2+nr )
(PP•)(cut(P, ur+1)). . .(cut(P, uq+1))•q+1 if r < q + 1,

(P 2+n1cut(P, u1)•2+n1). . .(P 2+nrcut(P, ur)•2+nr )•q if r = q + 1.

Proof. The formula above is more complicated than the formula of Lemma 1
because the cuts of Pω may be mapped into terms with Pω-degree 1. So the
least family of terms which is stable under τ is Pω-NF1. The principle of the
proof however remains the same. First is clear that, for any term Q with Pω-
degree at most 1, the term Qτ is =LD-equivalent to PP•Q•, and, therefore, Rτ is
=LD-equivalent to PP•R• for any Pω-term R. So the only problem is to verify
that, if Q is a Pω-normal term, so is Qτ . By the explicit value the property is
obvious when the Pω-degree of Q is at most 1. Then we observe that τ preserves
the lexicographical ordering. It remains to verify that the descending condition is
preserved under τ . For terms with Pω-degree at least 2, τ preserves Θ′

P ω and we
apply the criterions of Propositions 3.9 and 3.10. A direct verification is needed
for the terms Q with Pω-degree 1, say

Q = (P 1+n1cut(P, u1)•1+n1). . .(P 1+nrcut(P, ur)•1+nr )
(cut(P, ur+1)). . .(cut(P, uq+1))•q.

We assume first r < q. One obtains

Θ′
P ω (Q) = (P 1+n1cut(P, u1)•1+n1). . .(P 1+nrcut(P, ur)•1+nr )

(cut(P, ur+1)). . .(cut(P, uq))•q−1
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and, in this case (Θ′
P ω (Q))τ is equal to Θ′

P ω (Qτ ). If r is exactly q, then one has

Θ′
P ω (Q) = (P 1+n1cut(P, u1)•1+n1). . .(P 1+nrcut(P, ur)•1+nr )•q−1,

implying

(Θ′
P ω (Q))τ = (P 2+n1cut(P, u1)•1+n1). . .(P 2+nrcut(P, ur)•1+nr )•q−1,

while

Θ′
P ω (Qτ ) = (P 2+n1cut(P, u1)•1+n1). . .(P 2+nrcut(P, ur)•1+nr )(PP•)•q.

The explicit value of Rτ (for R a Pω-normal term with Pω-degree 1) shows that
(Θ′

P ω (Q))τ >Lex Rτ (which follows from Θ′
P ω (Q) >Lex R) implies Θ′

P ω (Qτ ) >Lex Rτ

(although Θ′
P ω (Qτ ) is bigger than (Θ′

P ω (Q))τ ). The last case is for r = q +
1 (i.e. all variables have the form Pncut(P, u) with n ≥ 1) Then τ preserves
Θ′

P ω easily. Finally we conclude that the Pω-normality of QR• implies the Pω-
normality of QτRτ• , as was desired. �

From the above computation we can now deduce (with a rather surprisingly
simple proof) an algebraic criterion for left divisibility in the free left distributive
algebra. This criterion is reminiscent of similar properties used in [1] in the context
of the elementary embeddings in the set theory of measurable cardinals.

Proposition 4. For every terms P , R in W, the following are equivalent:
i) there exists a term Q such that R is =LD-equivalent to PQ•;
ii) the terms PR• and PP•R• are =LD-equivalent.

Proof. Condition (ii) is certainly necessary for (i): if R =LD PQ• holds, then one
has

PR• =LD PPQ•• =LD PP•PQ•• =LD PP•R•.
Conversely assume that R does not satisfy condition (i). Let R′ be the Pω-normal
form of R. By Lemma 1, some cut of P must occur in R′ (in contradistinction
with the cuts of Pω of the form Pncut(P, u) with n ≥ 1). Indeed every cut of Pω

which is not a cut of P lies in the image of the substitution σ, and, therefore, if
all variables in R′ were such ones, R′ would lie in the image of σ and (i) would
be true. It follows that some cut of P occurs in the normal form of PP•R• since,
by the explicit form of Lemma 3, every cut of P occurring in R′ still occurs in
the Pω-normal form of PP•R•. Now no cut of P occurs in the Pω-normal form
of PR•. Therefore the Pω-normal forms of PR• and PP•R• certainly do not
coincide since they do not involve the same variables. Finally PR• and PP•R•
cannot be =LD-equivalent since they do not have the same Pω-normal form. �
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The above result can be seen as a first step toward a quantifier elimination
for the theory of free left distributive algebras, a question which seems to be
completely open for the moment.

We finally come to a natural geometric question about term extensions which
remained open for several years. If the term Q is an extension of the term P ,
each point in the support of Q can be given a welldefined origin in the support of
P as follows. The origin is defined inductively, and for the elementary extension
RR′R′′•• �→ RR′•RR′′•• the origin of the points with the form 00x, 01x, 10x
and 11x are respectively 0x, 10x, 0x and 11x. If we allow terms with several
variables, then the origin is immediately readable when the initial term P has
pairwise distinct variables. Indeed in this case, if Q is any extension of P and v
belongs to the support of Q, then the origin of v in P is the unique u such that
the variable of Q at v is the variable of P at u. The problem is to find a similar
characterization when P has only one variable. Normal form and cuts give the
solution.

Theorem 5. Assume that P belongs to W and Q is any extension of P . For v in
the support of Q, the origin of v in P is the unique point u in the support of P
such that (cut(P, u)) is the rightmost variable in the P -normal form of cut(Q, v).

The proof is not difficult, but being rather long it will not be given here.
The point is to establish the property when Q is some term ∂kP . This case in
turn follows from the particular case of ∂P for which the computation can be
completed.
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