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Construction of Self-Distributive Operations
and Charged Braids

Patrick DEHORNOY

ABSTRACT. Starting from a certain monoid that describes the geometry of the
left self-distributivity identity, we construct an explicit realization of the free left
self-distributive system on any number of generators. This realization lives in
the charged braid group, an extension of Artin’s braid group B∞ with a simple
geometrical interpretation.

AMS Classification: 20N02, 20F36, 08B20.

Constructing examples of operations that satisfy a given identity and, in particular, con-
structing a concrete realization of the free objects in the associated equational variety is
an obviously difficult task, for which no uniform method exists. Here we consider these
questions in the case of the left self-distributivity identity

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z). (LD)

Due to its connection with set theory [13] [14] [8] and knot theory [1] [9] [10], this identity
has received much attention in the recent years. A binary system made of a set equipped
with a left self-distributive operation will be called an LD-system. Thus the question we
consider here is the construction of concrete realizations of free LD-systems.

The first result in this direction has been obtained by R. Laver in [13]: if j is a non-trivial
elementary embedding of a rank into itself, then the family of all iterations of j equipped with
the operation of applying an embedding to another one is a free LD-system. This solution
however is not completely satisfactory, as the existence of the object it relies upon, namely
a non-trivial elementary embedding of a rank into itself, is an unprovable set-theoretical
axiom, one for which even a relative consistency result cannot be proved. Subsequently, we
have shown in [6] how to deduce from the general study of the identity (LD) the existence
of a left self-distributive operation on Artin’s braid group B∞. This construction provides a
concrete realization for the free LD-system on one generator inside B∞, leading in particular
to an efficient solution for the word problem of the identity (LD)—and to new results about
braids, such as the orderability of this group and a new efficient algorithm for its word
problem. On the other hand, Larue has shown in [12] how to extend ‘by hand’ the braid
group B∞ so as to obtain a realization for the free LD-system on any number of generators.

In this paper, we show how to extend the analysis of [6] so as to include the case of
several generators. This leads to introducing an extension of Artin’s braids that we call
charged braids. The precise result is as follows.
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Proposition. Let CB∞ be the extension of Artin’s braid group B∞ obtained by adding an
infinite sequence of mutually commuting generators ρ1, ρ2, . . . submitted to the relations

σiρj = ρjσi for j < i and j > i + 1, σiρiρi+1 = ρiρi+1σi for every i.

Let sh be the endomorphism of CB∞ that maps σi to σi+1 and ρj to ρj+1 for all i, j. Then
the operation ∗ defined on CB∞ by a ∗ b = a sh(b) σ1 sh(a)−1 is left self-distributive, and
the elements 1, ρ1, ρ2

1, . . . generate in (CB∞, ∗) a free LD-system.

The realization we obtain here turns out to be a (proper) quotient of that obtained by Larue,
which lives in a much bigger extension of Artin’s braid group. Yet quite simple in definition,
Larue’s group is very large and, so to speak, abstract. The current group CB∞ appears
more canonical in its construction, and, being much closer to Artin’s braid group B∞ than
Larue’s group, it hopefully shares a number of properties of B∞. In particular, the elements
of CB∞ receive natural interpretations as braids where the strands are decorated with integer
charges, and we think that investigating such objects can be interesting in itself. Another
advantage of using the group CB∞ here is that the proof of freeness involved in the above
proposition is more simple than the one in [12]. We also give a new proof for the freeness of
the monogenic LD-systems of B∞ which is more simple than the original argument of [6].

The organization of the text is as follows. In the first section, we explicitely describe the
construction scheme which remained implicit in the published version of [6], and show how
to extend it to the case of several generators. In this way, we obtain a left self-distributive
operation on a quotient of a certain group that describes the geometry of Identity (LD). In
Section 2, we show that the involved quotient is an extension CB∞ of Artin’s braid group B∞,
and we interpret the elements of CB∞ as charged braids. We also mention a few elementary
properties of the group CB∞. In Section 3, we show that the group CB∞ includes a free
LD-system on countably many generators.

1. The characteristic operator of a term

In this section, we show how to define a certain group EGLD that models the geometry of
Identity (LD), and how to associate with every term t a distinguished element of EGLD that
reflects the inductive construction of t. This leads to the existence of a left self-distributive
operation on a quotient of EGLD.

Let (I) be an algebraic identity. We assume that (I) involves only one binary operation,
and that the same variables occur in both members of (I). Typical examples of such identities
are the associativity identity x∗(y∗z) = (x∗y)∗z, or the left self-distributivity identity (LD).
We fix an infinite sequence of variables x1, x2, . . . , and we write T∞ for the set of all well-
formed terms constructed using the operator ∗ and the variables xi. Thus, (I) itself is a
pair of terms in T∞, say (tL, tR)—also denoted tL = tR.

For t a term and f a mapping of the variables into T∞, we denote by f(t) the term
obtained from t by replacing every variable x with the corresponding term f(x), i.e., the
image of t under the substitution f . Applying the identity (tL, tR) to the term t means
replacing some subterm of t of the form f(tL) for some substitution f by the corresponding
term f(tR). This transformation can be seen as applying to the term t an operator depending
on the geometric position of the considered subterm in t (and on the considered identity).
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In order to introduce the previous operators precisely, we use a system of addresses for
the subterms of a term. To this end we consider terms as binary trees whose leaves are
labelled with variables while inner nodes represent the operator. For instance, we see the
term x2 ∗ ((x3 ∗ x1) ∗ x2) as the tree

x2

x3 x1

x2
.

We use finite sequences of 0’s and 1’s as addresses in such trees, with the convention that
the empty sequence λ is the address of the root of the tree, and that 0 means forking to the
left, while 1 means forking to the right. For instance in the term above the subterm (i.e.,
the subtree) with address 10, called the 10-subterm of t, is x3 ∗ x1. The set of all addresses
is denoted A.

Definition. Let (I) be an algebraic identity, say I = (tL, tR), and α be an address. We
define I+

α to be the partial operator on T∞ that maps every term t that admits an α-subterm
of the form f(tL), f a substitution, to the term obtained by replacing the α-subterm of t
with f(tR). We define I−α to be the inverse mapping of I+

α , and we define the geometry
monoid of (I) to be the monoid GI generated by all operators I+

α and I−α with α in A, using
reversed composition as product.

The hypothesis that the same variables appear in both sides of the identity (I) implies that
all operators I±α are functional and injective.

Example. Let t be the above term x2 ∗ ((x3 ∗ x1) ∗ x2). Then, using (A) and (LD) to
denote respectively the associativity identity and the left self-distributivity identity, we find
that the images of t under the operators A+

λ , A−1 and LD+
λ are respectively

x2

x3x1

x2
,

x2

x3

x1x2

,
x2

x3x1

x2x2
.

Observe that the three terms above are the only existing images of t under operators of the
form A±α or LD±α . By construction of I-equivalence, we have the following result.

Lemma 1.1. Assume that (I) is an algebraic identity involving a single binary operator
and the same variables occur in both members of (I). Then two terms t, t′ are I-equivalent
if and only if some operator in the geometry monoid GI maps t to t′.

We refer to [4] and [7] for results about the monoids GI , and we consider now the specific case
of Identity (LD). We begin with the case of one generator. We write x for x1, and introduce
the subset T1 of T∞ consisting of those terms that involve the variable x only. For p a positive
integer, we denote by x[p] the term inductively defined by x[1] = x, x[p+1] = x ∗ x[p].
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Definition. Assume that f is a (partial) mapping of T∞ into itself, and α is an address.
The α-shifting of f , denoted shα(f), is the partial mapping of T∞ into itself that maps every
term t such that the α-subterm of t is defined and belongs to the domain of f to the term
obtained from t by applying f to this α-subterm of t.

Thus, for instance, we have in GLD the equality LD+
α = shα(LD+

λ ) for every address α, and,
more generally, LD+

αβ = shα(LD+
β ) for all α, β in A.

Let t =LD t′ mean that t and t′ are LD-equivalent. A significant property of Iden-
tity (LD) is that, for every term t in T1, the equivalence

x[p+1] =LD t ∗ x[p] (1.1)

holds for p large enough. So, by Lemma 1.1, some operator in GLD has to map the term x[p+1]

to the term t ∗ x[p]. Now, the inductive proof of (1.1) shows that, if we define for t in T1 the
operator op(t) by the rules

op(x) = id, op(t0 ∗ t1) = op(t0) · sh1(op(t1)) · LD+ · sh1(op(t0))−1,

then, for p large enough, op(t) maps x[p+1] to t ∗ x[p].
Assume that t and t′ are LD-equivalent terms in T1. By Lemma 1.1, some operator f

in GLD maps t to t′. Then, for every p, the operator sh0(f) maps the term t ∗ x[p] to the
term t′ ∗ x[p]. By construction, the quotient op(t)−1 · op(t′) also maps the term t ∗ x[p] to
the term t′ ∗ x[p]. This suggests that the operators op(t)−1 · op(t′) and sh0(f) could be
equal, i.e., that the operator op(t)−1 · op(t′) could lie in the submonoid of GLD generated
by those operators of the form LD±0α. If this is true, the image of op(t) in the “quotient”
GLD/sh0(GLD) should depend only on the LD-equivalence class of t, i.e., there should exist a
left self-distributive operation on this quotient.

The previous approach does not work readily, as GLD is not a group because it consists of
partial operators only. In order to avoid the problem, our strategy is to study those relations
that connect the generators of GLD, and to replace GLD with the group GLD that admits these
relations as a presentation.

There exist in general a number of relations between the operators I+
α in the monoid GI

associated with a given identity (I). Some of them are not really specific of the considered
identity. For instance, if two addresses α and β are orthogonal, i.e., if there exists some
address γ such that α begins with γ0 and β begins with γ1, the operators I+

α and I+
β commute.

In the particular case of (LD), we refer to [3] for a proof that the following relations hold
for every addresses α, β, γ:

LD+
α0β · LD+

α1γ = LD+
α1γ · LD+

α0β (1.2)

LD+
α1 · LD+

α · LD+
α1 · LD+

α0 = LD+
α · LD+

α1 · LD+
α (1.3)

LD+
α11β · LD+

α = LD+
α · LD+

α11β , LD+
α10β · LD+

α = LD+
α · LD+

α01β

LD+
α0β · LD+

α = LD+
α · LD+

α10β · LD+
α00β (1.4)

Definition. We call GLD the group generated by a sequence (gα ; α ∈ A) submitted to the
previous relations, i.e.,

gα0β · gα1γ = gα1β · gα0γ , gα1 · gα · gα1 · gα0 = gα · gα1 · gα,
gα11β · gα = gα · gα11β , gα10β · gα = gα · gα01β , gα0β · gα = gα · gα10β · gα00β .
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In order to imitate inside GLD the construction of the operator op(t), we consider the map-
ping χ inductively defined on T1 by the rules:

χ(x) = 1, χ(t0 ∗ t1) = χ(t0) · sh1(χ(t1)) · gλ · sh1(χ(t0))−1,

where shα is the endomorphism of GLD that maps gv to gαβ for every β. This amounts to
saying that χ is the homomorphism of (T1, ∗) into (GLD, ∗) that maps x to 1, where ∗ is the
binary operation defined on GLD by

a ∗ b = a · sh1(b) · gλ · sh1(a)−1. (1.5)

Then the result is what we expected.

Proposition 1.2. [6] Let H0 be the subgroup of GLD generated by all elements g0α. Then
the binary operation ∗ of (1.5) induces a left self-distributive operation on the right coset
set GLD/H0.

The point in the previous argument was to associate with every one variable term t a
characteristic operator op(t) that describes it in some convenient sense, here in the sense
that op(t) maps x[p+1] to t ∗x[p] for p large enough. Let us mention that a similar approach
is possible in the case of associativity [7], where it leads to the simple group G of [15].

In order to extend the construction to the case of several generators, we have to define
the characteristic operators op(t) so as to be able to generate all terms in T∞, and not only
those with one variable. To this end, besides the operators LD±α , we introduce new operators
whose action is to shift the names of the variables.

Definition. Assume that α is an address. We define Θ+
α to be the partial function of T∞

into itself that maps every term t such that the α-subterm of t exists to the term obtained
from t by shifting by one unit the indices of those variables that occur below the address α
in t. We define Θ−α to be the inverse of Θ+

α . Finally, the extended geometry monoid of
Identity (LD) is the monoid EGLD generated by all operators LD±α and Θ±α for α in A.

Proposition 1.3. For t in T∞, define the operator op(t) inductively by the rules:

op(xi) = (Θ+
0 )i−1, op(t0 ∗ t1) = op(t0) · sh1(op(t1)) · LD+

λ · sh1(op(t0))−1.

Then, for p large enough, the operator op(t) maps the term x
[p+1]
1 to the term t ∗ x

[p]
1 .

Proof. Induction on t. If t is a variable, say xi, then, by definition, the operator (Θ+
0 )i−1

maps x
[p+1]
1 to xi ∗ x

[p]
1 for every p ≥ 1. Assume now t = t0 ∗ t1. For p large enough, we

obtain, using the induction hypothesis,

x[p+1] op(t0)7−→ t0 ∗ x[p] sh1(op(t1))7−→ t0 ∗ (t1 ∗ x[p−1])
LD+

λ7−→ (t0 ∗ t1) ∗ (t0 ∗ x[p−1])
sh1(op(t0))

−1

7−→ (t0 ∗ t1) ∗ x[p],

i.e., op(t) maps x[p+1] to t ∗ x[p].
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Like GLD, the extended monoid EGLD is not a group, so we consider instead a group that
resembles EGLD. To this end, we first list the additional relations caused by the introduction
of the operators Θ+

α in GLD. In the following statement, the relation f ≈ f ′ means that the
operators f and f ′ coincide on the intersection of their domains, which are not supposed to
be equal.

Lemma 1.4. The following relations hold in EGLD for all addresses α, β, γ:

Θ+
α ≈ Θ+

α1 ·Θ+
α0, Θ+

α0β ·Θ+
α1γ = Θ+

α1γ ·Θ+
α0β (1.6)

Θ+
α0β · LD+

α1γ = LD+
α1γ ·Θ+

α0β , Θ+
α · LD+

αβ = LD+
αβ ·Θ+

α , (1.7)

Θ+
α0β · LD+

α = LD+
α ·Θ+

α10β ·Θ+
α00β , Θ+

α10β · LD+
α = LD+

α ·Θ+
α01β ,

Θ+
α11β · LD+

α = LD+
α ·Θ+

α11β (1.8)

Proof. Straightforward in the case of (1.5) and (1.6). In the case of the three relations (1.7),
which are similar to the three relations (1.4), we use the fact that, assuming that the
operator LD+

α maps the term t to the term t′, then every α0β-subterm in t has two copies
in t′, namely the α10β- and α00β-subterms. Similarly, every α01β-subterm of t′ comes from
the associated α10β-subterm of t.

As in the case of GLD and GLD, we introduce the group for which the above mentioned
relations make a presentation.

Definition. The group EGLD is the extension of GLD obtained by adding a sequence of new
generators (hα ; α ∈ A) submitted to the relations

hα = hα1 · hα0, hα0β · hα1γ = hα1γ · hα0β (1.9)
hα0β · gα1γ = gα1γ · hα0β , hα · gαβ = gαβ · hα, (1.10)

hα0β · gα = gα · hα10β · hα00β , hα10β · gα = gα · hα01β , hα11β · gα = gα · hα11β (1.11)

For α an address, we define shα to be the endomorphism of EGLD that maps gβ to gαβ and
hβ to hαβ for every β; we use ∗ for be the binary operation defined on EGLD by (1.5).

By construction, the group GLD embeds in the group EGLD, and the operation ∗ on EGLD

extends that of GLD. According to our general strategy, we mimic the definition of the
characteristic operator op(t) in the group EGLD.

Definition. The mapping χ is defined to be the homomorphism of (T∞, ∗) into (EGLD, ∗)
that maps xi to hi−1

0 .

Lemma 1.5. For all a, b, c in EGLD and all α, β in A, we have

(a ∗ b) ∗ (a ∗ c) = (a ∗ (b ∗ c)) · g0 (1.12)
(a · g0α) ∗ (b · g0β) = (a ∗ b) · g00α · g01β (1.13)

Proof. For (1.12), using the defining relations, in particular the fact that gλ commutes with
g11α and h11α, we find

(a ∗ b) ∗ (a ∗ c) = a · sh1(b) · tr11(c) · gλ · g1 · gλ · g−1
1 · sh11(b)−1 · sh1(a)−1,

a ∗ (b ∗ c) = a · sh1(b) · tr11(c) · g1 · gλ · sh11(b)−1 · sh1(a)−1.
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Now gλg1gλg−1
1 is g1gλg0, and g0 commutes with all generators g1α and h1α.

For (1.13), using the defining relations, in particular the fact that g0α commutes with
g1β and h1β , we find

(a · g0α) ∗ (b · g0β) = a · g0α · sh1(b) · g10β · gλ · g−1
10α · sh1(a)−1

= a · sh1(b) · g0α · g10β · gλ · g−1
10α · sh1(a)−1

= a · sh1(b) · g0α · gλ · g01β · g−1
10α · sh1(a)−1

= a · sh1(b) · gλ · g10α · g00α · g01β · g−1
10α · sh1(a)−1

= a · sh1(b) · gλ · g00α · g01β · sh1(a)−1

= a · sh1(b) · gλ · sh1(a)−1 · g00α · g01β = (a ∗ b) · g00α · g01β .

Lemma 1.6. Assume that the operator LD+
α maps the term t to the term t′. Then the

equality
χ(t′) = χ(t) · g0α (1.14)

holds in the group EGLD.

Proof. We use induction on the length of the address α. Assume that α is the empty
address λ. This means that there exist terms t0, t1, t2 such that t is t0 ∗ (t1 ∗ t2) and t′ is
(t0 ∗ t1) ∗ (t0 ∗ t2). Applying (1.12) with a = χ(t0), b = χ(t1) and c = χ(t2) gives (1.14).

Assume now that α is 1α1. Then t has the form t = t0 ∗ t1, and, by hypothesis, t′ is
then t0 ∗ t′1 where t′1 is the image of t1 under the operator LD+

α1
. By induction hypothesis,

we have χ(t′1) = χ(t1) · g0α1 , so we find using (1.13)

χ(t′) = χ(t0) ∗ χ(t′1) = χ(t0) ∗ (χ(t1) · g0α1) = (χ(t0) ∗ χ(t1)) · g01α1 = χ(t) · g0α.

Similarly assume that α is 0α0. Then t′ is t′0 ∗ t1, where t is t0 ∗ t1 and t′0 is the image of t0
under LD+

α0
. Using again (1.13), we find

χ(t′) = χ(t′0) ∗ χ(t1) = (χ(t0) · g0α0) ∗ χ(t1) = (χ(t0) ∗ χ(t1)) · g00α0 = χ(t) · g0α.

Proposition 1.7. Let EH0 be the subgroup of EGLD generated by all elements g0α. Then
the binary operation ∗ of EGLD induces a left self-distributive operation on the right coset
set EGLD/EH0.

Proof. By construction, the result is true for those elements that belong to the image
of the mapping χ. It is not true that every element of EGLD belongs to the image of χ,
and a general proof is needed. Now, Formula (1.13) shows that ∗ induces a well-defined
operation on EGLD/EH0, while Formula (1.12) shows that the induced operation satisfies
Identity (LD).

The group EGLD is very large. An easy verification shows that the image of the homomor-
phism χ is included in the subgroup EG′LD of EGLD generated by all gα’s and by those hα’s
for which α has the form 1i0 for some i. The same proof as above gives:

Proposition 1.8. Let EH ′0 be the subgroup of EG′LD generated by all elements g0α. Then
the binary operation ∗ of EG′LD induces a left self-distributive operation on the right coset
set EG′LD/EH ′0.
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2. The charged braid group

There exists a close connection between the group GLD of Section 1 and Artin’s braid
group B∞. We recall that, for n ≤ ∞, Bn can be defined as the group generated by a
sequence σ1, σ2, . . . , σn−1 submitted to the braid relations

σiσj = σjσi for |i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1 for every i. (2.1)

Proposition 2.1. Let N0 be the normal subgroup of GLD generated by those elements
of the form g0α with α in A. Then the quotient group GLD/N0 is isomorphic to the braid
group B∞.

Proof. Consider π : GLD → B∞ such that π(gα) = 1 holds if the address α contains at
least one 0, and π(g1i) is σi+1 (here 1i denotes the address consisting of i times 1). By
comparing the defining relations of GLD and B∞, we see that π is a well-defined surjective
homomorphism. It remains to show that the kernel of π is the subgroup N0. First, by
definition, π vanishes on every generator of the form g0α, so N0 is included in Ker(π).
Conversely, repeatedly using the equalities

gα10β = gα · gα01β · gα
−1,

we see that every generator of the form gu with α an address containing at least one 0 is
conjugated in GLD to a generator of the form g0β , hence one in N0.

Proposition 2.2. Let EN ′0 be the normal subgroup of EG′LD generated by those elements of
the form g0α with α in A. Then the quotient EG′LD/EN ′0 is isomorphic to the group obtained
from B∞ by adding a sequence of mutually commuting generators ρ1, ρ2, . . . submitted to
the additional relations

σiρj = ρjσi for j < i and j > i + 1, σiρiρi+1 = ρiρi+1σi for every i. (2.2)

Proof. We extend the projection π defined in the proof of Proposition 2.1 to the group EG′LD

so that h1i0 is mapped to ρi+1. Again, it is clear from the defining relations that π is a
surjective homomorphism of EGLD onto CB∞. The same proof as above shows that the
kernel of π is EN ′0.

Definition. For n ≤ ∞, we define the n strand charged braid group to be the extension CBn

of the braid group Bn obtained by adding mutually commuting generators ρ1, . . . , ρn−1

submitted to Relations (2.2).

We still write sh for the shift endomorphism of CB∞ that maps σi to σi+1 and ρj to ρj+1 for
every i, j. Then sh is the image in CB∞ of the shift mapping sh1 of EGLD. As in the case of
braids, it is not obvious that the left self-distributive operation of EG′LD/EH ′0 induces a well-
defined operation on EG′LD/EN ′0, i.e., on CB∞. However, an immediate direct verification
gives the result.

Proposition 2.3. The binary operation defined on the group CB∞ by

a ∗ b = a · sh(b) · σ1 · sh(a)−1 (2.3)

satisfies Identity (LD).
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There exists a standard interpretation of the group B∞ as the group of equivalence classes of
two-dimensional braid diagrams consisting of a sequence of mutually crossing strands. One
usually associates with the generator σi and its inverses the diagrams

σi :

1 2 i i+1

and

σ−1
i :

Then the braid diagram associated with the word σe1
i1

. . . σe`
i`

is obtained by composing the
elementary diagrams associated with the successive letters, this meaning that one connects
the bottom ends of the strands in the first diagram to the top ends of the strands in the
second diagram. The braid relations (2.1) express that two braid diagrams represent the
same element in B∞ if and only if they can be seen as plane projections of isotopic three-
dimensional figures (see for instance [2])

A similar geometrical interpretation can be given for the elements of CB∞. We consider
charged braid diagrams consisting of standard braid diagrams completed with additional
signed charges appended to the strands of the braids. We interpret the generator ρi as a
⊕-charge on the i-th strand, and its inverse ρ−1

i as an opposite ª-charge on the i-th strand:

ρi :
1 2 i

⊕

ρ−1
i : ª

Then the relations of the group CB∞ express that a ⊕-charge is the inverse of a ª-charge
and that the charges may freely move on the strands, with the exception that a ⊕-charge is
allowed to go through a crossing only if another ⊕-charge simultaneously goes on the other
strand of the crossing:

⊕ ⊕
is equivalent to

⊕ ⊕

With the above interpretation, calling the elements of CBn charged braids should appear
as natural. We shall not develop a systematic study of the charged braid groups CBn here,
but only mention a few easy properties.

Proposition 2.4. Let φn denote the forgetful mapping that keeps σi unchanged, and
collapses ρj to 1 for every j. Then φn induces a surjective homomorphism of CBn onto Bn.
The group Bn embeds in CBn, and CBn is a semidirect product of Bn by Ker(φn).

Proof. Everything is clear, as φn projects the additional relations (2.2) to trivial relations
in B∞.
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The subgroup Ker(φn) includes the subgroup generated by all ρj ’s, a group isomorphic to
the direct power Zn. But the inclusion is strict: for instance, σ1ρ1σ

−1
1 belongs to Ker(φn),

but not to the above subgroup. To prove the latter statement formally, we can resort to a
linear representation of charged braids. We recall that the (unreduced) Burau representation
of Bn is the linear representation that maps σi to the matrix obtained from the n×n identity

matrix by replacing the (i, i + 1)-submatrix with
(

1− t t
1 0

)
.

Proposition 2.5. Extending the Burau representation r of Bn by defining r(ρj) to be the
diagonal matrix with diagonal values (1, . . . , 1, u, 1, . . . , 1), u at position j, yields a linear
representation of CBn into GLn(Z[t, t−1, u, u−1]).

The verification is straightforward. So, for instance, we find

r(σ1ρ1σ
−1
1 ) =

(
1 (u− 1)(1− t)
0 u

)
, r(σ1ρ2σ

−1
1 ) =

(
u (1− u)(1− t)
0 1

)
.

These values prove that σ1ρ1σ
−1
1 cannot belong to the subgroup of CB∞ generated by

the ρj ’s, as the Burau representation of every element of this subgroup is a diagonal matrix.

Proposition 2.6. The group B∞ is not a normal subgroup of CB∞.

Proof. Still letting r denote the extended Burau representation, we find

r(ρ1σ1ρ
−1
1 ) =

(
1− t tu
u−1 0

)
, r(ρ2σ1ρ

−1
2 ) =

(
1− t tu−1

u 0

)
.

Now, the Burau representation of every element of B∞ is a t-Markovian matrix: the sum of
the elements in the i-th row is equal to ti−1. So ρ1σ1ρ

−1
1 cannot belong to B∞.

In particular, the semi-direct product of Proposition 2.4 is not a direct product. The next
observation is that the usual representation of braids into automorphisms of a free group
can be extended to charged braids.

Proposition 2.7. For n ≤ ∞, let FGn,∞ denote a free group based on a double sequence
of generators (xp,q)1≤p≤n,q∈Z. Then the mapping ψ defined by

ψ(σi)(xp,q) =


xp,q for p 6= i, i + 1,
xp,qxp+1,qx

−1
p,q for p = i,

xp,q for p = i + 1,
ψ(ρj)(xp,q) =

{
xp,q for p 6= j,
xp,q+1 for p = j,

provides a homomorphism of the group CBn into Aut(FGn,∞).

The result follows from the defining relations of CB∞. We conjecture that the previous
homomorphism is an embedding.

As a final result, we observe that the charged braid group CB∞ is a quotient of Larue’s
group of [12].

Proposition 2.8. Let LB∞ be the extension of Artin’s braid group obtained by adding a
double sequence of generators (θj,k ; j, k ≥ 1) submitted to σiθj,k = θj,kσi for j > i+1. Then
the mapping defined by θj,k 7→ ρk−1

j induces a surjective homomorphism of LB∞ onto CB∞.

10



The result follows again from the defining relations of the groups.

3. Proofs of freeness

We have seen above that the existence of a left self-distributive operation on the groups B∞
and CB∞ is implied and somehow explained by their connection with the monoids GLD

and EGLD. The main interest of the construction lies in the fact that the LD-systems obtained
in this way include free LD-systems.

Proposition 3.1. The element 1 generates a free LD-system in (B∞, ∗).

Proposition 3.2. The elements 1, ρ1, ρ2
1, . . . generate a free LD-system in (CB∞, ∗).

Proposition 3.1 already appears in [6]. Here, we present a new proof, which is much more
direct than the original proof, provided the fact that free LD-systems admit left cancellation
is known.

Let us first fix some notations. We use BW∞ for the free monoid of all braid words,
i.e., of all words formed on the letters σ±1

i . Similarly, we use CBW∞ for the free monoid of
all charged braid words. We say that the (charged) braid word w represents the (charged)
braid b if b is the class of w in CB∞. We still use ∗ for the binary operation defined on CBW∞
by

u ∗ v = u · sh(v) · g1 · sh(u)−1, (3.1)

where sh is the shift endomorphism of CBW∞ that maps σ±1
i to σ±1

i+1 and ρ±1
j to ρ±1

j+1 for
all i, j. So, the word u ∗ v represents the (charged) braid a ∗ b when u, v represent a and b.

We let f denote the homomorphism of (T∞, ∗) into (CBW∞, ∗) that maps xi to ρi−1
1 ,

and f for the homomorphism of (T∞, ∗) into (CB∞, ∗) induced by f . By construction,
the charged braid f(t) is the projection in CB∞ of the element χ(t) in EG′LD. If t lies
in T1, then f(t) belongs to BW∞, and f(t) is an ordinary braid. For instance, the reader
can verify that, if t is the term x2 ∗ ((x3 ∗ x1) ∗ x2), then f(t) is the charged braid word
ρ1ρ

2
2σ2ρ

−1
3 σ2ρ

2
4σ
−1
3 ρ−2

3 σ1ρ
−1
2 displayed in Figure 3.1 below.

Let FLD1 and FLD∞ denote respectively the free LD-system on one generator and
the free LD-system on countably many generators. By construction, FLD1 is T1/ =LD,
and FLD∞ is T∞/ =LD. We write πLD for the corresponding projections. The fact that the
operation ∗ on CB∞ is left self-distributive implies that the homomorphism f factors through
a homomorphism χ of FLD∞ into CB∞, and we have the following commutative diagram:

T∞

FLD∞

EG′LD EGLD )

CB∞

(χ

f

χ

πLD π

Proving Proposition 3.1 and 3.2 amounts to proving that the mapping χ is injective, i.e.,
that, if t and t′ are LD-unequivalent terms in T1 (resp. in T∞), then the (charged) braid
words f(t) and f(t′) represent distinct elements in B∞ (resp. in CB∞).
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To this end, we use an action of (charged) braids on LD-systems equipped with a
distinguished endomorphism, which we describe now using the intuition of braid colourings.
We begin with uncharged braids. Let (S, ∗) be a given binary system. We attribute colours
from S to the strands of the braid diagrams according to the following scheme: initial colours
are attributed to the top strands, and the colours are propagated downwards so that, when
two strands cross, the colours obey the rules

a b

a ∗ b a

a b

b c satisfying b ∗ c = a

Assuming that ~a is a sequence of colours in S and w is a braid word, we denote by (~a)w the
colours of the bottom ends of the strands obtained when ~a is attributed to the top strands
in w. This amounts to letting B∞ act on the right on SN. In order that (~a)w be well defined,
we have to assume that the system (S, ∗) is left divisible and left cancellative, i.e., that left
division is always defined in (S, ∗). If we assume only that (S, ∗) is left cancellative, then
the value of (~a)w is unique when it exists, but it need not exist in every case. It is easily
checked that the hypothesis that (S, ∗) is an LD-system is exactly what is needed for the
value of (~a)w to depend only on the braid represented by w, i.e., for the colouring to be
compatible with the braid relations (2.1) [1], [6]. We obtain in this way the following result.

Lemma 3.3. [6] Assume that (S, ∗) is a left cancellative LD-system, and that w, w′ are
equivalent braid words. If ~a is a sequence in S such that both (~a)w and (~a)w′ exist, then
these sequences are equal.

It is known that the free LD-system FLD1 is left cancellative [6]. Hence FLD1 is eligible for
colouring braids.

Lemma 3.4. For every term t, the braid word f(t) is (FLD1, ∗)-colourable, and we have

(x, x, x, . . .)f(t) = (πLD(t), x, x, . . .), (3.2)

Proof. The result is obvious if t is x. If t is t0 ∗ t1, we find inductively

(x, x, x, . . .) f(t) = (x, x, x, . . .) f(t0) · sh(f(t1)) · σ1 · sh(f(t0))−1

= (πLD(t0), x, x, . . .) sh(f(t1)) · σ1 · sh(f(t0))−1

= (πLD(t0), πLD(t1), x, . . .) σ1 · sh(f(t0))−1

= (πLD(t), πLD(t0), x, . . .) sh(f(t0))−1 = (πLD(t), x, x, . . .)

We achieve a proof of Proposition 3.1 as follows. Assume that t and t′ are terms in T1 such
that f(t) and f(t′) represent the same element of B∞: by Lemma 3.4, the classes πLD(t) and
πLD(t′) are equal. Hence the class of f(t) in B∞ determines the class of t in FLD1, i.e., the
mapping χ is injective.
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The natural idea for proving Proposition 3.2 is to use similar colourings for charged braids.
To this end, we consider a mapping θ of the colours into themselves, and we add the rule

a
⊕

θ(a)
Compatibility with the relation σiρiρi+1 = ρiρi+1σi requires that we assume θ(a∗b) = θ(a)∗
θ(b) for the involved colours, and, therefore, it holds true provided that θ is a homomorphism
of (S, ∗). Finally compatibility with ρiρ

−1
i = ρ−1

i ρi = 1 requires that θ be bijective if we
want the colouring to be defined everywhere, but only that θ be injective if we accept partial
colourings.

Let θ denote the shift endomorphism of FLD∞ that maps xi to xi+1 for every i. As
FLD∞ is a left cancellative LD-system and θ is an injective endomorphism of FLD∞, the sys-
tem (FLD∞, ∗, θ) is eligible for defining charged braid colourings, and we have the following
counterpart of Lemma 3.4.

Lemma 3.5. The charged braid word f(t) is (FLD∞, ∗, θ)-colourable, and we have

(x1, x1, x1, . . .)f(t) = (πLD(t), x1, x1, . . .), (3.3)

The inductive proof is the same as for Lemma 3.4. The colouring of the word f(t) in the
case when t is the term x2 ∗ ((x3 ∗ x1) ∗ x2) is displayed in Figure 3.1.

x1 x1 x1 x1

⊕ ⊕⊕
x2 x3

x1∗x3 x3ª
x2

(x1∗x3)∗x2 x1∗x3 ⊕⊕
x3

x3 x1ªªx1

x2ª
x2∗((x1∗x3)∗x2) x1 x1 x1

Figure 3.1: Colouring of a charged braid

To go further, we need a counterpart of Lemma 3.3.

Conjecture 3.6. Assume that (S, ∗) is a left cancellative LD-system, and that θ is an
injective endomorphism of (S, ∗). Assume that w, w′ are equivalent charged braid words,
and ~a is a sequence from S such that (~a)w and (~a)w′ exist. Then (~a)w and (~a)w′ are equal.
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A proof of the previous statement would enable us to conclude the proof of Proposition 3.2
as we did for Proposition 3.1. Now, the problem is that, if w and w′ are charged braid
words that represent the same element of CB∞, there exists a finite sequence (w0, . . . , wN )
such that w0 is w, wN is w′ and each word wi is obtained from wi−1 by applying exactly
one of the charged braid relations. If there exist initial colours ~a in FLD∞ such that (~a)wi

exists for every i, then we can show that the sequences (~a)w and (~a)w′ are equal. Now it is
not clear that such a sequence exists, as the word reversing technique of [6] used in the case
of B∞ does not extend to CB∞.

The only situation where we can state a compatibility result is the case when the
colourings are always defined.

Lemma 3.7. Assume that (S, ∗) is a left cancellative left divisible LD-system, and that θ
is an automorphism of (S, ∗). Assume that w, w′ are equivalent charged braid words. Then,
for every sequence ~a from S, the sequences (~a)w and (~a)w′ are equal.

The verification is easy using the defining relations of the group CB∞, for, in this case,
division is always possible and colouring the negative crossings is not a problem. A typical
example of an LD-system that is eligible for Lemma 3.7 to apply is a group equipped with
conjugacy and a distinguished injective endomorphism.

Let FG∞,∞ be a free group based on a double infinite sequence (xp,q)p≥1,q∈Z, and ∗
be the conjugacy operation of FG∞,∞ defined by a ∗ b = a b a−1; finally, let θ denote the
automorphism of FG∞,∞ that maps xp,q to xp,q+1 for every p, q. The argument we de-
velop now for proving Proposition 3.2 essentially amounts to using the above action of CB∞
on (FG∞,∞, ∗, θ). Actually, it will be more convenient to use here the language of automor-
phisms of FG∞,∞ so as to be able to apply Larue’s method of [11] directly. In order to prove
that a given LD-system is free, we have to the following criterion.

Definition. (i) We say that an LD-system (S, ∗) is acyclic if left division in (S, ∗) has no
cycle, i.e., no equality of the form

a = (. . . (a ∗ a1) ∗ . . .) ∗ ap (3.4)

with p ≥ 1 holds in S.
(ii) We say that a subset A of S is quasifree in (S, ∗) if no equality of the form

(. . . ((c1 ∗ . . . ∗ cr ∗ x) ∗ a1) ∗ . . .) ∗ ap = (. . . ((c1 ∗ . . . ∗ cr ∗ y) ∗ b1) ∗ . . .) ∗ bq (3.5)

with p, q, r ≥ 0 and x, y distinct elements of A holds in S.

Lemma 3.8. [5] Assume that (S, ∗) is an LD-system, and A generates S. Then the following
are equivalent:
(i) The LD-system (S, ∗) is free based on A;
(ii) The LD-system (S, ∗) is acyclic and A is quasifree in (S, ∗).

Lemma 3.9. The LD-system (CB∞, ∗) is acyclic.

Proof. By [6], we know that the LD-system (B∞, ∗) is acyclic. Now B∞ is a homomorphic
image of CB∞. Every possible cycle for left division in CB∞ would project onto a cycle for
left division in B∞. Hence, such a cycle cannot exist.
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Lemma 3.10. The family {1, ρ1, ρ
2
1, . . .} is quasifree in (CB∞, ∗).

Proof. By Proposition 2.7, there exists a homomorphism ψ of CB∞ into Aut(FG∞,∞). We
denote by ψr the composition of ψ with the reversing antiautomorphism of CB∞ that is
the identity on the σi’s and the ρj ’s. Using ψr instead of ψ amounts to using reversed
composition rather than composition, i.e., thinking of CB∞ as acting on the right.

We wish to prove that a 6= b holds in CB∞ whenever a and b admit decompositions of
the form {

a = (. . . ((c1 ∗ . . . ∗ cr ∗ ρi
1) ∗ a1) ∗ . . .) ∗ ap,

b = (. . . ((c1 ∗ . . . ∗ cr ∗ ρj
1) ∗ b1) ∗ . . .) ∗ bq

(3.6)

with i 6= j. So assume that a and b satisfy (3.6), and j = i + k holds for some k > 0
Expanding (3.6) gives equalities of the form{ a = c σrσr−1 . . . σ1 a0,

b = c ρk
r σrσr−1 . . . σ1 b0,

where a0 and b0 admit expressions where neither σ−1
1 nor ρ±1

1 occurs. Now, let x be the
element ψr(cσr..σ1)−1(x1,0). By construction, we have ψr(cσr...σ1)(x) = x1,0, and we find{

ψr(a)(x) = ψr(a0)(x1,0),
ψr(b)(x) = ψr(b0)(ψr(σ−1

1 ...σ−1
r ρk

rσr...σ1(x1,0)) = ψr(b0)(x1,k)

(we recall that ψr is an antihomomorphism). We resort now to Larue’s argument used
in [11] for establishing the acyclicity of (B∞, ∗). With our current notations, he proves
that, if a is a braid that admits an expression where σ−1

1 does not occur, then ψr(a)(x1)
either is x1, or it is a reduced word that finishes with x−1

1 : by definition, the result is
true when ψr(σ1) is applied once, and, then, Larue shows that the final letter x−1

1 in the
image of x1 can never be cancelled when subsequent automorphisms ψr(σ1) or ψr(σ±1

i )
with i ≥ 2 are applied. In the extended framework of charged braids, the only new fact
is that some ρ±1

j can change the second index q of some variables xp,q or x−1
p,q. Now the

variables x±1
1,q can be changed by the action of ρ±1

1 only. So, the hypothesis that a0 admits an
expression without σ−1

1 and ρ±1
1 implies that Larue’s result remains valid, i.e.ψr(a0)(x1,0)

is either x1,0, or it finishes with x−1
1,0. Similarly, the hypothesis that b0 admits an expression

without σ−1
1 and ρ±1

1 implies that ψr(b0)(x1,k) is either x1,k, or it finishes with x−1
1,k. We

deduce ψr(a)(x) 6= ψr(b)(x), hence ψr(a) 6= ψr(b), and, finally, a 6= b. Therefore, any
equality of the form (3.6) is impossible in CB∞.

We can now complete the proof of Proposition 3.2. Let S be sub-LD-system of (CB∞, ∗)
generated by 1, ρ1, ρ2

1, . . . Then, by Lemma 3.9, (S, ∗) is acyclic, and, by Lemma 3.10,
(1, ρ1, ρ

2
1, . . .) is quasifree in (S, ∗). By Lemma 3.8, this implies that S is free based on {1, ρ1, ρ

2
1, . . .}.

We finish with an open question.

Question 3.11. Does the LD-system (B∞, ∗) include a free subsystem with two generators?
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A negative answer seems probable, for space may be missing in B∞ for constructing inde-
pendent elements. For instance, we have σ1 ∗ σ1 = σ2 ∗ σ2, which shows trivially that the
subsystem of (B∞, ∗) generated by σ1 and σ2 is not free. More general counterexamples
involving arbitrary positive braids can be given, but no complete argument is known to
date.
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SDAD, Mathématiques, Université Campus 2, BP 5186, 14 032 Caen, France
email address: dehornoy@math.unicaen.fr

URL: http://www.math.unicaen.fr/∼dehornoy

16


