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Weak Faithfulness Properties
for the Burau Representation

Patrick DEHORNOY

ABSTRACT. We study the components of the matrices that
belong to the image of the Burau representation of braids, and
establish both algebraic and order constraints for a given Lau-
rent polynomial possibly be a component of such a Burau ma-
trix. As an application partial faithfulness results for the Burau
representation are deduced.
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The Burau representation, here denoted ρ, is the oldest and presumably
the simplest linear representation of the braid groups. Several questions
about ρ remain uncompletely solved, concerning in particular its kernel
and its image. For the first problem J. Moody proved in [15] that ρ
is not faithful on braids with at least 9 strands, a result subsequently
improved to 6 strands in [13]. The criterion used there leaves the cases
of 4 and 5 strands open as well as the description of the kernel. Little
is known about the second problem, excepted a seminal observation of
C. Squier that shows in [16] that the Burau matrices are unitary with
respect to some sort of Hermitian metric.

In this paper we shall obtain partial results about the above prob-
lems and, in particular, establish a seemingly new connection between
them. The initial idea is to use the existence for any braid of decompo-
sitions where the generator σ1 does not appear simultaneoulsy with pos-
itive and negative powers. Considering decompositions with a bounded

1



number k of σ1’s and a bounded number n of strands gives for ρ a partial
faithfulness statement Pk(Bn) whose strength increases with k and n.
We propose to use the double scale formed by the properties Pk(Bn) as a
natural measure for the faithfulness degree of the Burau representation.
From the unfaithfulness of ρ one deduces that P5(B7) and P8(B6) fail
(Proposition 1.4). On the other hand for small values of k the study
of the properties Pk(Bn) amounts to questions such as whether a given
Laurent polynomial may appear or not as a component in a Burau ma-
trix (Lemma 1.5).

We are thus led to the problem of describing the Burau matrices,
with a special interest in the above particular question. To this end we
develop and refine in Sections 2 and 3 the study initiated in [16]. These
sections are independent from Section 1. In Section 2 we give a series of
quadratic relations that necessarily connect the components of the Burau
matrices (Proposition 2.8). These relations can be exploited in different
ways to obtain individual constraints for these components. An algebraic
treatment gives strong constraints in the case of B3 (Proposition 2.9).

In Section 3 we appeal to order considerations. A typical result in
this direction (Proposition 3.1) claims that, if the Laurent polynomial p
is the 1, 1-component of an n×n Burau matrix, then for 0 < θ < π/n the
value of p at e2iθ has to lie in some (effectively defined) closed disk of the
plane. We also obtain linear conditions, and, in particular, the surpris-
ingly simple result (Corollary 3.4) that, if p is the 1, 1-component of a
Burau matrix (of any dimension), then the value of the derivative p′ at 1
is negative. Such inequalities imply that the groups of Burau matrices
are included in some convex polytopes (Proposition 3.5).

In Section 4 the constraints established in Section 2 and 3 are ap-
plied to prove some of the weak faithfulness statements Pk(Bn), namely
P3(B7) (Proposition 4.3) and P4(B4) (Proposition 4.4). We finally in-
troduce some conjectures about a family of particular Burau matrices
connected with a still poorly understood selfdistributive operation.
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1. A measure for the degree of faithfulness of the
Burau representation

As usual Bn denotes the group of all n strand braids up to isotopy. Then
Bn admits n−1 generators σ1, . . ., σn−1 corresponding to the diagrams

1 2 i i + 1

σi

σ−1
i

and it is wellknown (cf. [1]) that the relations{σiσi+1σi = σi+1σiσi+1

σiσj = σjσi for |i − j| ≥ 2 (1)

constitute a presentation of Bn. We denote by B∞ the direct limit of
the groups Bn with respect to the trivial injection of {1, . . ., n} into
{1, . . ., n + 1}, i.e., the group generated by an infinite sequence σ1, σ2,
. . . with defining relations (1).

Let β be any braid in B∞. We say that a braid word w (i.e., a finite
sequence of generators σi and σ−1

i viewed as letters) is a decomposition
for β in Bn if w involves only letters among σ1, σ−1

1 , . . ., σn−1, σ−1
n−1

and β is the product of the successive letters of w in B∞. Our starting
point is the following

Theorem 1. Let β be any braid. Then either β admits a decomposition
where σ1 occurs and σ−1

1 does not, or β admits a decomposition where
σ−1

1 occurs and σ1 does not, or β admits a decomposition where neither
σ1 nor σ−1

1 occurs.

The first proof of this result in [3] works only in B∞ (see also [5]
for a more general introduction to the subject). The argument given
there does not preserve in general the initial number of strands: starting
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with a braid β in Bn one obtains a ’σ1-reduced’ decomposition for β
(i.e., a decomposition where either σ−1

1 or σ1 does not occur) in BN for
some effective but possibly huge number N . Subsequently R. Laver [11],
D. Larue in [8], and the present author in [6] have given new proofs where
the initial number of strands is preserved, so that Theorem 1 actually
holds in each group Bn and not only in their limit B∞.

One immediately deduces a criterion for establishing that a given
representation of braids is faithful. In the sequel we denote by s the shift
endomorphism of B∞ that maps every generator σi to the corresponding
generator σi+1.

Corollary 2. Assume that ρ is any representation of Bn (simply a map-
ping of Bn into any set) that is compatible with the shift endomorphism
in the sense that ρ(s(β)) = ρ(1) implies ρ(β) = ρ(1). Then ρ is faithful
if and only if a braid that admits a decomposition where σ1 occurs but
σ−1

1 does not cannot have a trivial image under ρ.

We investigate in this paper how this criterion applies to Burau rep-
resentation. We shall denote by Z[t, t−1] the ring of Laurent polynomials
with integer coefficients, and by GL(∞,Z[t, t−1]) the direct limit of the
groups GL(n,Z[t, t−1]) with respect to the embeddings in,m arising from

in,n+1 : A �→


0

A
...
0

0 · · · 0 1


In the sequel we shall always identify a matrix in GL(n,Z[t, t−1]) with
its images under in,m for n ≤ m ≤ ∞. The (unreduced) Burau repre-
sentation of B∞ is the endomorphism

ρ : B∞ −→ GL(∞,Z[t, t−1])

that maps σ1 to the matrix

Σ1 =
(

1 − t t
1 0

)
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and commutes with the shift endomorphism, defined (and still denoted s)
in the case of matrices by

s : A �→


1 0 · · · 0
0
... A
0

 .

Corollary 2 naturally suggests that we investigate the Burau images of
the braids that admit decompositions where σ−1

1 does not occur. To
make a precise analysis we consider the following

Property Pk(Bn): If β is a braid that admits in Bn a decom-
position with no occurrence of σ−1

1 and at most k occurrences
of σ1, then the Burau image of β is nontrivial,

and its strengthening

Property P+
k (Bn): If β is a braid that admits in Bn a decom-

position with no occurrence of σ−1
1 and at most k occurrences

of σ1, then the Burau image of β has a nontrivial first row.

For each pair (k, n), Pk(Bn) and P+
k (Bn) are partial faithfulness prop-

erties for the Burau representation, and clearly their strength increases
both with k and n. We propose to measure the degree of faithfulness of ρ
by determining which of the properties Pk(Bn) and P+

k (Bn) are true.

We begin with the upper bound in this measure. By Corollary 2
(which applies since ρ is by very construction compatible with the
shift), the Burau representation is faithful on Bn just in case all prop-
erties Pk(Bn) be true. After [15] we know that this cannot happen for
n large enough, and that there must exist pairs (k, n) such that Pk(Bn)
(and therefore P+

k (Bn)) are false. A first observation, due to [13], is

Lemma 3. If P+
k (Bn) is false, so is Pk(Bn+1).

Proof. Assume that the braid β is a counterexample to P+
k (Bn). The

first row of the matrix ρ(β) is trivial, and so is its first column by Corol-
lary 1.2 of [13] (also stated as Proposition 2.5 below). It follows that the
matrices Σ1 and s(ρ(β)) commute, i.e., that the braid σ1s(β)σ−1

1 s(β)−1

belongs to the kernel of ρ. Now the latter braid is also

σ−1
2 . . .σ−1

n βσn. . .σ2s(β)−1,
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and a decomposition of β in Bn with at most k times σ1 and no σ−1
1

gives for this braid a similar decomposition in Bn+1. �

Now Theorem 1 is effective, and applying a σ1-reduction process to
the counterexamples constructed in [15] or [13] should give counterexam-
ples to some properties Pk(Bn). The methods of [3], [11] and [8] cannot
be applied practically because the involved braids are too complicated.
But using the efficient method of [6] one easily finds

Proposition 4. The properties P+
5 (B6), P5(B7) and P8(B6) are false.

Proof. One can verify that the braid ψ−1σ5ψ of [13], which is shown to
have a Burau matrix with trivial first row and column, admits (in B6)
the decomposition

σ2σ1σ
−1
2 σ−1

4 σ−1
3 σ−1

5 σ−2
4 σ−1

3 σ−1
4 σ3

5σ−1
4 σ−1

3 σ2σ1σ
−4
2 σ3σ4σ

−2
5

σ3σ4σ5σ3σ4σ
2
1σ5σ4σ

−1
3 σ−1

2 σ1,

where σ1 occurs 5 times and σ−1
1 does not occur: so P+

5 (B6) is false.
By Lemma 3 this implies that P5(B7) is false as well (using additional
reductions one can obtain a counterexample with 74 crossings.) Similarly
it happens that the braid [ψ−1σ5ψ, (σ2σ3σ4σ5)5], which is shown in [13]
to have a trivial Burau matrix, admits (in B6) the decomposition

σ2σ1σ
−1
4 σ3σ

−2
2 σ4σ

3
3σ−1

2 σ5σ
−1
4 σ−1

5 σ−1
3 σ−1

4 σ−2
2 σ−1

3 σ1σ
−4
2 σ3σ4σ

2
1

σ−3
5 σ4σ3σ4σ3σ

−1
2 σ5σ4σ3σ

−1
2 σ−1

3 σ5σ
−1
4 σ−1

5 σ−1
2 σ1σ

−1
5 σ−1

4 σ−1
3 σ−1

2

σ−1
5 σ−1

4 σ3σ
−1
5 σ4σ

−2
2 σ1σ

−1
3 σ2σ

−1
4 σ5σ

−3
3 σ4σ5σ

3
4σ4

5σ−2
3 σ2σ3σ1σ

3
2

σ−1
4 σ3σ

2
4σ3σ2σ1σ

−1
5 σ−1

4 σ−1
3 σ−1

2 σ−1
4 σ−1

3 σ−1
2

where σ1 occurs 8 times and σ−1
1 does not occur. So P8(B6) is false. �

We shall not go further here for the upper bound. The rest of
the paper deals with establishing lower bounds for the faithfulness of
the Burau representation by proving that the properties Pk(Bn) and
P+

k (Bn) are true for certain (small) values of k and n.

Assume that A is a matrix. We use ci
j(A) to denote the i, j-

component of A (i-th row, j-th column). Similarly we denote by ci(A)
the i-th row of A, and by cj(A) the j-th column of A. We shall approach
the properties Pk(Bn) and P+

k (Bn) using the following
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Lemma 5. i) The property P+
2 (Bn) is true for every n.

ii) If the property P+
3 (Bn) fails, then there exist braids β+, β− in

Bn−1 that satisfy

c1
1(ρ(β+)) = −t−1 + 2 − t, c1

1(ρ(β−)) = t − t2.

iii) If the property P+
4 (Bn) fails, then there exist braids β, β′ in

Bn−1 that satisfy

c1
1(ρ(β)) − t−2c1

1(ρ(β′)) = −t−1 + 2 − t.

Proof. The Burau image of a braid word with k occurrences of σ1 and
no occurrence of σ−1

1 has the form

M = s(M0)Σ1s(M1)Σ1. . .s(Mk−1)Σ1s(Mk).

We use the facts that c1(s(A)B) is always equal to c1(B) and that
c1(A) = c1(A′) is equivalent to c1(AB) = c1(A′B) provided that B
is inversible, which the Burau matrices always are.

Consider M as above. If k is 1, the equality c1(M) = c1(I) (where
I is the identity matrix) is equivalent to

c1(Σ1) = c1(s(M−1
1 )) = c1(I),

which is clearly false. If k is 2, c1(M) = c1(I) becomes

c1(Σ1s(M1)) = c1(Σ−1
1 ),

which is also impossible since c1
1(Σ1s(M1)) is 1 − t while c1

1(Σ
−1
1 ) is 0.

If k is 3, c1(M) = c1(I) becomes

c1(Σ1s(M1)Σ1) = c2(s(M−1
2 )),

which develops into{
c1
1(M1) = −t−1 + 2 − t, c1

1(M
−1
2 ) = t − t2,

tc1
j (M1) = c1

j (M
−1
2 ) for j ≥ 2.

Finally if k is 4, c1(M) = c1(I) becomes similarly

c1(Σ1s(M1)Σ1s(M2)) = c2(s(M−1
3 )Σ−1

1 ),
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and the equality for the first components develops into

(1 − t)2 + tc1
1(M1) = t−1c1

1(M
−1
3 ). �

At this point we are left with the question as to whether some par-
ticular Laurent polynomial, here the polynomials −t−1 +2− t and t− t2,
henceforth denoted p+

0 and p−0 , may appear as the 1, 1-component of a
Burau matrix, or as a given linear combination of such components. A
few ‘experimental’ observations suggest a negative answer to the above
questions, but, on the other hand, it is easily verified that the polyno-
mials p+

0 and p−0 are the 1, 2-components of the Burau image of braids
in B3, which indicates that a rather precise argument is presumably
needed. The subject of the next sections will be to establish some con-
straints about the components of these matrices, with a special interest
in the ‘critical’ values p+

0 and p−0 .

2. The quadratic relations for the components of Bu-
rau matrices.

We consider the general question of describing the image of the Burau
representation. In this section we establish quadratic relations that con-
nect the components of the rows in a Burau matrix. This study is a
development of the approach initiated by C. Squier in [16] and also used
in [7] or [13].

The first observation is that one can restrict without loss of gener-
ality to the particular case of 1, 1-components and of first rows.

Lemma 1. i) The Laurent polynomial p is a i, j-component in ρ(Bn))
if and only if the polynomial t−j+1p is a 1, 1-component in ρ(Bn)).

ii) The sequence of Laurent polynomials (p1, . . ., pn) is a i-th row
in ρ(Bn) if and only if it is a first row in ρ(Bn).

iii) The sequence of Laurent polynomials (p1, . . ., pn) is a j-th col-
umn in ρ(Bn) if and only if the sequence (t−j+1p1, . . ., t

−j+1pn) is a first
column in ρ(Bn) if and only if the sequence (t−j+1p1, t

−j+2p2, . . ., t
−j+npn)

is a first row in ρ(Bn).
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Proof. For every n × n matrix M and every i with 2 ≤ i ≤ n, one has

ci(Σi−1. . .Σ2Σ1M) = c1(M),

which gives (ii). Similarly one has

cj(MΣ1Σ2. . .Σj−1) = tj−1c1(M),

which gives (i) and the first part of (iii). Then we observe that, if Θ is
the mapping of GL(∞,Z[t, t−1]) into itself defined by

ci
j(Θ(M)) = ti−jci

j(M),

then Θ is an automorphism which maps every Σi to its transpose. It
follows that every braid β satisfies the relation

Θ(ρ(β)) = ρ(βrev)T ,

where βrev is the braid obtained from β by considering any representant
of β and reversing the order of the generators (and MT is the transpose
of M). So the transposes of Burau matrices are exactly their images
under Θ, and this gives the last point in (iii). (Observe that the preced-
ing relation implies, for any braid β, that the diagonal elements of the
matrices ρ(β) and ρ(βrev) are equal.) �

By a similar easy argument we have

Lemma 2. If the Laurent polynomial p is a 1, 1-component in ρ(Bn),
then the polynomial t−1p is a 1, 1-component in ρ(Bn+1).

Proof. Immediate from the equality

c1
1(ρ(σ−1

1 s(β)σ−1
1 )) = t−1c1

1(ρ(β)). �

Remark. The preceding result shows that one cannot hope to estab-
lish the criterion of Lemma 1.5.ii, i.e., prove that the polynomials p+

0

and p−0 are forbidden as 1, 1-components of Burau matrices, by using
a uniform specialization argument, at east when the roots of unity are
concerned. For z a fixed complex number let ρz be the representation of
braids obtained from ρ by taking t = z. We have mentioned that p+

0 and
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p−0 belong to c1
2(ρ(B3)). Similarly t−1p+

0 and t−1p−0 belong to c1
1(ρ(B3)).

Now Lemma 2 implies that t−kp+
0 and t−kp−0 belong to c1

1(ρ(Bk+2))
for every positive k. So if ωk is a k-th root of unity, the forbidden
values p+

0 (ωk) and p−0 (ωk) belong to c1
1(ρωk

(Bk+2)). However the prop-
erties Pk(Bn) themselves certainly fail for certain such specializations
since for instance the matrix (Σ1)k is equivalent to the identity matrix
modulo tk − (−1)k and therefore the property Pk(B2)t=−ωk

fails (where
for z a fixed complex number Pk(Bn)t=z denotes the statement similar
to Pk(Bn) involving the representation ρz).

We shall now investigate more closely the relations satisfied by the
components of a Burau matrix, and, more precisely, some quadratic re-
lations. In the sequel we consider on the ring Z[t, t−1] the (involutory)
conjugacy endomorphism that maps t onto t−1; the image of the poly-
nomial p will be denoted p. We shall use for that conjugacy some of the
notations that are classical in the case of the complex numbers:

Notations. For any Laurent polynomial p, |p|2 stands for pp, and
2Re(p) for p + p. Polynomials that coincide with their conjugate are
said to be real. The conjugate-transpose of the matrix M is denoted
by M∗.

It has been observed in [16] (in the essentially equivalent case of the
‘reduced’ Burau representation) that for the above notion of conjugacy
the Burau matrices are unitary with respect to some Hermitian matrix,
i.e., that they satisfy the equality

AHA∗ = H

for some fixed matrix H that does not depend on A. Once this funda-
mental intuition is acquired, it is actually very easy to systematically
find all such matrices H.

Lemma 3. The matrices H (with entries in Z[t, t−1]) such that the
relation AHA∗ = H holds for every Burau matrix A are exactly the
matrices Hq,r defined by

ci
j(Hq,r) =


q for i > j,
r for i = j,
r[q] for i < j,

where q, r are fixed Laurent polynomials and the bracket denotes the
barycentric mean r[q] = (1 − t)r + tq.
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Proof. Successively considering the matrices Σ1, Σ2, . . . shows that the
relations are necessary. That they are sufficient is then trivial. �

The matrices Hq,r are the Z[t, t−1]-linear combinations of the ma-
trices

H1,1 =


1 1 1 · · ·
1 1 1 · · ·
1 1 1 · · ·
...

...
...

 H1,0 =


0 t t · · ·
1 0 t · · ·
1 1 0

. . .
...

...
. . . . . .


Observe that the fact that the Burau matrices are unitary with respect
to the rank 1 matrix H1,1 is a consequence of the wellknown property
that the sum of each row is 1. Using various possible matrices Hq,r

gives rise to different types of relations for the components of the Burau
matrices. For instance we have the very simple

Proposition 4. Assume that A is any n × n Burau matrix. Then the
following relations hold between the ‘corner’ components of A and A−1{

c1
1(A

−1) − 1 = t(c1
1(A) − 1), c1

n(A−1) = cn
1 (A),

cn
1 (A−1) = c1

n(A), cn
n(A−1) − 1 = t−1(cn

n(A) − 1).

Proof. If H satisfies AHA∗ = H and is inversible, then A−1 is HA∗H−1.
Considering the case of H0,1, which is upper triangular and certainly
inversible, one obtains

c1
1(A

−1) = c1
1(HA∗H−1) = c1

1(A) + (1 − t)c1
2(A) + . . . + (1 − t)c1

n(A),

which gives the first formula using c1
1(A) + . . . + c1

n(A) = 1. Similarly
the n, 1-component of HA∗H−1 is c1

n(A), which implies the third for-
mula. The other two ones are proved in the same way using the ma-
trix H1−t−1,1, which is lower triangular. �

Considering the matrix H1−t−1,1 again we have also the following
property, already stated in [13].

Proposition 5. Assume that A is a Burau matrix and that the first
row of A is trivial (i.e., is the first row of the identity matrix). Then the
first column of A is trivial.
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The most interesting results appear when we consider matrices H
that are Hermitian, i.e., satisfy the equality H = H. Again such matrices
are easily described.

Lemma 6. For every Laurent polynomial q there exists a unique Lau-
rent polynomial q̃ satisfying q̃[q] = q. Moreover q̃ is real (i.e., is equal to
its conjugate), and, if r is real, then r̃q = rq̃ holds for every q (and in
particular r̃ = r holds).

Proof. Since q(1) and q(1) are equal, the polynomial 1 − t has to divide
q − tq. Then q̃, which is defined by

(1 − t)q̃ + tq = q, (1)

must be the corresponding quotient. This gives both existence and
uniqueness. Applying conjugacy to (1) shows that q̃ satisfies q̃[q] = q,
which implies q̃ = q̃ by uniqueness. Similarly, if r is real, one deduces
from (1) the equality

(1 − t)rq̃ + trq = rq,

which shows that r̃q is rq̃. �

Corollary 7. The Hermitian matrices H such that the relation AHA∗ =
H holds for every Burau matrix A are exactly the matrices Hq,q̃ where
q is any Laurent polynomial.

The fact that the Burau matrices are unitary with respect to the
Hermitian matrices Hq,q̃ implies that the components of any row in such
a matrix (and of any column as well by Lemma 1) have to satisfy some
quadratic relation. A direct translation of the equality

AHq,q̃A
∗ = Hq,q̃

shows that, if (p1, . . ., pn) is a row in an n × n Burau matrix, then the
polynomials p1, . . ., pn satisfy the equality

n∑
i=1

q̃|pi|2 + 2Re(
∑

1≤j≤i≤n

qpipj) = q̃. (Qn,0(q))

This can be refined to
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Proposition 8. Assume that (p1, . . ., pn) belongs to c1(ρ(Bn)). Then,
for every k with 1 ≤ k ≤ n, the polynomials p1, . . ., pn−1 satisfy

n−k∑
i=1

q̃k|pi|2 + 2Re(
∑

1≤j<i≤n−k

qkpipj) − 2Re(
n−k∑
i=1

qkpi)

+
n−1∑

j=n−k+1

q̃k−1. . . ˜qn−j+1|qn−j |2|Fn−j,j(p1, . . ., pj)|2+q̃k = 0 (Qn,k)

where the polynomials qj are defined by

q1 = 1 + t, qj+1 = (t + . . . + tj)|qj |2,

and F�,j(p1, . . ., pj) is p1 + . . . + pj−1 + (1 + . . . + t�)pj − 1.

Proof. We use the notations

S� =
�∑

i=1

pi, Q� =
�∑

i=1

|pi|2, R� =
∑

1≤j<i≤�

pipj .

First one deduces (Qn,1) from (Qn,0(t)) by using the relation Sn = 1 to
eliminate the variable pn. The values

Qn = 2Qn−1 + 2Re(Rn−1) − 2Re(Sn−1) + 1,

Rn = −Qn−1 − Rn−1 + Sn−1,

give the desired formula owing to the relation q̃ + q̃ = 2Re(q). The
subsequent formulas correspond to a Gauss decomposition into squares
for the quadratic form of p1, . . ., pn−1 involved in (Qn,1). Assume for an
induction that (Qn,k) has been established. Isolating the terms involving
pn−k leads, after multiplying by the real polynomial q̃k, to the formula

(q̃k
2 − |qk|2)Qn−k−1 + 2Re((qk q̃k − |qk|2)Rn−k−1)

−2Re((qk q̃k − |qk|2)Sn−k−1) + |P |2

+
n−1∑

j=n−k+1

q̃k q̃k−1. . . ˜qn−j+1|qn−j |2|Fn−j,j(p1, . . ., pj)|2+q̃k q̃k−|qk|2 = 0,

where P is
qkp1 + . . . + qkpn−k−1 + q̃kpn−k − qk.

This is (Qn,k+1) modulo the following
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Claim. The polynomials qk satisfy the relations

(i) qk = tkqk, (ii) q̃k = (1 + . . . + tk)qk, (iii) qk+1 = qk q̃k − |qk|2,
(iv) q̃k+1 = q̃k

2 − |qk|2, (v) q̃k+1 = q̃k q̃k − |qk|2.

These relations are proved inductively on k ≥ 1. First (i) for k = 1 is
obvious. Now (i) for k implies

(1 − t)(1 + . . . + tk)qk + tqk = qk − tk+1qk + tqk = qk,

which gives (ii) by uniqueness of q̃k. Then one has

qk+1 = (t + . . . + tk)|qk|2 = (1 + . . . + tk)qkqk − |qk|2 = qk q̃k − |qk|2,
which gives (iii). Then (iv) follows using Lemma 6, and (v) follows from
(iii), (iv) and the general relation q̃ = 2Re(q) − q̃. Finally it is obvious
that (iii) for k implies (i) for k + 1. So the proof is complete. �

Remarks. i) While different polynomials q can give non equivalent
relations Qn,0(q), there is only one (nontrivial) relation Qn,k for every
positive k. Indeed starting with Qn,0(q) instead of Qn,0(t) in the proof
above amounts to replace q1 = 1 + t by q1 = q̃ − q and then to use the
same induction formulas. Now the polynomial 1 + t always divides q̃− q
(because q(−1) is real for any q in Z[t, t−1] and q̃(−1) = q(−1) follows
from the defining equality of q̃). It follows that the equality Qn,k(q)
obtained from q is a multiple of the equality Qn,k = Qn,k(t).

If one introduces (as in [16]) a new variable s satisfying s2 = t, then
the initial choice q = s leads to q1 = s, a sort of ‘minimal’ value. This
choice would not simplify significantly the formulas used here.

ii) If the decomposition into squares is made from Qn,0 rather than
from Qn,1, i.e., if one renounces to use the relation Sn = 1 at the be-
ginning of the induction, one obtains similar quadratic relations, but
they are less precise and in particular less useful in the context of the
subsequent sections.

The formulas of Proposition 8 give rise to algebraic constraints for
the components of the Burau matrices. Let us consider the particular
case of the Burau image of B3. If (p1, p2, p3) is a row in some element
of ρ(B3), then the Laurent polynomials p1 and p2 have to verify the
equalities (Q3,k) for 1 ≤ k ≤ 3, and this in turn gives some necessary
conditions for the possible values of p1.

14



Proposition 9. Assume that the Laurent polynomial p belongs to
c1
1(ρ(B3)). Then the polynomial

Φ(p) = |tp + 1|2 − |tp + p|2

has to be the square of the norm of some polynomial in Z[t, t−1].

Proof. The explicit development of (Q3,2) is

|F1,2(p1, p2)|2 = 1 + tp1 + t−1p1 − (t−1 + 1 + t)|p1|2

= |tp1 + 1|2 − |tp1 + p1|2. �

We thus obtain an algorithm for finding which polynomials p2, p3

could possibly complete a given polynomial p1 in order to form the first
row of a matrix in ρ(B3):

i) factorize the polynomial Φ(p1) in the (factorial) ring Z[t, t−1] and
find the possible values of F1,2(p1, p2) by grouping the factors of Φ(p1)
in pairs of the form qq and multiplying by a unit of Z[t, t−1], i.e., by a
polynomial of the form ±tk;

ii) deduce possible values of p2 by solving the equation (1 + t)p2 =
1 − p1 − q, where q is one of the values found in step (i);

iii) for each possible pair (p1, p2), take p3 = 1 − p1 − p2.

Example. Take p1 = t−1. Then Φ(p1) is (1− t)(1 − t), and one obtains

(1 + t)p2 = 1 − t−1 ± tk(1 − t),

which leads to the values

p2 =
{
−t−1 + 2 − 2t + . . . + 2(−1)k−1tk−1 + (−1)ktk, with k ≥ 0,
−(−1)ktk − 2(−1)k+1tk+1 − . . . − 2t−2 + t−1, with k ≤ −1.

One can verify that the latter values are actually obtained: they corre-
spond to the braids σ−2

1 σk
2 .

It is tempting to conjecture that the above constraints, together
with the similar ones for the columns deduced using Lemma 1 and the
linear relations {

ci
1(A) + ci

2(A) + ci
3(A) = 1,

c1
j (A) + tc2

j (A) + t2c3
j (A) = tj ,

(L3)

completely characterize the image of B3 under the Burau representation.
(Observe that, in the case of B2, the linear relations (L2) that are similar
to (L3) above entirely characterize the image ρ(B2) in GL(2,Z[t, t−1]).)
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3. Order constraints on the components of Burau
matrices

Assume that the variable t involved in Burau representation is given
a fixed complex value z with module 1. Then the conjugacy of Section 2
becomes the usual conjugacy of complex numbers, and, in particular,
the value of |q|2 at z is a nonnegative real number for every Laurent
polynomial q. Then from the quadratic relations of Proposition 2.8 we
deduce quadratic inequalities involving the components of the Burau
matrices. Our main result in this direction is the following

Proposition 1. (see Figure 1) Assume that θ is a nonzero real number,
and let Dθ be the line from 1 to −e2iθ in the real plane identified with C.
Let N be the maximal integer satisfying (N−1)|θ| < π. For 1 ≤ n ≤ N let
zθ,n be the intersection of Dθ with the line from 0 to e−(n−1)iθ (possibly
the infinite point of Dθ), and let ∆θ,n be the closed domain of the plane
that contains 0 and is limited by the circle that contains 1 and has center
zθ,n (the line through 1 that is perpendicular to Dθ if zθ,n is at infinity).

Then if the Laurent polynomial p is the 1, 1-component of the Burau
image of a n strand braid with n ≤ N , the value p(e2iθ) lies in the
domain ∆θ,n.

Proof. Let us assume that (p1, . . ., pn) is a row in the Burau image
of an n strand braid. Then the polynomials p1, . . ., pn−1 satisfy the
relation (Qn,n) of Proposition 2.8. This relation has the form

|qn−1|2|Fn−1,1(p1)|2 + q̃n−1|qn−2|2|Fn−2,2(p1, p2)|2 + . . .

+q̃n−1. . .q̃2|q1|2|F1,n−1(p1, . . ., pn−1)|2 + q̃n = 0 (1)

When the variable t is given a complex value of module 1, say e2iθ,
relation (1) becomes a relation between ordinary modules of complex
numbers. So if the real numbers q̃2(e2iθ), . . ., q̃n−1(e2iθ) happen to be
all positive, we deduce an order constraint for the value p1(e2iθ).

Claim. Assume 0 < |2θ| ≤ π. Then the inequalities

q̃2(e2iθ) ≥ 0, . . . , q̃n−2(e2iθ) ≥ 0

hold exactly for |θ| ≤ π/(n − 1). In this case qn−1(e2iθ) is not 0, and
q̃n−1(e2iθ) is positive, null or negative respectively for |θ| < π/n, |θ| =
π/n and |θ| > π/n.
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Indeed let µ1, µ2, . . . be the real numbers inductively defined by

µ1 =
sin 2θ

sin θ
, µk+1 =

sin kθ

sin θ
µ2

k.

Then the formulas

qk(e2iθ) = µkekiθ , q̃k(e2iθ) =
sin(k + 1)θ

sin θ
µk

are easily proved using the inductive definition of the polynomials qk,
and formula (ii) of the Claim in the proof of 2.8. The sign inequalities
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then follow inductively on n ≥ 3 using the equalities

qk(e2iθ) =
sin(k − 1)θ

sin θ
µ2

k−1e
kiθ

q̃k(e2iθ) = sin(k + 1)θ sin(k − 1)θµ2
k−1/ sin2 θ.

This establishes the Claim. At this point three cases are to be
distinguished.

Case 1. The absolute value of θ is below π/n.

Then the numbers q̃2(e2iθ), . . ., q̃n−1(e2iθ) are positive, and rela-
tion (Qn,n) implies

|qn−1(e2iθ)|2|Fn−1,1(p1)(e2iθ)|2 ≤ −q̃n(e2iθ),

which develops into

sinnθ

sin θ
(|p1(e2iθ)|2 − 1) − 2Re(e(n−1)iθ(p1(e2iθ) − 1)) ≤ 0. (2)

This shows that the complex number p1(e2iθ) has to lie in the interior of
a circular disk. One reads on (2) that the point 1 belongs to the frontier
circle of that disk, and that the center is the point zθ,n given by

zθ,n =
sin θ

sinnθ
e−(n−1)iθ (3)

We observe that (3) implies

1 − zθ,n =
sin(n − 1)θ

sinnθ
eiθ, (4)

which shows that zθ,n lies on the line from 1 to −e2iθ.

Case 2. The absolute value of θ is between π/n and π/(n − 1).

This case is similar, excepted that the value q̃n−1(e2iθ) is negative. So
relation (Qn,n) gives rise to the same inequality as (2) above, but with
≥ instead of ≤. The sequel of the computation is identical, and we
conclude that p1(e2iθ) has to lie in the exterior of the circle that contains
the point 1 and whose center zθ,n is still determined by equations (3)
and (4).
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Case 3. The absolute value of θ is exactly π/n.

In this case all coefficients in the relation (Qn,n) vanish. But appealing
to (Qn,n−1) yields the relation

−2Re(qn−1p1) + |qn−2|2|Fn−2,2(p1, p2)|2 + . . .

+q̃n−2. . .q̃2|q1|2|F1,n−1(p1, . . ., pn−1)|2 + q̃n−1 = 0

which implies the inequality

−2Re(qn−1p1)(e2iθ) ≤ −q̃n−1(e2iθ).

Owing to the value of θ, the latter one in turn develops to

Re(p1(e2iπ/n)) + cotan
π

n
Im(p1(e2iπ/n)) ≤ 1. (5)

This shows that the point p1(e2iπ/n) belongs to the half-plane contain-
ing 0 and limited by the line from 1 to e2iπ/n. This result is clearly the
limit of the results for cases 1 and 2 when the point zθ,n goes to infinity
on the line from 1 to −e2iθ. This completes the proof of Proposition 1. �

Figure 1 illustrates the results when θ is chosen (strictly) between
π/6 and π/5. The circles that limit the domains ∆θ,n belong to a com-
mon linear family, and, of course, the sequence ∆θ,2, ∆θ,3, etc. is in-
creasing with respect to inclusion. For the degenerate case of B1, the
result is still true if ρ(B1) is defined as the size 1 identity matrix and the
domain ∆θ,1 as the closed disk with center zθ,1 and radius 0.

Remark. The line Dθ is a symmetry axis for the figure, and there-
fore each domain ∆θ,n is invariant under the corresponding orthogonal
symmetry, which is the mapping z �→ 1 + e2iθ(z − 1): observe that by
Proposition 2.4 this is precisely the transformation that maps c1

1(A) to
c1
1(A

−1) for every Burau matrix.

In the case when the ring Z[e2iθ] is a discrete lattice of the plane,
the inclusions established above imply finiteness results for the corre-
sponding images of the braid groups. We use as above ρz(Bn) to denote
the group of all matrices obtained by giving the value z to the variable t
in the Burau representation of Bn. One obtains the following results
(which give a complete description for the classes modulo t2 +1 or t3 +1
of the Burau coefficients for B3 and B5 respectively)
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Corollary 1. The groups ρi(B3) and ρω6(B5) are finite, where i2 is −1
and ω6 is a 6-th primitive root of unity.

Proof. The intersection of the bounded domain ∆π/4,3 with the lattice
Z[i] has exactlty 9 points. So there are at most 9 elements in c1

1(ρi(B3)).
By Lemma 1 there are similarly at most 9 values for each component
of a matrix in ρi(B3), and therefore there are at most 99 such matrices.
By the linear relations (L3) of Section 2, this bound may be lowered
to 94 elements. Actually the exact values are 9 elements in c1

1(ρi(B3)),
24 elements in c1(ρi(B3)) and 96 elements in ρi(B3). The argument
is similar for ρω6(B5): the intersection of ∆π/6,5 with the lattice Z[ω6]
has 13 elements. (One can note that the inclusions thus established
are optimal: each element of ∆π/4,3 ∩ Z[i] is the 1, 1-component of a
matrix in ρi(B3), and similarly each element of ∆π/6,n ∩ Z[ω6] is the
1, 1-component of a matrix in ρω6(Bn) for 2 ≤ n ≤ 5. In the limit case
of half-planes, ρi(B4) is infinite and seems to fill the half-plane ∆π/4,4,
but we have no proof.) �

The special cases where the quadratic relations degenerate to affine
inequalities lead to very simple statements. By developing relation (5)
above one obtains

Proposition 2. If the Laurent polynomial
∑

aktk is the 1, 1-component
of the Burau image of some braid in Bn, then the integers ak satisfy

∑
k

sin
(2k + 1)π

n
ak ≤ sin

π

n
. (Rn)

Corollary 3. If the Laurent polynomial p is the 1, 1-component of
Burau matrix (of any dimension), then its derivative p′ satisfies 2p′(1)+
p(1) ≤ 1, and therefore p′(1) is negative.

Proof. Letting n go to infinity (which is legitimate since there are only
finitely many nonzero coefficients in a Laurent polynomial), we first de-
duce from Proposition 3 that, if

∑
aktk belongs to c1

1(ρ(B∞)), then the
coefficients ak satisfy ∑

k

(2k + 1)ak ≤ 1.
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Then we observe that the only components of the matrices in ρ1(B∞) are
0 and 1 (since these matrices are permutation matrices), and therefore
the value of

∑
ak is 0 or 1. This implies

∑
kak ≤ 1/2, and therefore

p′(1) is negative (since it is an integer). �

Let us come back to the general problem of describing the Burau
matrices and not only their components. The constraints given in Propo-
sition 1 for the 1, 1-components show that the set ρ(Bn), viewed as a sub-
set of (R[t, t−1])n2

, is included in some semi-algebraic set of degree 2, i.e.,
in some intersection of domains specified by quadratic inequalities. If we
restrict to the linear relations as in Proposition 3, this semi-algebraic set
becomes a polytope.

Proposition 4. Let χn be the linear form on Z[t, t−1] defined by

χn(tk) = sin
(2k + 1)π

n
/ sin

π

n
.

Then the image of Bn under the Burau representation is included in the
convex polytope ⋂

β,β′∈Bn

Γ β,β′

n ,

where Γ β,β′
n is the half-space of (R[t, t−1])n2

whose equation (with re-
spect to the matrix variable A) is

χn(c1
1(ρ(β)Aρ(β′))) ≤ 1. (Rβ,β′

n )

Proof. Proposition 3 exactly claims that ρ(Bn) is included in Γ 1,1
n . Now

for any braids β, β′ in Bn, the matrix A belongs to ρ(Bn) if and only if
the matrix ρ(β)Aρ(β′) does. �

Consider for example the case of B4. One has

χ4(
∑

k

aktk) =
∑

k

(−1)k(a2k + a2k+1).

Write �p� and 	p
 for χ4(p) and χ4(tp) respectively. Then the relations
(Rβ,β′

4 ) involve only linear combinations of the expressions �ci
j(A)� and
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	ci
j(M)
:

(R1,1
4 ) : �c1

1(A)� ≤ 1

(R1,σ1
4 ) : �c1

1(A)� − 	c1
1(A)
 + �c1

2(A)� ≤ 1

(Rσ1,1
4 ) : �c1

1(A)� − 	c1
1(A)
 + 	c2

1(A)
 ≤ 1

(R1,σ−1
1

4 ) : −	c1
2(A)
 ≤ 1,

(Rσ−1
1 ,1

4 ) : �c2
1(A)� ≤ 1, etc.

Thus all above inequalities hold for any matrix A in the Burau image
of B4.

1. Weak faithfulness properties

We now come back to the statements Pk(Bn) and P+
k (Bn) introduced

in Section 1. The constraints established in Sections 2 and 3 enable
us to prove some of these partial faithfulness properties of the Burau
representation.

In the case n = 3, the point is that ρ is faithful and the Burau image
of B2 is completely known.

Proposition 1. The property P+
k (B3) is true for every k.

Proof. That Pk(B3) is always true is trivial for one knows after [14]
that ρ is injective on B3: it then suffices to appeal to Theorem 1.1,
which claims that a braid that admits a decomposition where σ1 occurs
and σ−1

1 does not cannot be trivial. For the stronger property P+
k (B3),

assume that the matrix A is ρ(β) for some 3 strand braid β and that
the first row of A is trivial. By Proposition 2.5 the first column of A is
trivial as well, so A is s(B) for some 2×2 matrix B. Now A satisfies the
linear relations (L3) introduced at the end of Section 2, so B satisfies
the relations (L2) and, therefore, B belongs to ρ(B2), i.e., is ρ(σk

1 ) for
some k. It follows that ρ(βσ−k

2 ) is the identity matrix, and therefore
that β is equal to σk

2 by injectivity of ρ on B3. �
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We turn to the case k = 3. Then we try to apply the condition
given by Lemma 1.5, i.e., to prove that the particular polynomials p+

0

(= −t−1 + 2 − t) and p−0 (= t − t2) cannot be the 1, 1-components of
Burau matrices. (Observe that Proposition 2.5 shows that c1

1(A) = p+
0 is

equivalent to c1
1(A

−1) = p−0 for any Burau matrix A, and therefore the
problem is symmetric.) The algebraic approach of the end of Section 2
gives

Proposition 2. The property P+
3 (B4) is true.

Proof. Apply Proposition 2.9. One obtains

Φ(p−0 ) = −t−3 + 2t−2 − t−1 + 1 − t + 2t − t3,

and this Laurent polynomial is irreducible in Z[t, t−1] (since the polyno-
mial t3Φ(p−0 ) is irreducible over Z[t]). So it is certainly not equal to qq
for any polynomial q. �

The order constraints of Section 3 enable to strengthen this result.

Proposition 3. The property P+
3 (Bn) is true for n ≤ 7, i.e., if a braid β

admits in B7 a decomposition with at most three σ1 and no σ−1
1 , then

the Burau matrix of β has a nontrivial first row (and a nontrivial first
column).

Proof. (see Figure 1) Consider an angle θ (strictly) between π/6 and π/5.
The value p+

0 (e2iθ) is 4 sin2 θ, which increases from 1 to 1.382 when θ in-
creases from π/6 to π/5. On the other hand the intersection of ∆θ,6 with
the real axis is the complement of the interval (1, 1+2 sin 5θ cos θ/ sin 6θ).
In order to make sure that p+

0 (e2iθ) lies outside ∆θ,6 is suffices to have

4 sin2 θ < 1 + 2
sin 5θ

sin 6θ
cos θ.

This is certainly true for θ ≤ 34o (Figure 1 corresponds to θ = 32o).
So for such an argument θ, it is impossible that p+

0 (e2iθ) belongs to
c1
1(ρe2iθ (B6)), and therefore the property P+

3 (B7)t=e2iθ is true, which in
turn implies P+

3 (B7). �
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Similarly we have

Proposition 4. The property P+
4 (B4) is true, i.e., if a braid β admits

in B4 a decomposition with at most four σ1 and no σ−1
1 , then the Burau

matrix of β has a nontrivial first row (and a nontrivial first column).

Proof. (see Figure 2) Choose θ between π/4 and π/3. We claim that
P+

4 (B4)t=e2iθ is true. Write z for e2iθ. By Lemma 1.5.iii it suffices to
show that the point p+

0 (z) cannot belong to the domain ∆θ,3 − z−2∆θ,3.
Now p+

0 (z) is strictly greater than 2, and it suffices to prove that the
intersection of the above domain with the real axis lies of the left of the
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point 2. So it is enough to show

d(2, zθ,3 − z−2zθ,3) ≥ 2R, (1)

where d(z, z′) denotes the distance of the points z and z′ and R is the
radius of ∆θ,3. Now the domain ∆θ,3 always lies on the left of the line
from 1 to z, while, for the present choice of θ, the point −z2 lies on the
right of this line, so one certainly has

d(−z2, zθ,3) ≥ R,

which implies
d(1,−z−2zθ,3) ≥ R,

and, because d(1, zθ,3) is R,

d(1, (zθ,3 − z−2zθ,3)/2) ≥ R.

By an homothety we obtain (1). �

We see that the above method fails for larger dimensions because
the forbidden value p+

0 (e2iθ) enters the domain in which we know the
coefficients have to lie. Of course this does not give any indication that
the forbidden values are actually reached. For instance in the case θ =
π/10 the value p+

0 (e2iθ) belongs to ∆θ,3 but not to c1
1(ρe2iθ (B3)) (which

is finite with 27 elements), so that P+
3 (B4)t=eiπ/5 is still true.

So at this point we have established that in the double scale
of Pk(Bn)’s the faithfulness degree of the Burau representation lies some-
where between the lower bounds P3(B7), P4(B4) and the upper bounds
P5(B7), P8(B6) of Section 1.

It seems likely that both the lower and the upper bounds are not
yet optimal, but we shall leave the task of filling the gap between these
values open, and conclude the paper with some remarks about a family
of particular Burau matrices. In [3] we have shown that the ‘exotic’
bracket product defined on B∞ by

β[β′] = βs(β′)σ1s(β)−1

satisfies the left distributivity identity

x[y[z]] = x[y][x[z]],

and, what is more remarkable, that the closure of any singleton {β}
under this bracket in B∞ happens to be a free left distributive algebra
(with one generator). We shall in the sequel denote by b the closure
of {1} in B∞ under this bracket.
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Because ρ is not faithful on B∞, it is not clear that the bracket on
braids induces a welldefined operation on Burau matrices. But a direct
verification shows that the bracket defined on GL(∞,Z[t, t−1]) by

A[B] = As(B)Σ1s(A−1)

is left distributive (and left cancellative). Indeed the general condition
for the above bracket to be left distributive is that the matrix Σ1 satisfies

Σ1s(Σ1)Σ1 = s(Σ1)Σ1s(Σ1) (1)

and, for any matrix M ,

Σ1s
2(M) = s2(M)Σ1. (2)

This is clearly true for the present value of Σ1. (One can observe that
the Burau matrix Σ1 is essentially the only 2 × 2 matrix that satisfies
the above requirements. The other ones are its images under some auto-
morphisms or antiautomorphisms, and therefore the corresponding left
distributive algebras are isomorphic.)

Let us consider the closure bt of the identity matrix under the above
bracket. By construction bt is a left distributive algebra generated by
the matrix I. The elements of bt will be called special Burau matrices.
Simple special Burau matrices are for instance

I, I[I] = Σ1, I[I][I] = Σ2
1Σ−1

2 , I[I[I]] = Σ2Σ1, etc.

Applying the Burau representation to the braid decompositions in terms
of the elements of b obtained in [3] induces the following result

Proposition 5. i) Every Burau matrix A admits a decomposition of
the form

A =
j=1∏
j=∞

sj−1(A−1
j )

j=∞∏
j=1

sj−1(A′
j),

where A1, A2, . . ., A′
1, A′

2, . . . are special Burau matrices.
ii) Every positive Burau matrix A (i.e., any product of matrices Σi)

admits a decomposition of the form

A =
j=∞∏
j=1

sj−1(A′
j),

where A′
1, A′

2, . . . are special Burau matrices.
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It is then a very natural question to ask if the restriction of the
Burau representation to the subset b of B∞ is faithful or not, i.e., if the
left distributive algebra bt is free or not. By the criterion of [9], it is
known that bt is a free left distributive algebra if and only if no equality
of the form

A = A[C1]. . .[Ck] (3)

may hold in bt for any positive k. Developing A−1(A[C1]. . .[Ck]) in terms
of A, C1, . . ., Ck shows that the conjunction of all properties Pk(Bn)
would be a sufficient condition for forbidding (3). We know that this con-
junction is certainly false for some k, but having no explicit description
of the counterexamples to Pk(Bn) we cannot decide if these counterex-
amples have the special form needed for (3). Here we shall only establish
the following partial result:

Proposition 6. The mapping c1◦ρ is not injective on the subset b

of B∞.

Proof. As for Proposition 5 we use the fact that every braid admits
a decomposition in terms of the elements of b. More precisely, it is
shown in [3] that, for every positive braid β in B∞ (a braid that admits
a decomposition where the inverses σ−1

i do not occur), there exists a
(unique) sequence β1, β2, . . . of braids belonging to b (and eventually
equal to 1) such that β is equal to the product of β1, s(β2), s2(β3),
etc. Assume that β, β′ are two positive braids satisfying ρ(β) = ρ(β′),
and consider the b-decompositions as above for β and β′, say

β =
j=∞∏
j=1

sj−1(βj), β′ =
j=∞∏
j=1

sj−1(β′
j).

Then the first column of ρ(β) is the first column of ρ(β1), and similarly
the first column of ρ(β′) is the first column of ρ(β′

1). If we assume that
c1◦ρ is injective on b, we conclude that β1 and β′

1 are equal. Now the
second column of ρ(β−1

1 β) is the first column of ρ(β2), the second column
of ρ(β−1

1 β′) is the first column of ρ(β′
2) and, under the same assumption,

we have that β2 and β′
2 are equal. The argument goes on inductively,

and finally β and β′ are equal. In other words we have shown that ρ
is injective on positive braids, which in turn implies that ρ is injective
on B∞ since every braid can be expressed as the quotient of two positive
braids. This proves that the injectivity of c1◦ρ on b is a contradictory
hypothesis. �
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We can observe that a similar result for the first rows is trivial
(and not equivalent): for instance the first rows of I[I] and of I[I[I]] are
equal. Owing to Proposition 6 it seems rather unlikely that ρ be faithful
on b. On the other hand the possible counterexamples have to be rather
complicated (in particular because P2(Bn) is always true). Even the pre-
sumably easier question of the unfaithfulness on b of the specialization ρz

of ρ obtained when t is given a fixed complex value z is open. By [2] it
is known that ρ1 is not faithful on b, but nothing is known even for ρ−1.
Observe that a faithfulness result for some representation ρz would im-
ply that the question of deciding whether two given bracket words are
equivalent or not up to left distributivity be solvable in polynomial time
by evaluating the corresponding Burau matrices. (The freeness of bt it-
self would not give this result for the degree of the polynomials involved
in the evaluation of a size n bracket word may increase as an exponential
function of n.)

We conclude with an easy formula of linear algebra. There is a
(trivial) left distributive algebra made by the natural numbers equipped
with the bracket

x[y] = y + 1,

and 0 is a generator for this algebra. If bt is free (or ‘nearly’ free),
the above algebra should be an homomorphic image of bt. In other
words, there should exist some mapping f from the Burau matrices to
the positive integers verifying f(A[B]) = f(B) + 1. Actually there are
(at least) two such functions. Trivially one has

det(A[B]) = det(B) × t.

Now some properties of ρ1(b) invite the consideration of the sum of the
overdiagonal terms, and this leads to the following skew version of the
invariance of the trace of a matrix under conjugacy

Proposition 7. Let Tr+(M) denote the sum of all components
ck
k+1(M). Then for any square matrices A, B with A inversible, one

has
Tr+(As(B)Σ1s(A−1)) = Tr+(B) + t.

The verification is an undergraduate exercice once the formula is
conjectured. It seems to be a much more difficult problem to define a
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bracket preserving homomorphism of bt (or even of b) into the finite left
distributive algebras of size 2n introduced in [10] from the theory of large
cardinals.
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