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A Fast Method
for Comparing Braids

Patrick DEHORNOY

ABSTRACT. We describe a new method for comparing braid words which relies
both on the automatic structure of the braid groups and on the existence of a
linear ordering on braids. This syntactical algorithm is a direct generalization of
the classical word reduction used in the description of free groups, and is more
efficient in practice than all previously known methods.

We consider in this paper the classical braid isotopy problem, i.e., the question of deciding
if a given two-dimensional diagram made of a series of mutually crossing strands can be
transformed into another one by moving strands but not allowing one to pass through
another one. As is well-known, this problem became a question of algebra after E. Artin
in the 20’s has rephrased it as the word problem for a family of effectively presented
groups, Artin’s braid groups Bn.

Many solutions have been described, beginning with Artin’s original construction that
uses the geometric idea of combing the braids to obtain a normal form for braid words
and a decomposition of the groups Bn as semidirect products of free groups ([1]). The
starting point for modern braid comparison method is the purely algebraic result by Gar-
side [10] that every braid can be decomposed into a quotient of two positive braids, i.e., of
braids where all crossings have the same orientation. Several algorithms have been con-
structed: [10] itself, then [17] (cf. [9]), [8], [6], [16], [15]. These methods take advantage
of the special form of the relations in the standard presentation of the groups Bn, mainly
in terms of the geometry of the associated Cayley graph. In particular the existence of
a (bi)automatic structure on Bn guarantees the existence of a quadratic isoperimetric
inequality, and explains the efficiency of the practical algorithms deduced from this ap-
proach: they have a polynomial complexity with respect to the length of the braid words,
even a quadratic complexity when the number of strands is fixed.

The aim of this paper is to present a new method for solving the braid isotopy problem.
This method appeals to a completely new ingredient, namely the existence of an linearly
ordered structure on the groups Bn. Such a structure was introduced recently in [5] in
connection with results in the study of self-distributive operations (and, ultimately, with
a problematic of set theory, cf. [7]). The use of the braid order will prove to be crucial in
order to “pilot” our algorithm, and it explains heuristically its efficiency. Indeed the new
method proves to be more efficient than the previously known ones, specially for braids
with many strands: typically it enables us to compare on a microcomputer random braids
that involve say 1000 crossings and any number of strands in less than one second, which
seems to be (far) beyond the practical capabilities of the former methods.
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The paper is organized as follows. Section 1 describes the method, which consists in
iterating some reduction operation on braid words until some special form is obtained.
Sections 2 and 3 establish that such reductions must always terminate and use two
complementary arguments, respectively a boundedness result that follows from algebraic
considerations (about the geometry of the Cayley graph of B∞), and an acyclicity result
that directly appeals to order considerations. Section 4 discusses the algorithmic aspects
of the method, which in turn suggest further conjectures.

1. The geometric principle of handle reduction

As usual we shall use σi and σ−1
i to denote the elementary braid diagrams where the

stands at positions i and (i+1) cross as below

1 2 i i + 1

σi

σ−1
i

Then every braid diagram is described by a (finite) concatenation of σi’s and σ−1
i ’s, i.e.,

by a braid word involving the letters σ±1
i . E. Artin has shown that two such braid words

represent isotopic braid diagrams if and only if they are equivalent with respect to the
least congruence ≡ that satisfies, for all integers i, j,{σiσi+1σi ≡ σi+1σiσi+1

σiσj ≡ σjσi for |i − j| ≥ 2 (1.1)

and σiσ
−1
i ≡ σ−1

i σi ≡ ε, where ε is the nullstring. In other words, if Bn denotes the group
generated by a sequence of generators σ1, σ2, . . ., σn−1 subject to the relations (1.1),
then the isotopy problem for n strand braids becomes the word problem for the presen-
tation (1.1) of the group Bn.

In this text it will be convenient to work with braids that involve an unbounded number
of strands. This amounts to consider the direct limit B∞ of the groups Bn (with respect
to inclusion), i.e., the group generated by an infinite sequence σ1, σ2, . . ., subject to (1.1).
So braid words will be arbitrary finite sequences of letters σ±1

k . The braid associated with
a braid word w, i.e., its class in the group B∞, is denoted by w. If the braid β is the
class of the word w, we say also that w is a decomposition for β. If w is a braid word, the
length of w is the number of letters occurring in w (hence the number of crossings in the
associated braid diagram), and the width of w is the width of the smallest domain that
includes the non-trivial part of w: formally the width of w is n if n−2 is the difference
between the lowest and the highest indices of letters occurring in w (for instance the
width σ3σ

−1
6 σ−1

3 is 5, since this braid word involves the strands numbered 3 to 7; in
particular the width of an n strand braid word is always at most n). Finally we say that
a braid word is freely reduced if it includes no subword of the form σiσ

−1
i or σ−1

i σi, and
we speak of free reduction of an arbitrary word to refer to the operation of iteratively
deleting all such pairs.
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Our construction will relie upon the existence of braid decompositions with a particular
syntactical form. For any integer j, we shall say that the letters σj in a word w are
positive occurrences of σj , and that the letters σ−1

j are negative occurrences of σj .

Definition. The braid word w is reduced either if w is the nullstring, or if the main
generator of w, defined as the generator with lower index occurring in w, occurs only
positively, or only negatively.

For instance the word σ−1
3 σ2σ

−1
4 σ2 is reduced, since the main generator, here σ2, occurs

only positively (no occurrence of σ−1
2 ). On the other hand σ1σ2σ

−1
1 is not reduced, since

the main generator σ1 occurs both positively and negatively. The interest of considering
reduced braid words in connection with the word problem is given by

Proposition 1.1. ([5], see also [11]) A nonempty reduced braid word cannot be equiv-
alent to the nullstring.

It follows that any method that would possibly transform a braid word into an equivalent
reduced braid word would automatically solve the word problem of braids: assuming that
w′ is a reduced braid word that is equivalent to w, w is equivalent to the nullstring if and
only if w′ is the nullstring. (Of course the general problem of deciding if two braid words
w, w′ are equivalent reduces to the problem of deciding if one braid word is equivalent to
the nullstring ε since w ≡ w′ is equivalent to w−1w′ ≡ ε.) Now such methods do exist:

Proposition 1.2. ([5]) Every braid admits a reduced decomposition.

Unfortunately the original method of [5], though perfectly effective, is intractable in
practice: because of a long detour involving self-distributive structures the complexity
of the reduced decompositions obtained in this way is in general huge. In particular the
method requires considerably increasing the width of the braid words, so that it leaves
open the natural question of the existence of a width n reduced decomposition for every
width n braid. This question was settled positively by R. Laver (unpublished work) using
fine results of self-distributive algebra. However his proof is only existential and does not
give an effective method. Subsequently, D. Larue described in [12] a reduction method
that preserves the width and is effective. His method uses the realization of B∞ as a
group of inner automorphisms of a free group. However the complexity of this method
seems to be intrinsically exponential with respect to the length of the words, so that the
corresponding solution to the word problem is not efficient in practice.

The aim of this paper is to describe a new reduction method which relies on a very simple
geometric idea and happens to give an extremely efficient solution to the word problem.
The reason that explains this efficiency is that the method takes advantage of the order
properties that are implicit in Propositions 1.1 and 1.2. Indeed it is easy to deduce from
the latter results

Corollary 1.3. For any braids β, β′, say that β < β′ holds if and only if the braid β−1β′

admits a reduced decomposition of positive type, i.e., a reduced decomposition where
the main generator occurs positively. Then the relation < is a linear ordering on B∞.
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Observe that the defining property of the order < forces every generator σj to be pre-
ponderant over all σ±1

k with k > j in the sense that β′σjβ
′′ > β holds whenever β, β′ and

β′′ admit decompositions involving only no letter σ±1
k with k ≤ j. (It is shown in [5] that

this property essentially characterizes the order <. See also [13] and [3] for additional
properties of this order.)

So we see that any method that constructs a reduced decomposition for a braid is actually
a comparison method that decides if this braid is smaller, equal or larger than the unit
braid with respect to the ordering <. (Observe that using this additional information
can considerably lower the number of comparaisons to be done if one wishes to show that
more than two braids are pairwise distinct.)

From now on we consider the problem of transforming an arbitrary braid word into an
equivalent reduced word. Our method is a generalization of the free reduction which
deletes the pairs xx−1 or x−1x in any group presentation. The latter case corresponds
formally to the trivial case of width 2 braids, and gives a valuable intuition. However the
extension of free reduction we shall introduce heavily depends on the geometry of braids:
this explains its efficiency, but also dismisses the hope that the method be possibly
generalized to a much larger class of groups.

By definition a braid word is not reduced when it contains some alternation of the form
σ±1

i . . .σ∓1
i , where σi is the main generator. If we consider occurrences of σ±1

i that are
as close as possible, the intermediate factor will contain only generators σ±1

k with k > i.
Geometrically this corresponds to the fact that the i+1-th strand forms a (left) handle
as in Figure 1.1.

Figure 1.1: A handle

Our method will consist in eliminating the handles as above in order to eventually obtain
a reduced word. However it will in general be necessary to consider also similar handles
that involve any generator (and not only the main one). So we take

Definition. (Figure 1.2) A σj-handle is a braid word of the form σe
jvσ−e

j , where e is
+1 or −1 and the word v contains only generators σ±1

k with k < j − 1 or k > j. A main
handle of w is a subword of w that is a σi-handle, where σi is the main generator of w.

It is easy to imagine geometric transformations that eliminate one handle. For instance
Figure 1.3 illustrates the “coarse” method that consists in replacing a handle of the
form σe

jvσ−e
j by the equivalent word

σ−e
j+1σ

−e
j+2. . .σ

−e
n−1 θj(v) σe

n−1. . .σ
e
j+2σ

e
j+1,
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j+1

Figure 1.2: A (general) σj-handle

where n is the width of the considered braid word, and θj denotes the left shift of the
generators σk with k > j, i.e., the partial homomorphism that maps σk to σk−1 for k > j
and preserves σk for k < j.

j+1 j+1

becomes

Figure 1.3: Coarse reduction of a handle

In the sequel we shall consider a slightly more careful handle reduction method, namely
the “local” reduction where, instead of moving the guilty j+1-th strand to the extreme
right of the diagram, we let it skirt on the right the “next” crossings, i.e., the ones
at position j +1, j +2 (so the latter crossings are shifted left in the process). This
transformation is illustrated in Figure 1.4 (the orientations of the crossings at position
j+1, j+2, which can be arbitrary, have not been specified), and it amounts to replacing
a handle of generic form

σe
j v0 σd1

j+1 v1. . . vm−1 σdm
j+1 vm σ−e

j , (1.2)

where v0, . . ., vq contain no σ±1
k with j − 1 ≤ k ≤ j + 1, with the equivalent word

v0 σ−e
j+1σ

d1
j σe

j+1 v1. . . vm−1 σ−e
j+1σ

dm
j σe

j+1 vm. (1.3)

In other words we apply in the handle the alphabetical homomorphism φj,e defined by

φj,e :


σ±1

j �→ ε

σ±1
j+1 �→ σ−e

j+1σ
±1
j σe

j+1

σ±1
k �→ σ±1

k for k �= j, j + 1.
(1.4)
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j+1 j+1

becomes

Figure 1.4: Local reduction of a handle

We see at once that applying local reduction (or coarse reduction) will delete one
handle, but at the expense of possibly creating (many) new ones. So it is not surpris-
ing that the naive approach consisting in simply reducing the main handles until some
reduced word is reached does not work. Indeed consider the word w = σ1σ2σ3σ

−1
2 σ−1

1 .
There is only one main handle in w, namely w itself, and applying local reduction to w
gives the word σ−1

2 wσ2. It follows that repeated reductions will give the words σ−k
2 wσk

2 ,
none of which is reduced.

The problem in the previous trivial example is that reduction is applied to a handle whose
median factor (the one between the first and the last occurrences of the main generator,
here σ2σ3σ

−1
2 ) is not reduced, and, more precisely, that it contains a σ2-handle. The

main result of this paper is that this obstruction is the only possible one, i.e., that
handle reduction will always lead to reduced words in finitely many steps provided that
reducing handles of the above type is avoided.

Definition. i) A σj-handle σe
jvσ−e

j is permitted if it includes no σj+1-handle, i.e., if at
least one of σj+1, σ−1

j+1 does not occur in v.
ii) The word w′ is deduced from w using one step of handle reduction, or H-reduction,

if w′ is obtained from w by reducing a permitted σe
j -handle of w (using local reduction),

i.e., applying in that handle the alphabetical homomorphism φj,e of (1.4).

Of course we shall say that w′ is deduced from w using N steps of handle reduction
from w if there exists a length N sequence of reductions from w to w′, i.e., a sequence
w0 = w, w1, . . ., wN = w′ such that any term is deduced from the previous using one step
of handle reduction. Observe that, with the notations of formula (1.2), the hypothesis
that the handle is permitted means that all exponents d1, . . ., dq have a common value.

Example 0.1. Let us come back to the above word w = σ1σ2σ3σ
−1
2 σ−1

1 . The main
handle w is not permitted, but the σ2-handle σ2σ3σ

−1
2 is, and the word σ1σ

−1
3 σ2σ3σ

−1
1

is deduced from w using reduction. The latter word is itself a (main) handle, and it is
now a permitted handle since the alternation of σ2’s has been corrected, so reduction is
possible, and gives σ−1

3 σ−1
2 σ1σ2σ3, a reduced word that is terminal for reduction.
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A few experiments will show that the situation is in general much less simple. Neverthe-
less we have

Theorem 1.4. Handle reduction is noetherian (or well-founded): any sequence of re-
ductions has to be finite. More precisely, if w is a braid word of length � and width n,
the length of any sequence of handle reductions from w is bounded above by 2n4�.

The words that are terminal with respect to handle reduction are certainly reduced, so
the previous result gives a new proof of Proposition 1.2. Actually we obtain a little more.

Definition. The braid word w is fully reduced if any two letters σj , σ−1
j in w are

separated by at least one letter σ±1
j−1.

Lemma 1.5. For any braid word w the following are equivalent:
i) w is fully reduced;
ii) w contains no handle;
iii) w is terminal with respect to handle reduction.

Proof. Points (i), (ii) are equivalent by definition of a handle, and they obviously imply
(iii). For the converse implication, observe that the leftmost handle of a word (in terms
of the position of the last letter of this handle) must always be a permitted one: indeed
a σj-handle is not permitted just in case there exists a σj+1-handle that is nested in it,
which forbids the previous to be the leftmost handle of w. �

So from Theorem 1.4 we deduce

Corollary 1.6. Every braid in Bn admits a fully reduced decomposition of width n.

2. Termination of handle reduction (I): boundedness

There seems to be no obvious reason that forces any sequence of reductions to eventually
reach a fully reduced word, or simply a reduced word. In particular it is clear from the
definition of reduction that the length of the words will increase in general. On the other
hand it is also not clear why the sequence could not simply enter a loop and therefore
continue periodically without ever terminating. Our proof of Theorem 1.4 will consist
of two ingredients that more or less solve these two problems, namely a boundedness
argument, which shows that the words that can be deduced from w using reduction are,
in some sense, not more complicated than w itself (even if their length may be larger),
and an acyclicity argument, which shows that repetitions are forbidden and gives actual
termination.

Our starting point for studying reduction will be to connect it with more atomic trans-
formations which will have a simple counterpart in the Cayley graph of B∞. To this end
we appeal to some results of [6] about the transformation of arbitrary braid words into
quotients of two positive braid words.
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Definition. The word w′ is deduced from w using one step of R-reduction if w′ is
obtained from w by replacing some subword of the form σ−1

i σj with the corresponding
(equivalent) word f(σj , σi)f(σj , σi)−1, where f is the mapping defined by

f(σi, σj) =

σiσj for |i − j| = 1,
σi for |i − j| ≥ 2,
ε for i = j.

In this definition the letter R stands for “right”: right reduction corresponds to moving
right the negative generators in order to gather them at the end of the word, while
positive generators are gathered at the beginning. Of course, like for handle reduction,
we shall iterate R-reduction and consider words that can be deduced from an initial word
in any number of R-reduction steps.

Example 0.2. In this section we shall illustrate our constructions using the word w0 =
σ1σ

−1
2 σ−1

1 σ2σ3σ1. Only one word can be deduced from w0 using one step of R-reduction,
namely σ1σ

−1
2 σ2σ1σ

−1
2 σ−1

1 σ3σ1. Similarly σ2
1σ−1

2 σ−1
1 σ3σ1 and σ1σ

−1
2 σ2σ1σ3σ

−1
1 σ1 can

be deduced in two steps, etc.We can check that any sequence of R-reductions from w0

ends after five steps in the word σ2
1σ3σ2σ

−1
3 σ−1

2 , which is R-irreducible since no negative
letter precedes any positive one. Figure 2.1 illustrates R-reduction in the Cayley graph.
(We recall that the Cayley graph of B∞ is an oriented graph with labelled arrows such
that the set of vertices is B∞, and there is a σi-labelled arrow between from the vertex β
to the vertex β′ if and only if β′ is equal to βσi.) Observe that, if the arrows of the
Cayley graph are always given a left-to-right orientation, R-reduction always transforms
a word into another one such that the path associated with the latter lies on the right of
the path associated with the initial word.

σ1

σ1

σ3

σ2

σ1

σ2

σ1

σ3 σ3 σ3

σ2 σ2

σ1 σ2

Figure 2.1: R-reduction of σ1σ
−1
2 σ−1

1 σ2σ3σ1

It is clear that, if w′ is deduced from w using R-reduction, then w and w′ are equivalent,
and it is not hard to see that at most one R-irreducible word can be deduced from a given
word using R-reduction. It is less obvious that R-reduction has to terminate, i.e., that
one reaches an R-irreducible word of the form uv−1 with u, v positive. This however is
always true, mainly because of the existence of an automatic structure on the group Bn

([9]):

Lemma 2.1. ([6]) For every braid word w, there exists unique positive braid words
NR(w) and DR(w) (the right numerator and denominator of w) such that the word
NR(w)DR(w)−1 can be deduced from w using R-reduction. Moreover, if the length of w
is � and its width is n, the length of NR(w)DR(w)−1 is bounded by 1

2n(n − 1)�.
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For instance in the above example of w0, we find that the right numerator and denomi-
nator are respectively σ2

1σ3σ2 and σ2σ3. We refer to [6] for the properties of R-reduction
(see also [16] where a similar notion was introduced independently). In particular we can
show that two positive braid words w, w′ are equivalent if and only if the nullstring can
be deduced from w−1w′ by R-reduction.

Now the braid relations (1.1) are invariant under reversing the order of the letters, so
that we can immediately transpose the above notions into their left counterparts: we
say that w′ is deduced from w using one step of L-reduction if w can be transformed
into w′ by replacing some subword of the form σiσ

−1
j by the corresponding pattern

g(σi, σj)−1g(σj , σi), where g is the mapping defined by

g(σi, σj) =

 σiσj for |i − j| = 1,
σj for |i − j| ≥ 2,
ε for i = j.

Figure 2.2 below illustrates L-reduction from the word w0. With the same graphical
conventions as above, L-reduction replaces paths in the Cayley graph with new paths
on their left. We shall introduce NL(w), the left numerator of w, and DL(w), the left
denominator of w, which are the unique positive words such that DL(w)−1NL(w) can
be deduced from w using L-reduction. They exist by the analog of Lemma 2.1. In the
case of w0, we read that the left numerators and denominators are respectively σ2

2σ3σ1

and σ1σ2.

σ1

σ2

σ1

σ2

σ3

σ1

σ2

σ2

σ1

Figure 2.2: L-reduction of σ1σ
−1
2 σ−1

1 σ2σ3σ1

We shall also use a notation for the refinements of braid equivalence that correspond to
operating substitutions only on positive, or on negative, subwords.

Definition. The braid word w′ is deduced from w using P -equivalence (resp. N -
equivalence) if w can be transformd into w′ by replacing finitely many times some positive
subword by an equivalent positive subword (resp. some negative subword by an equivalent
negative subword).

The interest in introducing these transformations here is that we can express handle
reduction in terms of the latter:

Lemma 2.2. Each step of H-reduction can be decomposed into a finite sequence of
steps each of which is either an R- or an L-reduction, or a P - or an N -equivalence.
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Proof. The question is to prove that the transformation of

σe
j v0 σd

j+1 v1. . . vm−1 σd
j+1 vm σ−e

j , (2.1)

(where all letters in v0, . . ., vm are σ±1
k with |k − j| ≥ 2) into

v0 σ−e
j+1σ

d
j σe

j+1 v1. . . vm−1 σ−e
j+1σ

d
j σe

j+1 vm. (2.2)

can be decomposed into a series of “microsteps” of the above types. Assume for
instance that e is +1 and d is −1. Then reduction can be done by moving right
the initial σj . First transforming σjv0 into v0σj can be made by a sequence of L-
reductions and P -equivalences. Indeed by hypothesis v0 contains only generators σ±1

k

with |k − j| ≥ 2: for such k transforming σjσk into σkσj is a P -equivalence, and trans-
forming σjσ

−1
k into σ−1

k σj is an L-reduction. Then we find the pattern σjσ
−1
j+1, which

becomes σ−1
j+1σ

−1
j σj+1σj by an L-reduction. So, at this point, we have transformed the

initial word into

v0 σ−1
j+1σ

−1
j σj+1σj v1 σ−1

j+1 v2. . . vm−1 σ−1
j+1 vm σ−1

j . (2.3)

After m such sequences of reductions, and a last L-reduction to delete the final pattern
σjσ

−1
j , we reach the form (2.2), as we wished. The argument is similar in the case

e = −1, d = 1, with N -equivalences instead of P -equivalences. In the case when the
exponents e and d have the same sign, we use R-reduction in order to move left the final
generator σ−e

j in a symmetric way. �

It follows from this result that the set of all words that can be deduced by reduction from
a given word w is included in the closure of the word w under R- and L-reduction and
P - and N -equivalence. We have mentioned that the closure of a word under R-reduction
alone, or under L-reduction alone, is certainly finite. Things are not so simple when both
operations are allowed simultaneously, as shows the sequence

σ1σ
−1
2 , σ−1

2 σ−1
1 σ2σ1, σ−1

2 σ2σ1σ
−1
2 σ−1

1 σ1, σ−1
2 σ2σ

−1
2 σ−1

1 σ2σ1σ
−1
1 σ1, . . .

which is obtained by an alternation of L- and R-reductions. However we can see that
the above words, yet their lengths are unbounded, remain traced in some finite region of
the Cayley graph of B∞.

For any set of braid words S we can consider the subgraph of the Cayley graph of B∞ (of
which a definition was recalled above) made by the paths associated with the elements
of S starting at the fixed point 1. Then we have a natural notion of a word traced in this
subgraph, i.e., a word such that there exists a path in the subgraph whose sucessive labels
are the letters of the considered word (when an edge is crossed backwards it contributes
the inverse of its label). Formally we take

Definition. (Figure 2.3) Assume that S is a set of positive braid words, and u belongs
to S. The braid word w is traced in S from u if there exists in the Cayley graph of S a
path labelled w that starts from the vertex u, i.e., if, for every prefix of w of the form
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u
v

u′ σj

u′′

u
v

u′
σj

u′′

Figure 2.3: Word traced in S

vσj (resp. vσ−1
j ) there exist positive words u′, u′′ such that u′σju

′′ belongs to S and uv
is equivalent to u′ (resp. to u′σj).

Observe that there are always infinitely many words traced in any set S that contains
at least one nonempty word: if the word σj is traced in S, so are all words (σjσ

−1
j )k.

Nevertheless we shall see in Section 3 how the fact that some words are traced in a finite
set can be used as a strong boundedness hypothesis. Presently we observe that, provided
that the set S is regular enough, the set of the words traced in S verifies good closure
properties.

Lemma 2.3. Assume that S is the set of all positive decompositions of some positive
braid. Then the set of the words traced in S from some given point is closed under R-
and L-reductions, and under P - and N -equivalence.

Proof. Consider first the case of R-reduction (Figure 2.4). Assume that some word
vσ−1

i σjv
′ is traced in S from u. We have to show that the word vf(σj , σi)f(σjσi)−1v′ is

also traced in S from u. Now the hypothesis means that there exist positive braid words
u′, u′′

1 and u′′
2 such that both u′σiu

′′
1 and u′σju

′′
2 belong to S, and u′σi is equivalent to uv.

By hypothesis the positive words u′σiu
′′
1 and u′σju

′′
2 are equivalent, and so are the words

σiu
′′
1 and σju

′′
2 . By [10] (or [6]) we know that this implies the existence of a positive

word u′′ satisfying

u′′
1 ≡ f(σj , σi)u′′ and u′′

2 ≡ f(σj , σi)u′′.

This shows that the word f(σj , σi)f(σi, σj)−1 is traced in S from uv, which is exactly
what we need.

u′
σj

σi

v

v′
u′′

2

u′′
1

u′′

u

f(σi, σj)

f(σj , σi)

Figure 2.4: Closure of words traced in S under R-reduction
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The argument is of course symmetric for L-reduction. Finally the case of P -
equivalence is trivial: if, for instance, vσiσi+1σiv

′ is traced in S from u, there exist
positive words u′ and u′′ such that u′σiσi+1σiu” belongs to S and uv is equivalent to u′.
Now u′σi+1σiσi+1u” belongs to S as well, and this shows that vσi+1σiσi+1v

′ is still traced
in S. The case of N -equivalence is similar and just corresponds to crossing the arrows
with reverse orientation. �

Then we conclude from Lemma 2.1 that, under the hypotheses of Lemma 2.2, the set
of all words traced in S is closed under H-reduction. So we are left with the question
of finding, for a given initial word w, a positive braid β such that w is traced in the
set of the positive decompositions of β. This is easy using the notions of right and left
numerators and denominators we have mentioned above.

Definition. Let w be any braid word. Then S(w) is the set of all positive braid words
that are equivalent to the word DL(w)NR(w).

Example 0.3. Consider again the word w0. The word DL(w0)NR(w0) is σ1σ2σ
2
1σ3σ2,

and we find that S(w0) contains 8 words as shown in Figure 2.5. In this simple example
the Cayley graph of S(w) happens to be a planar graph, but this need not be true in
general. Observe that the Cayley graph of S(w0) is a strict extension of the Cayley graph
obtained by simply closing w0 under R- and L-reduction.

σ1

σ1 σ1
σ3

σ3

σ2

σ1

σ2

σ1

σ3 σ3 σ3

σ2 σ2

σ1 σ2

σ2

σ1

σ2

σ3

σ1

σ2

σ2

σ1 σ1σ3

Figure 2.5: The set S(σ1σ
−1
2 σ−1

1 σ2σ3σ1)

It is clear that the set S(w) is finite, and we obtain the following trivial bound on its
size.

Lemma 2.4. Assume that the braid word w has length � and width n. Then the
set S(w) is finite with at most (n − 1)n2� elements.

Proof. By Lemma 2.1 the length of the word DL(w)NR(w) is at most n2�. Now for a
positive braid word of length L there are only finitely many positive equivalent braid
words, all with the same length L. More precisely, if only n− 1 different generators may
be used, the number of positive words with length L is certainly at most (n − 1)L. �

The last step of our argument is

Lemma 2.5. Let w be any braid word. Then w is traced in set S(w) from DL(w).

12



Proof. We use induction on the length of w. The result is obvious if w is the nullstring. So
assume that the result is proved for w, and consider the case of the words wσ±1

k . Assume
first that w′ is wσk. By construction DL(w′) is DL(w), and NR(w′) is NR(w)v for some
positive word v, namely the right numerator of DR(w)−1σk (Figure 2.6). It follows that
uv belongs to S(w′) for every word u in S(w), and, therefore, every word traced in S(w)
from DL(w) is also traced in S(w′) from DL(w). This applies in particular to w itself.
So it only remains to consider the case of the final letter σk of w′. Now DL(w′)w is
equivalent by construction to NL(w), and the equivalence

NL(w) σk DR(w) ≡ DL(w′) NR(w′)

shows that this final letter σk also satisfies the defining condition for a word traced
in S(w′).

Assume now that w′ is wσ−1
k . There exists a positive word v (namely the left

denominator of NL(w)σ−1
j ) such that DL(w′) is vDL(w), while NR(w′) is NR(w). So

now the word vu belongs to S(w′) for every word u of S(w). It follows that w is traced
in S(w′) from vDL(w), which is DL(w′). Again it remains to consider the final letter σ−1

k

of w′. Now DL(w′)w′ is equivalent to NL(w′), and the equivalence

NL(w′) σk DR(w) ≡ DL(w′) NR(w′)

gives the conclusion. �

w w

σk σk

NL(w) DR(w) NL(w) DR(w)

DL(w) NR(w) DL(w) NR(w)

DR(w′) NL(w′)

v v

Figure 2.6: The sets S(wσk) and S(wσ−1
k )

Gathering the previous lemmas gives the main result of this section:

Proposition 2.6. Let w be any braid word. Then all words w′ that can be deduced
from w using handle reduction are traced in S(w) (from DL(w)).

This result gives the boundedness property we were looking for: it means that all words
that are deduced from a given word using reduction have to remain traced in some finite
region of the Cayley graph of B∞, yet for the moment we have absolutely no bound on
their length.

We finish this section with a corollary that will be useful in the sequel:

Lemma 2.7. Assume that the word w′ is obtained from the word w using handle
reduction (or, more generally R-, L-reduction and P -, N -equivalence). Then every word
traced in S(w′) (from DL(w′) is also traced in Σ(w) from DL(w).

13



Proof. It suffices to consider the case when w′ is obtained using one step of R- or L-
reduction, or one P - or N - equivalences. In the three latter cases, the results of [6] show
that the words DL(w′) and NR(w′) are respectively equivalent to DL(w) and NL(w), so
the sets S(w′) and S(w) merely coincide. Now assume that w′ is obtained using one
step of R-reduction from w. Again by [6] we know that there exists a positive word u
satisfying

DL(w) ≡ u DL(w) and NL(w) ≡ u NL(w′).

This implies that a positive word v belongs to S(w′) if and only if the positive word uv
belongs to S(w). Hence any word traced in S(w′) from some point v is also traced in S(w)
from uv. �

3. Termination of handle reduction (II): acyclicity

We have so far used the algebraic properties of the group B∞, mainly the quadratic
isoperimetric inequality that causes R- and L-reductions to terminate in a quadratic
number of steps. The above arguments have shown that all words deduced using reduc-
tion from a given word remain in some finite region of the Cayley graph. This gives no
informtion about the way reduction possibly progresses toward the final form. In partic-
ular we still have no argument to prove that cycles are impossible in reduction sequences.
The latter property will follow from the existence of the ordered structure provided by
Corollary 1.3.

The main idea is as follows. Let us introduce, for any braid word w of length �, a char-
acteristic function ŵ whose domain is the integer interval (1, �) and which maps k to the
class of the length k prefix of w in B∞. Because B∞ equipped with the order < of Corol-
lary 1.3 is a dense linear order without endpoints, hence is isomorphic to the rationals,
we can think of ŵ as a numerical function and represent its graph as in Figure 3.1 which
corresponds to our former example w0. (Of course the isomorphism between B∞ and the
rationals concerns only the order, and not the algebraic structure: the “height” of the
generators in the diagram must vary.) Now a σj-handle beginning with a positive letter
(resp. a negative one) in the braid word w gives a hill (resp. a vail) in the graph of ŵ,
and we shall see that reduction corresponds to razing, or, at least, smoothing such hills
and vails, so that the graphs of the words that appear in a reduction sequence are, in
some sense, smoother and smoother. This is essentially why cycles in reduction are im-
possible. However, at least because the braid order is dense, the acyclicity phenomenon is
not sufficient in itself to prove termination, and we shall have to marry it in a convenient
way with the results of Section 2 in order to conclude.

Let us now turn to the precise argument. The point is to study how handles are
transformed along sequences of reductions: we shall show that, if w′ is obtained from w
by handle reduction, then (most of) the handles in w′ are in some sense the heirs of
handles that were already present in w, and, moreover, that the heirs of a given handle
can be reduced only a finite number of times, bounded by some constant that depends
only on the initial word.

In order to describe the heiring phenomenon, we shall consider the positions of the letters

14



(B∞, <)

1

σ1

σ1σ−1
2

σ2
1

σ−1
1

σ1σ−1
2 σ−1

1

σ−2
1

w0

Figure 3.1: The characteristic function of w0 = σ1σ
−1
2 σ−1

1 σ2σ3σ1

in braid words: we say that x is a position of the letter σ±1
k in w just to express that the

x-th letter of w (starting from the left) is that letter.

Definition. The integer x is a critical position of the letter σe
k in w (e = ±1) if σe

k is
the x-th letter of w and, in addition, some σk-handle of w begins at this position (we do
not require that this handle be permitted).

Example 0.4. In the word σ1σ
2
2σ−1

3 σ−1
1 σ3 there are two handles, and therefore two

critical positions: 1 is a critical position of σ1, and 4 is a critical position of σ−1
3 .

We fix now for a while a pair of words (w, w′) such that w′ is obtained from w by
reducing exactly one σj-handle. Our aim is to establish a correspondence between the
critical positions in w and the critical positions in w′. We assume that the σj-handle
that is reduced from w to w′ corresponds to the positions p and q in w, and, in this case,
we say that p is the active critical position in the reduction of w to w′. We write r for
the position of σ±1

j in w that immediately precedes p (if it exists), and s1, . . ., sm for the
positions of σ±1

j+1 between p and q in w (if they exists). So w can be written as

w = (w1

r
↓
σb

j ) u1

p
↓
σe

j v1

s1

↓
σd

j+1v2 . . . vm−1

sm

↓
σd

j+1vm

q
↓
σ−e

j u2 (σc
j w2) (3.1)

where b, c, d, e are ±1 and there is no σ±1
j in u1 and u2, and no σ±1

j−1, σ±1
j , or σ±1

j+1 in
v1, . . ., vm. By definition of handle reduction, the word w′ is then

w′ = (w1 σb
j) u1 v1 σ−e

j+1σ
d
j σe

j+1 v2 . . . vm−1 σ−e
j+1σ

d
j σe

j+1 vm u2 (σc
j w2) (3.2)

Let � be the length of the word w, and �′ be the length of w′. We define a mapping

h : {1, . . ., �} \ {p, q} → {1, . . ., �′}

as follows:

h(x) =


x for x < p,
x + 2(t − 1) for x = st, t = 1, . . ., m,
x + 2t − 1 for st−1 < x < st, t = 1, . . ., m, with s0 = p and sm+1 = q,
x + 2(m − 1) for x > q.
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Thus h(x) is the position where the letter at position x in w is copied in w′. More
precisely, if x is a position of σ±1

k in w, then h(x) is a position of the same letter in w′,
excepted for the letters σd

j+1 between p and q, which become σd
j . The natural idea is to

say that h(x) is in w′ the heir of x, and to observe that h nearly induces a one-to-one
mapping of the critical positions in w onto the critical positions in w′. However this
obvious construction has to be improved in the neighbourhood of the active position,
and the actual heiring function H we shall use in the sequel will be constructed from h
using some additional elements.

Let us first consider the critical positions of σ±1
k for k �= j, j +1. Assume that x is such a

critical position in w. Then h(x) is a position of the same letter in w′. Moreover the fact
that x is critical means that there exists y > x such that y is a position of σ∓1

k in w and
no σ±1

k or σ±1
k−1 occurs in w between x and y. It follows that h(y) is a position of σ∓1

k

in w′, and that no σ±1
k or σ±1

k−1 occurs in w′ between h(x) and h(y): this is clear if k is not
j +2 since, in this case, h inducess an order-preserving bijection between the positions of
the letters σ±1

k and σ±1
k−1 in w and w′. If k is j + 2, then k − 1 is j + 1, and some letters

σ±1
j+1 are modified from w to w′. But observe that the involved modification consists in

replacing σd
j+1 with σ−e

j+1σ
d
j σe

j+1, and therefore does not change the possible existence of
some letter σ±1

j+1 between two letters σ±1
j+2. Hence h(x) is a critical position of σ±1

k in w′.
Conversely, the same argument shows that, if x′ is a critical position of σ±1

k in w′, then
necessarily there exists x such that x′ is h(x) and x is a critical position of σ±1

k in w. So,
if we define, for such positions x in w, H(x) to be h(x), then the critical positions of σ±1

k

in w′ are exactly the heirs (i.e., the images under H) of the similar critical positions in w.

We consider now the critical positions of σ±1
j . If x is such a position in w, and x is none

of p, q, r, then h(x) is again a critical position of the same letter in w′, for nothing has
been changed between x and the next position of σ±1

j . For such positions x, we take
H(x) = h(x). It remains to look at p, q and r, and at the possible handles associated
with these positions. The main point is that the number of σj-handles will never increase
from w to w′, so that we shall be able to complete the definition of the function H in
order to make it always surjective (for critical positions of σ±1

j ). It will suffice to consider
three cases according to the relative signs of e and d.

Case 1: m ≥ 1 and d = e, i.e., σe
j+1 occurs in the σj-handle that is reduced.

The behaviour of the handles can be displayed as follows (the boxed patterns correspond
to the possible handles: that they are actual handles depends on the signs of b, c, e, and
of the possible letters σ±1

j−1 before p and after q):

r p sm q
↓ ↓ ↓ ↓
σb

j σe
j σe

j+1 . . . σe
j+1 σ−e

j σc
j

σb
j σe

j . . . σe
j σc

j

↑ ↑
h(r) h(sm)
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At most two handles appear in w′, and we see that, if we complete the definition of the
mapping H with

H(r) = h(r) = r if r is critical in w′, and b = −e,

and
H(p) = h(sm) if h(sm) is critical in w′ and c = −e,

(H(p), H(q) and H(r) being undefined in all other cases), then it will be true that any
critical position of σ±1

j in w′ is the heir of some critical position of that letter in w.

Case 2: m = 0, i.e., σ±1
j+1 does not occur in the σj-handle that is reduced.

The pattern is now as follows:

r p q
↓ ↓ ↓
σb

j σe
j σ−e

j σc
j

σb
j σc

j

↑
h(r)

We complete the definition of H with

H(r) = h(r) = r if r is critical in w′, and b = −e,
H(p) = h(r) = r if r is critical in w′, b = e, and c = −e.

Case 3: m ≥ 1 and d = −e, i.e., σ−e
j+1 occurs in the σj-handle that is reduced.

The pattern is here:

r p sm q
↓ ↓ ↓ ↓
σb

j σe
j σ−e

j+1 . . . σ−e
j+1 σ−e

j σc
j

σb
j σ−e

j . . . σ−e
j σc

j

↑ ↑
h(r) h(sm)

We complete now the definition of H with

H(p) = h(r) = r if r is critical in w′, and b = e,
H(q) = h(sm) if h(sm) is critical in w′, and c = −e.
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So we are done with the critical positions of σ±1
j , and it remains to consider the let-

ters σ±1
j+1. Again there is no problem on the left of p and on the right of q, and for such

positions we take H(x) = h(x). Now we see on (3.2) that new σj+1-handles may appear
in w′, namely m − 1 ones that correspond to the factors σe

j+1vtσ
−e
j+1, t = 1, . . ., m, and,

possibly, two additional ones, one at the right of the factor u1v1σ
−e
j+1 and one at the

left of the factor σe
j+1v2u2. The example of the pair (σ1σ2σ

−1
1 σ−1

2 , σ−1
2 σ1σ2σ

−1
2 ) shows

that there is no hope to obtain a surjective mapping of the σj+1-handles of w onto the
σj+1-handles of w′, so we shall not try to extend further the definition of the heiring
function H. However we can summarize the previous easy analysis as

Lemma 3.1. Assume that w′ is obtained from w by reducing one σj-handle. Then
the critical positions in w′ are the heirs of critical positions in w, augmented with at
most m + 1 new critical positions of σ±1

j+1, where m is the number of letters σ±1
j+1 in the

σj-handle that is reduced from w to w′.

We arrive to the core of the argument. The fact that a position is active in a sequence of
handle reductions does not forbid its heirs to be still active subsequently. But we shall
associate with every critical position of the initial word w and its heirs a path traced
in the Cayley graph of S(w) in such a way that some characteristic trace is left behind
on the path at each time some hair of the considered position is active. The ordering
phenomenon of Proposition 1.1 will then imply that such traces can appear only finitely
many times – and henceforth force the termination of handle reduction. To this end we
shall study the prefixes associated with the critical positions and their transformations
under heiring.

Definition. For w a braid word and x a position in w, π(w, x) is the prefix of w that
ends at position x, i.e., the word made of the x first letters of w.

Lemma 3.2. Assume that w′ is obtained from w by reducing one handle. Assume
that x is a critical position of σe

k in w, and that x′ is the heir of x in w′. Then there
exists a word u such that π(w′, x′) is equivalent to π(w, x)u, u is traced in S(w) from
DL(w)π(w, x), σe

k does not occur in u, and σ−e
k occurs (once) in u just in case x is active

from w to w′.

Proof. We keep the previous notations for w, w′ and their decompositions, and come
back to the study that precedes Lemma 3.1. If x is less than p, then x′ is x, and π(w′, x′)
is simply π(w, x). If x is larger than q, then π(w′, x′) is obtained from π(w, x) by reducing
the σj-handle at position p, q, and π(w′, x′) is equivalent to π(w, x). So in both cases we
can take for u the nullstring.

Assume now p ≤ x ≤ q. First, if x is a critical position of σ±1
k with k �= j, j + 1, then x′

is h(x), and the proof of Lemma 2.2 shows that the equivalence

π(w′, x′) ≡ π(w, x) σ−e
j

holds, and that σ−e
j is traced in S(w) from DL(w)π(w, x): so taking σ−e

j for u is con-
venient. Next, observe that x cannot be a position of σ±1

j+1 by definition of a permitted
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σj-handle. It remains to consider the case when x is a critical position of σ±1
j , i.e., the

cases of p and q. Assume x = p. By construction the heir of p (when defined) is either r
(cases d = −e and m = 0), or h(sm) (case d = e). In the first case (Figure 3.2) π(w′, x′)
is simply a prefix of π(w, x), and from

π(w′, r) ≡ π(w, p) σ−e
j u1

we conclude that taking σ−e
j u1 for u is convenient.

•••• •••• ••••

•••••••••••••••

•••• •••• ••
••

•••• ••••
σ±1

j σj u1 u2
σj

σj σj

σj σ±1
j

σj+1vm

π(w, p)︷ ︸︸ ︷
︸ ︷︷ ︸

π(w′, H(p))

Figure 3.2: Behaviour of prefixes, case b = d = −e (= −1)

In the second case, the relation is not so simple, but we read on Figure 3.3 the equivalence
π(w′, h(sm)) ≡ π(w, p) u with

u = v1σ
e
j+1v2. . .vm−1σ

e
j+1vm σ−e

j v−1
m σ−e

j+1,

and this word u is convenient (σe
j does not occur in it, σ−e

j occurs once, and the word
is traced in S(w) since the associated path is made of fragments of the paths associated
with w and w′).

•••• •••• ••••

•••••••••••••••

•••• •••• ••
••

•••• ••••
σ±1

j σ±1
j

σj

σj σj

σj σj

v1σj+1..σj+1vm

σj+1vm

u2

π(w, p)︷ ︸︸ ︷

︸ ︷︷ ︸
π(w′, H(p))

Figure 3.3: Behaviour of prefixes, case d = e = −c (= 1)

It remains to consider the case x = q. By construction the heir of q, when defined, is
h(sm). We read on Figure (3.2) the equivalence

π(w′, h(sm)) ≡ π(w, q) v−1
m σ−1

j+1,

and see that u = v−1
m σ−1

j+1 is convenient. So all cases have been considered. �
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Remark. The previous result is crucial, and somehow surprising. Indeed we see that the
possible heir of the active position is either smaller, or larger than this position according
to the sign of the intermediate letters σ±1

j+1, and this corresponds to the fact that the
associated prefix becomes either shorter or longer. What is remarkable is the fact that,
in both cases, the quotient word u contains a letter σ−e

j (and no letter σe
j ). This is an

ordering phenomenon. Indeed let us restrict to the main reductions, i.e., the ones that
involve the main generator σi of the considered words. Then, for the braid ordering of
Section 1, the above result gives the strict inequality

π(w′, x′) < π(w, x)

where x is the active critical position. The existence of such an inequality is the essential
reason why cycles are impossible in handle reduction. Another way to illustrate the phe-
nomenon is to use the graph of the characteristic function introduced above: Figure 3.4 is
the exact counterpart of Figures 3.2 and 3.3 in the case of main reductions. In both cases
(d = e and d = −e) we see that the graph associated to the new word w′ is obtained from
the graph associated with the old word w by “smoothing” the hill that was associated
with the handle that has been reduced (this corresponds to the case e = 1, in the case
e = −1 the transformation would consist in filling a vail instead of eroding a hill). This
phenomenon is due to the fact that the main generator is always preponderant over all
other generators in the braid ordering.

(B∞, <) (B∞, <)

π(w,p)

π(w′,H(p))
π(w,p)

π(w′,H(p))

︸ ︷︷ ︸
old handle

︸ ︷︷ ︸
old handle

︸ ︷︷ ︸
new handle

︸ ︷︷ ︸
new handle

Figure 3.4: Smoothing of characteristic function

Lemma 3.3. Assume that x is a critical position of σe
k in w. If the heirs of x are N

times active in some sequence of handle reductions from w, there must exist a word that
is traced in S(w) and contains N letters σ−e

k and no letter σe
k.

Proof. Let w0 = w, w1, . . . be the considered sequence of reductions, and let x0 = x, x1,
. . . be the iterated heirs of x in these words (as long as they are defined: the sequence
of the xt’s can be shorter than the sequence of the wt’s, which we do not assume to be
even finite). By Lemma 3.2 we find words u1, u2, . . . satisfying

π(wt+1, xt+1) ≡ π(wt, xt)ut+1

(whenever xt+1 is defined), and such that ut+1 is traced in S(wt) from DL(wt)π(wt, xt).
Because each word wt is obtained from w by handle reduction, we know by Lemma 2.7
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that ut+1 is also traced in S(w) from DL(w)π(wt, xt), and therefore (any finite prefix of)
the word u = u1u2. . . is traced in S(w) (from DL(w)π(w, x)). By construction there is
no σe

k in u, and the number of letters σ−e
k is exactly the number of positions xt that are

active in the considered sequence of reductions. �

If the index k is 1 (or, more generally, corresponds to the main generator of the involved
words), a word like u above is a reduced word, and being traced in the finite set S(w) im-
plies a strong limitation on the number of letters σ1. Actually the general case is similar,
thanks to the following extension of Proposition 1.1 (there is no analog strengthening of
Proposition 1.2):

Proposition 3.4. ([5], see also [11]) Say that a braid word is σk-reduced if exactly one
of the two letters σk, σ−1

k occurs (any number of times) in w. Then a braid word that is
σk-reduced for at least one integer k is not trivial.

Corollary 3.5. Assume that the braid word w has length � and width n. Then the
number of letters σ±1

k in any σk-reduced word traced in S(w) is bounded above by

(n−1)n2�.

Proof. Let u be any σk-reduced word traced in s(w). Write u as u0σ
e
ku1σ

e
k. . .uN−1σ

e
kuN

(e = ±1), where σ±1
k does not occur in the words ut. By Proposition 3.4, a subword

of u of the form ut1σ
e
k. . .σe

kut2σ
e
k with t1 < t2 is never trivial. This proves that, in the

Cayley graph of S(w), the N arrows that correspond to the N positions of σe
k in u must

be pairwise distinct. It follows that N is at most equal to the total number number of
σk-labelled arrows in the graph of S(w). We have seen that the length of DL(w)NR(w)
is bounded above by n2�, and therefore (since n − 1 letters may appear), (n − 1)n2� is
certainly an upper bound for N . �

Definition. Let w be any braid word. The rank of w is the maximal number of letters σe
k

in a σk-reduced word traced in S(w) (for all possible k).

So Corollary 3.5 tells us that the rank of any braid word is finite, and is at most equal
to (n− 1)n2� for a word of length � and width n. Because this bound seems to be rather
bad, we shall use the rank in the subsequent evaluations. We deduce from Lemma 3:

Lemma 3.6. Assume that the rank of the braid word w is r. Then for any critical
position x in w, the heirs of x can be active at most r times in any sequence of handle
reductions from w.

Let us say that a handle reduction is a σk-reduction if the involved handle is a σk-handle.
We can state a first finiteness result for reduction:

Proposition 3.7. Assume that the rank of the braid word w is r and that w contains c
σk-handles. Then there are at most cr σk-reductions in any sequence of handle reductions
from w that contains no σk−1-reduction.
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Proof. As long as no σk−1-reduction is operated, the only critical positions of σ±1
k in the

considered words are the heirs of the ones in w. There are c of them, and, by Lemma 3.6,
the heirs of each of these initial critical positions are active at most r times. �

Observe that the previous result applies in particular to the case of main reductions: so
we already know that the number of main reductions in any sequence of handle reductions
from an initial word is finite, and is at most cr, where c is the number of main handles
in that word and r is its rank. The sequel is now an easy induction. Precisely we have

Proposition 3.8. Assume that the braid word w has rank r, contains c handles, and
that σi is the main generator of w. Then, for every integer n, there are at most c(2r)2n+1

σj-reductions with i ≤ j < i + n − 1 in any sequence of handle reductions from w.

Proof. Let Nj denote the maximal (possibly infinite) number of σj-reductions in a se-
quence of handle reductions from w. We claim that the inequality

Nj+1 ≤ (c + Nj(r + 1))r (3.3)

always takes place. Indeed consider an arbitrary sequence of handle reduction from w.
We know that the heirs of each initial critical position of σ±1

j+1 are active at most r times
in the considered sequence, and that there are at most c of them. Now each σj-reduction
in the sequence (possibly) creates new σ±1

j+1-positions, that are not the heirs of previ-
ous positions, and that will each contribute, together with their heirs, for at most r
additional σj+1-reductions. The number of new critical positions of σ±1

j+1 created by
one σj-reduction, i.e., the parameter m + 1 of Lemma 3.1, is variable, but a uniform
bound can be given: indeed, by definition of a permitted handle, the intermediate word
v1σ

d
j+1v2. . .vm−1σ

d
j vm is a σj-reduced word, which is traced in S(w). By definition of

the rank of w the integer m is at most equal to r. So each σj-reduction creates at most
r + 1 new critical positions of σ±1

j+1, and (3.3) follows. Now we have noted that Ni is
finite, and is bounded above by cr. So, using (3.3), we inductively obtain

Ni+k ≤ (2k+1 − 1)cr2k+1,

whence the announced value follows. �

Now taking for n the width of the braid word w in the previous result, noting that the
number of handles in w is always bounded by the length of w, and using for the rank of w
the upper bound of Corollary 3.5 gives at once the bound of Theorem 1.4, which therefore
is proved. We can still observe that the arguments of the present section enables us to
make Corollary 1.6 slightly more precise:

Corollary 3.9. Assume that the braid β admits a decomposition of length � and width n.
Then β admits a fully reduced decomposition of length at most (n − 1)n2� and width n.

Proof. Assume that w′ is fully reduced word and can be deduced from w using handle
reduction. Then w′ is traced in the set S(w), and, by Proposition 1.1, no nonempty
subword of w′ may be trivial (since each such subword is reduced): this means that the
path associated with w′ in the Cayley graph of S(w) cannot visit twice the same vertex,
and, therefore, the length of w′ is certainly bounded by the number of vertices in this
graph. �
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Remark. The argument developed in this section holds for any reduction method that
consists in replacing a handle with an equivalent word that is reduced. So it works as
well for the “coarse reduction” obtained by replacing everywhere the local reduction of
Figure 1.4 with the coarse reduction of Figure 1.3. However, because the boundedness
result of Section 2 does not hold for coarse reduction (consider for instance the case of
the word w = σ1σ3σ

−1
1 , which reduces to σ−1

2 σ−1
3 σ2σ3σ2, a word that is not traced in

S(w) = {σ1σ3, σ3σ1}), we cannot conclude anything about its termination (experiments
suggest that the results are quite similar in both cases; however coarse reduction is less
efficient in practice). In order to prove the latter termination it would be sufficient to
modify the construction for the set S(w) so that the set of the words traced in it becomes
closed under coarse reduction. This could be possibly done by transforming the notions
of R- and L-reductions so that for instance σ−1

1 σ3 reduces to σ3σ2σ1σ
−1
2 σ−1

1 σ−1
2 (instead

of σ3σ
−1
1 ).

4. Algorithmic aspects, and open questions

It is fairly easy to construct practical algorithms using the principle of handle reduction.
We shall briefly describe a few of them, and give some hints about their remarkable effi-
ciency (in complete contradistinction with the upper bound of Theorem 1.4), in particular
when compared with the previously known algorithms. This discrepancy between the
theoretical results and the experimental datas leads to some natural conjectures about
handle reduction.

Construction of the algorithms

By definition a braid word that is not reduced must contain main handles which we
wish to treat using reduction. But the principle of reduction forces us to reduce only
permitted handles, so that we cannot avoid in general reducing first some handles that
are not main handles. So the question for building an actual algorithm is to define a
strategy for choosing which handles are to be reduced first. We have observed that
free reduction, i.e., deletion of factors σkσ−1

k and σ−1
k σk, is a special case of handle

reduction, and, as a consequence, fully reduced words are always freely reduced words.
Practical experiments, as well as some partial results, show that it is more efficient to
work with freely reduced braid words. This means that, when choosing the order of the
reduction steps to be performed, it is advisable to insert a complete free reduction after
each reduction of a handle, rather than waiting that free reductions possibly occur only
later when the strategy tells us to consider them as normal reductions. So it is natural
to take

Definition. The braid word w′ is deduced from w using one step of HF-reduction if w′

is obtained from w by reducing some permitted handle of w, and then free reducing the
resulting word.

The first obvious strategy simply consists in systematically choosing the leftmost handle,
i.e., the one that ends at the minimal possible position – whether it is a main one or
not. This makes sense, because Lemma 1.5 guarantees that such a leftmost handle must
always be a permitted one. So the first reduction algorithm is the following
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Algorithm “FullHRed”:

Start with any braid word w, and iteratively HF-reduce the leftmost handle of
the current word until a fully reduced word is obtained. (Recall that the final
word w′ is equivalent to the initial word w, and that w is trivial if and only if
w′ is empty.)

(See an example below.) As we can expect, fully reduced words are useful if we look
for short decompositions. It is clear that, if we are only interested in solving the word
problem, i.e., in obtaining simply reduced decompositions, it is not necessary to reduce
all handles as in FullHRed. So a more “greedy” way to process is to reduce only the
main handles and, in a recursive way, the intermediate unavoidable handles that prevent
the main handles to be permitted. Such unavoidable handles are easily described:

Definition. Assume that σi is the main generator of the braid word w. A σj-handle
of w lying between positions p and q is nested if there exists a sequence of nested intervals

(pj , qj) = (p, q) ⊂ (pj−1, qj−1) ⊂ . . . ⊂ (pi, qi)

such that, for every k, the subword of w lying between pk and qk is a σi+k-handle.

It is clear that any nested σj-handle has to be reduced before any σj−1-handle that
includes it. Again we check that the leftmost nested handle of a (non reduced) word
must be permitted, so the natural counterpart to FullHRed will be the following ‘greedy’
version

Algorithm “GreedyHRed”:

Start with any braid word w, and iteratively HF-reduce the leftmost nested
handle of the word until a reduced word is obtained. (Again the final word w′

is equivalent to the initial one, and that w is trivial if and only if w′ is empty.)

Example 0.5. The action of FullHRed and GreedyHRed on the word we used in
the examples of Section 2 is nearly trivial (it comprises only two steps). We give
below a less trivial example where both algorithms differ, namely the braid word
σ−1

1 σ−1
2 σ1σ3σ

−1
2 σ−1

3 σ−1
2 σ1σ

−1
3 σ2σ

2
1 . We shall improve readability by using the conven-

tion that a, b, . . . stand for σ1, σ2, . . ., and that (as in [9] for instance) capitals denote
the inverses of the corresponding lower case letters: A for σ−1

1 , etc.So the word above
becomes ABacBCBaCbaa. The left column below shows the successive words that appear
when FullHRed is applied, and the right column does the same for GreedyHRed. The
handles that are reduced at each step are underlined. Since σ−1

1 occurs in the final words,
but σ1 does not, the involved braid is below 1 in the braid ordering of Corollary 1.3, and,
in particular, it is not trivial. Typical facts appear on this example: for instance, full
reduction requires more steps than greedy reduction, but the final word is shorter, and
is even shorter than the initial word (but some intermediate words are longer).

ABacBCBaCbaa ABacBCBaCbaa
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bABcBCBaCbaa bABcBCBaCbaa
bbABcbABCbABCbaa bbABcbABCbABCbaa
bbAcbCABCbABCbaa bbABcbABCbAcBCaa
bbAcbCAcBCABCbaa bbABcbABCbcbABCa
bbAcbABCABCbaa bbABcbABCbcbbABC
bbAcbABCAcBCaa
bbAcbABABCaa
bbAcbAABCa
bbAcbAbABC

Remark. A standard improvement method can be applied to the previous algorithms
when they are to be run on long words, namely the “divide-and-conquer” trick: in order
to reduce a (long) word w, we divide w into the product of two words w1, w2 whose
length is approximately the half of the length of w, we apply reduction separately to w1

and w2 to obtain reduced words w′
1 and w′

2, and finally we reduce using GreedyHRed (or
FullHRed) the word w′

1w
′
2. The potential practical advantage of this variant is clear: in

particular the probablilty is 1/2 that the words w′
1 and w′

2 have the same type (positive
or negative), in which case the last step vanishes. However let us observe that this “quick
versions” are still reduction strategies.

From Proposition 3.8 we immediately deduce the correctness of the above algorithms (as
methods to solve the isotopy problem of braids):

Proposition 4.1. Assume that the braid word w has length �, width n and rank r. Then
the algorithms FullHRed, GreedyHRed (or their “quick” variants) running on w return
reduced words (and even a fully reduced word in the first case) in at most �(2r)2n+1

steps.

Convex reduction

A cumbersome phenomenon that partially explains the very high bounds obtained in
Section 3 for the number of handle reductions is the proliferation of critical positions.
With the notations of Lemma 3.1, we have seen that each σj-reduction causes m − 1
intermediate new σj+1-handles to appear. However it is not difficult to guess what the
subsequent reduction of these new handles will be, i.e., what will happen if we choose
to reduce them, and, iteratively, the analog σj+k that will possibly appear, just after
they have been created (and not later). Indeed the idea is that the final route of the
j+1-th strand will be some sort of convex hull that is obtained by skirting on the right
all crossings we meet, as illustrated in Figure 4.1 below (practically we can construct for
the j + 1-th strand two half-routes starting from both ends and merging in the middle).

We can then consider ‘convex’ versions of the previous algorithms

Example 0.6. Using the convex version of FullHRed, the complete reduction of the
above word considered in the previous example comprises new 6 steps (to be compared
with the 9 steps of FullHRed), namely

ABacBCBaCbaa
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j+1 j+1

becomes

Figure 4.1: Convex reduction of a handle

bABcBCBaCbaa
bbAcbABCABCbaa
bbAcbABCAcBCaa
bbAcbABABCaa
bbAcbAABCa
bbAcbAbABC

The analysis of Section 3 is a little modified when convex reduction replaces local re-
duction. Indeed reducing a σj-handle will still possibly create new critical positions, but
only at the ends: the m− 1 intermediate new critical positions of σ±1

j+1 are avoided, and
there remain only the two possible ones associated with the initial pattern u1v1σ

−e
j+1 and

with the final pattern σe
j+1vmu2. On the other hand, two new critical positions of all

letters σ±1
j+k with k ≥ 0 can appear similarly (what did not happen with local reduction).

In the evaluation of the number of possible reduction steps, we replace the factor (r + 1)
in the proof of Proposition 3.8 with a constant factor 2, and, from there, we can lower
the exponent 2n + 1 for the rank in Proposition 3.8 down to n + 1:

Proposition 4.2. Assume that the braid word w has length �, width n and rank r.
Then the convex versions of the algorithms FullHRed or GreedyHRed running on w return
reduced words (and even a fully reduced word in the first case) in at most �(2r)n+1 steps.

This of course does not really change the final bound owing to our present evalution of
the rank.

Conjectures

Implementing the preceding methods is very easy, and enables us to gather some statis-
tics. The main point that comes out of these experiments is that handle reduction is very
efficient, and that the number of reduction steps is, in all (many) cases we have studied,
much smaller than the upper bounds that are established above. To give an example, the
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average number of reduction steps in the reduction of random braid words of length 1000
with respectively 3, 5, 10 and 50 strands, using the algorithm GreedyHRed, are 702, 1420,
1298 and 34. (These numbers correspond to samples of 10,000 words or more, and seem
very reliable in particular because the convergence to the limit value is quick and regu-
lar.) Such values explain that handle reduction algorithms give extremely quick methods
for deciding if a braid word is trivial: using the quick variant of GreedyHRed, the average
computing time for braid words of length 1000 is never larger than 0.25 sec. for any fixed
width on a standard microcomputer (Macintosh PPC 601).

Several factors can explain why the bounds of Section 3 seem to be so far from optimum
First we observe that the bound of Proposition 3.7 can be nearly reached in some cases
(the word (σr

1σ
−r
1 )m has rank r, contains 2m−1 handles, and rm reductions are needed to

reduce it to the nullstring), but is usually far from optimal when more than one generator
is involved: even if long σk-positive words are traced in some set S(w), there is no reason
why every such word should occur in connection with an actual sequence of reductions.
Next the majoration of the rank given by Corollary 3.5 is probably very bad as well.
Because every positive braid word is a prefix of some word ∆d

n, where ∆n is Garside’s
‘universal’ word on n−1 generators (cf. [10]), the basic question is to compute the rank
of the words ∆d

n, and, in particular, to decide if this rank is, for fixed n, a polynomial
function of the exponent d. We have no answer to this question. However it can be
shown that the rank of ∆d

n is at least dn−1, and, therefore, is not always quadratic with
respect to the length of the word. This suggests that using the rank cannot really give
the optimal bounds in the evaluation of the number of handle reductions. Indeed all
examples we have studied (in particular in terms of growth rates) are compatible with
the following conjectures:

Conjecture 4.3. For any fixed width, the number of HF-reductions from a braid word w
is bounded above by a quadratic function of the length of w.

Conjecture 4.4. For any fixed width, the lengths of all words deduced from a braid
word w using RF- and LF-reductions, and PF- and NF-equivalence (the variants of R-,
L-reduction and of P -, N -equivalence obtained by systematically inserting free reduction
at each step), and therefore also using HF-reduction, are bounded by a linear function
of the length of w.

Conjecture 4.3 is certainly optimal, as we can easily obtain sequences of words such that
the number of possible (main) reductions grows as the square of the length: so are for
instance the complete reduction of the width 3 words (σ2

2σ2
1)mσ2(σ−2

1 σ−2
2 )m (using any

method) requires O(m2) main steps. Let us mention two partial results:

Proposition 4.5. i) Conjecture 4.3 is true for width 3.
ii) For width 4, there exists a polynomial bound (namely, cubic) for the length of

the words that appear in the algorithm similar to FullHRed where the coarse reduction
of Figure 1.2 replaces the local reduction of Figure 1.3.

Proof. i) The case of width 3 is special because the handles that are not main handles
are “trivial” handles of the form σjσ

−1
j or σ−1

j σj , and because the length cannot increase
when HF-reduction is used (which makes Conjecture 4.3 trivial). It follows that, in the
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reduction of a word with exactly one main handle, there can be only one back-and-forth
move of the main handle, so that a direct argument shows that the number of main
reductions is at most quadratic with respect to the length (even if free reduction is not
systematically added).

ii) For width 4 and coarse reduction, we can use a specific argument involving the
length with respect to a extended family of generators that comprises σ1, σ2, σ3, σ1σ2,
σ2σ3 and σ1σ2σ3 and their mirror images. This argument does not seem to extend to
the general case. �

Conjecture 4.4 remains open, although weaker forms are well known: if we consider only
RF-reduction, or only LF-reduction, then Lemma 2.1 applies. We can still prove some
facts when RF-reduction and PF- and NF-equivalences are considered simultaneously,
but adding LF-reduction seems to require new tools beyond the classic results about
the divisors of ∆n (i.e., the automatic structure of Bn). In any case the fact that free
reduction is needed here (otherwise the trivial counterexample of Section 2 refutes the
conjecture) shows that the involved statement involves the Cayley graph of B∞ rather
than the braid words themselves.

Remark. The above conjectures deal with the worst cases in handle reduction. Presently
we have no precise conjecture for the average values of the considered parameters. The
experiments suggest that there is a rather large gap between the average case and the
worst case. Actually the words that are “bad” for handle reduction seem to be very
special (in particular the Cayley graph of the associated set S(w) seems to be planar),
which could explain the above gap. Such a situation would be reminiscent of a scheme
that is rather common in the neighbouring case of statistics for the symmetric group.

Comparison with Thurston’s normal form

We finish this paper with a brief comparison of handle reduction with Thurston’s method
as described in [17] or [9]. To make the comparison easier we consider the variant of
Thurston’s algorithm that is described in [6] and appeals to R- and L-reduction in order
to construct, for any braid word w, an equivalent braid word u−1v where u and v are
positive and are the shortest possible words with that property (so that in particular w is
trivial if and only if the words u and v are both empty). Thurston’s algorithm constructs
such positive words using a notion of normal form for positive words (the ‘greedy normal
form’) whose construction follows from the automatic structures of the groups Bn, while
[6] directly obtains such words by means of a double reduction (and without any normal
form): start from w, reduce it on the right to u′v′−1, and then reduce the latter word
on the left to u−1v. We shall call this method the RL-reduction of the word w. If u,
v and u1, v1 are the positive words produced from w respectively using RL-reduction
and using Thurston’s method, then u and u1 are equivalent (but not equal in general),
and so are v and v1. So we can consider both methods as essentially equivalent, and in
particular the length of the final words obtained are the same.

Observe that the counterparts of Conjectures 4.3 and 4.4 are true for LR-reduction (as
well as for Thurston’s method): for a fixed width n, the number of elementary steps in
the RL-reduction of a word w of length � is bounded above by a quadratic function of �
(we can take (1/32)n4�2)), and the length of the final word is bounded above by a linear
function of � (we can take (1/2)n2�).
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The experiments show that handle reduction is practically much more efficient than the
previous methods, specially when the width of the braids increases (as mentioned in [9],
it is not easy to implement Thurston’s method when the width n goes beyond say 8,
because it appeals to a precomputed table of n! × n! complements, while LR-reduction
avoids such a feature, and therefore can be easily implemented for any width). To obtain
a valuable comparison we have considered the number of cells in the Cayley graph that
are visited during the reduction process (counted with their multiplicity): in other words
we count how many calls to the basic braid relations (1.1) are made (simply comparing
the number of reduction steps would not be correct since one step of handle reduction
actually decomposes into possibly many R- or L-reductions). Also we have considered the
version of LR-reduction where free reductions are inserted at each step (which diminishes
the number of steps).

The comparison for random braid words shows that the number of visited cells is al-
ways much smaller in handle reduction: for instance, for random braid words with 100
crossings, the values are 41 vs. 292 in the case of 3 strands, 115 vs. 2,360 for 5 strands,
94 vs. 11,810 for 10 strands, and 18 vs. 7,815 for 50 strands. A clear heuristic reason
explains the difference: both reductions happen in the Cayley graph of the set S(w),
but RL-reduction “blindly” crosses twice this graph, a first time to the right, a second
time to the left, while handle reduction is “piloted” by the braid order and keeps the
same orientation toward the final word during the whole process. The same phenomenon
occurs in the graphs of the characteristic functions (Figure 4.2): in one case we smooth
the initial graph at each step, while in the other case we successively go up to a unique
peak, and then down to a unique valley. (In some sense we could see R- and L-reduction
as piloted by the partial ordering of braids considered in [8].)

(B∞, <) (B∞, <)

Figure 4.2: reduction vs. RL-reduction

Our final remark will concern the length of the final word obtained using handle reduction
when compared with the length of the words obtained using RL-reduction (which, we
remind, is equal to the length of Thurston’s normal form). The same difference can be
found again: always for random words of initail length 100 and respectively 3, 5, 10, and
50 strands, we find (using FullHRed) for the final length compared values of 32vs.40,
62vs.105, 67vs.211 and 72vs.146. The phenomenon illustrated in Figure 4.2 explains
the difference again. In a more general way, the above observations suggest that (full)
handle reduction is an efficient tool for producing short decompositions of braids. It
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is not always true that the final word obtained in this way is shorter than the initial
word, but it could happen that this word is, in some sense, a good approximation for the
minimal decomposition (the one with minimal length) of the considered braid. If this is
true, and a polynomial bound can be proved for the number of steps in handle reduction,
this possible property should be compared with the NP-completeness result of [14]. Let
us mention that the above results about short decompositions can still be enhanced by
mixing the full reduction process and the operation of iteratively minimizing the number
of generators with low index using the transformation σjσj+1σj �→ σj+1σjσj+1.
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