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Transfinite Braids
and Left Distributive Operations

Patrick DEHORNOY

ABSTRACT. We complete Artin’s braid group B∞ with some limit points
(with respect to a natural topology), thus obtaining an extended monoid
where new left self-distributive operations are defined. This construction
provides an effective realization for some free algebraic system involving a
left distributive operation and a compatible associative product.

AMS Subject classification: 20F36, 20N02

Here we investigate a rather natural extension of the usual notion of a braid,
namely that obtained by considering two infinite series of strands rather than
just one as in the case of Artin’s braid group B∞. The corresponding group is
very large, but it turns out that a certain submonoid EB∞ of this group can
be described very simply as a completion of B∞. This completion is obtained
by adding upper bounds to some sequences that are increasing for a canonical
linear ordering, or, equivalently, that are Cauchy sequences with respect to the
associated topology. The basic study of the monoid EB∞ is the content of the
first two sections.

The sequel of the paper is devoted to the study of left self-distributive
operations on the monoid EB∞, i.e., of binary operations ∗ that satisfy the
algebraic identity

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z). (LD)

There is nothing gratuitous in this task. Indeed it is well known that deep con-
nections exist between braids (and knots) and self-distributive structures [2],
[15], [16], [17], [9] — as well as between the latter and set theory [5], [20], [21],
[13] (see also [3] for another relation between braid groups and distributivity).
In particular we recall in Section 2 that each new example of an LD-system
(defined as a set equipped with a left self-distributive operation) can potentially
bring new information about braids using the formalism of braid colourings. So
constructing “concrete” LD-systems is a natural aim. It is both easy and diffi-
cult. It is easy, since there are very common examples, like lattices, or groups
equipped with the conjugacy operation x ∗ y = xyx−1. But these examples
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are rather special since the operations they involve are always idempotent, i.e.,
the product x ∗ x is always x. This implies severe limitations on the applica-
tions such systems can lead to. On the other hand, constructing LD-systems
that are not idempotent, and, in particular, constructing realizations of the
free LD-systems, turns out to be a much more difficult question. In [8] we
have constructed a realization of the free LD-system on one generator in terms
of braids: Let B∞ denote Artin’s group of (finite) braids on infinitely many
strands, and s be the shift endomorphism that maps each generator σi to σi+1.
Then the bracket operation defined on B∞ by

α[β] = α s(β) σ1 s(α−1) (0.1)

is left distributive, and it satisfies the strong property that every braid β gen-
erates under bracket a free LD-system. The existence of such a realization
for a free LD-system has led to non-trivial applications, both in algebra and
topology. In the first field, it provided the first complete proof that the word
problem of the identity (LD) is solvable, a result that R. Laver had previously
derived in [20] from an unprovable hypothesis of set theory. In the second one,
it led to the existence of a linear ordering of braids ([8], cf. Section 2), and,
subsequently, to the construction of a very efficient algorithm for comparing
braids [11].

In the second part of this paper, we show how to construct left distribu-
tive operations in the extended braid monoid EB∞ —the main result being
that EB∞ appears as the natural framework for such a construction. In partic-
ular one obtains a better understanding of the relation between the bracket (0.1)
and the classic conjugacy operation. In Section 3 we show how the LD-system
made of B∞ equipped with the bracket (0.1) can be embedded in a richer
structure on EB∞ where the distributive operation and the associative prod-
uct are connected by strong compatibility identities. Such structures, called
here LD-monoids, have already be considered as natural strengthenings of the
LD-systems ([4], [20], [14]). They also appear in the context of topology when
one wishes to define enhanced braid colourings where not only the strands, but
also the regions between the strands, are coloured. The main result here is that
the structure of LD-monoid on EB∞ provides concrete realizations of the free
LD-monoid on one generator that constitute an exact counterpart to the real-
izations of the free LD-system on one generators provided by the braid bracket
alone. Finally we show in Section 4 that the braid bracket (0.1), as well as
the more general operations of Section 3, can be derived from a certain unique
new left distributive operation on EB∞. The latter appears so as a more basic
object, and constitutes perhaps the “atomic core” of the construction.

It is a pleasure for me to thank here C. Kassel for having suggested several
improvements in the presentation of this text.
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1. Transfinite braids

Let us begin with finite braids. As usual, we define a braid diagram on n
strands as a finite concatenation of elementary patterns of the type

1 2 i i + 1 n

σi : . . . . . .

. . . . . .σ−1
i :

Artin’s braid group Bn is the quotient of the monoid of n strand braid dia-
grams equipped with the product induced by concatenation of strands under
the congruence generated by the relations σiσ

−1
i = σ−1

i σi = 1 and

σiσi+1σi = σi+1σiσi+1 (R1)
σiσj = σiσj for |i − j| ≥ 2 (R2)

where i, j range over 1, . . ., n − 1. As is well-known (see for instance [1]), this
congruence corresponds to ambient isotopy when the diagrams are considered
as the projection of 3-dimensional figures.

Adding an additional strand on the right of the diagrams gives an injective
morphism of Bn into Bn+1, so there is no problem in identifying the genera-
tors σi associated with various values of n. We can also consider braid diagrams
built on an infinite sequence of strands indexed by the positive integers: the
corresponding group B∞ is the direct limit of the groups Bn with the previous
injective morphisms, and it is the group generated by an infinite sequence of
generators σi subject to relations (R1) and (R2).

Now we can introduce braid diagrams that involve two series of strands
indexed by the positive integers and placed as follows:

1 2 3
. . .

1̃ 2̃ 3̃
. . .

We consider two sequences of generators σi and σ̃j , such that the effect of σ̃j

is to cross the strands j̃ and ˜j + 1 of the second series:

σi :

σ̃j :

1 i i + 1

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1̃ j̃ ˜j + 1
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Now it is clear that the extension introduced in this way is trivial: the group
that appears when the obvious notion of isotopy is considered is merely the
direct product of two copies of B∞, since there is no interaction between the
two infinite series of strands. So we introduce new basic diagrams: we shall
denote by θk the σ-like crossing that sends the k-th strand of the first series to
the first position in the second series, as in the figure below

θk :
1

. . . . . .

k k + 1 1̃ 2̃

Definition. A transfinite braid diagram is a finite concatenation of diagrams
of the types σi, σ̃j and θk, and their inverses (horizontal mirror images).

We can see a transfinite braid diagram as the plane projection of a 3-
dimensional figure in an obvious way, and introduce the group, denoted B∞+∞,
of all isotopy classes of such transfinite braid diagrams. In order to avoid any
ambiguity in the previous notion of isotopy, one should think of the strands
as embedded in R3 in such a way that the basepoints are isolated: we do not
assume that the point 1̃ is the limit of the points i when i goes to infinity.

Remark. If Γ is any locally finite planar graph, one can naturally associate
with Γ a braid group BΓ by attaching a strand to each vertex of the graph
and considering for each edge (v, v′) of Γ the operation σ(v,v′) of crossing the
strands at v and v′: see [23] for elegant developments on this theme. The
present group B∞+∞ is reminiscent of this approach, except that we do not
assume that the underlying graph is locally finite: here the graph is made of two
copies of the positive integers, with edges between each integer and its successor,
and between each integer in the first family and the first (or, equivalently, any)
integer in the second family. Observe that this graph is the graph of some order
on the set N ⊕ N, namely the canonical well-ordering that turns this set into
the ordinal ω +ω. From this point of view, it would be natural to denote by 0,
1, . . . the strands in the first family, by ω, ω + 1, . . . the strands in the second
family, and, for any two ordinals ξ, η with ξ < η < ω+ω, by σξ,η the generator
that corresponds to crossing the strands ξ and η: with these notations σi is
σi,i+1, σ̃j is σω+j,ω+j+1 and θk is σk,ω. Then the present group B∞+∞ could
naturally be named Bω+ω, and clearly a similar construction is possible for any
infinite limit ordinal.

Lemma 1.1. The group B∞+∞ is generated by the three sequences of gener-
ators σi, σ̃j and θk such that each σi commutes with each σ̃j and the following
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relations hold: (R1), (R2), their counterparts (R̃1), (R̃2) involving the genera-
tors σ̃j , and

σiθk = θkσi for i ≤ k − 2, (R3)
σ̃jθk = θkσ̃j+1, (R4)

σi+1θk = θkσi for i ≥ k, (R5)
σkθk+1θk = θk+1θkσ̃1, (R6)

σkθk+1 = θk. (R7)

Proof. That the above relations are true is easily verified on the diagrams. For
instance Figure 1 displays the case of relation (R6). Now assume conversely
that two transfinite diagrams are isotopic: because they involve finitely many
elementary diagrams, there exists a finite integer N such that all strands in the
first series from the N -th one will behave in a totally parallel and trivial way
throughout the whole diagrams. So if we consider the ordinary braid diagrams
on one infinite series of strands obtained by collapsing all strands in the first
family from the N -th one onto a unique strand, and mapping the strands 1̃, 2̃,
. . . respectively to N + 1, N + 2, . . ., then the collapsed diagrams are isotopic,
and therefore they are equivalent with respect to relations (R1) and (R2). It
remains to lift these relations in the original transfinite diagrams, and it is
easily seen that each use of (R1) comes from using (R1), (R̃1), (R3) or (R4),
while any use of (R2) comes from using (R2), (R̃2), (R5) or (R6). Finally (R7)
comes from the fact that θk is collapsed to σkσk+1. . .σN−1. �

1

. . .

. . .

. . .

. . .

k k + 1 1̃ 2̃

Figure 1: Relation σkθk+1θk = θk+1θkσ̃1

Remark. With the generators θk we are far from considering all possible
interactions between the strands in the first and the second infinite series:
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by definition, and by (R7), θk corresponds to the infinite product σkσk+1. . .,
but nothing corresponds to the infinite product σ−1

k σ−1
k+1. . . (the inverse of θk

corresponds to the reversed infinite product . . .σ−1
k+1σ

−1
k , i.e., the orientations

of the crossings are changed), nor does anything correspond either to the mixed
products of the form σ

ε(k)
k σ

ε(k+1)
k+1 . . . where ε is a sequence of ±1 not eventually

equal to 1.

It is clear that the ordinary braid group B∞ is (isomorphic to) the subgroup
of B∞+∞ generated by all σi. So we shall identify B∞ with this subgroup.
Similarly, we write B̃∞ for the subgroup of B∞+∞ generated by all σ̃j : B̃∞ is
isomorphic to B∞. For every braid β, we denote by β̃ the translated copy of β
obtained by replacing any generator σi by its counterpart σ̃i.

In the sequel of this paper, we shall no longer consider full transfinite braid
diagrams, but restrict our attention to their left part, i.e., to the diagrams
they induce on the first series of positions. Technically we shall consider the
left cosets of B∞+∞ associated with its subgroup B̃∞, i.e., we consider that
two transfinite braids ξ, ξ′ are equivalent if ξ′ can be written as ξβ̃, where β
is an (ordinary) braid. Because B̃∞ is not a normal subgroup of B∞+∞, there
need not exist an induced product on the coset set B∞+∞/B̃∞, and the study
is not so easy (Section 2 explains in part this difficulty). So, in practice, we
shall restrict ourselves to a subset (actually a submonoid) of B∞+∞.

Definition. A transfinite braid is θ-positive if it possesses at least one decom-
position where the inverses of the generators θk do not occur. The set of all
θ-positive transfinite braids is denoted B+

∞+∞, and the coset set B+
∞+∞/B̃∞

is denoted EB∞.

Lemma 1.2. Every θ-positive transfinite braid can be written under the form
αθpθp−1. . .θ1β̃, where p ≥ 0 and α, β belong to B∞.

Proof. We use induction on the length of the decompositions, i.e., we show that
multiplying by a generator (of the permitted type) preserves the property. So
we start with a transfinite braid ξ = αθp. . .θ1β̃ of the form above, and consider
the product ξη, where η is either σ±1

i , or θk, or σ̃±1
j . In the first case, we

observe that the formula

θp. . .θ1β = sp(β)θp. . .θ1 (1.1)

holds for every β in B∞ (we recall that s denotes the shift endomorphism of B∞
that maps σi to σi+1 for every i): this follows inductively from (R5). So we
get here

αθp. . .θ1β̃σ±1
i = αθp. . .θ1σ

±1
i β̃ = ασ±1

i+pθp. . .θ1β̃,
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which has the desired form. For the second case, we first have β̃θk = θks̃(β̃)
by repeated use of (R4). Now we have

θp. . .θ1θk = θp. . .θ1σ
−1
k−1. . .σ

−1
1 θ1

= σ−1
p+k−1. . .σ

−1
p+1θp. . .θ1θ1

= σ−1
p+k−1. . .σ

−1
p+1σpθp+1. . .σ1θ2θ1

= σ−1
p+k−1. . .σ

−1
p+1σp. . .σ1θp+1. . .θ2θ1,

and therefore we have

αθ1. . .θpβ̃θk = ασ−1
p+k−1. . .σ

−1
p+1σp. . .σ1θp+1. . .θ1s̃(β̃),

again of the desired form. Finally, for the third case, αθpβ̃σ̃±1
j has directly the

right form. �

Remark. The previous result does not extend to arbitrary elements of B∞+∞:
for instance the transfinite braid θ−1

1 σ−1
1 has no decomposition of the form

α
∏

i θεi
pi

β̃. Indeed, an easy induction shows that, in any transfinite braid∏
i θεi

pi
, the twisting number of the strands 1 and 1̃ (the exponent of σ1 in

the braid obtained by deleting all other strands) is −1, 0 or +1, but never −2
as in θ−1

1 σ−1
1 .

Definition. i) For p, q ≥ 1, the braid τp,1 is the product σpσp−1. . .σ1, and
the braid τp,q is the product τp,1s(τp,1). . .sq−1(τp,1). For p = 0 or q = 0, the
braid τp,q is the trivial braid 1.

ii) For p ≥ 1, the coset τp,∞ is θp. . .θ1B̃∞, and the coset τ0,∞ is B̃∞ itself.

The braid τp,q is the braid that lets the first p strands cross under the next
q strands, while τp,∞ is the coset associated with the transfinite braid whose
effect on the first series of strand is to let the first p ones cross under all other
strands in the first series toward the positions 1̃, . . ., p̃ in the second series.
So we can take for τp,q and τp,∞ the following representation (at this point,
the figure for τp,∞ is still a convention, since we have not yet proved that it
adequately displays the information contained in τp,∞):

p︷ ︸︸ ︷
p︷ ︸︸ ︷ q︷ ︸︸ ︷

τp,∞ :

τp,q :

. . .

. . .
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It follows from Lemma 1.2 that every coset in EB∞ contains at least one element
of the form αθp. . .θ1, i.e., each element of EB∞ has at least one decomposition
of the form ατp,∞ where α belongs to B∞. Moreover the above computation,
and in particular Formula (1.1), show

Proposition 1.3. The product of B∞+∞ gives EB∞ the structure of a monoid,
and one has

ατp,∞ · βτq,∞ = αsp(β)τp+q,∞. (1.2)

The decomposition of every element of EB∞ as ατp,∞ need not be unique in
general. But we can describe exactly the lack of uniqueness. In the sequel, we
use the following notation: if H is a subgroup of G, we write a ≡ a′ (mod H),
and say that a and a′ are equivalent modulo H, when the left cosets aH and
a′H are equal.

Lemma 1.4. For α, α′ in EB∞, the elements ατp,∞ and α′τp′,∞ of EB∞ are
equal if and only if the integers p and p′ are equal and the braids α and α′ are
equivalent modulo Bp.

Proof. Assume k < p. By (R3), (R6) and (R4) we have

σkθp. . .θ1 = θp. . .θk+2σkθk+1θk. . .θ1

= θp. . .θk+2θk+1θkσ̃1θk−1. . .θ1

= θp. . .θk+2θk+1θk. . .θ1σ̃k

So, if α ≡ α′ (mod Bp) holds, i.e., if α′ is αγ for some γ in Bp, we have

α′θp. . .θ1 = αθp. . .θ1s̃(γ),

and αθp. . .θ1 and α′θp. . .θ1 are equivalent modulo B̃∞.

Conversely assume αθp. . .θ1 ≡ α′θp′ . . .θ1 (mod B̃∞). As for an ordinary
braid, a transfinite braid induces a permutation of the set that indexes the
strands, here the disjoint union N ⊕ N. The restriction of this permutation
to the first copy of N is a partial injection of N into N, and two transfinite
braids that are equivalent modulo B̃∞ induce the same partial injection. Now
the index p in a decomposition α′θp. . .θ1β̃ is the number of integers that have
no image in the associated partial injection. Hence p are p′ are equal. Now let
γ be α−1α′, so that the hypothesis is that there exists some braid γ′ satisfying

γθp. . .θ1 = θp. . .θ1γ̃′. (1.3)
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Let us assume that γ belongs to Bp+q. By collapsing all strands on the right
of the (p + q)-th one, (1.3) becomes

γτp,q = τp,qs
q(γ′).

Assume that γ′ belongs to Bp+q′ \ Bp+q′−1 for some positive q′. Then, by the
results of [11], the braid γ′ admits a decomposition where the generator σp+q′−1

occurs but its inverse does not, or conversely. But this implies that σp+q+q′−1

occurs in τp,qs
q(γ′)τ−1

p,q γ−1 and its inverse does not (or conversely), which, by
the results of [8], prevents this braid from being trivial. So γ′ necessarily
belongs to Bp, and this implies that τp,qs

q(γ′)τ−1
p,q is equal to γ′. Hence the

hypothesis becomes γ′−1
γ = 1, which forces γ to belong to Bp as well: in other

words α′ ≡ α (mod Bp) holds. �

We can also restate the previous result as

Proposition 1.5. The mapping (α, p) �→ ατp,∞ establishes a bijection between
the disjoint sum

∐
p≥0 B∞/Bp and EB∞.

Observe that the proof of Lemma 1.4 works in particular in the cases p = 0
and p = 1, according to the convention that B0 and B1 both are the trivial
group: in other words, the mappings α �→ ατ0,∞ and α �→ ατ1,∞ are both
injective on B∞, i.e., the monoid EB∞ includes two copies of B∞. Moreover
the first injection is a homomorphism, so there is no danger to identify from
now on B∞ with its image, i.e., to take τ0,∞ = 1. Of course the injection that
maps α to ατ1,∞ is not a homomorphism, since the product of any two elements
of B∞τ1,∞ belongs to B∞τ2,∞, which is disjoint from B∞τ1,∞. Observe that
B∞ is exactly the set of all invertible elements in the monoid EB∞: actually
the product formula (1.2) shows that EB∞ is a graded monoid with degree 0
part equal to B∞.

Remark. In the above graphical representation, τp,∞ is a “braid” where the
first p strands vanish at infinity. One could think of a more simple representa-
tion for such a braid, where the first p strands are simply cut as below

. . .

This representation, however, is misleading in the present approach, as it in-
volves a completely different notion of isotopy for which τ1,∞ and σ1τ1,∞ are
equal, which is not the case in EB∞.
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2. The linear ordering on EB∞

In this section we show how the monoid EB∞ can naturally be described as
a completion of B∞ with respect to a linear ordering, or, equivalently, to the
associated topology (which we shall see has a very simple intrinsic definition in
term of the shift endomomorphism).

In order to introduce these notions, we first have to briefly present the
framework of braid colourings (cf. [9]). The idea is to fix a set S equipped with
a binary operation ∗ and to attach colours to the strands of the braid diagrams
with the convention that colours will be modified at crossings according to the
scheme

x y

x ∗ y x

It is easily verified that the colours at the bottom of the braid will depend
only on the braid and on the colours at the top of the braid (but not on
the decomposition of the braid that was used) provided that the operation ∗
satisfies the left (self-)distributivity identity

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z), (LD)

i.e., the algebraic system (S, ∗) is what we called an LD-system. Moreover
colouring the negative crossings must obey the rule

x y

y (unique) z satisfying x ∗ z = y

which leads to consider LD-systems where left division is uniquely defined (au-
tomorphic sets in [2], or racks of [15]). Actually one can use LD-systems where
left division is not necessarily possible, provided it has a unique value when
defined (left cancellative LD-systems): then it need not be true that every se-
quence of initial colours may be propagated through a given braid diagram, but
one can show that, for every finite collection of braid diagrams, there always
exist sequences of colours that can be propagated through the diagrams. If �x
is a sequence of colours, and u is a braid diagram (i.e., a word written with the
letters σi and σ−1

i ), we denote by (�x)u the final sequence of colours obtained
at the bottom of u when �x is applied at the top of u (if such a sequence exists).

Various braid or knot invariants can be introduced in this way, starting
from various known LD-systems (see [9], [15], or [17], [16] for variants and
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alternative approaches). We consider here the case when colours are taken in a
free LD-system (F, ∗) on one generator e. It is known [8] that this LD-system is
left cancellative (so the approach is legitimate), but left division is not always
possible, so F -colourings are rather different from those involving the “classic”
LD-systems (all related with a group conjugacy). Presently, the main point is
that F is equipped with a (unique) linear ordering such that x < x ∗ y always
holds ([20], [8]). We denote by <Lex the lexicographical extension of this order
to sequences from F (also we say that a braid word u is a decomposition of
the braid α just when α is the equivalence class of u with respect to the braid
relations).

Proposition 2.1. ([8], [11]) For any braids α, β in Bn, the following properties
are equivalent, and they define a relation α < β that is a linear ordering on Bn:

• There exist decompositions u, v of α, β and a sequence �x in Fn such that
(�x)u and (�x)v exist and (�x)u <Lex (�x)v holds;

• For every decompositions u, v of α, β and every sequence �x in Fn such
that (�x)u and (�x)v exist, (�x)u <Lex (�x)v holds;

• The braid α−1β has a decomposition where the generator with minimal
index occurs only positively.

The orderings on Bn and Bn+1 are compatible, so their union, still denoted <, is
a linear ordering of B∞. One can show that B∞ equipped with < is isomorphic
to the rationals, i.e., is a dense linear order without endpoint.

Let us come back now to the monoid EB∞. There is a natural way to extend
the notion of a braid colouring to the elements of EB∞. Indeed, we fix a rule
for the diagrams τp,∞. Let S be any left cancellative LD-system. Owing to our
previous representation, we shall consider for τ1,∞ the following colouring:

x1 x2 x3 x4

x1 ∗ x2

x1 ∗ x3

x1 ∗ x4

. . .

More generally we take

(�x)τp,∞ = (x1 ∗ . . . ∗ xp ∗ xp+1, x1 ∗ . . . ∗ xp ∗ xp+2, . . .)

Here, and in the sequel, we make the convention that missing brackets, which
are significant since we do not assume that the operation ∗ is associative, should
be added on the right: x ∗ y ∗ z stands for x ∗ (y ∗ z). Observe that, with the
above definition, the sequence of colours (�x)uτp,∞ is defined if and only if (�x)u
is defined.
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We first have to check that our definition makes sense, i.e., that the output
colours depend only on the element of EB∞ represented by the considered
diagram.

Lemma 2.2. The colourings so defined are compatible with the relations
of EB∞.

Proof. We have to show that, if the braids α, α′ are equivalent modulo Bp,
and if u, u′ are any decompositions of α, α′ such that (�x)u and (�x)u′ are de-
fined, then the sequences (�x)uτp,∞ and (�x)u′τp,∞ are equal. Now there exists a
braid γ in Bp such that α′ is αγ. It is well-known that γ has a decomposition of
the form vv′−1, where v, v′ are positive braid words, i.e., involve no letter σ−1

i .
Then both (�x)uv and (�x)u′v′ are defined, which implies that (�x)uvv′−1 is de-
fined as well. Write �y for (�x)u, and w for vv′−1. We may assume that w
involves only letters σ±1

i with i < p, and we can use induction on the length of
the word w. In other words, it suffices to consider the case when w is a single
letter σi, i.e., to compare (�y)τp,∞ and (�y)σiτp,∞. Now the k-th elements of
these sequences are respectively

y1 ∗ . . . ∗ yp ∗ yk+p

y1 ∗ . . . ∗ (yi ∗ yi+1) ∗ yi ∗ . . . ∗ yp ∗ yk+p,

which are equal since ∗ is assumed to be left distributive. �

With this extended notion of diagram colouring, we can easily extend the or-
dering from B∞ to EB∞.

Proposition 2.3. (i) For any elements ξ, η in EB∞, the following properties
are equivalent, and they define a relation ξ < η that is a linear ordering on EB∞:

• There exist decompositions uτp,∞, vτq,∞ of ξ, η and a sequence �x in FN

such that (�x)uτp,∞ and (�x)vτq,∞ exist and (�x)uτp,∞ <Lex (�x)vτq,∞ holds;
• For every decompositions uτp,∞, vτq,∞ of ξ, η and every sequence �x in FN

such that (�x)uτp,∞ and (�x)vτq,∞ exist, (�x)uτp,∞ <Lex (�x)vτq,∞ holds.

(ii) The inequality ατp,∞ < βτq,∞ holds in EB∞ if and only if ατp,n < βτq,n

holds in B∞ (and EB∞) for n large enough. So the element ατp,∞ is the upper
bound of the increasing sequence of braids (ατp,n)n≥0.

Proof. By construction the sequence of colours (�x)uτp,∞ is the limit of the
sequences (�x)uτp,n when n goes to infinity: the k-th term of the sequence
(�x)uτp,n is constant for n ≥ k. It follows that (�x)uτp,∞ <Lex (�x)vτq,∞ holds if
and only if (�x)uτp,n <Lex (�x)vτq,n holds for n large enough. This proves the
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equivalence of (i), and shows that ατp,∞ < βτq,∞ holds in EB∞ if and only if
ατp,n < βτq,n holds in B∞ (and EB∞) for n large enough. In particular we
see that ατp,∞ < β holds if and only if ατp,n < β holds for n large enough (if
and only if ατp,q < β holds for any q such that α and β belong to Bp+q). This
proves (ii), as it is obvious that the sequences (τp,n)n≥0 are increasing. �

So we see that (EB∞, <) is the completion of the ordered set (B∞, <) obtained
by adding upper bounds to all sequences of the form (ατp,n)n≥0. That these
sequences have no bound in B∞ for p ≥ 1 follows from the fact that < is a
linear ordering on EB∞, and B∞ is a subset of EB∞ — a direct proof is also
easy. Observe that the product of EB∞ is compatible with this completion:
indeed we have

ατp,q+n · βτq,p+n = αsp(β)τp+q,n

for every n such that β belongs to Bq+n. But, on the other hand, the transla-
tions associated with τp,∞ are not increasing (for p ≥ 1): for instance σ2 < σ1

holds, but σ2τ1,n > σ1σ1,n holds for n ≥ 2, so we have σ2τ1,∞ ≥ σ1τ1,∞
(and therefore σ2τ1,∞ > σ1τ1,∞ since these terms are not equal according to
Lemma 1.3).

The previous notions can be naturally rephrased in terms of topology. First
it may be interesting to observe that the topology associated with the braid
ordering < has a very simple description.

Proposition 2.4. The topology of B∞ induced by the order < is the same as
that associated with the ultrametric distance d such that d(α, β) is 2−n if α−1β
belongs to sn(B∞) but not to sn+1(B∞). For this topology B∞ is a topological
group.

Proof. By construction the open ball with radius 2−n centered at α is simply
the left coset αsn(B∞), i.e., the set of all braids αγ where γ has a decomposition
involving no generator σ±1

i with i ≤ n. Let α, β be arbitrary braids, and γ be
any element of the open interval (α, β). Assume that α, β and γ belong to Bn.
Let us say that a braid is σi-positive (resp. negative) if it has decomposition
where no letter σ±1

j occurs, σi occurs and σ−1
i does not (resp. σ−1

i occurs and
σi does not). Then the hypothesis α < γ implies that the braid α−1γ is σi-
positive for some i < n. But then α−1γsn(δ) is σi-positive for any δ, which
means that α < γsn(δ) holds as well. Similarly β−1γ is σj-negative for some
j < n, and again this implies γ < γsn(δ) for every δ: so the open ball γsn(B∞)
is included in the interval (α, β).

Conversely, let us start with an arbitrary open ball γsn(B∞). Let γsn(α)
and γsn(β) be any two points in this ball, and δ be any braid satisfying
γsn(α) < δ < γsn(β). We claim that δ has to belong to the ball. Indeed
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we have sn(α) < γ−1δ < sn(β). If γ−1δ were not in the image of sn, then
for some i < n it would either be σi-positive, or be σi-negative. In the first
case, sn(α−1)γ−1δ is also σi-positive, which contradicts sn(α) < γ−1δ. In the
second case, sn(β−1)γ−1δ is also σi-negative, which contradicts γ−1δ < sn(β).
So the order topology and that associated with the distance d coincide.

Finally the product and the inverse are continuous operations on B∞. In-
deed, if α, β belong to Bp, and n is at least p, the braid β commutes with every
braid in sn(B∞), and we have trivially the equalities

αsn(B∞) · βsn(B∞) = αβσn(B∞)
(βsn(B∞))−1 = β−1sn(B∞). �

From the above remarks it follows that B∞ equipped with the above topology
is homeomorphic to the rationals. Now we see that the sequences (ατp,n)n≥0

are Cauchy sequences, and EB∞ can now be seen as the (partial) topological
completion obtained by adding a limit to such sequences. To this end, it
suffices to extend the topology of B∞ to EB∞ by defining the elementary
neighbourhood sn(EB∞) by the formula

sn(ατp,∞) = sn(α)τ−1
p,nτp,∞,

deduced from the equality

sn(τp,q) = τ−1
p,n τp,n+q.

Details are easy.

Remark. One could also take a more systematic completion of B∞ obtained
by adding limits to all Cauchy sequences. With such a construction, one would
expect to get rid of the limitations originating in our choice of special Cauchy se-
quences. In particular we would expect to obtain a group structure on the com-
pletion, which would be more satisfactory than the monoid structure of EB∞.
This approach, however, does not seem to work, for the algebraic operations
of B∞ (in contradistinction to those of the rationals) are not regular enough
with respect to the ordering. For instance, α < β does not imply α−1 > β−1

(consider α = σ1, β = σ2
1σ−1

2 ). For the completion, observe that the se-
quence (τ−1

1,n)n≥0 is not a Cauchy sequence, and that actually it tends to −∞
in B∞. Indeed, if β is any braid in Bp, we have τ1,nβ = s(β)τ1,n for n ≥ p,
and the latter form is σ1-positive: so τ−1

1,n < β certainly holds. This shows
that merely adding inverses for the elements of EB∞ \ B∞ is impossible in
the present framework, and would be possible only in a much bigger frame-
work like B∞+∞. In this case B∞ would no longer be dense in any reasonable
sense, which would in turn significantly diminish the possible interest of the
construction.
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As a final general remark, we note that the construction of EB∞ as a comple-
tion of B∞ enables to extend the linear representations of B∞ like the classic

Burau representation that maps σ1 to
(

1 − t t
1 0

)
at the expense of consider-

ing infinite row-finite matrices. For instance, considering τ1,∞ as the limit of
the braids τ1,n leads to map it to the matrix

1 − t t 0 0 . . .
1 − t 0 t 0 . . .
1 − t 0 0 t

...
...

. . .

 .

3. The structure of LD-monoid on EB∞

We shall now show that the monoid EB∞ provides a well-fitted framework for
constructing new non-trivial algebraic operations that cannot be defined on B∞
and generalize the bracket operation of (0.1). We begin with the definition of
an LD-monoid:

Definition. An LD-monoid is a monoid M (with unit denoted 1) equipped
with a second binary operation, here denoted as (x, y) �→ xy, such that x1 is
always 1 and the following mixed identities are satisfied:

x y = xy x (LD1)
xyz = x(yz) (LD2)

x(yz) = xyxz (LD3)

LD-monoids have been introduced (under the name “semi-abelian monoids”)
in [4] and they have been studied and used in several recent works involving left
distributive systems, in particular in connection with set theory (see [20], [14],
[13] among other papers). Observe that the exponentiation of an LD-monoid
has to be left distributive, since (LD1) and (LD2) imply

x(yz) = xyz =
xyxz =

xy(xz).

Similarly, 1x = x always holds, by

1x = 1x 1 = 1 x = x. (3.1)

Observe that (LD2) together with (3.1) mean that the monoid M acts on
the left on itself under exponentiation, and (LD3) together with the condi-
tion x1 = 1 then assert that the action preserves the monoid structure of M .
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Computations in LD-monoids are rather easy: a group equipped with its prod-
uct and the conjugacy operation is an LD-monoid, and, roughly speaking, most
of the computations involving conjugacy in a group can be extended to arbi-
trary LD-monoids. Now it turns out that some LD-monoids are far from the
conjugacy of a group, and this is true in particular for free LD-monoids. In the
context of braids or knots, LD-monoids, or, at least, Identity (LD1), naturally
appear when one wishes to colour not only the strands of a braid diagram,
but only the regions between the strands, with the convention that the regions
separated by a strand coloured x have colours of the form a, ax respectively,
as in the figure:

x y

xy x

a

ax

axy

axy = a xy x

LD-monoids are natural generalizations of abelian monoids: if M is abelian,
the trivial exponentiation defined by xy = y gives to M the structure of an
LD-monoid. Observe that, if the monoid M can be given such a structure, it
certainly satisfies the “skew commutativity” statement

(∀x, y)(∃z)(zx = xy) (3.2)

It is easy to see that, conversely, if (3.2) holds and the element z is unique,
then the exponentiation such that xy is the unique z satisfying zx = xy defines
on M the structure of an LD-monoid. This is the case when M is a group, and
then the unique LD-monoid structure is that associated with the conjugacy
xy = xyx−1. On the other hand, there exist monoids that satisfy (3.2) but
where no structure of LD-monoid can be defined ([4]).

Now we have recalled that a (non-trivial) structure of LD-system can be
defined on the braid group B∞ by using the bracket operation (0.1). A natural
question is whether this LD-system can be enriched with a second operation
that turns it into an LD-monoid. The previous attempts had failed: in par-
ticular we cannot hope to use the product of B∞, since B∞ is a group, and
therefore the only possible left distributive operation providing a structure of
LD-monoid would be the conjugacy, which does not coincide with the bracket.
We shall see here that appealing to the extension EB∞ of B∞ enables us to
answer positively the question: we shall extend the bracket of B∞ to a new
operation on the whole set EB∞ in such a way that the two operations struc-
ture thus obtained is a structure of LD-monoid. Moreover, and this is the main
interest in the construction, this LD-monoid includes (many) free LD-monoids,
which gives nice “concrete” realizations for the latter structures.
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We start with the monoid structure of EB∞ (and not with the bracket op-
eration of B∞), and try to define an exponentiation with the desired properties
by investigating Condition (3.2) in EB∞. Let ατp,∞ and βτq,∞ be arbitrary
elements of EB∞: we look for those elements γτr,∞ that satisfy in EB∞

γτr,∞ ατp,∞ = ατp,∞ βτq,∞ (3.3)

(if any). Using the explicit product formula (1.3), this is

γsr(α)τp+r,∞ = αsp(β)τp+q,∞,

which, by Lemma 1.4, is equivalent to

r = q and γsr(α) ≡ αsp(β) (mod Bp+q).

It follows that the values of γτr,∞ such that (3.3) holds are exactly those of
the form γτq,∞ where γ is any braid in the set αsp(β)Bp+qs

q(α−1). In other
words, the possible candidates for defining an exponentiation on EB∞ have the
form

ατp,∞(βτq,∞) = αsp(β)ωsq(α−1)τq,∞, (3.4)

where ω is an element of Bp+q possibly depending on α and β. By the above
computation, Identity (LD1) will hold for any such operation.

Proposition 3.1. i) The monoid EB∞ equipped with the exponentiation

ατp,∞(βτq,∞) = α sp(β) τp,q sq(α−1) τq,∞, (3.5)

is an LD-monoid.

ii) The above exponentiation, and that obtained by replacing τp,q in (3.5) with
its image under the morphism that exchanges σi and σ−1

i for every i, are the
only possible exponentiations that turn EB∞ into an LD-monoid and are such
that the braids ω in (3.4) depend only on the integers p and q.

Proof. We observed above that any possible exponentiation on EB∞ satis-
fying (LD1) has the form (3.4). In order to effectively obtain a structure of
LD-monoid using (3.4) as a definition for exponentiation, we have to verify first
that this formula induces a well-defined operation on EB∞ (since the decompo-
sition as ατp,∞ is not unique in general), and to verify the remaining identities
in the definition of an LD-monoid. We perform these verifications in the case
when the braids ω involved in (3.4) depend on the integers p and q, but not on
the braids α, β. In other words, we consider exponentiation operations of the
form

ατp,∞(βτq,∞) = αsp(β)ωp,qs
q(α−1)τq,∞, (3.6)

where ωp,q is some fixed element of Bp+q.
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Lemma 3.2. (i) Formula (3.6) induces a well-defined operation on EB∞ if
and only if the following conditions hold for 1 ≤ i < p and 1 ≤ j < q:

σi ωp,qσ
−1
q+i ≡ ωp,q (mod Bq), (3.7)

σp+j ωp,q ≡ ωp,q (mod Bq). (3.8)

(ii) Then EB∞ equipped with its product and the exponentiation so defined
is an LD-monoid if and only if the following additional conditions hold for
every p, q, r:

ωp,0 = 1, (3.9)
ωp+q,r ≡ sp(ωq,r)ωp,r (mod Bq), (3.10)

ωp,q+r ≡ ωp,qs
q(ωp,r) (mod Bq+r). (3.11)

Proof. (i) First we observe that, for all braids α, α′, β in B∞, α ≡ α′ (mod Bp)
holds if and only if βα ≡ βα′ (mod Bp) holds, if and only if αsp(β) ≡
α′sp(β) (mod Bp) holds: the latter equivalence follows from the fact that any
braid in Bp commutes with any braid in the image of sp.

The first requirement is that α ≡ α′ (mod Bp) implies ατp,∞(βτq,∞) ≡
α′τp,∞(βτq,∞) (mod Bp+q). So assume α′ = αδ, with δ in Bp. By expanding
explicitely the exponentiations and using the remarks above, we see that the
desired equivalence holds for

δ ωp,q sq(δ−1) ≡ δ (mod Bp+q),

which amounts to (3.7) for δ ranging in Bp.
Similarly we see that β′ = βδ with δ in Bq implies ατp,∞(βτq,∞) ≡

ατp,∞(β′τq,∞) (mod Bp+q) when

δ ωp,q ≡ ωp,q (mod Bp+q)

holds, which gives (3.8) for δ ranging in Bq.
(ii) Expanding the condition ατp,∞(1) = 1 gives αωp,0α

−1 = 1, hence ωp,0 = 1.
Then expanding ατp,∞ βτq,∞(γτr,∞) and ατp,∞(βτq,∞(γτr,∞)) gives respectively

αsp(β)sp+q(γ)ωp+q,rs
p+r(β−1)sr(α−1)τr,∞

and
αsp(β)sp+q(γ)sp(ωq,rs

p+r(β−1)ωp,rs
r(α−1)τr,∞.

Since ωp,r belongs to Bp+r, it commutes with sp+r(β−1), and therefore, by
cancelling αsp(β)sp+q(γ) on the left and sp+r(β−1)sr(α−1) on the right, which
is legal when equivalence modulo Br is considered, we see that the above ex-
pressions are equal in EB∞ if and only if (3.10) holds. Finally, expanding
ατp,∞(βτq,∞ γτr,∞) and ατp,∞(βτq,∞) ατp,∞(γτr,∞) leads to (3.11) by a similar
computation. �
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We continue the proof of Proposition 3.1. By hypothesis the braid ω1,1 belongs
to B2, i.e., it has the form σm

1 for some exponent m. By (3.10) we must have

ω2,1 ≡ s(ω1,1)ω1,1 (mod B1),

i.e., ω2,1 is then σm
2 σm

1 . Now (3.7) requires

σ1ω2,1σ
−1
2 ≡ ω2,1 (mod B1),

that is σm
2 σm

1 = σ1σ
m
2 σm

1 σ−1
2 , or, equivalently, σm

2 σm
1 σ2 = σ1σ

m
2 σm

1 . This
equality holds for m = ±1, and for no other value. Indeed, denoting by λm

the quotient (σm
2 σm

1 σ2)−1(σ1σ
m
2 σm

1 ), we can verify inductively for m ≥ 2 the
formulas

λm = σ1σ
−(m−2)
2 σ1σ

−m
2 σm−2

1 σ−1
2 σm−1

1

λ−m = σ−1
2 σm−1

1 σ−1
2 σm−2

1 σ−m
2 σ1σ

−(m−2)
2 σ1σ2.

We observe that the generator σ1 occurs in these decompositions, while σ−1
1

does not: by the results of [8] we can conclude that these quotients are not
equal to 1.

Assume that ω1,1 is σ1. An easy induction gives ωp,1 = σpσp−1. . .σ1 = τp,1

for p ≥ 1. Then (3.11) implies that ωp,2 has to be equivalent to ωp,1σ(ωp,1)
modulo B2. But the value of ωp,q has to be defined only up to equivalence
modulo Bq: multiplying ωp,q by some braid δ in Bq on the right does not change
the exponentiation on EB∞, since the additional factor δ commutes with the
term sp(α−1) in (3.4). So we can assume ωp,2 = ωp,1σ(ωp,1) = τp,2 without
loss of generality, and, similarly, we find ωp,q = τp,q for every q ≥ 1. Finally,
it is clear that taking σ−1

1 for ω1,1 amounts to changing the orientation of all
crossings. This proves both that the operation (3.5) satisfies all requirements,
and that it is, up to changing the orientation of all crossings, the only one of
the form (3.6) to do so. �

So, from now on, EB∞ is equipped with two operations, namely the product
and the exponentiation defined respectively by

ατp,∞ · βτq,∞ = αsp(β)τp+q,∞,
ατp,∞ (βτq,∞) = αsp(β)τp,qs

q(α−1)τq,∞.

Figure 2 displays the computation of exponentiation. Observe that this expo-
nentiation on EB∞ extends the two known left distributive operations on B∞:
for α, β in B∞, we have

αβ = αβα−1,
ατ1,∞(βτ1,∞) = αs(β)σ1s(α−1)τ1,∞ = α[β]τ1,∞,
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so the exponentiation on EB∞ induces the conjugacy operation on the first
copy of B∞, while it induces the bracket of (0.1) on the second copy (that
associated with the mapping α �→ ατ1,∞). Thus the present construction is
the natural answer to the question of defining an associative product on B∞
in order to obtain an LD-monoid: this product has to live not in B∞, but in
the extended structure EB∞.

α

βp strands →

q strands → α−1 }
q strands

Figure 2: Value of ατp,∞(βτq,∞)

Remark. (i) If we remove the hypothesis that the braids ωp,q do not depend
on the braids α and β in (3.6), and write ωp,q(α, β) for the braid involved in
the exponentiation of ατp,∞ and βτq,∞, we can see that ω1,1(α, β) still has to
be σ±1

1 . More precisely, if ω1,1(α, β) is σ
ε(α,β)
1 , the constraint that the function ε

must satisfy is

σ
e(β,γ)
2 σ

ε(α,s(β)σ
ε(β,γ)
1 s(α−1))

1 σ
e(α,β)
2

= σ
ε(α,β)
1 σ

ε(α,γ)
2 σ

ε(αs(β)σ
ε(α,β)
1 s(α−1),αs(γ)σ

ε(α,γ)
1 s(α−1))

1 .

We could not find any other solution than the constants ε(α, β) = ±1 (It is
easy to show that the only solutions depending on the first variable only are
the constants).
(ii) Making the computation in the quotient structure EB∞ is essential in the
above construction. Since B∞+∞ is a group, the unique way to define an
exponentiation on B∞+∞ to obtain an LD-monoid is to consider the conjugacy
operation. We could therefore consider defining an exponentiation on EB∞
starting from the conjugacy of B∞+∞. But this simple approach does not
work: the conjugacy of B∞+∞ induces no well-defined operation on EB∞,
since for instance θ2

1θ1(θ2
1)

−1 is θ1, while (σ1θ
2
1)θ1(σ1θ

2
1)

−1 is σ1θ1σ
−1
1 , that is

σ1σ
−1
2 θ1, and θ1 ≡ σ1σ

−1
2 θ1 (mod B̃∞) does not hold.

Now the most interesting property of the LD-monoid EB∞ is
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Proposition 3.3. The sub-LD-monoid of EB∞ generated by any element not
in B∞ is a free LD-monoid.

Proof. By Laver’s criterion of [20], a sufficient (and necessary) condition for
the sub-LD-monoid generated by an element a in an LD-monoid M to be free
is that

b �=
bc1 . . .

c�

holds for every positive � and every b, c1, . . ., c� in this sub-LD-monoid (in
other words the left divisibility relation associated with exponentiation has no
cycle). An easy induction shows that any element not equal to 1 in the sub-
LD-monoid of EB∞ generated by ατp,∞ has the form βτq,∞ with q a non-zero
multiple of p. So it is enough to show that

βτq,∞ �=
βτq,∞(γ1τr1,∞).. .(γ�τr�,∞) (3.12)

holds in EB∞ whenever q is not 0 and r1, . . ., r� are at least equal to q. Now
we observe that, by very definition of the exponentiation, the right hand side
of (3.12) has the form

β sq(δ0) τq,r1 sr1(δ1) τr1,r2 sr2(δ2) . . . sq�(δ�) τq�,∞.

So, in order to show that (3.12) holds in EB∞, it suffices to show that, for any
braid δ in Bq, a braid of the form

sq(δ0) τq,r1 sr1(δ1) τr1,r2 sr2(δ2) . . . sr�(δ�) δ (3.13)

cannot be trivial. Now we observe (cf. Figure 3) that the decomposition (3.13)
has the property that the generator σq occurs in it inf(q, r1) + . . .+ inf(r�−1, r�)
times, while its inverse σ−1

q does not occur: by the results of [8] (also reproved
in [18]), such a braid cannot be trivial. �

The previous result obviously does not extend to the case of an ordinary braid α:
in this case, the mapping k �→ αk gives an isomorphism of the sub-LD-monoid
of EB∞ generated by α onto the LD-monoid made of (N, +) with the trivial
exponentiation xy = y (since B∞ is torsion free due to the existence of the
ordering <), and the latter is not a free LD-monoid.

To complete this section, we look at the counterparts of the above operations
in terms of permutations. Every braid induces a permutation of the integers
indexing its strands, which gives a projection of each braid group Bn onto
the corresponding symmetric group Sn. This construction has to be modified
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δ

q︷︸︸︷
δ0

δ1

δ2

Figure 3: A braid sq(δ0)τq,r1s
r1(δ1). . .δ is not trivial:

here q = r2 = 2, r1 = 4, and σ2 occurs 4 times.

in the case of EB∞ since some strands may vanish. However, we can still
associate with every element ξ of EB∞ the injection ξ∨ that maps i to j if
the strand initially at position j ends at position i. If α is a braid, then α∨ is
the permutation considered above and the mapping α �→ α∨ is a morphism of
the group B∞ into the symmetric group SN. In the general case of EB∞, the
projection still behaves nicely:

Proposition 3.4. The image of the projection ξ �→ ξ∨ is the set I∞ of all
injections of the positive integers with a finite co-image, and the operations
of EB∞ induce well-defined operations on I∞: the product of EB∞ projects
onto the composition of I∞, and the exponentiation of EB∞ projects onto the
(left distributive) exponentiation defined on I∞ by

fg(n) =
{

fgf−1(n) if n belongs to the image of f ,
n otherwise.

Proof. First we see that (ατp,∞)∨ is α∨ ◦ dp, where d is the injection that shifts
every positive integer by one unit. Let s∨ denote the morphism of I∞ such
that s∨(f) is the injection that maps n + 1 to f(n) + 1 and 0 to 0. It is clear
that s(α)∨ is s∨(α∨), and we obtain

(ατp,∞ · βτq,∞)∨ = (αsp(β)tp+q,∞)∨

= α∨
◦ s∨

p(β∨) ◦ dp+q

= α∨
◦ dp

◦ β∨
◦ dq = (ατp,∞)∨ ◦ (βτq,∞)∨
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since dp ◦ f is always equal to s∨p(f) ◦ dp. For exponentiation, let us assume
that ζ is ξη, where ξ is ατp,∞ and η is βτq,∞. We compute ζ∨(n), and separate
two cases. Assume first that n belongs to the image of ξ∨, i.e., of α∨ ◦ dp: this
means that n is α∨(p + m) for some m ≥ 1. Using the fact that τ∨

p,q is the
identity beyond p + q, we obtain

ζ∨(n) = α∨
◦ sp(β)∨ ◦ τ∨

p,q ◦ sq(α−1)∨ ◦ dq(α∨(p + m))

= α∨
◦ sp(β)∨ ◦ τ∨

p,q ◦ sq(α−1)∨(α∨(p + m) + q)
= α∨

◦ sp(β)∨ ◦ τ∨
p,q(p + m + q)

= α∨
◦ sp(β)∨(p + m + q)

= α∨(β∨(m + q) + p)

= α∨(η∨(m) + p) = ξ∨(η∨(m)) = ξ∨
(η∨)(n)

Assume now that n does not belong to the image of ξ∨: this means that n is
α∨(m) for some m ≤ p. We obtain

ζ∨(n) = α∨
◦ sp(β)∨ ◦ τ∨

p,q ◦ sq(α−1)∨ ◦ dq(α∨(m))

= α∨
◦ sp(β)∨ ◦ τ∨

p,q ◦ sq(α−1)∨(α∨(m) + q)
= α∨

◦ sp(β)∨ ◦ τ∨
p,q(m + q)

= α∨
◦ sp(β)∨(m)

= α∨(m) = n = ξ∨
(η∨)(n)

This completes the proof. �

The set I∞ equipped with composition and the above exponentiation (as well
as any set of injections equipped with these operations) is an LD-monoid, as
was noted in [6].
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4. A new left distributive operation

Assume that (S, ∗) is an LD-system and e is an element of S. Under obvious
compatibility conditions needed to guarantee the soundness of the construction,
two new binary operations can be defined on the left ideal I of S generated
by e using the following rules: if x is x1 ∗ . . . ∗ xp ∗ e (we keep the convention
that a ∗ b ∗ c stands for a ∗ (b ∗ c)), and y is y1 ∗ . . . ∗ yq ∗ e, we take

x y = x1 ∗ . . . ∗ xp ∗ y1 ∗ . . . ∗ yq ∗ e (4.1)
xy = z1 ∗ . . . ∗ zq ∗ e, where zj is x1 ∗ . . . ∗ xp ∗ yj . (4.2)

In particular, we have
x∗e(y ∗ e) = (x ∗ y) ∗ e.

Then I equipped with these new operations is an LD-monoid. This approach
works in particular when S is a free LD-system generated by a single element e,
and, in this case, the LD-monoid derived in the above way is a free LD-monoid
generated by e∗e ([7], [20]). Conversely, if M is any LD-monoid (and specially if
M is free or includes free LD-monoids), it is natural to ask if the operations of M
(or at least their restrictions to some subset of M) derive from some underlying
left distributive operation in the manner of (4.1) and (4.2). Observe that, if
such an operation can be found, the compatibility conditions that are needed
for (4.1) and (4.2) to make sense (namely various decompositions of the form
x1∗. . .∗xp∗e should lead to the same values) are automatically verified since the
derived operations are assumed to exist a priori. The following construction
gives a general method for addressing the question.

Lemma 4.1. [12] Assume that M is an LD-monoid, and a is any element
of M . Then the operation ∗ defined by

x ∗a y = xa y

is left distributive, and, on the left ideal of (M, ∗a) generated by 1, the product
and the exponentiation of M are defined from ∗ using (4.1) and (4.2).

Let us come back to the specific case of EB∞. We wish to apply the above
construction in such a way that the left ideal of (EB∞, ∗) generated by 1,
which will be automatically a sub-LD-monoid of M , is not trivial, and, in
particular, includes a free LD-monoid. It is easy to see that choosing a braid
for the parameter a in the construction of the operation ∗ gives an uninteresting
result, as the ideal generated by 1 is included in B∞. So we consider the case
when the parameter is not a braid, and the simplest case is to take τ1,∞. Then
the results are what we can expect:
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Figure 4: Value of ατp,∞ ∗ βτq,∞

Proposition 4.2. (i) The formula

(ατp,∞) ∗ (βτq,∞) = ατp,1s(α−1β)τq+1,∞, (4.3)

defines a left-distributive operation on EB∞, and every element of EB∞ gen-
erates under ∗ a free LD-system.
(ii) The operations of the LD-monoid EB∞ coincide with those defined from
the operation ∗ using (4.1) and (4.2) on the left ideal of (EB∞, ∗) generated
by 1.

Proof. Formula (4.3) is the translation of the definition of Lemma 4.1 in the
case when a is τ1,∞. So, it only remains to prove the statement about the
monogenerated subsystems of (EB∞, ∗). We shall apply again Laver’s criterion
and show that the left divisibility relation of (EB∞, ∗) has no cycle. To this
end it is sufficient to show that the inequality

ατp,∞ < ατp,∞ ∗ βτq,∞ (4.4)

is always true. By expanding and applying the results of Section 2, this amounts
to showing that the braid inequality

ατp,n < ατp,1s(α−1β)τq+1,n

holds for n large enough. Since τp,n is equal (for n ≥ 1) to τp,1s(τp,n−1), this
is equivalent to

1 < s(τ−1
p,n−1)s(α

−1β)τq+1,n,

which is true since the generator σ1 occurs once in the right hand side expres-
sion, while σ−1

1 does not. �
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So we see that the operation ∗ on EB∞ is some sort of “ancestor” for the
operations of Section 3, and, in particular, for the braid bracket defined by (0.1).
Of course Formulas (4.1) and (4.2) hold only on the left ideal generated by 1,
and not everywhere, but observe that the latter ideal includes in particular the
(free) sub-LD-monoid of EB∞ generated by τ1,∞. Since every element of EB∞
generates under ∗ a free LD-system, so does in particular the unit braid 1, and
we obtain a simple relization of the free LD-system F . For instance, one can
easily compute expressions like

1 ∗ 1 = τ1,∞, 1 ∗ 1 ∗ 1 = τ2,∞, etc.
(1 ∗ 1) ∗ 1 = σ1τ1,∞, ((1 ∗ 1) ∗ 1) ∗ 1 = σ2

1σ−1
2 τ1,∞, etc.

Variants of the above construction can be obtained by changing the initial
parameter τ1,∞ of (4.6): for instance using τm,∞ amounts to considering the
operation

(ατp,∞) ∗m (βτq,∞) = ατp,msm(α−1β)τq+m,∞.

This variant however adds nothing in terms of the generated LD-systems, as it
amounts to grouping the strands of the braids in series of m ones. Note also
that the regressing process that leads from the braid bracket to the operation ∗
cannot be repeated (inside EB∞): the operation ∗ increases the degree of its
right argument by exactly one, and therefore there cannot exist any operation
on EB∞ for which the identity (LD2) could be satisfied.

Instead of using the general method of Lemma 4.1 to guess Formula (4.6),
we could alternatively appeal to braid colourings involving a free LD-system F
with one generator e, as it has been done to introduce the braid bracket of (0.1)
(cf. [8]). Indeed Formula (0.1) appears when one tries to construct, for every
colour x in F , a canonical braid βx that produces the colour x in the sense of

(e, e, . . .)βx = (x, e, e, . . .). (4.5)

As shows Figure 5 (left), a possible induction formula is

βx∗y = βx s(βy) σ1 s(β−1
x ),

which directly leads to (0.1) when we require βx∗y to be βx [ βy ].

Now let us consider the question again in the framework of EB∞ (with the
colourings defined in Section 2), and try to construct, for every element x of the
free LD-system F a canonical element χx of EB∞ that produces the colour x
in the sense of

(e, e, . . .)χx = (x, x, . . .). (4.6)
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Figure 5: Canonical colourings

(Observe that using braids from the constant sequence (e, e, . . .) necessary leads
to a sequence of colours eventually equal to e, a limitation that disappears when
one goes to EB∞.) Figure 5 (right) shows that the inductive definition

χx∗y = χx s(χ−1
x ) s(χy) τ1,∞

works, and requiring that the mapping χ be a homomorphism leads now to
consider on EB∞ the binary operation

ξ ∗ η = ξ s(ξ−1) s(η) τ1,∞. (4.7)

However this formula does not directly makes sense since in general there is no
inverse in the monoid EB∞. But, in the group B∞+∞, we have

θp. . .θ1 θ−1
2 . . .θ−1

p+1 = σp. . .σ1 = τp,1,

θq+1. . .θ2 = τ−1
q,1 θq. . .θ1,

which exactly leads (because τ−1
q,1 τq+1,∞ is τq+1,∞) to Formula (4.6).

Remark. Let us consider again the LD-monoid structure of Section 3. We
have mentioned that the operations derived using (4.1) and (4.2) on a free LD-
system generated by e give rise to a free LD-monoid. Since the bracket on B∞
has the property that any braid generates a free LD-system, we obtain a way
to embed the free LD-monoid (on one generator) into B∞: this is enough for
instance to construct an effective algorithm that decides if two abstract terms
(involving one variable and two binary operations) are or not equivalent under
the LD-monoid identities. But this does not define an effective structure of
LD-monoid on (a subset of) B∞: for instance, assuming that we start with the
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free LD-system generated by the braid 1, the involved distributive operation,
here denoted ∧, is characterized by the equality

α[1] ∧ β[1] = α[β][1], (4.8)

i.e.,

ασ1s(α−1) ∧ βσ1s(β−1) = αs(β)σ1s(α−1)σ1s
2(α)σ−1

2 s2(β−1)s(α−1).

The mapping α �→ ασ1s(α−1) is injective on B∞, but, as long as no explicit
inversion formula is known, (4.11) is not an explicit definition. From this point
of view, the operations of Section 3 are very different.

A last question is whether the above constructions can be extended to the
case of free distributive structures with several generators. For LD-systems
and the bracket of (0.1), the extension is possible at the expense of considering
extended braids where the strands carry some additional information (“charged
braids” [10], see also [19]). It should be easy to extend the present completion
process to the case of charged braids since their algebraic properties are quite
parallel to those of ordinary braids.
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dehornoy@math.unicaen.fr

29



30


