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ABSTRACT. A group of elementary associativity operators
is introduced so that the bracketing graphs which are the
skeletons of Stasheff’s associahedra become orbits and can be
constructed as subgraphs of the Cayley graph of this group.
A very simple proof of Mac Lane’s coherence theorem is given,
as well as an oriented version of this result. We also sketch
a more general theory and compare the cases of associativity
and left selfdistributivity.

AMS Classification: 08A05, 20L10, 20M50.

The general purpose of this paper can be summarized as the introduc-
tion of some algebraic structure on the faces of Stasheff’s associahe-
dra which are CW-complexes whose faces correspond to the complete
bracketings of a given string (see [12]). We introduce a ‘structure group
of associativity’ G̃A so that the (skeletons of the) associahedra become
orbits for some natural action of G̃A – exactly like the usual regular
polyhedra are orbits for the action of (the finite subgroups of) the or-
thogonal groups O(n). The main point is that the group G̃A shares
many algebraic properties with Artin’s braid groups Bn, a similarity
which actually extends in part to the general case where associativity
is replaced by any another algebraic identity.

In former papers ([2], [4], [6]) we have developed an analysis of
the left distributivity identity in terms of a structure group that cap-
tures the geometry of this particular identity. This analysis was used
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to prove the decidability of the corresponding word problem and to de-
scribe the free objects of the variety. Our aim is to show that a similar
approach is relevant in the case of other algebraic identities. In the
present paper we shall concentrate on the case of associativity, which
is both very natural and wellknown but also significantly different and
technically easier than left distributivity. Again a ‘structure group’ G̃A

will be involved, and we shall show that the algebraic properties of
this group reflect and somehow explain the geometric properties of
the associativity identity. In this framework, which can be seen as a
variant of the categorical approach of [11], MacLane’s coherence theo-
rem for associativity can be reformulated as the fact that the relation
arising from the pentagonal identity constitutes, together with other
‘universal’ relations, an exact presentation for the group G̃A.

We obtain a direct and very simple proof for the pentagon theorem
which relies on the possibility of generating by associativity any given
term from a sufficiently large string of characters (the characteristic
sequences of a term). With more work one also obtains an oriented
version of this theorem where the rewrite rule x(yz) → (xy)z replaces
the symmetric relation x(yz) = (xy)z. This improved result claims
that the pentagon relation is still sufficient to generate all relations
in the oriented case. We also show that the structure monoid MA

corresponding to oriented associativity embeds in the group G̃A. It
follows that the (skeletons of the) associahedra are faithful orbits under
the natural action of MA. This provides a description of these graphs
as the closure of a finite set of initial edges under some simple algebraic
operation (reduction with respect to a right complement), which easily
implies that this graph is topologically a sphere.

These properties are established using the particular form of the
relations defining the group G̃A, specially the fact that these relations
admit a right complement (see [5]) and that this complement satisfies
some coherence condition which reflects a deep technical similarity be-
tween the group G̃A and Artin’s braid groups Bn. It is remarkable that
the coherence of the complement, which is fundamental in the present
case of associativity, is equally crucial in the case of left distributivity.
It has seemed useful to establish a parallel between these cases. This
should in particular make the latter one more accessible.
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The paper is organized as follows. The first section introduces
the structure group of associativity. Section 2 gives the proof of the
pentagon theorem and its oriented version. Section 3 compares the
cases of associativity and left distributivity and emphasizes the com-
mon features. In Section 4 finally we sketch a more general theory, and
show that a significant part of the crucial coherence property used in
Section 2 and Section 3 can be obtained by a uniform geometrical ar-
gument. This considerably lowers the length of a proof which a priori
is very long.

1. The elementary associativity operators

In the sequel Σ is an infinite set whose elements are called variables
and are typically denoted by X, Y , Z. The set of all terms constructed
using the variables in Σ and a binary operator ∗, i.e., the free binary
algebra generated by Σ, is denoted by T (Σ). We use P , Q, R, . . . for
the elements of T (Σ). Then the associativity identity is expressed by
the equality

X ∗ (Y ∗ Z) = (X ∗ Y ) ∗ Z (A)

Definition. The relation =A is the least congruence on T (Σ) that
contains all pairs

(Q ∗ (R ∗ S) , (Q ∗ R) ∗ S).

In other words, the quotient T (Σ)/=A is the free semigroup gen-
erated by Σ. Our task is to describe the congruence =A. To this
end we introduce a partial operator ΩA on T (Σ) as follows: the term
P belongs to the domain of ΩA if and only if P can be expressed as
Q ∗ (R ∗ S), and, in this case, ΩA maps P to the corresponding term
Q ∗ (R ∗ S). It is clear that ΩA maps every term to an =A-equivalent
term, and that, more generally, two terms P , P ′ are =A-equivalent if
and only if there exists a finite sequence of terms from P to P ′ such
that every term is obtained from the previous one either by applying
either ΩA or ΩA

−1 to some subterm.
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Precisely we wish to keep track of the subterms the operators ΩA

or ΩA
−1 are applied to. It is convenient to consider the terms of T (Σ)

as rooted binary trees the leaves of which are variables. We address a
point in such a tree by a finite sequence of 0’s and 1’s that describes
the path from the root of the tree to the considered point: 0 means
going to the left, 1 means going to the right. We denote by S the set
of all addresses (i.e., the free monoid generated by 0 and 1), and by Λ
the empty address. Elements of S are denoted x, y, . . .

Example. In the term (X ∗ Y ) ∗ Z, the address of the variable X
is 00, while the address of Y is 01.

With these notations it should be clear that a term P belongs to
the domain of the operator ΩA if and only if the point 11 is either the
address of a variable of P , or is a strict prefix of such an address.

Definition. For x in S, ΩA(x) is the partial operator on T (Σ) corre-
sponding to applying ΩA to the subterm whose root has address x.

Example. Let P be the term X∗(X∗(X∗X)). Then ΩA, which is also
ΩA(Λ) by construction, maps the term P to the term (X ∗X)∗(X ∗X),
while ΩA(1) maps P to the term X ∗ ((X ∗ X) ∗ X).

Similarly we introduce for every point x in S a disjoint copy de-
noted x−1, and define ΩA(x−1) to be the converse operator ΩA(x)−1.
Now let us extend the notation ΩA to finite sequences of points and
inverses of points, so that ΩA(α • β) is the reverse composition of
ΩA(α) and ΩA(β) (apply ΩA(α) first and then ΩA(β)). For instance
ΩA(00−1 • 1) is the reverse composition of ΩA(00)−1 and ΩA(1).

Definition. The monoid MA (resp. GA) is the monoid generated by
all operators ΩA(x) with x in S (resp. in S ∪ S−1).

With our notations the elements of MA are exactly the operators
ΩA(u) with u a finite sequence of elements of S, i.e., an element of the
free monoid S∗ generated by S, and the elements of GA are the operators
ΩA(α) with α a finite sequence of elements of S∪ S−1, i.e., an element
of the free monoid (S ∪ S−1)∗ generated by S ∪ S−1. Practically we
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shall use • for denoting the monoid product (concatenation) of S∗ and
(S ∪ S−1)∗, and ε to denote their unit (i.e., the empty sequence), not
to be confused with the length 1 sequence Λ that consists of the empty
address. It should be clear that the following holds:

Lemma 1. Two terms P , P ′ in T (Σ) are =A-equivalent if and only if
there exists a sequence α in (S ∪ S−1)∗ such that the operator ΩA(α)
maps P to P ′.

Remark. When the partial function ΩA(α) is viewed as a set of pairs
of terms (the set of all pairs (P, ΩA(α)(P ))), it becomes exactly the set
of all instances of some pair (K+

α , K−
α ), defined as the pairs obtained

from (K+
α , K−

α ) by applying a substitution, i.e., by replacing each vari-
able by a given term (depending on that variable). Clearly each pair
(K+

α , K−
α ) is a consequence of the associativity identity (A), and actu-

ally the monoid GA can be seen as a monoid structure defined on the
set of all consequences of (A) (see [3] for some additional details).

Our purpose is to study the monoids MA and GA. Observe that GA

is “nearly” a group: the operator ΩA(x)−1 is a near-inverse of ΩA(x)
in as far as the product ΩA(x • x−1) is the identity of the domain of
ΩA(x). Of course it could be claimed that the “real” nature of GA is
a groupoid structure in the language of categories. However it will be
convenient to keep on using here a purely algebraic language which is
more appropriate to describe the subsequent constructions.

Definition. Assume that f and g are partial mappings whose do-
mains intersect; f and g are compatible, denoted f ∼ g, (resp. strongly
compatible) if there exists at least one element x in the intersection of
the domains of f and g such that f and g agree on x (resp. if f and g
agree on every element in the intersection of their domains).

For instance the above remark about ΩA
−1(ξ) being a near-inverse

of ΩA(x) means that the operators ΩA(x • x−1) and ΩA(ε) (i.e., the
identity of T (Σ)) are strongly compatible. Actually in the present
special case of associativity, the facts that the same variables appear
on each side of the identity (A) and that each one appears only once
imply (see [3]) that the compatibility relation coincides with the strong
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compatibility relation, and that these relations are congruences on GA.
Then the quotient monoid GA/∼ is a group.

The relations in MA and GA

Owing to Lemma 1, we can consider that a complete description of
the monoid GA constitutes a convenient achievement for the initial
task of studying the equivalence =A, and therefore of describing in
some sense the geometry of associativity. So the point is to establish
a presentation of the monoids MA and GA in terms of their generators
ΩA(x) and ΩA(x−1), that is to provide an exhaustive list of the relations
that connect the operators ΩA(x) one to each other.

The case of the near-inverses ΩA(x−1) is rather trivial and we
concentrate on the positive relations that involve only the operators
ΩA(x) with x in S. There are two kinds of relations. The first ones
are ‘general’ relations which have little to do really with the specific
case of associativity. A first family appears when operators associated
with non overlapping subterms are involved. The basic case is the one
of ΩA(0) and ΩA(1): clearly the result of applying to a term ΩA(0)
first and then ΩA(1), or the converse, leads to the same resulting term.
More generally if we say that two addresses x, y are orthogonal if
neither x is a prefix of y nor y is a prefix of x, the relation

ΩA(x • y) = ΩA(y • x) (⊥)

holds for every pair x, y of orthogonal addresses.

The second type of general relations appears when operators as-
sociated with “completely nested” subterms are involved. For instance
ΩA(Λ) maps Q ∗ (R ∗ S) to (Q ∗ R) ∗ S. Now if some operator ΩA(α)
maps Q to Q′, ΩA(0α) maps Q∗ (R∗S) to Q′ ∗ (R∗S) — we denote by
0α the sequence obtained from α by adding an initial 0 to each factor
of α —, while ΩA(00α) maps (Q∗R)∗S to (Q′ ∗R)∗S. So we certainly
have

ΩA(0α • Λ) = ΩA(Λ • 00α),

a relation that just expresses that the subterm which had address 0
before ΩA(Λ) was applied has address 00 after ΩA(Λ) has been applied.
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Similar relations appear when an arbitrary point z replaces Λ. So, the
relation

ΩA(z0x • z) = ΩA(z • z00x) (0)

holds for every z and x in S. The same argument works for the subterm
at 10, which is moved to 01 by ΩA(Λ), and for the subterm at 11, which
is moved to 1, leading to parallel relations

ΩA(z10x • z) = ΩA(z • z01x) (10)
ΩA(z11x • z) = ΩA(z • z1x) (11)

When we consider the above relations, we see that, for every pair
(x, y) in S × S, there exists exactly one relation of the form

ΩA(x • . . .) = ΩA(y • . . .)

except in the case of the pairs (z, z1) that corresponds neither to
nonoverlapping subterms nor to completely nested subterms. The al-
gebraic treatment of the monoid MA that will be subsequently applied
suggests (or, at least, a posteriori legitimates) to completing our list
with relations of the same type for the pairs (z, z1). This however is
easy, and a direct verification gives, for every z in S, the relation

ΩA(z1 • z • z0) = ΩA(z • z) (1)

i.e., precisely the pentagon relation. In contradistinction with the
other relations that automatically arise from our way to introduce the
generators ΩA(x), the equalities (1) are specific relations that we can
only record and not explain by general reasons. Very informally we
could think of the other equalities as the “free” part of the construction
while the equalities (1) represent the only really “nonfree” part.

The nontrivial question is whether the above list of relations gen-
erate all relations of MA. It will be convenient to introduce the monoid
admitting these relations as a presentation (and therefore of which MA

is a quotient by construction).
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Definition. The relation ≡+
A is the congruence on S∗ generated by all

pairs of the five following types

( z0x • z1y , z1y • z0x )
( z0x • z , z • z00x )
( z10x • z , z • z01x )
( z11x • z , z • z1x )
( z1 • z • z0 , z • z )

and ≡A is the congruence on (S∪S−1)∗ generated by ≡+
A together with

all pairs (z •z−1, ε) and (z−1 •z, ε) for z in S. Finally M̃A is the monoid
S∗/≡+

A , and G̃A is the group (S ∪ S−1)∗/≡A.

By construction, we have:

Lemma 2. i) For any positive sequences u, v in S∗, u ≡+
A v implies

ΩA(u) = ΩA(v);
ii) For any sequences α, β in (S ∪ S−1)∗, α ≡A β implies that

ΩA(α) and ΩA(β) are strongly compatible operators.

We shall now turn to the converse implications. The first one con-
stitutes a form of Mac Lane’s theorem in [11]. Actually these converse
implications will show that the monoids MA and M̃A are isomorphic,
as well as the groups GA/∼ and G̃A.

2. The characteristic sequences of a term

In order to prove that the relation ΩA(α) = ΩA(β) implies α ≡A β, we
need some method for converting the hypothesis, which is a “semantic”
statement involving the action of the operators ΩA(x) on the terms into
a purely “syntactic” statement. The trick we use is to construct in the
syntactic world of S∗ a copy of the terms so that the action of the
operators ΩA(x) has the wished syntactic counterpart.
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This however is very easy in the case of associativity. We restrict
to terms involving only the variable X, the set of which is denoted
by T (X). We denote by X(n) the term X ∗ (X ∗ (. . .(X ∗ X). . .)), n
times X, and, for P in T (X), we write |P | for the number of occur-
rences of X in P . We start from the following trivial statement:

Lemma 1. For any term P in T (X), the equivalence X(|P |) =A P
holds, as well as the equivalence X(|P |+n) =A P ∗ X(n) for any n ≥ 1.

By Lemma 1.1 there must exist sequences of addresses that de-
scribe the above equivalences. The idea is to introduce for every term P
such a “characteristic sequence” χA(P ) with the property that the op-
erator ΩA(χA(P )) constructs the term P from the basic term X(|P |),
and then to use the sequence χA(P ) as a syntactic version of P . It is
uneasy to obtain, toward an inductive construction, a definition of a
sequence χA(Q ∗ R) in terms of the sequences χA(Q) and χA(R) only.
But everything becomes easy when using a second type of charac-
teristic sequence associated with the second equivalence in the above
lemma.

Lemma 2. Let χA and χ′
A be the mappings of T (X) into S∗ inductively

defined by the formulas χA(X) = χ′
A(X) = ε and

χA(Q ∗ R) = χ′
A(Q) • 1χA(R),

χ′
A(Q ∗ R) = χ′

A(Q) • 1χ′
A(R) • Λ.

Then, for every term P and every positive integer n, the opera-
tor ΩA(χA(P )) maps X(|P |) to P , and the operator ΩA(χ′

A(P )) maps

X(|P |+n) to P ∗ X(n).

The proof is an obvious induction. Now assume that the oper-
ator ΩA(u) maps the term P to the term P ′. Then both the opera-
tors ΩA(χA(P ′)) and ΩA(χA(P ) • u) map the term X(|P |) to P ′. So if
the converse of Lemma 1.2 is true, we can expect that the sequences
χA(P ′) and χA(P )•u be ≡+

A -equivalent. Similarly both ΩA(χ′
A(P ′)) and

ΩA(χ′
A(P ) • 0u) map the term X(|P |+1) to P ′ ∗ X, and we can expect

a parallel ≡+
A -equivalence. Now this is just a matter of verification

involving the defining relations of ≡+
A .
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Lemma 3. i) If u belongs to S∗ and ΩA(u) maps P to P ′, the equiv-
alences

χA(P ′) ≡+

A χA(P ) • u and χ′
A(P ′) ≡+

A χ′
A(P ) • 0u

hold in S∗.
ii) Similarly if α belongs to (S ∪ S−1)∗ and ΩA(α) maps P to P ′,

the equivalences

χA(P ′) ≡A χA(P ) • α and χ′
A(P ′) ≡A χ′

A(P ) • 0α

hold in (S ∪ S−1)∗.

Proof. i) Using induction on the length of the sequence u we may
assume that u reduces to a single point say x. We prove the formulas
inductively on the length of x (as a sequence of 0’s and 1’s). We begin
with the case x = Λ. Assume that P is Q ∗ (R ∗ S). Then P ′ is
(P ∗ Q) ∗ S, and the definitions together with relation (11) yield

χA(P ′) = χ′
A(Q) • 1χ′

A(R) • Λ • 1χA(S)
≡+

A χ′
A(Q) • 1χ′

A(R) • 11χA(S) • Λ = χA(P ) • Λ

Similarly using relation (1) we have

χA(P ′) = χ′
A(Q) • 1χ′

A(R) • Λ • 1χ′
A(S) • Λ

≡+

A χ′
A(Q) • 1χ′

A(R) • 11χ′
A(S) • Λ • Λ

≡+

A χ′
A(Q) • 1χ′

A(R) • 11χ′
A(S) • 1 • Λ • 0

= χ′
A(P ) • 0

Now assume that P is Q∗R and x is 0y. Then P ′ is Q′ ∗R, where
ΩA(y) maps Q to Q′. By induction hypothesis we assume χA(Q′) ≡+

A
χA(Q) • y and χ′

A(Q′) ≡+
A χ′

A(Q) • 0y. Then we have

χA(P ′) = χA(Q′ ∗ R) = χ′
A(Q′) • 1χA(R)

≡+

A χ′
A(Q) • 0y • 1χA(R)

≡+

A χ′
A(Q) • 1χA(R) • 0y = χA(P ) • x
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by relation (⊥), and similarly

χ′
A(P ′) = χA(Q′ ∗ R) = χ′

A(Q′) • 1χ′
A(R) • Λ

≡+

A χ′
A(Q) • 0y • 1χ′

A(R) • Λ

≡+

A χ′
A(Q) • 1χ′

A(R) • 0y • Λ

≡+

A χ′
A(Q) • 1χ′

A(R) • Λ • 00y = χ′
A(P ) • 0x

by relation (0). This gives the desired formulas, and the argument is
parallel is the case x = 1z using relations (10) and (11).

ii) If ΩA(x) maps the term P to the term P ′, then the operator
ΩA(x−1) maps P ′ to P . So point (i) immediately gives the formulas
of (ii) in the case where α reduces to a unique factor x−1. Then the
induction is straightforward. �

The previous computation is sufficient to complete the analysis
in the unoriented case, i.e., to describe the relation between GA and
G̃A. Because the domain of the operator ΩA(α) is always nonempty,
we may state the following

Proposition 4. For any sequences α, β in (S ∪ S−1)∗, the opera-
tors ΩA(α) and ΩA(β) are compatible if and only if they are strongly
compatible if and only if the equivalence α ≡A β holds.

Proof. Assume that ΩA(α) and ΩA(β) both map the term P to the
term P ′. By Lemma 2.3.ii both sequences α and β are ≡A-equivalent
to χA(P ′) • χA(P )−1. �

The oriented case, i.e., the case of MA and M̃A where we restrict
to only one direction of associativity rewriting, is more interesting. At
the present point, the formulas of Lemma 2.3.i only yield a partial
result.

Lemma 5. If u, v are positive sequences in S∗, and the opera-
tors ΩA(u) and ΩA(v) are compatible, then there exists a positive se-
quence w satisfying w • u ≡+

A w • v.
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So we are left with the question as to whether left cancellation
is allowed in the monoid M̃A. This question will be solved using the
special form of its defining relations. As we have pointed out, these
relations have the property that, for any pair of distinct generators
(x, y), there exists exactly one relation that is a pair whose left member
begins with x and right member begins with y. More precisely, let CA

be the mapping of S2 into S∗ defined by

CA(x, y) =



ε if x and y are equal,
x if x and y are prefix-incompatible, or x is y1,

or x0 is a prefix of y, or x1 is a strict prefix of y,
x • x0 if y is x1,
y00z if x is y0z,
y10z if x is y01z,
y1z if x is y11z.

Then the congruence ≡+
A is exactly the congruence on S∗ generated by

all pairs
( x • CA(y, x) , y • CA(x, y) ),

which we shall express by saying that CA is a right complement for ≡+
A .

A typical example of a congruence associated with a right complement
is braid equivalence used to define Artin’s braid groups Bn. It is shown
in [5] that Garside’s treatment of the groups Bn can be extended to ar-
bitrary groups admitting a right complemented presentation, provided
that the complement satisfies some combinatorial properties. We shall
presently prove that the complement CA above satisfies these require-
ments.

Associated with the complement CA is a notion of word reduction
in (S ∪ S−1)∗. Since the equivalence x • CA(y, x) ≡+

A y • CA(y, x) holds
for every x, y in S, so does the equivalence

y−1 • x ≡A CA(x, y) • CA(y, x)−1.

We say that the sequence α reduces to the sequence β if β can be
obtained from α by iteratively replacing patterns of the form y−1 • x
by the corresponding patterns CA(x, y) • CA(y, x)−1. It is clear that
the irreducible sequences are the sequences of the form u • v−1 with
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u, v positive sequences, i.e., sequences in S∗. It not obvious that any
sequence should reduce in a finite number of steps to an irreducible
sequence, but it is not hard to see that reduction, when it terminates,
leads to a unique irreducible sequence. We define the (a priori par-
tial) mapping C∗

A of S∗ × S∗ into S∗ by the condition that, for u, v
in S∗, C∗

A(u, v) • C∗
A(v, u)−1 is the irreducible sequence to which the

sequence v−1 • u reduces. By construction the mapping C∗
A extends

the mapping CA, and constitutes the appropriate extension of CA to
finite sequences as in particular the equality

u • C∗
A(v, u) ≡A v • C∗

A(u, v)

holds for every finite sequence u, v, provided that the complements
are defined.

Definition. The right complement CA is coherent if the equivalence

C∗
A(CA(x, y), CA(z, y)) ≡+

A C∗
A(CA(x, z), CA(y, z)) (R(x, y, z))

holds for every x, y, z in S.

The coherence is exactly what is needed to guarantee that the
closure under complement of the initial arrays x, y, z in the Cayley
graph of M̃A leads to a welldefined unique terminal point, which will
be the least common multiple of x, y and z. The analysis of [5] yields

Lemma 6. Assume that the equivalence relation ≡+
A has the property

that, for any u in S∗, the lengths of the sequences u′ satisfying u′ ≡+
A u

have a finite supremum, and that moreover the complement CA is
coherent. Then the monoid M̃A admits left cancellation.

The finiteness condition above is easy, for u′ ≡+
A u implies

ΩA(u′) = ΩA(u). Define the weight of a term P (viewed as a word)
as the sum of the ranks of the opening brackets in P , where the rank
of a character is the just the number of characters before it. Every
operator ΩA(x) strictly lowers the weight of any term it is applied to,
and therefore if ΩA(u) maps P to P ′, the length of u, as well as the
length of any sequence u′ verifying ΩA(u′) = ΩA(u), is bounded by the
weight of the term P .
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We are left with the verification of the coherence condition for CA.
This is a priori a brute force argument consisting in an exhaustive ex-
amination of the various cases arising from all possible mutual positions
of the points x, y, z. Actually the construction of the complement CA

implies that a great many cases are automatically settled. This will
be exposed in Section 4 below. In the present case this implies that it
suffices to verify the equivalences R(1, y, Λ), R(y, Λ, 1) and R(Λ, 1, y)
when 0 is a prefix of y or 1 is a strict prefix of y. Observe that si-
multaneously verifying the three above equivalences only require three
CA-reductions (and not six). It is enough to distinguish five cases.

First assume that y has the form 0y′. The formulas are

C∗
A(CA(0y′, 1), CA(Λ, 1)) = 000y′ = C∗

A(CA(0y′, Λ), CA(1, Λ))
C∗

A(CA(1, Λ), CA(0y′, Λ)) = Λ = C∗
A(CA(1, 0y′), CA(Λ, 0y′))

C∗
A(CA(Λ, 0y′), CA(1, 0y′)) = Λ • 0 = C∗

A(CA(Λ, 1), CA(0y′, 1))

If y has the form 10y′, one obtains similar equalities where only the first
value is modified and is now 001y′. The result is the same if y has the
form 110y′ (the first value becomes 01y′), or the form 111y′ (the first
value is 1y′). The last case is for y = 11. Again similar equalities are
obtained, with value Λ•0•00 for the first two complements. The latter
case is the only really critical one (although very simple indeed). The
associated reductions are illustrated in the Cayley graph of Figure 1
whose meaning should be clear: reduction consists in “closing” the
open patterns made of two arrows with the same origin by appending
the new arrows prescribed by the complement CA. Observe that in the
case of this simple complement, the desired equivalences happen to be
merely equalities. Nevertheless they are not trivial, and they definitely
express some intrinsic property of associativity.

Owing to Lemmas 4 and 5 we have obtained

Proposition 7. If u, v are positive sequences in S∗, and the opera-
tors ΩA(u) and ΩA(v) are compatible, then u ≡+

A v holds.

In other words, the monoids MA and M̃A are isomorphic, i.e., the
relations listed in Section 1 do form a presentation of the monoid MA.
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Figure 1: Coherence of the complement CA, case of {Λ, 1, 11}

Additional results about the congruence ≡+
A and the monoid MA

can easily be obtained. For instance reductions associated with the
complement CA always have to terminate. Let α be any sequence in
(S ∪ S−1)∗, and P be any term in the domain of the operator ΩA(P ),
which we know cannot be empty. Let u1, u2, . . . be an enumeration of
the distinct positive sequences u that have the property that α reduces
to some sequence admitting u as an initial segment. By construction
reduction does not modify the domain of the corresponding operators,
so the term P belongs to the domain of each operator ΩA(ui). It follows
that the lengths of the sequences ui are bounded above by the weight
of the term P , and therefore that there are only finitely many of them.
This in turn means that the reduction of α has to terminate. By [5],
this implies that the monoid MA is right regular.

Next the operator ΩA
−1 is a symmetric copy of the operator ΩA.

It follows that the monoid similar to MA constructed from ΩA
−1 is

exactly the opposite monoid of MA, and that this monoid is still as-
sociated with a coherent right complement obtained from CA by ex-
changing the roles of 0 and 1. In the terms of [5] this means that the
congruence ≡+

A is also associated with a coherent left complement, and
this implies that the monoid M̃A admits right cancellation. Thus the
situation of the monoid M̃A and of the group G̃A is exactly the one
of the braid monoids Pn and the braid groups Bn with respect to the
complements. In particular we have
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Proposition 8. The congruence ≡+
A is exactly the restriction of the

congruence ≡A to positive sequences. The monoid MA embeds in the

group G̃A, and every element of G̃A can be expressed as the (right, or
left) quotient of two elements of MA.

According to the double reduction procedure of [5], the word prob-
lem for the congruence ≡+

A is decidable, and actually has a polynomial
complexity with respect to the lengths of the considered sequences.
Incidentally a unique normal form for the elements of G̃A is described
in [3] using another approach.

The associahedra

There is a close connection between the Cayley graphs of the
group G̃A and the associahedra. In Stasheff’s original paper [12] where
they were used to emphasize the obstruction to the existence of an
associative law in certain spaces, the associahedra are constructed as
CW-complexes whose faces correspond to bracketings of a fixed string.
Like in [8] we shall consider here the skeletons of these CW-complexes,
i.e., the graphs whose vertices correspond to the faces of the CW-
complex, and the edges connect faces that have a common boundary.

Definition. For any term P , the graph KP (resp. the oriented
graph K+

P ) is constructed as follows: the vertices are the images of P
under some operator in GA (resp. in MA) and an (oriented) edge con-
nects Q to R if some transformation ΩA(x) with x in S∪S−1 (resp. in S)
maps Q to R.

Figure 2 shows two such (oriented) graphs. Observe that each
graph KP contains exactly one vertex, say Q, of the form X1 ∗ (X2 ∗
(. . .(Xn−1 ∗ Xn). . .)), and that for such a term the graph KQ, which
is also KP , is nothing but the unoriented version of the oriented
graph K+

Q . By construction the graph KP is the 2-skeleton of the
associahedron of the term P as defined in [12], and considering the
oriented version K+

P amounts to introducing some orientation on this
associahedron.
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Figure 2: The oriented graphs K+
X(4) and K+

X(5)

By construction the group G̃A and the monoid M̃A operate (a
partial operation) on the graphs KP via ΩA. This gives a projection
of the Cayley graph of G̃A and M̃A onto these graphs. The nontrivial
result is that this projection is injective. This is exactly what tell
Propositions 4 and 7.

Proposition 9. Let P be any term in T (Σ).
i) The partial action of the group G̃A induced by ΩA is transitive

and faithful on the graph KP .
ii) The partial action of the monoid MA induced by ΩA is faithful

on the oriented graph K+
P . Actually the latter one is exactly the Cayley

graph of the subset of MA made by (the classes of) the sequences u
such that the term P belongs to the domain of ΩA(u).

Proof. By definition the graph KP is the orbit of P under GA. Since
two operators ΩA(α), ΩA(α′) agree on some particular term if and
only if they agree everywhere if and only if α ≡A α′ holds, the action
becomes faithful when one collapses GA to G̃A. The argument is similar
for MA. �

We deduce a purely abstract (or syntactic) construction of the
(oriented) graphs KP .
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Corollary 10. Assume that x1, . . ., xn are the addresses such that the
term P lies in the domain of the operator ΩA(xi). Then the oriented
graph K+

P is the closure under CA-right reduction of n initial arrows
labelled x1, . . ., xn.

Proof. Let K ′
P be the above subgraph of the Cayley graph of MA. By

faithfulness of the action of MA, we may identify K ′
P with its projec-

tion on K+
P , and the point is to show that K ′

P covers all of K+
P . We

claim that, for every vertex Q of K ′
P , all successors of Q in K+

P be-
long to K ′

P . By definition the property is true for the initial vertex P ,
and it suffices to show that the property holds for the immediate suc-
cessors of Q when it holds for Q. Assume that R is the image of Q
under ΩA(y), and that y1, . . ., yq are the points in S such that the
term Q belongs to the domain of ΩA(yj). A direct verification shows
that the points z such that the term R belongs to the domain of ΩA(z)
are exactly the first factors of the complements CA(y1, y), . . ., CA(yq, y)
which are nonempty, and this is exactly the needed fact. �

For instance the graphs of Figure 2 show the construction in the
cases of the terms X(4) and X(5) as the closure respectively of the ini-
tial edges {Λ, 1} and {Λ, 1, 11} (printed in bold) under CA-reduction.
Observe that this construction shows that the latter graphs when
viewed as simplicial complexes are respectively a 1-sphere and a 2-
sphere. More generally the coherence of CA implies that the closure of
n initial edges is topologically an (n − 1)-sphere.

Remark. We have seen that the coherence of the complement CA

implies that the graphs KP are subgraphs of the Cayley graph of MA.
Conversely the faces of these graphs are commutative by construction,
so that the property for the Cayley graph of being a union of such
graphs essentially implies the coherence of the complement. Hence the
existence of embeddings of the graphs KP into the Cayley graph of MA

and the coherence of the complement CA are essentially equivalent
properties.
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3. Selfdistributivity versus associativity

We now sketch a comparison between the previous case of associativity
and the case of the left selfdistributivity identity

X ∗ (Y ∗ Z) = (X ∗ Y ) ∗ (X ∗ Z) (D)

We shall use in the sequel the same notations as previously, just re-
placing the subscripts ‘A’ by ‘D’. The study of that case was moti-
vated by the fact that results like the decidability of the word problem
or the concrete description of the free structures were missing until
recently, or, strangely enough, were available only using some very
strong logical assumptions (c.f. [9]). Answering such questions is of
course straightforward in the case of associativity. A complete analy-
sis of distributivity appears in [4], and we just wish to emphasize here
the common features and the discrepancies between both cases.

So =D will be the congruence on T (Σ) generated by all pairs

( Q ∗ (R ∗ S) , (Q ∗ R) ∗ (Q ∗ S) ),

and ΩD will be the partial operator on T (Σ) which maps every term of
the form Q ∗ (R ∗ S) to the corresponding term (Q ∗R) ∗ (Q ∗ S). The
analog of Lemma 1.1 clearly holds, and we have to find the relations
between the operators ΩD(x). Again we find some general relations,
namely

ΩD(z0x • z1y) = ΩD(z1y • z0x) (⊥)

(“nonoverlapping” case) and

ΩD(z0x • z) = ΩD(z • z00x • z10x)
ΩD(z10x • z) = ΩD(z • z01x)
ΩD(z11x • z) = ΩD(z • z11x)

(“strictly nested” case). The remaining case is the one of z and z1,
and we find

ΩD(z1 • z • z1 • z0) = ΩD(z • z1 • z)

a specific relation of distributivity where an heptagon replaces Mac
Lane–Stasheff’s pentagon.
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As in Section 1 we introduce the congruence ≡+
D on S∗ generated

by the pairs of positive sequences appearing in the above relation, and
its completion ≡D for arbitrary sequences, and let M̃D and G̃D be the
associated monoid and group. The analog of Lemma 1.2 holds, and we
turn to the converse question of whether the compatibility of ΩD(α)
and ΩD(β) implies the ≡+

D -equivalence of α and β.

The problem again is to define inside (S ∪ S−1)∗ a syntactic copy
of the terms of T (X). The quotient T (X)/ =D, i.e., the free left dis-
tributive structure with one generator, is a much more complicated
structure than T (X)/ =A, which is the free semigroup with one gen-
erator, and therefore we cannot expect a simple result like the one
of Lemma 2.1. Nevertheless it happens that there still exists a way
of generating every term in T (X) from some canonical simple terms,
actually again the right powers X(n).

Lemma 1. For any term P in T (X), the equivalence X(n) =D P ∗
X(n−1) holds for n large enough.

This result is effective, and its proof can be converted into the
following analog of Lemma 2.2.

Lemma 2. Let χD be the mapping of T (X) into (S∪S−1)∗ inductively
defined by the formulas χD(X) = ε and

χD(Q ∗ R) = χD(Q) • 1χD(R) • Λ • 1χD(Q)−1.

Then for every term P and every integer n which is large enough, the
operator ΩD(χD(P )) maps the term X(n) to P ∗ X(n−1).

A technically important fact is that the characteristic se-
quences χD(P ) entail in general negative factors. This will forbid
to directly use them to study the positive congruence ≡+

D . Now the
main argument remains the same one: if the operator ΩD(α) maps
the term P to the term P ′, both ΩD(χD(P ′)) and ΩD(χD(P ) • 0α) map
(for n large enough) the term X(n) to P ′ ∗ X(n−1), and therefore the
corresponding sequences are conjectured to be ≡D-equivalent. This is
actually true, which again constitutes a nontrivial intrinsic property
of the considered identity, here left distributivity.
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Lemma 3. If α belongs to (S ∪ S−1)∗ and ΩD(α) maps P to P ′, the
equivalence

χD(P ′) ≡+

D χD(P • 0α)

holds in (S ∪ S−1)∗.

Now the only conclusion we extract is that, if both ΩD(α) and
ΩD(β) map P to P ′, then both sequences 0α and 0β are ≡D-equivalent
to χD(P ′) • χD(P )−1, which is still far for proving α ≡D β. (Observe
that exclusively using the sequences χ′

A(P ) in Section 2 would lead to
a similar problem.)

Actually the missing property, namely the fact that 0α ≡D 0β
implies α ≡D β, will follow from the study of the congruence ≡+

D along
the lines we sketched in Section 2 for ≡+

A . Indeed it is really easy to
show that the corresponding implication holds in the case of positive
sequences, i.e., that for u, v in S∗ the equivalence 0u ≡+

D 0v implies
u ≡+

D v. The problem is then to obtain for every sequence α in (S ∪
S−1)∗ a convenient decomposition of the form α ≡D u • v−1 where
u and v are positive sequences. This is exactly what the reduction
associated with a right complement does. Now by very construction
the congruence ≡+

D is associated with a right complement CD, and the
point is to study the coherence of this complement and the termination
of the corresponding reductions.

For the coherence property, we invoke again the subsequent results
of Section 4 to reduce to the triples (1, y, Λ). One still has to separate
five cases coresponding to y being of the form 0y′, 10y′, 110y′, 111y′

or 111. The latter case is the most intricate, and the explicit formulas
are

C∗
D (CD(Λ, 1), CD(11, 1)) = Λ • 1 • 0 • 11 • 01 • 10 • 00

≡+

D Λ • 1 • 11 • 10 • 0 • 01 • 00 = C∗
D (CD(Λ, 11), CD(1, 11))

C∗
D (CD(1, 11), CD(Λ, 11)) = 1 • Λ • 11 • 1 • 01 • 0

≡+

D 1 • 11 • 10 • Λ • 1 • 0 = C∗
D (CD(1, Λ), CD(11, Λ))

C∗
D (CD(11, Λ), CD(1, Λ)) = 11 • 1 • Λ = C∗

D (CD(11, 1), CD(Λ, 1))
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Figure 3: Coherence of the complement CD, case of {Λ, 1, 11}

Figure 3 illustrates the three involved reductions, and is to be
compared with Figure 1 that corresponds in the case of associativ-
ity. We conclude that the complement CD is coherent. The lengths of
the sequences u′ satisfying u′ ≡+

D u are bounded because every opera-
tor ΩD(x) strictly increases the size of any term it is applied to (and
no operator ΩD(u) associated with a positive sequence u may have
an empty domain). So by Lemma 2.6 we know that the monoid M̃D

admits left cancellation.
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New ingredients are needed to guarantee that CD-reduction have
to terminate, for the number of distinct terms that can be deduced
using distributivity from a given term may clearly be infinite, so that
the simple argument of Section 2 does not apply any more. On the
other hand, the length of the complements CD(x, y) may be 2 or 3, and
therefore there is no direct evidence for the termination. The strategy
used in [4] consists in guessing the explicit form of the sequences in
the closure of the set S under iterated application of CD. Call such
sequences simple sequences. The complement of two such simple se-
quences is proved by a direct computation to be a simple sequence,
and this proves that CD-reduction always terminate because it pre-
verses the degree of the sequences defined as the minimal number of
simple sequences or inverses of simple sequences the given sequence can
be expressed as a product of. The definition of simple sequences orig-
inates in the existence of a lower common extension for any term P
with respect to left distributivity: there exists a (least) positive se-
quence ∆D(P ) that is, up to ≡+

D -equivalence, a right multiple of every x
in S such that the term P belongs to the domain of the operator ΩD(x).
Simple sequences are the divisors of some sequence ∆D(P ).

Once the termination of CD-reduction is known (which means that
the monoid M̃D is right regular), some care is still needed to conclude
that 0α ≡D 0β implies α ≡D β. Under the hypothesis 0α ≡D 0β there
exist positive sequences u, u′, v, v′ satisfying

0α ≡D 0u • 0v−1 and 0β ≡D 0u′ • 0v′−1,

and it is known that 0u ≡+
D 0u′ implies u ≡+

D u′. But the hypothesis
u • v−1 ≡D u′ • v′−1 does not imply u ≡+

D u′ and v ≡+
D v′ in general.

At this point the crucial property is given by the coherence of the
complement:

Lemma 4. ([5]) Under the hypotheses of Lemma 2.6, the equivalence
u • v−1 ≡D u′ • v′−1 implies the existence of positive sequences w, w′

satisfying

u • w ≡+

D u′ • w′ and v • w ≡+

D v′ • w′.
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Then from 0u•0v−1 ≡D 0u′ •0v′−1 we deduce 0u•w ≡+
D 0u′ •w′ and

0v •w ≡+
D 0v′ •w′ for some w, w′, which easily leads to u•w1 ≡+

D u′ •w′
1

and v•w1 ≡+
D v′•w′

1 for some w1, w′
1, and therefore to u•v−1 ≡D u′•v′−1,

yielding the desired result:

Proposition 5. For any sequences α, β in (S ∪ S−1)∗, the opera-
tors ΩD(α) and ΩD(β) are compatible if and only if their domains are
nonempty and the equivalence α ≡D β holds.

It follows that the monoid GD quotiented by compatibility iden-
tifies with a subset of the group G̃D. This subset is a strict subset
because the domain of the operator ΩD(α) may be empty, what we
mention never happens with the operators ΩA(α).

This result settles the problem of describing GD in a satisfactory
way, i.e., shows that the relations listed above, and specially the hep-
tagonal one, generate all relations between the operators ΩA(x). Due
to the fact that the characteristic sequences we used in the case of dis-
tributivity involve negative factors, we cannot directly obtain a cor-
responding result for the case of positive sequences. We conjecture
that the monoids MD and M̃D are isomorphic, i.e., that for positive
sequences u, v the compatibility of the operators ΩD(u) and ΩD(v)
(which is known to be merely equivalent to their equality) is equiva-
lent to u ≡+

D v.

By the results of [5] it is known that a sufficient condition for
the above conjecture be true is that the monoid M̃D admits right
cancellation. Now, like for the case of associativity, we observe that
the opposite monoid of MD is the monoid associated with the opera-
tors ΩD

−1(x), and therefore appears in connection with “reversed” left
distributivity identity

(X ∗ Y ) ∗ (X ∗ Z) = X ∗ (Y ∗ Z) (Do)

Up to reversing the order of all factors, the relations given above in the
case of the identity (D) hold for (Do). In particular it is easily verified
that the congruence ≡+

Do is associated with a right complement CDo .
So by Lemma 2.6 the coherence of the complement CDo would be a
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sufficient condition for the monoid M̃Do to be left cancellative, i.e., for
the monoid M̃D to be right cancellative. Unfortunately this condition
does not hold, as shows the following counterexample:

C∗
Do(CDo(Λ, 11), CDo(1, 11)) = C∗

Do(Λ, 10 • 1 • 11) = 00 • 0 • Λ • 10 • 1 • 11
C∗

Do(CDo(Λ, 1), CDo(11, 1)) = C∗
Do(0 • Λ • 1, 11 • 1)

and the CDo-reduction of the sequence 1−1 • Λ−1 • 0−1 • 11 • 1 does not
terminate, so that the latter complement does not exist.

This does not prove that the monoid M̃D is not right cancellative,
but it shows that some new argument is needed. To sum up we have

Lemma 6. The following are equivalent:
i) The monoids MD and M̃D are isomorphic.

ii) The monoid M̃D admits right cancellation.
iii) The congruence ≡+

D is the restriction of the congruence ≡D to
positive sequences.

iv) The monoid M̃D embeds in the group G̃D.

About point (iii) above Lemma 4 implies that, for positive se-
quences u, v, the equivalence u ≡D v holds if and only if the equivalence
u • w ≡+

D v • w holds for some (positive) sequence w.

We leave the previous lemma pending. This means that the ques-
tion of describing the ‘distribuhedra’, defined in the obvious way, in
terms of the Cayley graph of the monoid M̃D remains open. By Propo-
sition 5 we know that the group G̃D operates transitively and faithfully
on the distribuhedra, but the oriented version of this result relies on
a proof of the properties of Lemma 6. So presently we cannot guar-
antee that no collapse occurs in the passage from the Cayley graph of
M̃D to the distribuhedra. Observe that, excepted in some trivial cases
where it reduces to a single point, the distribuhedra are always infinite
graphs. The approach of [2] introduces a stratification in these graphs
so that each level is finite. The first level is essentially described (‘sim-
ple extensions’ of [4]), but the general case will certainly require new
developments.
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So the examples of associativity and distributivity prove to be
rather similar although distributivity requires much more sophisti-
cated algebraic treatment because it does not preserve the size of the
terms. Moreover the fact that the associativity identity is syntactically
symmetric enables to automatically convert one-sided results into two-
sided ones, what obviously fails in the case of distributivity. But in
both cases the crucial point for proving that some given relations con-
stitute an exhaustive list of generators for all relations between the
involved operators is the possibility of associating to every term a
canonical sequence such that the associated operator constructs this
term from some uniform starting term. More precisely we use the ex-
istence, for each pair of terms (P, P ′) in T (X), of a canonical sequence
such that the associated operator maps some term where P occurs into
the term obtained by replacing P by P ′.

As a final remark, let us observe that the (true) fact that 0α ≡A 0β
implies α ≡A β could be established following the scheme sketched here
for distributivity. Therefore the result of Proposition 2.4 could also be
obtained by only using the sequences χ′

A(P ) and then applying the
above implication.

4. The coherence of the complement in the general
case

The previous approach applies of course to the case of any identity,
or even of any set of identities. In the latter case one just has to
introduce as many elementary operators as different involved identi-
ties. Similarly if several operators are used one can still use the same
analysis, but it will be necessary to take into account not only the
position where an identity is applied to a term but also the name of
the operators occurring at each node of the tree between the root and
the considered position. Practically this entails such a combinatorial
complexity for the corresponding geometric relations that the algebraic
study of the associated monoid might turn to be intractable in most
cases (but computers could be used to systematically verify conditions
like complement coherence).
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We shall just consider here the case of one identity involving one
binary operation, a direct generalization of the cases of associativity
and left distributivity. Such an identity has the generic form

F (X, Y, . . .) = G(X, Y, . . .) (I)

where F and G are fixed terms in T (Σ). Like previously we introduce
the operator ΩI that maps every term with the form F (P, Q, . . .) to
the corresponding term G(P, Q, . . .). To guarantee that ΩI as well as
its inverse are functional, we have to assume that the same variables
occur in F and G. This hypothesis however can be dropped when ΩI

is introduced directly on the identities using unification like in [3].

We look for the relations satisfied by the operators ΩI(x) for x
in S. Of course we cannot assume anything for the specific relations,
but we still have the two types of general relations met previously. The
relations for nonoverlapping subterms are always

ΩI(z0x • z1y) = ΩI(z1y • z0x) (⊥)

The relations for strictly nested subterms take the form

ΩI(zsx • zs1x • . . . • zspx • z) = ΩI(z • zt1x • . . . • ztqx) (s)

where s is any point in the support of the term F , s1, . . ., sp are
the other points in the support of F where the variable Z occurring
at s again occurs (if any), and t1, . . ., tq are the points in the support
of G where Z occurs. We assume that some ordering on the set S has
been fixed. The choice of this ordering is not essential since distinct
points in the support of a term F are orthogonal, and therefore the
various relations (s) we could write are equivalent owing to relations
(⊥). In the above situation we say that the points s1, . . ., sp are the
companions of s with respect to I, and that the points t1, . . ., tq are the
cocompanions of s. For instance in the case of left distributivity, the
point 0 has no companion, but it admits 00 and 10 as cocompanions.

By construction the above relations are associated with the partial
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complement CI defined by

CI(x, y) =



ε if x and y are equal,
x if x and y are orthogonal,
xs1z • . . . • xspz • x if y is xsz for some s in the support

of F and s1, . . ., sp are the compani-
ons of s with respect to I,

yt1z • . . . • ytqz if x is ysz for some s in the support
of F and t1, . . ., tq are the cocomp-
anions of s with respect to I.

Definition. The point s is critical for the identity F = G if s is
nonvoid and is a strict prefix of some point in the support of the
term F .

The missing relations in the list above, and therefore the missing
cases in the above complement, correspond to pairs (x, xs) where s is
critical for I. In the cases of associativity and left distributivity, the
term F is X ∗ (Y ∗ Z), and 1 is the only critical point.

In the previous cases the existence of the right complement and
the coherence property of this complement turned out to be crucial.
We wish here to point out that a large part of this coherence property
follows from its very definition. This results in a more simple criterion
for proving full coherence by means of a reduced number of verifica-
tions. We say that a mapping f of S2 into S∗ is prefix-compatible if
f(zx, zy) is always equal to zf(x, y). The mapping CI is obviously
prefix-compatible, as well as the complements CA, CD or CDo previ-
ously considered. Actually every complement extending CI arising
from the choice of an additional relation for each critical point will be
prefix-compatible.

Proposition 1. Assume that C is a prefix-compatible complement
extending the mapping CI. Let ≡+ be the congruence on S∗ associated
with C, and R(x, y, z) stand for

C∗(C(x, y), C(z, x)) ≡+ C∗(C(x, z), C(y, z)).

Then C is coherent if and only if the relations R(x, y, Λ), R(y, Λ, x)
and R(Λ, x, y) hold when x is critical for I and either x is orthogonal
to y or x is a strict prefix of y.
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Proof. We shall prove the conjunction of R(x, y, z), R(y, z, x)
and R(z, x, y) for every triple (x, y, z) in S3, using an exhaustive review
of all possible cases. By prefix-compatibility we may assume that the
greatest common prefix of x, y and z is Λ, and by symmetry we may
choose the ordering of x, y, z as we wish. Also observe that when two
points say for instance x and y play symmetric roles it is sufficient to
establish the relations R(x, y, z) and R(z, x, y) since the last relation
R(y, z, x) is an instance of the first one.

Case 1. Two points are equal.

We may assume x = y, and we obtain

C∗(C(x, y), C(z, y)) = C∗(ε, C(z, x)) = ε

= C∗(C(x, z), C(x, z)) = C∗(C(x, z), C(y, z))
C∗(C(z, x), C(y, x)) = C∗(C(z, x), ε) = C(z, x) = C(z, y)

= C∗(C(z, y), ε) = C∗(C(z, y), C(x, y))

which is enough by the last remark above.

Case 2. One point is orthogonal to the greatest common prefix of the
other ones.

We may assume that z is orthogonal to the common prefix z′ of x and
y. The hypothesis that C is prefix-compatible implies that each factor
in C(x, y) and C(y, x) begins with z′ and therefore that z is orthogonal
to each such factor. One obtains

C∗(C(x, y), C(z, y)) = C∗(C(x, y), z) = C(x, y)
= C∗(x, y) = C∗(C(x, z), C(y, z))

C∗(C(z, x), C(y, x)) = C∗(z, C(y, x)) = z

= C∗(z, C(x, y)) = C∗(C(z, y), C(x, y))

Case 3. One point is a prefix of the other ones.

We may assume that z is a prefix of the greatest common prefix z′ of
x and y. By prefix-compatibility we may assume z = Λ.

Case 3.1. The points x and y are not critical for I.

There exists unique points s and t in the support of F such that x is
sx′ and y is ty′. Let s1, . . ., sp (resp. t1, . . ., tq) be the companions
of s (resp of t), and s′1, . . ., s′p′ (resp. t′1, . . ., t′q′) be the cocompanions
of s (resp of t).
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Case 3.1.1. The points s and t coincide.

For R(x, y, z) we have (because s is orthogonal to each si)

C∗(C(x, y), C(z, x)) = C∗(sC(x′, y′), C(Λ, sx′))
= C∗(sC(x′, y′), s1x

′ • . . . • spx
′ • Λ)

= C∗(sC(x′, y′), Λ)
= s′1C(x′, y′) • . . . • s′p′C ′(x′, y′)

= C∗(s′1x
′ • . . . • s′p′x′, s′1y

′ • . . . • s′p′y′)

= C∗(C(sx′, Λ), C(sy′, Λ)) = C∗(C(x, z), C(y, z))

while for R(z, x, y) we find

C∗(C(z, x), C(y, x)) = C∗(C(Λ, sx′), C(sy′, sx′))
= C∗(s1x

′ • . . . • spx
′ • Λ, sC(y′, x′))

= s1x
′ • . . . • spx

′ • C∗(Λ, sC(y′, x′))
= s1x

′ • . . . • spx
′ • s1C(y′, x′) • . . . • spC(y′, x′) • Λ

≡ s1x
′ • s1C(y′, x′) • . . . • spx

′ • spC(y′, x′) • Λ

Then C∗(C(z, y), C(x, y)) leads to a similar formula where siy
′ •

siC(x′, y′) replaces six
′ • siC(y′, x′), and because these sequences are

pairwise ≡+-equivalent R(z, x, y) follows.

Case 3.1.2. The point s is a companion of the point t.

Assume that s is tj .

C∗(C(x, y), C(z, y)) = C∗(x, C(Λ, y)) = C(sx′, t1y
′ • . . .tqy

′ • Λ)
= C∗(sC(x′, y′), Λ)
= s′1C(x′, y′) • . . . • s′p′C(x′, y′)

= C∗(s′1x
′ • . . . • s′p′x′, t′1y

′ • . . . • t′q′)

= C∗(C(x, Λ), C(y, Λ)) = C∗(C(x, z), C(y, z))
C∗(C(z, x), C(y, x)) = C∗(C(Λ, tjx

′), C(ty′, tjx
′)) = C∗(C(Λ, tjx

′), ty)

≡ t1x
′ • . . . • t̂jx′ • . . . • tqx

′ • Λ

≡ C∗(C(Λ, ty), tjx′) = C∗(C(Λ, ty′), C(tjx′, ty′))
= C∗(C(z, y), C(x, y))
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Case 3.1.3 The point s is distinct from t and its companions.

Because the point s is orthogonal to each of t1, . . ., tq, and the points
s′i and t′j are pairwise orthogonal, one has

C∗(C(x, y), C(z, y)) = C∗(x, C(Λ, y)) = C(sx′, t1y
′ • . . .tqy

′ • Λ)
= C(sx′, Λ) = s′1x

′ • . . . • s′p′x′

= C∗(s′1x
′ • . . . • s′p′x′, t′1y

′ • . . . • t′q′)

= C∗(C(x, Λ), C(y, Λ)) = C∗(C(x, z), C(y, z))
C∗(C(z, x), C(y, x) = C∗(C(Λ, sx′), C(ty′, sx′))

= C∗(s1x
′ • . . . • spx

′ • Λ, ty′)
= s1x

′ • . . . • spx
′ • t1y

′ • . . . • tqy
′ • Λ

and because the points si and tj are pairwise distinct and therefore
orthogonal the factors six

′ and tjy
′ above can be permuted, so that the

above expression for C∗(C(z, x), C(y, x)) is ≡-equivalent to the similar
one obtained from C∗(C(z, y), C(x, y)). This finishes Case 3.1.

Case 3.2 At least one of x, y is critical for I.

We assume that the point x is critical. Then no general argument
works and a specific verification is needed for the remaining choices
of y. We may assume that y is not a prefix of x, for, in the latter case,
y has to be critical as well and we can exchange x and y. So it remains
to consider the case of y being orthogonal to x, and the case of x being
a strict prefix of y. �

The examples of associativity and left distributivity suggest that
further reductions in the number of cases could appear. In particu-
lar for every critical point x as above there must exist a finite set of
points Ax such that the desired equivalences hold for any y whenever
they hold for y in Ax. The reason is that, for y large enough, the
equalities

C(x, yz) = C(x, y) and C(yz, x) = C(y, x)z

hold for every z. For instance in the cases of associativity and dis-
tributivity one can take for A1 the set {0, 10, 11, 110, 111}. We leave
the question of giving a uniform definition of such sets Ax open in the
general case.
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posé 716 (1989).

[2] P. Dehornoy, Free distributive groupoids, J. Pure Appl. Alge-
bra, 61 (1989) 123–146.

[3] —, Structural monoids associated to equational varieties, Proc.
Amer. Math. Soc., 117-2 (1993) 293–304.

[4] —, Braid Groups and Left Distributive Operations, Trans. Amer.
Math. Soc., 345-1 (1994) 115–151.

[5] —, Groups with a Complemented Presentation, J. Pure Appl.
Algebra, .to appear.

[6] —, From Large Cardinals to Braids via Distributive Algebra, J.
Knot Theory & Ramifications, 4-1 (1995) 33–79.

[7] D. B. Epstein & al., Word Processing in Groups, Jones and
Barlett (1992).

[8] M. M. Kapranov, The permutoassociahedron, Mac Lane’s co-
herence theorem and asymptotic zones for the KZ equation, Jour-
nal of Pure and Applied Algebra 85 (1993) 119–142.

[9] R. Laver, The left distributive law and the freeness of an algebra
of elementary embeddings, Advances in Mathematics, 91-2 (1992)
209–231.

[10] A. Lascoux & M. P. Schützenberger, Symmetry and flag
manifolds, Springer Lecture Notes in Mathematices, Vol. 996
(1983) 118–144.

[11] S. Mac Lane, Natural associativity and commutativity, Rice
Univ. Studies, 49 (1963) 28–46.

[12] J.D. Stasheff, Homotopy associativity of H-spaces I, Trans.
Amer. Math. Soc., 108 (1963) 275–292.
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