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Groups with a Complemented Presentation

Patrick DEHORNOY

ABSTRACT. Let G be a group given by a presentation. We study the decomposition of the elements
of G as quotients of “positive” elements (the elements of G that can be expressed without using
the inverses of the generators) in the special case when the presentation satisfies some syntactical
condition. This approach works in particular for Artin’s braid groups, and results in a very simple
quadratic algorithm for solving their word problem.

AMS Classification: 20M05, 20F36.

Artin’s braid group B« is the group generated by an infinite sequence o1, o9, ... submitted to the relations

0i0i4103 = 03410041,
0i0j = 0;0; for |i — j| > 2.

One observes that this presentation has the particular syntactical property that, for any two generators z,
y, there exists exactly one relation of the form

TU=YV,

where v and v are finite products of generators, and, conversely, any relation in the above list is one such
relation. We propose to call such a presentation right complemented, for it indicates how to complete the
generators on the right to obtain equalities. The aim of this paper is to investigate the groups that admit
such presentations, and, mainly, to study the connection between these groups and the monoids defined by
the same presentation.

Our approach is close to that of Garside in his classical analysis of the braid groups [13]. It is also
reminiscent, in another framework, of the calculus of fractions as developed in [12]. However we introduce
a new tool, the (right) reduction of words. This is an oriented transformation of words, which eventually
produces “sorted” words where the generators are gathered on one side while the inverses of generators are
gathered on the other side. This results in good cases in a complete theory of divisibility for the associated
monoid, and in an efficient algorithm for solving the word problem. This is the content of the first part.

The second part concentrates on the particular case of braids. By very definition the general study
applies to braid groups. Actually in the latter case the symmetry of the presentation give rise to additional
phenomena. Besides the classical properties, which can be easily reestablished, we obtain new results, mainly
a very simple algorithm for braid words comparison which has a quadratic complexity when the number of
strands is fixed (like those in [10] or [11]). In some sense our construction is a rewrite rule equivalent to
the automaton approach of [11], but the algorithm we consider is not the same one as it completely avoids
using any particular normal form for positive braids: we decide if a braid word is trivial by a direct “local”
computation which does not require using any normal form or any appeal to Garside’s fundamental words A,
in its formulation. Moreover the computation provides decompositions of braid words as quotients of coprime
positive braid words, which are canonical in the sense that the “numerators” and “denominators” do not
depend on the word used to represent the braid, and are minimal with respect to the lengths of the words.
These results were announced in [4]; some of them (one-sided reduction) also appear independently in [16].
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The braid groups are not the only example of groups with a complemented presentation considered so
far. In [6] we associate with every algebraic identity a structure group that reflects its geometry. These groups
are introduced by a presentation which, in the usual cases (and presumably even in most ones), happens to
admit a complement. So the general results established here are directly relevant for these groups: see [6]
for the case of associativity (where the associated group is R.J. Thomson’s group €’ of [15]), and [5] for the
case of left self-distributivity (which directly resorts to the results of the present paper and has given the
original motivation). See also [7] for an extension of Artin’s braid groups (“charged braids”) associated with
a partially complemented presentation.

The author thanks Ales Drépal for pointing out an inaccuracy in a previous formulation of Lemma 1.4.

1. Word reduction

In order to work simultaneously with the group and the monoid admitting the same given presentation we
use the following notations. Let X be any (nonempty) set. The free monoid generated by X is denoted
by X*. Its elements are called positive words, and are typically denoted by wu, v, w... The empty word
is denoted by . Then X* is the union of X and a disjoint copy X! of X, and X=* is the free monoid
generated by X'*. The elements of X'** are simply called words, and they are typically denoted by «, 3, 7,
... For z in X, the copy of z in X! is denoted ™!, and the inverse notation is extended to arbitrary words
so that (a™1)7tis a and (aB)~tis B~ 1a~!. For = a congruence on X*, we denote by =* the congruence on
X** generated by = together with the pairs (zz~1,¢) and (z71z,¢) for x in X. Thus X**/=* and X*/=
are respectively the group and the monoid generated by X with the relation =.

If we take X to be the set {o1,09,...}, and = to be the congruence on X* generated by the pairs

(0i0i4104,0i410:0i41) fori>1
(O’Z'Jj,O'jOi) for ‘Z—]I 22,

then the group X**/=%* is Artin’s braid group B, while the monoid X*/ = is the positive braid monoid
usually denoted BZ, or Ps..

A basic observation in the latter case is that, for every pair of distinct integers i, j, there exists exactly
one pair (u,v) in the above list such that the word u begins with o; and the word v begins with ;. More
precisely, let f be the mapping defined on pairs of distinct o;’s by

0 for |i — j| > 2,
floi,05) = ¢ o0, for|i—j| =1,
€ for i =j.
Then the pairs generating the braid congruence are exactly the pairs (o; f(0},0;),0;f(04,0;)): the mapping
f prescribes how to complete the generators o; and o; on the right to obtain equivalent words, and the
“complement pairs” generate the whole congruence. Thus we are in the situation of the following

Definition. Let f be a mapping of X2 into X*. The congruence = on X* admits f as a right complement if
f(z,z) = € holds for every x in X’ and = is exactly the congruence generated by all pairs (zf(y,z),yf(z,y))
with z, y in X.

The existence of a right complement for a given congruence = on X™* expresses a weak form of right
regularity in the monoid X*/=. The additional hypothesis that the pairs (zf(y,x),yf(x,y)) generate the
whole congruence will be crucial to obtain not only existence results (like regularity) but also uniqueness
results (like cancellability).

Assume that f is a right complement for the congruence = on X*. Then the equivalence

ety =* fly,x) f(z,y) 7"

holds for every z, y in X. We can therefore use the right complement to transform the words by switching
the negative and the positive occurrences of the generators.
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Definition. The word « is reducible on the right in one step to the word o' relative to f, or simply R-
reducible in one step to o, if ' is obtained from « by replacing some subword z~ 'y (with x, y in X) by
the corresponding word f(y,z)f(x,y)~!. For p > 0, a is R-reducible to o’ in p steps if there exists a length
p + 1 sequence from a to o such that every term is R-reducible to the next one in one step.

It is clear that R-irreducible words are exactly the words of the form uv~™! with wu, v positive. The
following lemma states that reduction is confluent in the vocabulary of rewrite rules (see for instance [9]),
and therefore that it leads to a unique irreducible word when it terminates.

Lemma 1.1. Assume that the word o is R-reducible in p steps to the word uv~' where u, v are positive.
If v is R-reducible to o in p’ steps, then p’ < p holds and o is R-reducible to uv™" in p — p’ steps.

Proof. First we observe that, if 3 is R-reducible in one step both to 3’ and 3", there must exist a word ~
and an integer r < 1 such that both 8’ and 8" is R-reducible in r steps to 4. Then induction on ¢’ + ¢”
shows that, if 3 is R-reducible to 8’ in ¢’ steps and to 8" in ¢” steps, then there exist a word v and integers
" < ¢" and r"” < ¢ such that ¢’ +r' = ¢” +r" holds, 3’ is R-reducible to v in 7’ steps and " is R-reducible
to v in 7" steps. Now assume the hypothesis of the lemma. There must exist a word + and integers r’, 7"’
with p +r” = p’ + ' such that uv~! is R-reducible to «y in 7’ steps, and o’ is R-reducible to v in " steps.
Since the word uv~! is R-irreducible, the integer ' is 0, and ~ is uv 1. [ ]

Definition. For a an arbitrary word, the right numerator of a relative to f, denoted Ni, (), or simply Ny («),
and the right denominator of o relative to f, denoted D,];(oz), or simply Dg(«), are the positive words u, v

such that « is R-reducible to uv ™!, if they exist.

If f is a right complement for the congruence = on X*, right f-reduction is easily illustrated using the

Cayley graph of X*/=. We associate with the word x7'z52. .. a path made of successive arrows labelled 1,
To, ... with the convention that the arrow is traced forward when the corresponding exponent ¢; is +1,

and backward when € is —1. Then R-reduction of the word « corresponds to saturating the path o with
respect to the operation of closing (using the complement f) the open patterns made of two arrows that have
the same origin but are not the initial pieces of eventually convergent paths. Figure 1 below illustrates the
R-reduction of the braid word o3 o105 ‘o109 to the (R-irreducible) braid word o?osos30; oz oyt (using
the complement defined above): hence the right numerator of this braid word is o?0403, while its right
denominator is g10302. The number of elementary steps of reduction is the number of closed domains in
the associated closed subgraph, for instance it is 5 in the above example. (The graph we construct in this
way is not exactly a subgraph of the Cayley graph of X*/=, since different vertices can be associated with
the same element of this group — like at the top right corner of Figure 1. So the proper Cayley subgraph
would be a projection of the present graph.)

01 g2
02
£
()] A
01
01 0'1k g9
g3
g3 g3 g3 A
02
01y 01y 02 O3
Figure 1

By very definition, one has N;(w) = w and Di(w) = ¢ for every positive word w. If Ny(«) exists, so
does Np(a™1), and one has N;(a™!) = Dp(a) and Dy(a™t) = Np(a). Also if Ny(a) exists, so does N(f3) for
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every subword 3 of a.. It is clear that reduction yields =*-equivalent words. But as far as only positive words
are concerned, it even yields =-equivalent words, a stronger result since the inclusion of = in the restriction
of =* to positive words may be strict.

Lemma 1.2. Assume that f is a right complement for the congruence = on X*.
i) If the word « is R-reducible to the word ', then o« =* o’ holds. In particular the equivalence

a=* Ny(a)Drp(a)™!

holds whenever Ny () exists.
ii) If u, v, u’, v are positive words and u~'v is R-reducible to u'v'~!, then uu’ = vv’ holds.

Proof. The second point is proved inductively on the number of elementary steps in the R-reduction of the
word u v (which is well defined by Lemma 1). ]

This suggests that we introduce

Definition. For positive words u, v, the right f-complement of u in v relative to f, denoted Cf;(u, v), or
simply Cy(u,v), is the right numerator of the word v~ 1w, if it exists.

Observe that, for  and y in X, the complement Cy(z,y) always exists and is equal to f(z,y): cl is
the natural extension of f to finite sequences of generators when right reduction is used. For any positive
words u, v, the complement Cy(v,u) exists if and only if the complement Cx(v,u) exists, and, in this case,
Lemma 2 gives the equivalence

uCr(v,u) = vCx(u,v).
Using Lemma 1 one easily obtains computation formulas like the following one.

Lemma 1.3. Assume that f maps X? to X*. For u, v, w in X*, the complement Cy(u,vw) exists if and
only if the complements Cy(u,v) and Ci(Cr(v,u), w) exist, and, in this case, one has

Cr(u,vw) = Cr(Cr(u,v),w),
Cr(vw,u) = Cr(v, u)Cr(w, Cy(u,v)).

The existence of a right complement for a congruence remains a rather weak property if extra hypotheses
are not added. The most interesting features appear when the congruence is compatible with the operation
Cr- In good cases the most elementary occurrence of this compatibility turns out to be a sufficient condition.

Definition. A mapping v of X* to the integers is a norm for the congruence = if v is invariant under =, is
1 on every element of X' and satisfies
v(uwv) > v(u) +v(v)

for every u, v in X*.
Clearly the congruence = admits a norm if and only if for every word w the lengths of the words w’

satisfying w’ = w admit a finite upper bound, and an element of X is never equivalent to a word with
length 2 or more.

Definition. Assume that f is a right complement for the congruence = on X*; f is coherent if, for every
z, 7y, z in X such that the complement Cf;(f(x, y), f(z,y)) exists, the complement Cf;(f(x, z), fy,z)) exists
and both are =-equivalent.

By Lemma 3 the above condition still expresses that the complements

Ca(z,yf(z,y))  and  Calz,2f(y,2))

have to exist simultaneously and to be =-equivalent when they exist. The following lemma is reminiscent of
Garside’s Theorem H in [13]:



Lemma 1.4. Assume that the congruence = on X* is normed and admits f as a coherent right complement.
Then for every positive words u, v, u’, v’ the following are equivalent:

i) uu’ = vv’ holds;

ii) the complements Cg(u,v) and Cr(v,u) exist and some positive word w satisfies v’ = Cr(v,u)w and
v = Cy(u, v)w.

Proof. The fact that (i) implies (i) is obvious from the definition of C;. In order to prove the converse
implication fix a norm v for the congruence =. For u, v in X'*, write u =1 v if v is equal to u or is obtained
from u by replacing exactly one subword x f(y, x) by the corresponding word yf(x,y). For p < co the p-th
power of = is denoted =,. For k, n, p nonnegative integers or oco, we let P,If?p be the following statement:
“Assume uu’ =, vv’, v(uu') < n, v(u) < k and v(v) < k. Then Cg(u,v) and Cg(v,u) exist
and some positive word w satisfies u’ = Cg(v,u)w and v' = Cg(u,v)w.”
We prove PZ . using a triple induction. First Pgo is true since the nullstring € is the only word with

00,00

norm 0, and € = e¢ is the only possible decomposition of € in X'*.

Claim 1. PL, , is true.

Proof. Assume uu’ =1 vv’ with v(u) <1 and v(v) < 1. If w or v is the nullstring the result is obvious.
Assume that v and v belong to X'. Certainly Cy(u,v) and Cy(v,u) exist. If v and v coincide, then Cy(u,v)
is empty by construction. Otherwise the definition of =; implies that «’ begins with Cy(v,u) and v’ begins
with Cy(u,v). [ |

Claim 2. The conjunction of P;°, and 7771L+1,1 implies P} -

Proof. We show Py, , inductively on p > 1. Assume zu’ =, yv' with z, y in X and v(zu') <n+ 1.
Let zw’ be an intermediate term in a sequence of words witnessing for the above equivalence. One has

' =, 20’ =, yo'.
Assuming by induction hypothesis P} 41, there must exist positive words u” and v" satisfying
W=t [ = g,
w' = f(z,2)u”, v = fz,y)0".

By construction v(w') is strictly below v(zw’), which is v(zu’). Hence v(w’) is at most n, and so are
v(f(x,z)u") and v(f(y,z)v"). By hypothesis P;° is true, so that the words

CR(f(ya Z)7 f(.”L', Z)) and CR(f(‘T7 2)7 f(y’ Z))

must exist and some word w” satisfies

W = Culf(y.2), fla, )" and o = Culf(,2), F(y, =)'
This implies
{u’ = f(z,2)Ca(f(y, 2), f(, 2))w”
v' = f(z9)C(f (2, 2), f(y, 2))w"”.
Applying Lemma 3 and the coherence shows the following equivalences, together with the existence of the
complements involved,

[z 2)Cr(f(y, 2), f(2,2)) = f(2,2)Ca(f(y, x), f(2,x))
= f(y,2)Ca(f(z,2), f(y, x))
[z 9)Cr(f (@, 2), f(y, 2)) = f(2,9)Ca(f(2,9), f(2,9))
= f(@,9)Ca(f (2, 9), f(z,9))
= f(z,y)Ca(f (2, 2), f(y,2))
which gives v’ = f(y,z)w and v' = f(z,y)w for
w = Cr(f(2,2), f(y,z))w".
S0 P41 pi1 holds. |



Claim 3. The conjunction of Pi°, and P}, ., implies P, .

Proof. One shows P, . inductively on k > 1. Assume uu’ = vv’ with v(uw') < n+ 1 and v(u) and
v(v) at most k + 1. Decompose u into uuz and v into vivy with v(u.) < k and v(ve) < k. By P}, ., the
words Cr(u1,v1) and Cg(vy,u1) exist and some word w’ satisfies

ugtt = Cr(v1,u1)w’ and vov’ = Cr(ug,vy)w'.

Now v(ugu’) and v(vv’) are at most n. So by P, there exist up and vy satisfying

u' = Ga(Cr(or, wa), ug)uy o v = Cr(Cr(u1,v1),v2)v5
w' = Cy(ug, Cq(v1, ur))uh w' = Cr(v2, Cp(u,v1))vh

Finally v(w’) is at most n so applying Prs again one obtains a word w satisfying

{ué = Cr(Cr(v2, Cr(u1,v1)), Cr(uz, Cr(vi, ur)))w
UIQ = CR(CR(U27CR(Ul7u1))7CR(027CR(u17Ul)))w7

which is the desired result since by Lemma 3 one has
CR(Ua u) = CR(CR(Ul, Ul)a UQ)CR(CR(UQ, CR(ula vl))7 OR(U27 CR(vla ul)))
Cr(u,v) = Cp(Cr(u1,v1),v2)Ca(Cr(uz, Ca(v1,u1)), Cr(v2, Cr(u1, v1))).

Hence Pp5; ,1; holds. |

The proof of the lemma is now easy: because P, , ; ; is true, Py°, implies P}, , then PrS; . Since P,
is obviously true, PSS , follows. |

The previous criterion gives rise to a simple arithmetic for positive words. Say that u divides v on
the right, or simply that u R-divides v, if uu’ = v holds for some positive word u’. Lemma 4 claims that
the (equivalent) words uCr(v,u) and vCy(u,v) are, when they exist, supremums of u and v with respect
to R-divisibility.

Lemma 1.5. Assume that the congruence = on X* is normed and admits f as a coherent right complement.

i) For u, v in X*, u R-divides v if and only if the complement Cg(u,v) exists and is empty; u = v holds
if and only if the complements Cr(v,u) and Cy(u,v) exist and are empty.

ii) The congruence = is compatible with the operation Cj.

iii) For u, v, w in X*, if the complement Cy,(Cy (u, v), Cy (w, v)) exists, then the complement C,(Cp (u, w), Cr (v, w))l}
exists and is equivalent to the latter one.

Proof. 1) If Ci (v, u) exists, then u R-divides uCy (v, u), and therefore vCy (u, v). So if Cr(u, v) is the nullstring,
u R-divides v. Conversely if v is equivalent to uu’, Lemma 4 shows that Cy(u, v) and Cy (v, u) exist and some
w satisfies ¢ = Cy(u, v)w. The existence of a norm for the congruence = implies that Cp(u,v) and w must
be empty. Assume now that v R-divides v and v R-divides u: Cg(u,v) and Cg(v,u) exist and are empty,
and one has

u = uCx(v,u) = vCq(u,v) = v.

ii) Lemma 4 implies the following version of Gauss’ lemma: if v R-divides vw, then Cp(u,v) exists
and R-divides w. So assume that Cy(u,v) exists and v’ is equivalent to v. Then u R-divides vCy(u,v),
and therefore it R-divides v'Cy(u,v) as well. Hence Cy(u,v’) exists and R-divides Cg(u,v). By symmetry
Cr(u,v) R-divides Cr(u,v’), and Cy(u,v) and Cy(u,v’) are equivalent by (i). The argument is similar for
the invariance with respect to the first argument.

iii) The existence of Cy(Cg(u,v), Cr(w, v)), and therefore of Cy(u, v) and Ci(w, v), implies that the words
u, v and w have a common multiple, namely vCj (w, v)Cr(Cr(u, v), Cy(w, v)). Applying Lemma 4 shows that
the complement Cy,(Cy (u, w), Cy (v, w)) (as well as the four remaining complements obtained by permutations
of the variables) exists and R-divides Cr(Cx(u,v), Cr(w,v)). The equivalence follows by symmetry. [ |

Thus under the above hypotheses the operation C; induces a welldefined (partial) operation on the
monoid X*/ =. Divisibility induces an ordering, and the operation (u,v) — uCy(v,u) is the associated
supremum, which inherits the structure of a (partial) semilattice.
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Definition. The mapping f of X2 to X'* is convergent (on the right) if right f-reduction always terminates
in a finite number of steps.

Thus f is convergent if and only if every word has a right f-numerator and a right f-denominator if
and only if every two positive words have an right f-complement. From the above lemmas we immediately
deduce as in [13]

Proposition 1.6. Assume that the congruence = on X* is normed and admits a coherent right complement.
i) The monoid X*/= admits left cancellation.
ii) The monoid X* /= is right regular if and only if the complement is convergent (on the right).

But we can also obtain less obvious facts. In the case of (ii) above, every word can be written as the
quotient (on the right) of two positive words, namely its right f-numerator and denominator. The coherence
of the complement gives a uniqueness result, which in turn enables us to describe the connection between
the monoid congruence = and the associated group congruence =*.

Lemma 1.7. Assume that the congruence = on X* is normed and admits a coherent and convergent right
complement.
i) For any «, (8 in X**, e =% (8 holds if and only if there exist positive words u, v satisfying

Ni(a)u= Nz(B)v and Dg(a)u = Dr(B)v.

ii) For any u, v in X*, w =% v holds if and only if there exist a positive word w satisfying uw = vw.

Proof. For arbitrary words «, § in X**, write a ~ [ if the condition of (i) holds. Clearly a ~ g implies
a =* §. In order to prove the converse implication, observe that the relation ~ is symmetric and transitive
since the monoid X*/ = is right regular, so that it suffices to prove the implication for particular pairs («, 3)
which generate =* as an equivalence relation. We consider the pairs (yay',v37v'), where (o, 3) has either
the form (zf(y,z),yf(z,y)) with z, y in X, or the form (z~'z,¢) with z in X, or the form (zz~!,¢) with
z in X. In the first case, the compatibility of the congruence = with respect to the operation C; implies
that the right f-numerators of yay’ and y3~' are =-equivalent, and so are the denominators. In the second
case, the word £~ 'z reduces in one step to the nullstring, and therefore the numerators of yay’ and 3y’
are merely equal, as well as the denominators. For the third case, write u, v, uv’, v’ for Ni(7), Dr(7), Na(v'),
Dr(v') respectively. Applying the formulas of Lemma 3 and Lemma 5.iii one obtains

Ne(vzz™1v') = uCh(x, v)Cr (Cr (v, ), Cr (v, 2))
= uCy(2,0)Cr(Cr (v, v), Cr(z,v))
= uCy (v, v)Cr(Cr(z,v), Cp(u',v))
= NR('Y'VI)CR(CR<1"U)7 CR<UI>U>)

Dp(yrz™") = v/ Cp (2, u)Cr(Cr (v, x), Cr(u/, )

V' Cr(z, ) Cr (Cr(v, 1), Cr(z, 1))

V' Cr (v, ") Cr(Cr(z, 1), Cr (v, u"))

= DR('Y'Y/)CR(OR(xvu/)v CR(U7U/))

which gives the result since the words Cy,(Cy(x,v), Cy(u',v)) and Cr(Cr(z,u’), Cr(v,u’)) are =-equivalent
(by Lemma 5.iii). This proves (i), and (ii) follows since the denominators of positive words are empty. W

One deduces

Proposition 1.8. Assume that the congruence = on X* is normed and admits a coherent and convergent
right complement. Then the following are equivalent:

i) the monoid X* /= admits right cancellation;

ii) the congruence = is the restriction of the congruence =* to positive words, and the inclusion of X*
in X** induces an embedding of the monoid X*/= into the group X**/=%*;

iii) for u, v in X*, the equivalence C(u,v) = Cr(v,u) implies Cg(u,v) = Cg(v,u) = €.
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Proof. The equivalence of (i) and (ii) immediately follows from the previous lemma. Assume that u, v are
positive words and Cy(u,v) = Cy(u,v) holds. We have

uCr (v, u) = vCq(u,v) = vC; (v, u),

which implies v = v, and therefore Cy(u,v) = Cp(v,u) = € if right cancellation is allowed. So (i) implies
(iii). Conversely assume ugwo = vowp. Define two sequences of positive words u,, v, by

Un+1 = CR(Un,’Un), Un41 = CR(Unaun)~

Lemma 4 gives positive words w,, satisfying w,, = up41Wn41 = Unt1wWn+1. The existence of a norm for =
implies that the words w,, and v, have to be empty for n large enough. The equality u,+1 = vp41 = €
implies u,, = v,, which gives, if condition (iii) holds, w,, = v, = € whenever n is positive. So one obtains
u; = v; = g, and therefore uy = vy, which means that right cancellation is allowed in X*/ =. |

Corollary 1.9. Under the above hypotheses, the word problem for the group presentation (X,=%) is

solvable.

Proof. For an arbitrary word « in X**, the equivalence @ =* ¢ is equivalent to Ni(a) =* Di(a), and
therefore, if the above proposition applies, to N;(a) = Dg(a). By Lemma 5 this in turn is equivalent to

So the word problem of =* is decided by means of a double right f-reduction: first reduce the word « to
Ni(a)Dr(a) 1, then switch the factors and reduce the word Dy (a)~!Ni(«). The word uv~? finally obtained
is a conjugate of the initial word «, and « is equivalent to the nullstring if and only if the conjugate uv ! is
equal to the nullstring. |

Observe that, under the above hypotheses, another way to decide the equivalence o =* ¢ (by means of a

single reduction) consists of comparing the right numerators and denominators of o and o?. Indeed one

easily verifies the equivalences

{ Np(a?) = Ni(@)Cr(Na(@), Da(e)),
DR(C“Q) = Dg(a)Cr(Dr(r), Np(a)),

which imply that a =* ¢ is equivalent to the conjunction of

Np(a?) = Ny(a) and Dr(a?) = Dg(a).



2. The case of braids

As we already noted the above framework applies to the braid congruence. From now on X will denote the
(infinite) set {01, 09, ...}, and = and =* denote respectively the braid congruences for positive and arbitrary
words. Right reduction will refer to the complement f defined in Section 1 by

03 fOI’|Z—]‘Z27
floi,05) = ¢ 005 for |i—j| =1,
€ for i =j.

In order to apply the results of Section 1 we have to verify that the braid congruence is normed, which is
obvious since its preserves the length, and that the complement f is coherent and convergent. The coherence
is easy: one has to show that the words Ci(f(0:,0;), f(ok,05)) and Cr(f(0:,0%), f(0;,0%)) exist and are
equivalent for each possible mutual positions of the integers i, j, k: the critical cases are when they form
a permutation of a triple of the form (¢, £+ 1, £ + 2), and the six verifications are straightforward. So the
point is to show that right f-reductions always terminate. This can be deduced from the well known right
regularity of the monoid BY,, originally established by Garside using the universal words A,,. We shall give
here a direct proof which only uses the ideas of reduction.

The possible obstruction to the termination of the reduction process associated with f is the fact that
the lengths of the words may increase since f(o;, 0;) has length 2 for some generators ¢;, o;. In order to force
the convergence, we consider an extended family of words X’ which includes X and show by a direct argument
that the complement of two words in X is (equivalent to) a word in X. This corresponds to considering X
as a set of generators for BY and introducing a new complement mapping f so that f(u,v) has length 1
(i.e., belongs to X) when u and v are in X. Hence the complement f will certainly be convergent, and this
in turn will imply the convergence of the complement f. It should not be a surprise that the convenient
choice is to take for X' (a family of representatives for) the set of the positive braids that R-divide some
fundamental braid A,, in the sense of [13], i.e., that belong to an interval [0, 1] in the sense of [10]. For our
present purpose, it is convenient to start from the following definition.

Definition. i) For ¢ > 1 and p > 0, 05, is the word

Oit+p—10it+p—2---0i4+10;

for p > 1, and is the nullstring € for p = 0.
ii) & is the set of all positive braid words of the form

o0
I | Oi,p;
1=1

where (p;);>1 is a sequence of nonnegative integers with only finitely many positive values.

For w a positive braid word, let 7w(w) be the projection of the braid represented by w in the symmetric
group of the natural numbers. If w is Hf; Oi.p:, then the integer p; +1 is the preimage of 1 under m(w), and
an easy induction shows that all coefficients p; are determined by 7(w). So the elements of X' are pairwise
unequivalent, and there is a bijection between the set of the words in X' that involve no generator o; with
i > n and the symmetric group on {1,...,n}.

Definition. A positive braid word w is simple if any two strands cross at most once in the geometric
interpretation of w.

Simple braids are exactly the ‘positive permutation braids’ considered in [10]. One easily verifies that
any element of X is simple, and that any positive word which is equivalent to a simple word must be simple.
In order to compute the complement for the elements of X', one can either use the properties of the factors
of Garside’s words A, or make a direct verification. We develop the latter one here, because in particular
it is the projection of a similar computation needed in [5] for some extension By, of the group Bu.
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Lemma 2.1. Assumei > j > 1 and p,q > 0. One has

=04,q0ip for j+q<i

= 0jptq for j+q=1

is not simple fori<j4+q<i+p
=0,40it1p fori+p<j+gq

Oi,p03,q

The proof is an easy verification (use induction on p and then on ¢ for the last case). The above formula
emphasizes the role of the parameter “j + ¢” and makes the following definition natural.

Definition. Assume that w belongs to X, say w = [], 0;,,. For i a positive integer, @(i) is i + p;. For
j > 1 and g > 0 the integer q is j-permitted for w if w(xz) < W(j + ¢) holds for j < x < j +gq.

Lemma 2.2. For w in X,j>1andq >0, either q is j-permitted for w and the word woj 4 Is equivalent
to the word w' in X determined by

. w(7) fori < jandi > j+q,
w'(i) = w(j +q) fori=j,
wi—1)+1 forj<i<j+gq,

or q is not j-permitted for w, and wo; 4 is not simple.

Proof. Apply the formulas of Lemma 1. The condition of ¢ being j-permitted is what is needed to avoid the
third case. ]

Proposition 2.3. A positive braid word is simple if and only if it is equivalent to a (unique) word in X.

Proof. We prove inductively on the length of the simple word w that w is equivalent to a word in X. The
result is obvious for the nullstring. Now assume that wo; 4 is simple: every crossing arising from w remains
in woj 4, and therefore w must be simple. If by induction hypothesis w is equivalent to w’ in X, then Wojq
is equivalent to w’c; 4, which is simple and therefore by Lemma 2 is equivalent to a word in X. |

When only the generators 1 to n — 1 are used, the (words representing) the half-twist braid A, are
maximal simple words, and the present simple words are exactly the divisors of A,, used in [11]. Note also
that simple braid words are decompositions for the ‘positive permutation braids’ as defined in [10].

Definition. The support of a braid word « is the set of the generators which occur at least once (positively
or negatively) in a.

For positive words the support is obviously invariant under =. Lemma 2 enables us to compute a
complement for two words in X.

Proposition 2.4. There is a mapping f of X x X into X that is n effective (i.e., computable by an
algorithm) and such that

uf(v,u) = vf(u,v)

holds for every u, v in X. Moreover f(v,u) is equivalent to Cy(v,u) (which therefore exists and is simple),
the word uf(v,w) is simple, and its support is the support of uv.

10



Proof. The result, which is obvious if u or v is empty, is proved inductively on the cardinality of the support
of uwv. Fix distinct words u, v in X, and let k be the least element in the support of uv. The mappings 4
and ¥ eventually coincide with identity, so every integer which is large enough is both the image under @ of
an integer which is k-permitted for u and the image under ¥ of an integer which is k-permitted for v. Let
k4 r the least such integer, and let p and ¢ be the k-permitted integers such that k +r is u(p) and v(q). By
Lemma, 2 there exist words v/, v/ in X satisfying

— / — /
UOkp = Ok rU and VOk,q = Ok,p¥

and the support of u'v’ is included in the support of uv but does not contain k, so the inclusion is strict. As-
sume by induction hypothesis that f(u’,v’) and f(v',u") have been constructed with the required properties.
One obtains - -
uopf(V' ") = o 0, 0)
= o,V fu', )

= vog o f (W, 0).

We define f(u,v) to be o f(u/,v’). The symmetry of the construction gives f(v,u) = o, f(v',u'). By
construction f(u,v) belongs to X, and uf(v,u) = vf(u,v) holds. By Proposition 1.5 this shows that C (u, v)
exists, R-divides f(u,v), and therefore must be simple. Also the induction hypothesis that u’ f(v’, u') is simple
implies that, with the above notations, oy, .u’f(v’,u’) is simple, and so is the equivalent word uf (v, u).

Thus the only point which remains to be proved is that f(u,v) R-divides Cy(u,v). This comes from
the minimality in the choice of r. Clearly no generator k¥’ with ¥’ < k may occur in Cg(u,v) or Cg(v,u).
The word vCyg(u,v) is simple. Let o, be the first factor of the unique word w’ in X which is equivalent
to vCx(u,v) (and to uCk(v,u)). Since u R-divides w, Lemma 2 implies that k + 7’ is u(p’) for some integer
p’ which is k-permitted for w. Similarly k + 7' is ©(¢’) for some integer ¢’ which is k-permitted for v. The
choice of r implies r < 7/, the fact that uCpy(v,u) R-divides uf(v,u) implies » > /. Hence one has r = 7/,
and therefore p’ = p and ¢’ = ¢. Then one uses the induction hypothesis. |

The inductive construction of f actually gives an algorithmic method which is basically a reduction.
Starting from u and v, and k being the least element of the support of uv, one determines the integer r as
above by taking the least value in the ranges of w and ¥ which strictly dominates all former values from k, and
then one computes both the complements of u and oy, and of v and oy, using the “partial” complement
given by Lemma 1 (with respect to the generators o;,). Because of the missing cases (the third case in
Lemma 1), one could not directly determine the complement of v and v, but adding the intermediate term
oy, guarantees that the forbidden cases will never appear. Observe that practically it suffices to work with
the functions @ rather than with the words w throughout the computation.

Example. Let u,, be the braid word ¢q03...09,,,—1 and v, be the word o904...09,,. The values of 1, are
2,2,4,4, ..., 2m, 2m, 2m + 1, ..., the values of v, are 1, 3, 3, 5, ..., 2m + 1, ... Hence the parameters
“k” and “r” at first step will be 1 and 2m. The reduction of w,, and o1 2., and of v,, and o} 2, is shown
in Figure 2, and an easy induction leads to

f(um7 Um) = 01,2m022m—-2032m—2---02m—2,202m—1,2,
f(vrru um) =012m—-1022m—-1032m—3---02m—2,302m—1,1-

02m—1 g3 g1 02 04 02m

0O

01,2m |01,2m |01,2m UI,QmIal,Qm 01.2m [01,2m |01,2m |01,2m—1
)

Oom 04 02 03 05 oe

Figure 2
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Lemma 2.5. For u, v in X involving m factors of the form o, ,, the determination of f(u,v) requires at
most O(m?) steps.

The same bound obviously works with respect to the lengths of the words, and the example above shows
that the quadratic bound can be reached. The above process is therefore less efficient than that described in
[11] which uses a sorting in order to determine the least common multiple of two simple words represented
by the associated permutations, and has a complexity in O(mlogm).

Remark. Another way to establish that the complement of two simple braid words exist and is simple
consists of introducing a notion of sliced braid word as follows. A braid word « is sliced if one can imagine a
sequence of horizontal planes containing one strand each such that the braid « is what one obtains when the
planes are looked at from above, i.e., are projected. For positive braid words this notion coincides with the
notion of a simple braid word. For arbitrary words, one easily proves that a sliced braid word is equivalent
both to a quotient uv™! of simple words, and to a similar quotient u'~'v’ of simple words. The existence
of the right complement of simple words is the exact counterpart to the possibility of going from the second
form above to the first one, which is geometrically very easy.

Proposition 2.6. The mappings f and f are coherent and convergent complements for the congruence =
with respect to the sets of generators X and X respectively. For any positive words u, v in X* and any
parsings @, U of u and v as words with respect to X, the right complement of v in v with respect to f and
the right complement of @ in © with respect to f are equivalent. Similarly for any word o in X** and any
parsing & of a as a word with respect to X the right numerators of o with respect to f and of & with respect
to f are equivalent.

Proof. In the case of f, the coherence was known, and the convergence follows from the existence of f
established above. The convergence of f is obvious since f does not increase the lengths with respect
to X. The equivalence of complements with respect to f and f follows from Proposition 4 which gives the
case of simple words. The equivalence of numerators obviously follows, and the coherence of f as well by
Lemma 1.5.iii. |

This completes the verification that the results of Section 1 apply to the braids congruence. By Propo-
sition 1.6 one reobtains classical properties like the left cancellability and the right regularity of the monoid
BZ.. By symmetry of the braids relations, the monoid B} admits right cancellation as well, and therefore
the congruence = is the restriction of the congruence =* to positive words. Now Corollary 1.9 gives a new
algorithm for comparing (arbitrary) braid words by using a double reduction. According to Proposition 6
above one may use as well either the complement f on X or the complement f on X, so that we obtain two

different algorithms for solving the word problem by means of reductions.

Example. Let a be the braid word o3 10102_ 'o105. Using the complement f, one first reduces a to
ofoa0305 a3 oyt (as shown in Figure 1), and then one switches the numerator and denominator to obtain
0y 'o5 o7 looy0, which in turn is R-reducible to oy020307 "oy !, Since the latter word is nonempty, the ini-
tial word « is not equivalent to the nullstring (by a result of [5] this was obvious since the generator oy occurs
in a but its inverse does not). Alternatively, if we use the complement f on X, starting from the X'-parsing
(03) 7 (o1)(02) " (o102) of a, one first obtains (01)(010203)(02,2) " (01) ™!, and (02,2) " (01) " (01)(010203)

is R-reducible to (c10203)(012) ! relative to f. The conclusion is of course the same.
For the complexity of the algorithms we have

Lemma 2.7. Comparing a braid word o with length at most m to the nullstring using a double f-reduction
entails at most m?2/2 calls to f. So an n-strand braid word with length m can be compared to the nullstring
by f-reduction in time O(m?*n?).
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Proof. If v is the product of p words in X and of g inverses of such words, the R-reduction of « (relative to f)

entails at most pq calls to f. For p+ ¢ < m, pq is at most 7212/4. By construction the word Dg(a)_lle(a)
is written as the product of p words in X and ¢ words in X —1. and its reduction also uses at most pg calls
to f. Finally we invoke Lemma 5. |

Thus the complexity is quadratic when the number of generators is bounded. Otherwise the only obvious
bound is in O(m*) for a length m word. Observe that, if the computation of f is made using the parsing
process of [11], one exactly obtains the complexity O(m?nlogn) which is established there. The specificity
of the present algorithm is to avoid using any particular normal form for arbitrary or positive braid words
(this is also the case of the algorithm in [8], which turns out to be more efficient in practice than the present
one because of the use of an additional ordering of the braid that avoids many comparison steps).

It is clear that using generators in X is more efficient than using generators in X' from the algorithmic
point of view. We can nevertheless investigate the complexity of f-reduction.

Lemma 2.8. For every integer n an n-strand braid word with length m can be compared to the nullstring
by f-reduction in time O(m?).

Proof. There is a finite number of simple n-strand braid words, so the double f-reduction of a word « as in
Lemma 7 will require at most Nm?/2 calls to f, where N is the maximal number of calls in the reduction
of a word v~ 'u with u, v simple. |

The above obvious bound leaves the general case open. We observe that, if u and v are simple (positive)
braid words of length m, then the lengths of the complements Cy(u,v) and Cy(v, u) are bounded by 2m? +m
since the maximal length of a simple braid word whose support has ¢ elements is £(¢+1)/2. The example of
the words w,, and v, above shows that this bound is (nearly) reached. In that particular case, the number
of elementary steps in the reduction of v, 'u,, is in O(m?) (precisely (8m?> —9m? + 4m)/3), but we have no
proof that this case is the worst possible one.

When one compares the present algorithms with that of [10], which is also quadratic when the number
of strands is fixed, we see that the latter is somehow intermediate, as it consists roughly speaking in reducing
factors of the form o, Yu where u is simple. So when compared with f-reduction, Elrifai-Morton’s algorithm
requires only computing a part of the complement table for simple braids. On the other hand using f-
reduction is even more economical, as it requires computing no complement table at all, excepted the
‘trivial’ complement f.

Two-sided reduction of braid words

We have so far used the particular form of the braid relation to introduce a right complement together
with the derived notions of right reduction, right numerator and denominator. Now braids relations are
completely symmetric, so that we can develop a parallel notion of left complement and of left reduction
associated with a left complement. Precisely, if ¢ is the mapping of X2 to X* defined by

g for i — j| > 2,

g(0i,05) = o405 for|i—j| =1,
€ for i = 7,
then the braid congruence = is generated by the pairs (g(0i,04)04,

g(oj,0:)0;), and left g-reduction, or simply L-reduction, is the word transformation obtained by iterat-
ing the replacement of 01'0';1 by g(oi,05) " tg(o;,0;). We naturally introduce the left numerator N, and the
left denominator D, associated with g, as well as the left complement C; which is the extension of g to
positive words using left g-reduction. All results about right reduction also apply to left reduction mutatis
mutandis. In the present case an explicit correspondence is given by the formulas

N, (&) = Np(a) and D, (&) = Dy(c),
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where the word « is the mirror image of the word « obtained by reversing the order of the factors (but not
changing the latter ones). So the left numerators and denominators always exist, and for any braid word «
one has

a=* D, ()" N, (a).

Obviously the left numerator and denominator are not more intrinsic that their right homologues.

We have seen that the right numerator and denominator are not canonical in the sense that equivalent
braid words need not have equivalent right numerators and denominators. Left numerators and denominators
are of course not more canonical. But this unpleasant phenomenon disappears when both reductions are
used successively.

Definition. For any braid word «, the right-left numerator Ng,(«) and the right-left denominator Dg, ()
of a are respectively the positive words

N, (Na(@)Dr(a)™")  and Dy (Ne(@)Dn(a)™)
(where right reduction refers to f and left reduction refers to g).

So the RL-numerator and RL-denominator are obtained by successively operating a right and a left
reduction. By construction the formula o =* Dy, (o) "1 Ny (@) holds for every braid word a.

Example. Let us consider again the braid word a = o5 10105 lg105 considered in Figure 1. We have
seen that right reduction leads to the word ofo9030, ‘o5 07", Now Figure 3 shows that left reduction of
the latter word leads to o3 oy toy 'o90?ay, from which we conclude that Ny (a) is 090?02, and Dy (a) is
010203.

O2 , 01 , 01 02 -
01
\ op) 01
g2
J1 J1 ()
03
03 03 03 \
T2
\ g1 » 1 02 4 03 N
Figure 3

Proposition 2.9. Braid equivalence is compatible with the mappings N, and Dy, : o =* (3 implies both
New (@) = N (8) and Dy (@) = Diz (5)-
Proof. Assume that oo =* 8 holds. By Lemma 1.7 there exist positive words u, v satisfying

N (a)u = N, (B)v and D, (a)u = D, (B)v. (1)
By construction the word Ny (a)uu~!Dy(a)~! is L-reducible to the word Ni(a)Dy(a)~t. This implies

N (@) = Np(Ng(a)uu™' Dy ()™,
and therefore by definition of the L-complement
Ny (a) = C(Ng()u, Dp(a)u),

and similarly
Npy, (ﬁ) =C (NR(ﬁ)U7 DR(ﬁ)U)'

By Lemma 1.5.ii (translated for a coherent left complement), the congruence = is compatible with L-
complement, so that the relations (1) imply the equivalence of the complements above, and therefore of
N (@) = Ni.(B) holds. The equivalence of the denominators is similar. [ ]
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We can easily understand how double reduction leads to a canonical notion: indeed, starting from a
given braid word a, right reduction is able to delete all factors of the form o; Lo, that are “hidden” in « (in
the sense that they will appear during R-reduction), but not the factors of the form o;0; 1. The situation is
symmetric with left reduction, so that finally double reduction gives the optimal result.

As an application we obtain at once a new way to decide braid word equivalence by means of a double
reduction.

Corollary 2.10. The braid word « is equivalent to the nullstring if and only if the words Np, (o)) and Dy, ()
are empty.

Proof. The nullstring is the only positive word that is equivalent to e. ]

The present algorithm resembles that introduced above very much, in as far as it consists in a succession
of two reductions. The final words however are different in general. Starting from «, the first algorithm
R-reduces « say to uv~!, and then R-reduces the word v~'u, while the second one L-reduces uv~!, which
corresponds to R-reducing the mirror image v~ '% and reversing the result.

The complexity of the second algorithm, i.e., of determining the words Ny, (o) and Dy, (), is the same
as that of the first algorithm: if the number of strands is fixed, it is quadratic with respect to the lengths
of the words, otherwise one must include the cost of the computation of the complements of simple words.
Using the elements of X as generators, one defines similarly a left complement g. Practically for u, v in X,
the left complement can be determined by computing the X-decomposition of the words @ and v, then
using f and finally reversing once again the result. By Lemma 2 the reversing process has itself a quadratic
complexity with respect to the length, thus the final complexity for the computation of the RL-numerator
and denominator of an n-strand braid word of length m is still in O(m?n?).

By Proposition 2.9 the operations N, and Dy, induce mappings of B, into BY, thus attaching to
every braid a well defined numerator and denominator. These positive braids can be easily characterized as
minimal decomposition of the initial braid into a quotient of positive braids. We start from

Lemma 2.11. Assume that the braid word « is R-reducible to o/. Then there exists a positive braid word w
that satisfies

wN, () = N, () and wD, (o) = D, ().

Proof. 1t suffices to consider the case of a one-step reduction. In the cases when o; 'o; with i # j has been
reduced, the left numerator and denominator are not modified. In the case when o, Lo, has been reduced
(to a nullstring), one applies the left counterpart of the formula established in the proof of Lemma 1.7 to
obtain

N, (o) = C, (04, u) N, () and D, (a) = C,(04,u)D, (),

where u corresponds to any positive path in the Cayley graph of a that connects the left top corner (in a
representation like Figure 1) to the origin of the involved o; arrows, i.e., u is the left join of D, (v) and N (8
if one assumes that reduction has been applied to So; Loy |

We deduce

Proposition 2.12. For any braid «, the word Dy, (o) ' Ny, () has the minimal length among all words of
the form v~ 'u with u, v positive and v~ u equivalent to o. More precisely for every decomposition v~'u as

above, there exists a positive word w that satisfies u = wN, () and v = wDy, ().
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Proof. Assume v~'u =* a with u, v positive. By definition the left numerator of v~'u is u, and its left

denominator is v. Now by construction the word v~!u is R-reducible to the word N (uv~!)Dg(uv=1)~1, and
so Lemma 11 implies that there exists a positive word w that satisfies

(o 2hi

’UJNL(NR(’UJ’Uil)DR(Uvil)il)v
w Dy, (N (wv™1) Dy (uwv=1) 1),

By definition the words on the right of the equivalence are Ny (uv~!) and Dy, (uv™!), and, by Proposition 9,
they are equivalent respectively to N () and Dy, (a), so we are done. |

It follows from the above property that, for any braid word «, the words Ny, (o) and Dy, (o) are equivalent
respectively to the numerator and the denominator of Thurston’s normal form of « as constructed in [11].
So the present double reduction method can be as an alternative way to compute this form. Note however
that, because we do not use any particular normal form for positive braids, the above equivalence is not an
equality in general.

Corollary 2.13. For any braid word «, the (positive) words Ny («) and Dy, («) are coprime on the left,
i.e., the only positive word w that satisfies Ny, () = wu and Dy () = wv for some positive u and v is the
nullstring.

Clearly one could reverse the order of the reductions: by first reducing to the left, and then to the right,
one obtains similar notions of left-right numerators and denominators so that every braid is the quotient on
the right of its LR-numerator and LR-denominator. Results similar to Propositions 9 and 12 obviously hold
for these notions. Iterating the process will give nothing more, since by Proposition 9 the positive words
thus obtained will be pairwise equivalent.

We can also observe that the existence of (various) normal forms for the braid words enables us to
immediately define normal forms for arbitrary braid words. For instance using the right greedy form of [11]
for positive words gives the canonical mixed form that is proposed there, together with a new method to
obtain it (by means of reductions). However the spirit, and perhaps the interest, of the present constructions
is rather to avoid using normal forms.

As a final remark let us mention that the results of [5], [14] and [2] establish an isomorphism between
the positive braids and the ordinals below w®”: it follows from the above decomposition result that every
braid is canonically associated with a pair of such ordinals. Observe that this correspondence extends the
(trivial) representation of an integer as the difference of two nonnegative integers one of which is zero, which
corresponds to the case of the subgroup By of B, generated by o7 alone.
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