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Three-Dimensional Realizations of Braids

Patrick DEHORNOY

ABSTRACT. Let us consider a standard braid diagram as a three-dimensional figure
viewed from the top; what happens when we look at this figure from the side? Then we
can obtain a new braid, and studying the connection between the initial braid and the
derived braid so obtained provides both a new simple proof for the existence of the right
greedy normal form of positive braids and a geometrical interpretation for the automatic
structure of the braid groups.

AMS Subject classification: 20F36, 57M25

1. Introduction

The origin of this work is the question of evaluating the complexity of a given braid
word. We know after the classical results of Garside [12] that the half-turn braids A,
play a fundamental role. In particular, every braid belongs to some interval [r, s], i.e.,
satisfies AT < 8 < A? in the sense of Elrifai-Morton’s partial ordering defined in [10].
Now, as is well-known, the factors of A, i.e., the elements of [0, 1], are characterized
by the fact that they can be represented by braid diagrams where any two strands cross
at most once. Elrifai and Morton observe in [10] that such a characterization does not
extend to more complicated braids, and mention that they introduced their normal form
in order to escape this difficulty. Here we develop a different geometrical approach of the
question. It leads essentially to the same results, but it gives shorter proofs and a new
insight into the automatic structure of the braid groups.

The starting point is the natural observation that a braid diagram where any two strands
cross at most once can be seen as the horizontal projection of a three-dimensional figure
made of connected arcs, each of which lies in a horizontal plane. Indeed, no problem may
arise from the altitudes and the question of which strand is above and which strand is
below. More exactly, if the k-th strand begins at altitude k, then altitudes will correctly
behave throughout the whole diagram. This property is no longer true for more compli-
cated braids: if we try to construct a three-dimensional realization made of horizontal
segments, some obstruction in the altitudes unavoidably happens. Now it is easy to re-
pair such an obstruction by inserting a vertical correction, namely some specific pattern
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that permutes the altitudes of the involved strands so that the strand which is supposed
to cross over the other one actually lies above the latter when the crossing starts. The
point is that this vertical correction can itself be described as a braid. This amounts
to introducing certain three-dimensional figures, which we call here 3D braid diagrams,
each of which admits two standard braid diagrams as projections, namely one associated
with a horizontal projection, and one associated with a vertical projection. The technical
point all subsequent developments come from is the existence, for each 3D braid diagram,
of a simple formula that connects its two projections together with the initial and final
permutations of the altitudes (Proposition 2.7).

Now three-dimensional braid words can be used to define a derivation on (positive) braid
words: for each such word w, we choose in a canonical way a 3D braid diagram L(w)
that admits w as its horizontal projection, the canonical lifting of w, and we define
the derivative dw of w to be the vertical projection of L(w). The ’miracle’ is that
derivation induces a well-defined operation on positive braids, i.e., that the derivatives
of two positive braid words representing the same braid 3 also represent the same braid,
which we naturally call the derivative of f—and that the derived braid word Ow is
always simpler than the original braid word w. More precisely, we have (first part of
Proposition 3.8):

Proposition. Let 8 be any positive braid. Then the following are equivalent:
i) The braid (3 is a left factor of A7, i.e., 3 belongs to the interval [0, r] of [10];

n’

ii) The r-th derivative 9" 3 of 8 is the unit braid.

This result somehow answers the question of Elrifai and Morton about a geometrical
characterization for the factors of AF: indeed, word derivation is a purely geometrical
notion, and, in particular, having a trivial derivative is equivalent to being represented
by a diagram where any two strands cross at most once, so that the above criterion is
exactly the one of [10] in the case r = 1.

As an application, we easily deduce a normal form result for positive braid words. In-
deed, in the particular case of derivation, the above mentioned relation between the two
projections of a 3D braid diagram reads

w= 0w - p~ ' (p(w))

where = denotes braid equivalence, p(w) is a certain permutation that depends only on
the braid represented by w, and p~! denotes some canonical section for the projection p
of the braid words onto the permutations of the integers. Iterating this formula gives
(second part of Proposition 3.8):

Proposition. Assume that w is a positive braid word. Then the equivalence
k=0
w= ] »~ 30" w) (L1)
k=00

2



holds, and it defines a unique normal form for the braid represented by w.

Like standard braid diagrams, 3D braid diagrams are described using words, i.e., finite
sequences of letters coding for the successive elementary crossings: it suffices to introduce,
besides the letters o1, o9, ... that represent the standard, horizontal crossings, new
letters o1, 09, ... that represent the vertical crossings, and every 3D braid diagram is
then described by a sequence of aiil’s and Gjil’s. Now, because of possible obstructions
in the altitudes of the strands, it is not true that every word in the letters o; and o;
represent a valid, geometrically realizable 3D braid diagram. This leads to the natural
question of characterizing those words that correspond to realizable braid diagrams. The
answer is given in Proposition 4.1:

Proposition. For every integer n, there exists an explicit finite state automaton Mn,
the states of which are the n! permutations of 1, ..., n (plus one fail state), such that
those words that correspond to realizable 3D braid diagrams are exactly those accepted
by M,,.

Thurston has shown in [14]—see alternatively [11]—that the braid groups admit a
(bi)automatic structure, i.e., that there exists a finite state automaton that computes
in some sense a unique normal form for the braids. More precisely, there exists a fi-
nite state transducer (or output automaton) which, starting with an arbitrary (positive)
braid word w, reads that word and produces the 'maximal tail’ of w, i.e., a maximal
permutation braid dividing (the braid represented by) w on the right. The states of
Thurston’s transducer for n strand braids are the permutations of 1, ..., n, and it should
not come as a surprise that there exists a connection between the automaton M, and
this transducer: Proposition 4.3 below exactly describes the connection, and it expresses
that Thurston’s transducer is some sort of projection of the present automaton M,,.

As a corollary to the proof of the previous result, we deduce that the normal form given by
Formula (1.1) coincides with the 'right greedy normal form’ of [10] and [11]: so, from this
point of view, three-dimensional braids appear as nothing but some (natural) geometric
interpretation for Thurston’s construction. We nevertheless emphasize that the present
approach leads to proofs that are especially simple, the only technical ingredients being
an obvious geometrical remark about half-turns (Lemma 3.6) and the compatibility result
of Lemma 3.5, which relies on a finite number of purely graphical verifications.

Braid word derivation applies to arbitrary braid words, and not only to positive braid
words. Looking for an empty iterated derivative still gives rise to a good measure for the
complexity of an arbitrary braid word, at the expense of considering general derivatives of
the form 0yw where the additional parameter f denotes a permutation. The convenient
extension of Proposition 3.8 takes the following form (Proposition 5.2):
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Proposition. Let w be an arbitrary braid word. Then the following are equivalent:

i) Some path in the fragment of the Cayley graph of B,, consisting of all words equivalent
to Aﬁ is indexed by w—so, in some sense, w is not more complicated than Aﬁ;

ii) There exist r permutations fi, ..., f, such that the iterated derivative 0y, ...05w is
the nullstring.

If the above conditions hold, the braid represented by w belongs to the interval [—r,r]
of [10]. Conversely, if a braid belongs to [—r,r], it can be represented by a braid word
that satisfies the above conditions.

The last result of the paper is an application of the idea of 3D braids to the study of the
canonical linear ordering of braids. As was proved in [6], some canonical linear ordering
of the braids exists. The existence of such an ordering is not at all obvious, and it
has led to several applications, in particular to a new efficient method for solving the
word problems of braids [8]. Now, as there exists a natural canonical section p~! to the
projection p of the braid group B, onto the symmetric group S,, we can use p~ ' to
deduce from the linear ordering of the braids a linear ordering of the permutations, and
a natural question is to describe directly the latter ordering Using the technique of 3D
braid diagrams, we answer the question and prove in Proposition 6.1 that the involved
ordering of the permutations is a lexicographical ordering.

The paper is organized as follows. In Section 2 we introduce the framework of three-
dimensional braid diagrams and prove the basic relations. In Section 3 we investigate
braid derivation and establish the associated normal form result. Section 4 is devoted to
automata, with the construction of M,, and a description of its relations to Thurston’s
transducer. In Section 5, we consider derivation of arbitrary braid words. Finally, we
briefly study in Section 6 the connection between 3D braids and the linear ordering of
braids.

The author thanks J. Michel and L. Paris for having raised some of the questions studied
here.



2. Three-dimensional braid words

As usual, a braid diagram on n strands is a plane figure obtained by composing finitely
many elementary diagrams of the types

1 2 ) i+1 n
ag; | | \/
\
and
1 ) 141 n

2

the composition of two diagrams being defined as the result of ’stacking’ the first above
the second. Any braid diagram is completely described by a braid word, i.e., by a finite
sequence of letters U;tl. For instance, Figure 2.1 displays the diagram that corresponds
to the word o9071. In the sequel, it will be convenient to consider that braid diagrams
are drawn according to an (z,y) coordinate system of the plane as shown on the figure.
As usual, we say that a braid word w is positive if no letter o L oceurs in w. The length
of a braid word is simply the number of letters criil that occur in it.

\

02

01

\

Figure 2.1: The braid diagram os0y

A braid diagram on n strands can be seen as the projection of a three-dimensional figure
made of n connected arcs. As is well-known (see for instance [1]), two braid words are the
projection of isotopic three-dimensional figures if and only if they are equivalent under
the least congruence = that satisfies 0,0, = o, Lo; = e for every i (where € denotes the
nullstring), as well as the proper braid relations

0i0; = 0,05 for "L —_]‘ Z 27 0i0;410; = 0;410;0441- (21)

A braid is an equivalence class of braid words with respect to the latter congruence.
Concatenation of words induces a group structure on braids, and, as usual, the group of
all braids on n strands is denoted B,,.



Let w be a braid word. Any three-dimensional figure, the projection of which is described
by w, will be called here a (three-dimensional) realization of w. The purpose of this paper
is to study the various possible realizations of a braid word, and, more exactly, those
realizations of some special type defined below. The most interesting point about these
figures is that they will project onto two different braid diagrams by using two different
projection planes. In order to make things precise, we fix coordinates in R3. The plane
z = 0 is said to be horizontal, “altitude” refers to the z-coordinate, while “position”
refers to the y-coordinate, as well as the notion of left and right.

Definition 2.1. (see Figure 2.2) i) Assume that f is a permutation of 1,...,n, and
f(@) < f(i+ 1) holds (resp. f(i) > f(i + 1) holds). The f-realization Rs(o;) of o;
(resp. the f-realization R;(o; ') of o; ') is defined to be the union of the n horizontal
segments that connect

- the point (0, k, f(k)) to the point (1,k, f(k)), for k=1,...,n with k #4,i+ 1,

- the point (0,4, f(¢)) to the point (1,7 + 1, f(i)),

- the point (0,7 + 1, f(i + 1)) to the point (1,4, f(i + 1)).

If f(i) > f(i+1) holds (resp. f(i) < f(i+1) holds), the realization Rs(o;) (resp. Rs(o; ")
does not exist.

ii) If Ry(oF!) exists, the permutation f"iﬂ is defined to be the permutation fs;, where
s; is the transposition that exchanges ¢ and ¢ + 1.

iii) For f a permutation of 1,...,n, and w an n strand braid word, the f-realization Ry (w)
of w and the permutation f" are constructed inductively on the length of the word w,
according to the following rules: If w is the nullstring, then the Ry(w) exists and it is
defined to consist of the n pomts (0,k, f(k)) for k = 1,...,n, while f* is defined to
be f; Otherwise, if w is w'o"! where w’ has length ¢, Rf( ) is defined to be the union
of R¢(w’) and of the translatlon by (£,0,0) of Ryu (o ( =1), if both are defined. In this

case f* is defined to be f's;.

1+1

)
Z y \\
v

Figure 2.2: The 3D diagram R;(o;) (fragment)
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The f-realization of the braid word w is the obvious lifting of the planar diagram de-
scribed by w such that the k-th strand from the left lies in the plane z = f(k). It is
clear that, if the realization R;(w) exists, it consists of n connected arcs, and the permu-
tation f* gives the altitudes in terms of the final positions: the strand that finishes at
position k lies in the plane z = f* (k). We shall say that the braid word w is f-realizable
if Rf(w) is defined. If no permutation f is mentioned, the default value will be the
identity permutation id,,.

Example 2.2. The 3 strand braid word o907 is realizable (i.e., (1 2 3)-realizable), and
the associated final permutation (1 2 3)929% is (3 1 2), as shown in Figure 2.3.

iview from top

v

view from left side

Figure 2.3: Realization of o907

The connection between realizability and those geometrical properties mentioned in the
introduction is immediate:

Proposition 2.3. A positive braid word w is realizable if and only if any two strands
cross at most once in the diagram described by w, hence if and only if the braid repre-
sented by w is a permutation braid.

In order to define realizations for arbitrary braid words, we need to introduce new pat-
terns that correct the obstructions to realizability. We do it by considering “vertical
crossings” that are similar to the o; crossings, but achieve a permutation of the strands
involving the z-coordinate instead of the y-coordinate. To this end, we introduce a new
double series of letters 5%1, and we interpret 7; as the vertical permutation of the strands
with initial altitudes j and j + 1:



Definition 2.4. (see Figure 2. 4) i) Assume that f is a permutation of 1,...,n, and
f_l(') > 7G4+ 1) (resp. f71(5 ) < f 1( + 1)) holds. The f-realization Rs(5;) of
g (resp. the f-realization Ry(c; of & 7; 1) is defined to be the union of the n vertical
segments that connect

- the point (0, k, f(k)) to the point (1,k, f(k)) for k =1,....,n with f(k) # j,j+1,

- the point (07f_1(j +1),7+ 1) to the point (L, f71G +1),9),

- the point (0, f_ ( ),7) to the pomt (1, f7( ) J+1).

If f71G) > 72 + 1) (resp. f71(4) < f7'(j + 1)) holds, then Rf(d;) (resp. Rf(ﬁj_l)
does not exist.

~+1
i) If Rf((?jﬂ) exists, the permutation f? is defined to be the permutation s; f.

iii) A 3D braid word on n strands is a finite sequence of letters cfiil and 5ji1 with
i,j <n—1. If u is a 3D braid word on n strands, and f is a permutation of 1,...,n,
the f-realization R¢(u) of u and the permutation f" are defined as in Definition 2.1(iii)
using the realization of the successive letters of w.

iv) If wis a 3D braid word, the horizontal and the vertical projection of u are the (ordinary)
braid words P (u) and Py (u) obtained respectively by deleting all letters Ej-[l in u, and
by deleting all letters O'iil and replacing each Ejil with the corresponding afl. The 3D
braid word wu is a lifting of the braid word w if w is the horizontal projection of u.

Figure 2.4: The 3D diagram R;(cd;) (fragment)

All properties mentioned above for the realizations of braid words extend immediately
to realizations of 3D words. For the 3D word u to be f-realizable means that we can
construct inductively a three-dimensional figure made of connected arcs by letting the
k-th strand start at altitude f(k) and concatenating translated copies of the patterns
associated with the letters of u. Then Ppg(u) describes the projection of this figure
on the plane z = O0—more exactly the “view from top” of the figure—, while Py (u)
describes its projection on the plane y = co—the “view from left side”. As above, the
permutation f* specifies the final altitudes when we start from f and apply w.
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Example 2.5. We have seen that the braid word o907 is realizable, but the braid
word 0'20'% is not realizable, since, when o907 has been applied starting from the alti-
tudes (1 2 3), the altitudes are (3 1 2) (Figure 2.3), and we cannot apply o since the
strand at position 1 lies above the strand at position 2.

Now, the 3D braid word u = 0901025107 is a lifting of the previous word o202, and,
as shown in Figure 2.5, u is realizable, i.e., (1 2 3)-realizable. The braid word Py (u),
which is o907, describes the projection of the realization of u on the vertical plane y = 3.
Again, the permutation (1 2 3)" describes the final altitudes, here (2 1 3).

view from top: o90?
—— l

\ —
/!
view from left side: o907
Figure 2.5: Realization of o901020101
A first, obvious remark is the following
Lemma 2.6. For every n strand braid word w, and every permutation f of 1, ..., n,

there exist liftings of w that are f-realizable.

Proof. The result is straightforward, since inserting vertical corrections 5?1 enables us
to obtain any altitude permutation we wish. In particular, replacing in any braid word w
each letter o; with 0;5;, and each letter o; ! with &; 'o; !, gives a lifting u of w that is
always realizable, and in addition satisfies id" = id. |

A more interesting observation is the fact that, if v is a realizable 3D word, then there
always exists a simple connection between the horizontal and the vertical projections
of u. If w is a braid word on n strands, we write p(w) for the permutation of 1,...,n
such that p(w)(7) is the initial position of the strand that finishes at position 7 in the
diagram associated with w. The mapping p induces a surjective homomorphism of the
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braid group B, onto the symmetric group S,. In the sequel, we fix a (map) section p~*

of p, i.e., we choose for every permutation a distinguished braid word that induces this
permutation. For f a permutation of 1, ..., n, the positive braid word p~!(f) is defined
inductively on the value of the least integer moved by f. If f is the identity, p~1(f) is
the nullstring. Otherwise, we take

p N(f) = 04)-10f(i)—2---0ir10i P (),
where i is the least integer moved by f, and f’ is the permutation defined by

k for k <1,
(k) =3 f(k)+1 fori< f(k)< f(i),
f(k) for f(k) > f(i).

For instance, s; still denoting the transposition that exchanges i and i + 1, p~1(s;) is
exactly o;. It is well-known that the length of the word p=1(f) is the minimal number of
inversions in the permutation f. The longest such word is the word p~*(n ... 1), which
we denote by §2,,. The word §2,, has length n(n 4+ 1)/2, and it represents the braid A,,.
According to [12], [10] and [11], the braids represented by the words p~!(f), which we
call here the permutation braids, are exactly the positive factors of A,,.

Now, observe that, by construction, the equality

[ p(Pu(u)) =p(Py(uw) - f* (2.2)

always connects the permutations associated with the two projections of a f-realizable
3D braid word u. The point is that we can lift this permutation relation into a braid
relation:

Proposition 2.7. Assume that u is a f-realizable 3D braid word. Then the equivalence
P~ (f) - Pu(u) = Py(u) - p~(f*) (2.3)
takes place.

Proof. We use induction on the length of the word w. If w is the nullstring, (2.3) is
obvious. Assume that w is vo;. The hypothesis that u is f-realizable means that v is
f-realizable and that o; is f"-realizable, i.e., that fV(i) < fY(i + 1) holds. In this case
fv9 is, by construction, f"s;, where s; is the transposition exchanging ¢ and i + 1. We
claim that, for every permutation g, the equivalence

pgsi) =p ' (g) - o (2.4)
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holds if and only if g(i) < g(i+ 1) is true. This is actually a particular case of the results
established in [11, section 9.1]. We can also establish the property directly: that the
condition is necessary is obvious, since, if (i) > g(i+ 1) holds, the strands that finish at
positions i and i+ 1 in p~*(g) cross twice in p~1(g)o;, which therefore cannot represent a
permutation braid; that the condition is sufficient is verified using the inductive definition
of p~1(g) and p~!(gs;). Using (2.4) and the induction hypothesis, we obtain here

p ' (f) - Pa(voi) =p~ ' (f) - Pu(v) - oy
=Py(v) - p(f) - o
= Py(v) - p~ (f"si) = Pv(vey) - p~ (f*7).
Ifuis voi_l, the argument is similar, except that the hypothesis is now f¥(i) > f¥(i+1),

so that (2.4) gives p~1(fVs;) = p~*(f¥)o; ', and the above computation remains valid
mautatis mutandis.

) p
) p

Let us now assume that u has the form vo;. The hypothesis that vo; is f-realizable

means that v is f-realizable, and that (f¥)~1(j) > (f¥)~!(j + 1) holds. Then f”;f is
s;f’. We appeal to the equivalence

P (si9) =05 p (), (2.5)
which takes place for a permutation g if and only if g71(j) < ¢=1(j +1) holds, and which
is established like (2.4). This gives here p~'(s;f*) = o 'p~!(f?), and the computation

is now

p'(f) - Pa(va;) =p ' (f) - Pu(v)

oy ()
(va;) - pil(sjfv) = Py (vo;) - pfl(fvﬂf;j).

Finally the case when w is 1)5]-_1 is symmetric, using then the equivalence p~!(s; f?)

aip (fY). ;

Before going on in our study, let us observe that the figure obtained by rotating a
realization by a quarter of a turn around the x axis is still a realization. This leads to
new relations similar to (2.3).

Proposition 2.8. Assume that u is a f-realizable 3D braid word on n strands. Then
the equivalence

pHF) - ¢n(Py(u) = Pr(u) - p~ () (2.6)
takes place, where, for g a permutation of 1,...,n, g is the permutation defined by
g(k) =n+1— g (k), and ¢, is the n-flip automorphism that exchanges o; and o,_;
for every i.
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Proof. Let, for v a 3D braid word on n strands, & be the word obtained from u by
replacing oiil by 5}1, and ?7';-:1 by O‘;tij. If w is a f-realizable 3D braid word, then u is
J?—realizauble7 and the ]?—realization of @ is the image of the f-realization of u under the
rotation by 4+m/2 around the line y = z = (n + 1)/2. The vertical projection of @ is the
horizontal projection of u, while the horizontal projection of u is the image of the vertical
projection of w under ¢,. Applying Proposition 2.7 to the word @ gives Formula (2.6).
|

Observe that Formulas (2.3) and (2.6) do not yield the same relation in general: for
instance, when we apply them to the realizable 3D braid word os010201071 of Example 2.5,
we obtain the equivalences

H(213),

pH(123) - (0207) = (0201) - p~
(020%) - p~1(312),

pt(321) - (0109)

which are respectively (0201)(0102) = 0207 and (020102)(0102) = (0203)(02071).

3. Derivation of positive braids

Among all positive braid words, those representing permutation braids are exactly those
that admit at least one realization with a trivial vertical projection—of course these
words also have realizations with a non-trivial vertical projection. This suggests that,
provided that the vertical corrections we insert are chosen to be minimal in a convenient
sense, the vertical projection of a 3D diagrams could be more simple than its horizontal
projection, i.e., than the initial braid word. This intuition is correct, and it leads to the
notion of derivation that we introduce now.

For each positive braid word w, and each permutation f, we shall define the canonical f-
lifting Ly(w) of w as a certain minimal lifting of w that is f-realizable. The construction
is inductive, starting from Ly (g) = ¢ (¢ is the empty word). Assume that L;(w) has been
defined in such a way that it is f-realizable. We wish to define L;(wo;). After Ly(w),
the altitudes are given by f%/(*) and two cases may occur. If fLr(w)(3) < fLr(@) (G4 1)
holds, then o; is fZ/(®)_realizable, and we take simply

Li(wo;) = Ly(w) - ;. (3.1)

Now, if fLr() (i) > fEr() (5 4 1) holds, some vertical correction has to be inserted: we
shall replace (3.1) with an equality of the form

Ly(woi) = L(w) - C(f*™), 03) - 0 (3.2)

where C(f%/(®) ;) is some braid word that switches the strands in the desired way—
and C(f() ;) denotes the 3D braid word obtained by replacing every letter o;
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in C(fX ™) o;) with the corresponding letter ;. In order to define the correction,
we have to choose a canonical way to let the altitude of the i-th strand become lower
than the altitude of the i+ 1-th strand. If we require that the correction be a permutation
braid, and that no crossing be introduced between the strands on the left of i, or between
the strands on the right of 7 + 1, then the solution is unique.

Definition 3.1. (see Figure 3.1)  Assume that g is a permutation of 1,...,n, and 7 is
at most n — 1. If g(¢) < g(i + 1) holds, the correction C(g,0;) is defined to be the empty
braid word ¢; If g(i) > g(i + 1) holds, C(g, 0;) is defined to be the braid word p~1(g’ '),
where ¢’ is the permutation defined by

k for k < g(i+1) or k> g(3),
g(i+1)+m—1 if kis the m-th integer from ¢(i + 1) upwards that
g (k)= satisfies g(i + 1) < k < g(4), and g~ 1(k) < 1,
gi) —m+1 if k is the m-th integer from ¢(¢) downwards that
satisfies g(i) > k> g(i + 1), and g~ (k) > i+ 1
%
ke with 671 (k) < i — ot N o
kwith g1 (k) >i+1— e >
g(i+1) — o —
. x

Figure 3.1: The correction C(g,0;) for g(i) > g(i + 1)

Remark. The choice of the correction permutation g’ is clear. Now the correction braid
has to be p~1(¢’"") (and not p~1(g’)), because we wish that the strand that begins at
altitude j finishes at altitude ¢'(j), and not that the strand that finishes at altitude j
begins at altitude ¢'(j).

By construction, inserting the vertical correction C'(fX() ;) in Formula (3.2) guaran-
tees that the altitudes always behave correctly, and, therefore, (3.2) defines in every case
a realizable 3D braid word.

Example 3.2. The canonical lifting of the braid word o907 is the 3D braid word
09010901071 of Exemple 2.5 and Figure 2.5. Indeed, we have seen that o0 is realizable,
which means that it is equal to its own canonical lifting. Now, as we have seen, the
final oy is not realizable starting from (1 2 3)?27*, which is (3 1 2). We find that the
correction C((3 1 2),01) is equal to o207, and, therefore, the canonical lifting of go0? is
obtained by inserting the vertical factor goo1 before the final .

Having defined a distinguished lifting for every (positive) braid word, we are now ready
to introduce our notion of braid derivation.
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Definition 3.3. For w a positive n strand braid word, and f a permutation of 1,...,n,
the f-derivative 0w and the altitude permutation py(w) are defined respectively by

Orw = Py (Ly(w)) and Pr(w) = flstw),
Again the default value for f is the identity.

By construction, every braid word w is the horizontal projection of its canonical lift-
ing L(w), and the derivative dw of w is simply the vertical projection of L(w), while the
altitude permutation p(w) describes the final altitudes in the realization of L(w). For
instance, we read on Figure 2.5 that the derivative of 020% is o901, while the associated
permutation p(o20?) is (2 1 3). By (2.2), the equality f - p(w) = p(dsw) - ps(w) is
always true, and, in particular, the relation

p(w) = p(dw) - p(w)

holds for every braid word w. By Proposition 2.7, these equalities of permutations can
be refined into equivalences of braid words:

Proposition 3.4. For every braid word w, and every permutation f, the equivalence

pHf) - w=0pw - pT (B (w)) (3.3)
holds. In particular, we have always

w=0ow - p H(p(w)). (3.4)

By construction, the f-derivative of a positive word is positive. It follows that (3.4) gives
a decomposition of w in terms of two positive words, which therefore have to be shorter
than w. It is easy to use this decomposition to construct a normal form for positive braid
words. The only point to verify is that derivation is compatible with braid equivalence.

Lemma 3.5. If the positive braid words w and w’ are equivalent, then, for every
permutation f, the derivatives Ojw and Oyw’ are equivalent, and the permutations ps(w)
and py(w') are equal.

Proof. Tt is sufficient to prove the result when w’ is obtained from w by applying one of the
braid relations (2.1). Assume for instance that, for some (positive) words wy and ws, the
word w is w10;04110;wo and w’ is w10 110;0; 1 1we. Owing to the inductive construction
of dpw and py(w), it suffices to prove the result when ws is empty. Similarly the only
contribution of w; is the final permutation py(wy) of the altitudes. Since we claim that
the result holds for every initial permutation f, proving it when w; is empty does not
restrict the generality. So we have to prove that, for any initial permutation f of the

14



altitudes, the contribution of ¢;110;0;11 and o;0;410; to the derivatives are equivalent
and that their contribution to the final altitudes are the same. There are six cases,
according to the initial altitudes of the strands at positions i, i + 1, and i + 2. Let
us cousider the case f(i) > f(i+ 1) > f(i + 2)—which, not surprisingly, turns out to
be the most complicated case with respect to the number of crossings involved in the
corrections. The verification is made on Figure 3.2: we see that both contributions to
the derivative represent permutation braids, and that the corresponding permutations
are equal. The figure covers all possible cases: of course there can be several strands
corresponding to that called “k with f~!(k) < i”, but we know that all such strands are
treated in a parallel way and therefore reach the same final position in both cases. The
other cases are handled similarly, and the verification is analogous (and simpler) in the
case of a relation o;0; = 0;0; with |j —i| > 2. |

z
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k, with f=1(k) > i+
k, with f=1(k) <
Pi+1

k, with f=1(k) > i+
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(042

i)
2

)
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Figure 3.2: Contributions of 0;110;0;41 and 0;0;110; to the derivatives

Lemma 3.6. For every permutation f of 1,...,n, the permutation py({2,) is the half-
turn (n ... 1).

Proof. Use induction on n > 2. The result is obvious for n = 2. Now let us consider the
canonical f-lifting of £2,,. The n—1 first letters in {2, are 0,1, 0p_2, ..., 01. After o,,_1
has been realized, the strand that was initially at position n is certainly above the strand
that was initially at position n — 1. Then, when o, _5 has been realized, this strand is
also above the strand that was initially at position n — 2, etc. So when o,_1...01 has
been realized, the strand that was initially at position n is now at position 1 and at
altitude n. This means that py(£2,)(1) is n. The sequel of {2, is a shifted copy of £2,,_1,
and the induction hypothesis applies. |

Lemma 3.7. For every positive n strand braid word w, d(w{2,,) is equivalent to w.
More generally, for every permutation f, one has df(w§2,) = p~*(f)w.

Proof. Applying (3.4) to the word w2, gives
wi?, = (w2, - pH(P(wi2y,)).
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Now the permutation p(w{2,) is, by construction, the permutation ﬁi;(w)(QnL so, by
Lemma 3.6, it is the half~turn (n ... 1), and, therefore, the associated braid word is (2,,.

Hence we deduce
w - 2 = 0(wldy,) - 2,

which gives w = d(w{2,) by right cancellation of (2,,.

The general case is similar: (3.4) gives

pil(f) Cwlly, = af(w*gn) ’ pil(ﬁf(wgn))'

Again Lemma 3.6 shows that the permutation py(w2,) is (n ... 1), so that p~ (pr(w2y,))
is §2,,, which gives the desired formula by cancelling (2,,. |

By Lemma 3.5, there is no ambiguity in defining the f-derivative 0y of a positive
braid § as the braid represented by dyw where w is any braid word that represents w
of the derivative of any positive braid word representing 3; similarly, we define the
permutation p(3) to be p(w). We are now ready to state our normal form result:

Proposition 3.8. Let 8 be a positive braid. Then the following are equivalent:

i) The braid (3 is a left factor of Al i.e., 3 belongs to the interval [0,r] of [10];

ii) The r-th derivative of (3 is the unit braid.

In the above case—which holds, in particular, if § can be represented by a word of length

at most r—the equivalence
w= H p L (p(0Fw)), (3.5)

takes place for every positive word w that represents (3, and it defines a unique normal
form for 3.

Proof. By construction, if the word w is a prefix of the word w’, then the word dw is
a prefix of the word dw’. So, if w and v are positive words satisfying wv = 27, then
Ow is equivalent to a prefix of 02, and, inductively, 0"w is equivalent to a prefix of
9”2 By Lemma 3.7, the latter word is empty, and (i) implies (ii). Conversely applying
Formula (3.4) successively to w, dw, ... gives, for every integer r, the equivalence

k=0
w=ow- [[ p @0 ).

k=r—1

So, if 9"w is the nullstring, w is equivalent to the product of at most r permutation
braid words, and therefore, by [12], it represents a factor of A7. Finally the fact that
(3.5) defines a unique normal form is obvious, for, if w’ is equivalent to w, the words
p L (p(0Fw)) and p~1(p(0%w’)) are equal for every k. [ ]
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Example 3.9. The reader may wish to verify that, if w is 05010305 (a braid word
quoted as an example in [10] for a word representing a braid not in the interval [0, 2]
although any two strands cross at most twice in the associated diagram), then dw is
02010304, corresponding to the equivalence

w = (03010309) p~ (132 4).
Derivating again yields 0?w = 04, with the equivalence
ow = (02) p~1(3412).

Finally, the third derivative is empty, and the complete normal decomposition into per-
mutation braid words given by Proposition 3.8 is

w=p '(1324)p ' (3412)p 1 (1324),

and the three factors witness that (the braid represented by) w has ‘degree 3, i.e., it
divides A3, but not A3.

4. Automata

We observed above that every 3D braid word need not be realizable in general: for
instance o7 is not realizable, and this is precisely why we introduced the vertical pat-
terns o;. A natural question is as to whether there exists a simple characterization of
those 3D braid words that are realizable. We shall see now that such a characterization
does exist, in terms of some explicit finite state automata that are closely connected with
the ones involved in the automatic structure of the braid groups. As an application, we
shall obtain a simple proof of the fact that the normal form of Proposition 3.8 coincides

with the right greedy normal form of [10] and [14].

Proposition 4.1. (i) There exists an explicit automaton Mn that recognizes the lan-

guage formed by all positive realizable 3D braid words on n strands; the states of Mn
are the permutations of 1,...,n (plus a unique fail state).

(ii) The language formed by all positive f-realizable 3D braid words on n strands is

recognized by the automaton obtained from M, by taking f instead of id as the initial
state.

(iii) The language formed by all realizable 3D braid words on n strands is recognized by
the automaton obtained from M, by symmetrizing all arrows.
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Proof. We recall from [11] that a finite state automaton M can be defined as a 5-tuple
consisting of two finite sets S (the states), and A (the alphabet), a mapping of S x A
into S (the transition function), a subset of S (the accept states) and a fixed element sg
of S (the initial state). A word w on the alphabet A is accepted by the automaton M if
M (sp,w) is an accept state, where M (s,w) denotes the state we obtain when, starting
from state s, we successively read the letters of w from left to right and replace the
current state with its image under the transition function applied to the current letter.
Finally the automaton M recognizes the language L if and only if L is exactly the set of
all words accepted by M.

We first consider the case of positive f-realizable 3D words. Here the alphabet comprises
2n — 2 letters, namely o1, ..., 0p_1, 01, ..., On_1. We construct an automaton M,
so that the successive states that occur when the 3D word u is read are the successive
altitude permutations that appear when w is realized. The formal construction is easy.
The state set is the union of the symmetric group S, and of a unique fail state L; the
initial state is the identity permutation, and every state except L is accepting. The
transition function, (abusively) denoted M,,, corresponds to the action of the letters on
altitudes, when it is defined:

iV g% if 0; is g-realizable,
1 otherwise,
~ i g s .
M,(g,5:)=39" if 0; is g-realizable,
(9,3) { 1 otherwise,

M,(L,0;) =M, (L,0;) =L forevery i, j.

A straightforward inductive proof shows that, for u a positive 3D braid word, u is f-
realizable if and only if the state M,,(f,u) is not the fail state L, i.e., if and only if u is

accepted by the automaton M,, running from state f.

The case of general 3D words is similar. It suffices to complete the automaton Mn with

arrows indexed by the 2n — 2 negative letters o Lo, E;ﬁl as follows: for every arrow
-1
. —~ o.
g Iz, ¢ in the graph of M,, we add a symmetrized arrow g «<— ¢’, and similarly for
o; and 5]-_1. This amounts to keeping M,, unchanged and adding the convention that
reading the letter o, ! (and, similarly, 5;1) means crossing backwards a o;-labelled arrow
(resp. a o;-labelled arrow). This makes sense as there is at most one o; or Gj_l arrow

arriving to each state in ]\A/[/n Then it remains true that letting the extended automaton
run on u from state f leads to the state f“ if w is f-realizable, and to the fail state
otherwise. ]

Figures 4.1 and 4.2 display the graphs of the automata in the cases of 3 and 4 strands.
As is usual, we have omitted the fail state L. The states (i.e., the permutations) are
represented using the associated altitude schema. In Figure 4.2 we have omitted the
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E o1 (o) £
Figure 4.1: The automaton M in the case of 3 strands

name and orientation of the arrows: the bold arrows correspond to the letters o; and
they are all oriented upward, while the thin arrows coorespond to the letters ¢; and
they are oriented downward. Observe that there are always n — 1 arrows that start
from any state, and, symmetrically, n — 1 arrows that arrive to this state. Observe
also that the graph of the automaton is the union of two copies of the Cayley graph
of the corresponding group S,: one that corresponds to the o; labelled arrows (bold),
one that corresponds to the &, labelled arrows (thin). The vertical orientation of the
arrows corresponds to the Bruhat ordering of permutations, for which the o; arrows are
increasing, while the o; arrows are decreasing.

Other automata have been introduced in the literature in connection with braids, namely
those associated with the (bi)automatic structure of the braid groups B, as defined by
Thurston in [14] and [11]. Although the automata do not use the same alphabet (in the
one case, one considers standard braid words, in the other 3D braid words are involved),
there exists a close connection between the present geometric approach and Thurston’s
algebraic approach, which we shall now describe precisely.

In the sequel we mostly follow the notations of [11], with the exception that we use
the permutations themselves as states rather than the associated permutation braids
(or permutation braid words)—which changes nothing as p and p~—! establish bijections.
We omit everywhere the parameter n that indicates the considered number of strands
(by the way, there always exists an ascending compatibility between the automata that
prevents any ambiguity). The device considered by Thurston is a transducer (or output
automaton) (M, O): we still have a finite set of states, namely the permutationsof 1,...,n
in the case of n strand braids, and a transition function M that associates a new state to
each pair consisting of a state and a letter, but, in addition, we have an output function O
that associates an 'output’ word to each pair consisting of a state and a letter. Thus,
starting with a state (= a permutation) f, reading a word w produces both a new final
state M (f,w) and an output word O(f,w). The definition of M and O appeals to the
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Figure 4.2: The automaton M in the case of 4 strands

lattice structure of the braid monoid B;F. For w a positive n strand braid word, we say
that the positive braid ( is a tail of w if 3 is both a right divisor of the braid represented
by w and of A,. G.c.d.’s exist in the braid monoid B, and, therefore every positive
braid word w admits a maximal tail, that we shall denote here max(w). The point now
is that max(wo;) depends only on max(w) and on o;, which implies—because tails are

permutation braids—that the formula
M(f,0:) = p(max(p~(f)os))
defines a function M of S,, x {o1,...,0,—1} into S,, such that the equality
p(max(wo;)) = M (p(max(w)), 0;) (4.1)

always holds. This is the transition function of Thurston’s transducer. For the output
function, we observe that the braid max(p~!(f)o;) is always a right divisor of p=1(f)o;,
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and that the quotient is a permutation braid. Let us define O(f,0;) to be the distin-
guished braid word associated with this quotient, i.e., its image under p~'op: then the
equivalence

pil(f) 0; = O(fa Oi) pil(M(fa 07))

holds in every case, which inductively gives the decomposition
w = O(id,w) - p~ (M (id, w)). (4.2)

Figure 4.3 displays Thurston’s transducer in the case of 3 strands—on each arrow we
have indicated first the letter that is read and then the corresponding output).

e, o

al|e %k
E T

02|61 o1le
<

go|loioe  o1|o20

N[BT

Figure 4.3: Thurston’s transducer (M, O) in the case of 3 strands

Comparing the automata M and (M, O) turns to be easy because both actions are closely
connected with the computation of a maximal tail: in the case of (M, O), this results
from the definition, while, in the case of M, this follows from Lemma 3.7.

Lemma 4.2. For every permutation f, and every positive braid word w, the braid
(represented by) p~—!(pf(w)) is the maximal tail of the braid (represented by) p~'(f)w.

Proof. By Proposition 3.4, we have

pH(f) s w= 0w - pT (B (w))

and, by definition, the braid represented by p~!(ps(w)) is a permutation braid, hence a
tail of p~1(f)w. The point is to prove that this tail is maximal. But assume that there
exists a positive braid word w’ and an integer ¢ such that dyw is equivalent to w’c; and
oip~ 1 (pr(w)) represents a divisor of A,,. By construction, the length of the word w’ is
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strictly less than the length of d;w. Now, write w” for o;p~!(ps(w)); by hypothesis,
w’ represents a divisor of A,, so (because right divisors of A,, coincide with its left
divisors), the word O(w'w”) represents a divisor of the braid represented by d(w’(2,),
which we know by Lemma 2.7 is equivalent to the braid represented by w’. It follows
that the length of d(w'w”) is at most the length of w’. But, by construction, djw is
equal to 9(p~!(f)w), hence it is equivalent to d(w'w”), and we deduce that the length

of Oyw is at most the length of w’, contradicting the result above. |

In particular, we see that, for every positive braid word w, the braid represented by
p~1(p(w)) is a maximal tail of the braid represented by w, and we immediately deduce

Proposition 4.3. The normal form of Proposition 3.8 coincides with the right greedy
form of [11] and [10].

It is now easy to exactly state the connection between the automaton M and the trans-
ducer (M, O).

Proposition 4.4. Thurston’s transducer (M, O) is connected to the automaton M of
Proposition 4.1 by the formulas

M(f,w)=M(f.Li(w),  O(f,w) = df(w). (4.3)
In particular, we have for every permutation f and every letter o;
M(f,0;) = M(f,C(f,0)0:),  O(f, o) = C(f,0,). (4.4)

Proof. Let w be a positive braid word. By construction of (M, O), the braid represented
by p~1(M (id, w)) is the maximal tail of w. Now, by Lemma 4.2, the braid represented by

p~1(p(w)), which is p~1 (M (id, L(w))) by construction, is also the maximal tail of w. It

follows that the braid words p~!(M (id,w)) and p~*(M(id, L(w))) are equivalent. Hence
the associated permutations coincide, i.e., we have

M(id, w) = M(id, L(w)). (4.5)

Now let f be an arbitrary permutation. By construction, p~!(f) is the maximal tail
of p~1(f), and, therefore, M (id,p~1(f)) is equal to f. So, for every letter o;, we have

M(f, o) = M(M(id, p~(f)), 03) = M(id, p~*(f)o).
Similarly, M (id, p~1(f)) is also f, and we obtain
M(f, Ly(07)) = M(M(id, p~*(f)), Ly (03) = M(id, p~*(f) Ly (0y)).

Now p~1(f) is its own canonical lifting, and, by construction, p~*(f)Ls(0;) is the canon-
ical lifting of p=1(f)a;, i.e., p~1(f)C(f,o:)0:. So, applying (4.5), we obtain

M(f, Ly(0)) = M(id, L(p~* (f)o:)) = M(id,p~" (f)o:) = M(f,05),

as was desired.
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Using again the equivalences

pH(f) - 0i=C(f,00) - pH(M(f, Ls(04)) = O(f,05) - p~ (M(f,0)),

which come respectively from (3.3) and (4.2), we deduce that the braid words C(f,0;)
and O(f,0;) must be equivalent, hence equal, since they belong by construction to the
image of the map p~!. So the formulas of (4.4) are established, and those of (4.3) follow
by a straightforward induction. |

Thus we see that Thurston’s transducer appears as some projection of the present au-
tomaton M: letting (M, O) read a braid word w amounts to letting M read the canonical
lifting of w and forgetting those states that correspond to a vertical correction.

It is well-known that most of the results about the automatic structure of braid groups
extend to a larger class of groups, in particular all finite type Artin braid groups [4] [5].
A natural question is whether the present approach could be extended as well. Although
the geometrical intuition of 'vertical braids’ is no longer available then, it is still possible
to define automata that are analogous to M in a general framework: the point for such a
construction remains the existence of a good g.c.d. theory in an associated monoid that
guarantees that, for every positive word w and every letter x, the g.c.d. of wz and a
convenient universal element A only depends on z and on the g.c.d. of w and A. Let
us only mention here that this approach applies to a wide class of groups that admit
presentations of a certain syntactical form—a class that contains all finite type Artin
groups, but also quite different groups [9].

5. Derivation of arbitrary braid words

We have introduced so far a derivation only for positive braid words. The construction
can be easily extended to arbitrary braid words, although all results do not remain valid
in the general case. We now briefly consider this extension.

The derivative of a positive braid word w has been introduced as the vertical projection
of some canonical lifting of w. In order to define similarly the derivative of an arbitrary
braid word, it suffices to extend the construction of the canonical lifting, i.e., assuming
that the canonical lifting Lf(w) of w has been defined, to define the canonical lifting
of the word Ly(wo,; 1). Let g denote the final altitude permutation obtained starting
with f and applying Ls(w), i.e., fLs)  As in Section 3, we separate two cases. If
g(i) > g(i + 1) holds, o; " is realizable from g, and no correction has to be inserted.
But, if g(i) > g(¢ + 1) holds, the altitudes of the strands at positions i and i + 1 are not
compatible with o, ! and we must insert a vertical correction.
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Definition 5.1. (see Figure 5.1)  Assume that g is a permutation of 1,...,n, and i is
at most n — 1. The correction C(g,o; ") is defined to be C(g”, 0,_;)!, where g7t is the
permutation defined by ¢g'*(k) = g(n +1— k), and, for w a positive braid word, w’ is the
braid word obtained from w by replacing each letter o; by its inverse o, ! (but keeping
the ordering).

The correction for a negative crossing is obtained by a mere symmetry from the correction
for a positive crossing, as is shown in Figure 5.1 below. Now everything is correct, and
it suffices to complete Formula (3.2) with

Ly(wo; ") = Ly(w) - C(f2, 070 - 07! (5.1)
to define the canonical lifting of any braid word. Then, L¢(w) is, by construction, a
f-realizable 3D braid word, and w is the horizontal projection of L (w).

%
g(i-i—]_) ﬁy
kwith g7 (k) > i 41 — ko ST
k with g7 (k) <i — -~ \s
: T

Figure 5.1: The correction C(g,0; ") for g(i) < g(i + 1)

Now, as in Section 3, we define the derived braid word of an (arbitrary) braid word w by
dpw = Py(Ly(w)).

For instance, we find 80{1 =g, 30{2 = ofl. Some of the properties of positive braid
derivation extend to arbitrary braid words: this is in particular the case of the equivalence
of Proposition 3.4. On the other hand, let us observe that the compatibility of derivation
with positive equivalence does not extend to arbitrary equivalence: it is not true that
equivalent braid words must have equivalent derivatives, as shows the example of the
equivalent words e, whose derivative is €, and oy 'o1, whose derivative is o ! (o1 !
cannot be realized from the identity altitudes).

The main interest of derivation in the case of general braid words seems to be the measure
of complexity it provides. Proposition 3.8 has given a geometrical characterization for
the factors of A7, i.e., for the elements of the interval [0,7] in the notation of [10].
A similar criterion will be given now for the braids of the interval [—r,r] in terms of
derivatives. Actually, what is involved here is more the complexity of a braid word than
the complexity of the braid it represents—what is in some cases the crucial point, as in
the analysis of the braid word comparison algorithm of [8].
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In order to state the result, we resort to Cayley graphs. The Cayley graph of the group B,
is a labelled graph such that the vertices are the elements of B,,, and there is a ¢;-labelled
edge from 3 to B’ if and only if 3’ = fo; holds. If 3 is a positive n strand braid, we
introduce the Cayley graph of (3, denoted I'(8), as the subgraph of the Cayley graph
of B, obtained by restricting the vertices to the left factors of 3, i.e., to the positive
braids « such that 8 = aa’ holds for some positive o.

Definition 5.2. Assume that 3 is a positive braid. The braid word w is traced in
I'(B) (from «) if there exists in I'(3) a path labelled w (starting from «), according to
the convention that crossing an edge labelled o; contributes o} ! when the orientation is
violated.

For instance, Figure 5.2 displays the Cayley graph of 01020102, and we can check that
the word o10207 1is traced in this graph since it can be read starting from o (but not
starting from 1). We claim that being traced in the Cayley graph of A’ is the convenient
generalization of the notion of being a factor of AJ for arbitrary braid words. Observe
that, for a positive word w, being traced in I'(A”) from « is equivalent to the fact that
af is a left factor of A}, where g is the braid represented by w: so the present notion
does generalize the factor relation of the positive case. However, while there is an obvious
upper bound on the length of the positive words traced in I'(A7), there cannot exist any
such bound for arbitrary words: for every integer k, the word (o107 l)k is traced in the
graph I'(4,).

01 ¥ o)
4
01' o9 g1
l1— 4 g1 ’
02 & : g9
g1 4 02\A3

Figure 5.2: The Cayley graph I'(c1020102)

Proposition 3.8 extends to arbitrary braid words in the following strong sense:

Proposition 5.3. Let w be an arbitrary braid word. Then the following are equivalent:
i) the word w is traced in I'(A});

ii) there exist r permutations fi1, ..., f, such that 0y,...0yw is the nullstring.

If the above conditions hold, the braid represented by w belongs to the interval [—r,r]
of [10]. Conversely, if a braid belongs to [—r,r], it can be represented by a braid word
that satisfies the above conditions.
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Proof. We give only a sketch, the details are not difficult. The idea is to introduce, for 8 a
positive braid, the lifted Cayley graph LI'(3) such that the words traced from 1 in LI'(3)
are exactly the realizable liftings of the words traced from 1 in I'(3). The graph LI'(3)
is obtained from I'(3) by splitting each vertex a into a graph I'(a) with o; labels that
describes all positive vertical transformations allowed from p(«), as Figure 5.3 shows.

o1 9« o9
~ 4
01 % 09 01
o1 € 0-251 $ g1 3
g
l— 4 (o] $ ?
g9 4 é &1
0-1 ‘ 02\A3

Figure 5.3: The lifted Cayley graph LI'(o10201032)

The principle of the proof is simple. Assume that the braid word w is traced in the
graph I'(A7). Then we can lift w into a 3D word u that is traced in LI'(A]), and, by
construction, the vertical projection Py (u) is traced in the vertical projection of LI'(A"),
which is the Cayley graph of the derivative of AT, i.e., of A’"! and this leads to an
induction argument on . However, we obtain in this way that some lifting of w is traced
in LI'(A7). This is not the same as saying that, for some permutation f, the canonical
f-lifting of w is traced in this lifted graph. To prove the latter result, the point is to
verify, using the techniques of [11, section 9.1], that each “vertical” graph I'(a) is a
lattice. This implies that, if the braid word w is traced from « in I'(A7), and if f is the
permutation p(«), then the canonical f-lifting L(w) is traced from L(c) in LI'(A}),
and this is enough to deduce (ii) from (i) in Proposition 5.3.

For the converse implication, we cannot simply use Formula (3.3), because the latter
gives only properties of the braid represented by w, and not of the word w. However it
is not hard to show using induction on the length of w that, if the braid word djw is
traced in the graph I'(A7~1), then the 3D word Ls(w) is traced in LI'(A7), and therefore
the word w is traced in I'(A%). Proving that (ii) implies (i) in Proposition 5.3 is then
immediate using induction on the exponent r. Finally, the second part of the proposition
is easy. Indeed, we mentioned that Formula (3.5) holds for derivatives of arbitrary braid
words as well as for derivatives of positive braid words, and it gives an equivalence of the
form

w=p (1) - Opw - ().

So, if some iterated r-th derivative of w is trivial, there exist 2r permutations fi, ..., f,
f1, ..., fI such that w is equivalent to
p ()T T ) T T D T D, (5.2)
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which means that the braid represented by w lies in the interval [—r, 7] of [10]. Conversely
it is obvious that any word of the form (5.2) is traced in the Cayley graph I'(A7). N

6. An application

We finish with an easy application of three-dimensional realizations of braids. In [6] we
have introduced a linear ordering of the braids, which is compatible both with product
on the left and with shift. This ordering is characterized by the fact that 8 < 3’ holds
if and only if the braid 37 !8’ either admits a decomposition where the generator o;
appears but o, 1 does not, or that it admits a decomposition where o5 appears and none
of Uf[l, 051 does, etc. Of course, the ordering of B,, does not project onto an ordering
of the symmetric group S, (o7 is strictly less than o3 although they project on the same
permutation), but, once a distinguished section p~—! of the projection is fixed, we obtain
a linear ordering on S,,, and it is natural to ask for a direct description of this linear
ordering.

Proposition 6.1. The linear ordering of S, such that f < g holds if and only if
p~1(f) < p~Y(g) holds in B, is a lexicographical ordering: f < g holds if and only if
there exists k satistying f(k) < g(k) with f(i) = g(i) for i < k.

Proof. By construction, the braid word p~!(g) is realizable starting from the altitude
permutation id, and so is the braid word p~1(f). Let h be the altitude permutation
idp_l(f), i.e., p(p~1(f)): starting from h, the braid word p~1(f)~p~1(g) is realizable, for,
after p~1(f)~!, we shall have retrieved the identity permutation for the altitudes. So we
have a “laminated” realization of p~1(f)~!p~!(g) where each strand lives in a horizontal
plane. By construction, the strand s beginning at position 1 has altitude f(1), while
the strand s’ finishing at position 1 has altitude g(1). Assume f(1) < g(1): this means
that s’ lies above s. Now it is clear that, possibly at the expense of introducing negative
crossings, we can push the strands to the left in their respective horizontal planes so that
the only crossing between positions 1 and 2 is a crossing of s and s’ — thus certainly of
s’ above s: the braid word describing this new braid diagram will contain exactly one
letter oy and no letter o ', which is enough to conclude that p~'(f) < p~*(g) holds in
the braid ordering. The argument is symmetric for f(1) > g(1). Finally, if f(1) = g(1)
holds, the leftmost strand remains unbraided, and we are left with the same situation
relatively to position 2. [ |

Since the normal form of Section 3 gives a decomposition of every positive braid into a
product of permutation braids, one could expect a connection between the ordering of
general positive braids and the ordering of permutation braids that we have described
above. However, it seems that no simple connection of this sort exists. Consider for
instance the positive braids oj090109 and o909010%: both are in normal form, the
respective decompositions in products of permutation braids being (o1)(o20102) and
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(02)(020103). Now 01090109 < 02020109 holds in the braid linear ordering, as the quo-
tient (o1020102) " (02020102) is also 05101. On the other hand, (01)(020102) is bigger

than

(02)(020102) in any reasonable lexicographical extension of the ordering on per-

mutation braids. This suggests that the greedy normal form is not suited for the linear
ordering of (positive) braids, and, actually, [3] defines another normal form that happens
to be more convenient from this point of view.
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