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Abstract. It is known that a number of algebraic properties of the braid
groups extend to arbitrary finite Coxeter type Artin groups. Here we show how
to extend the results to more general groups that we call Garside groups.

Define a Gaussian monoid to be a finitely generated cancellative monoid
where the expressions of a given element have bounded lengths, and where left
and right lower common multiples exist. A Garside monoid is a Gaussian monoid
in which the left and right l.c.m.’s satisfy an additional symmetry condition. A
Gaussian group and a Garside group are respectively the group of fractions of a
Gaussian monoid and of a Garside monoid. Braid groups and, more generally,
finite Coxeter type Artin groups are Garside groups. We determine algorith-
mic criterions in terms of presentations for recognizing Gaussian and Garside
monoids and groups, and exhibit infinite families of such groups. We describe
simple algorithms that solve the word problem in a Gaussian group, show that
theses algorithms have a quadratic complexity if the group is a Garside group,
and prove that Garside groups have quadratic isoperimetric inequalities. We
construct normal forms for Gaussian groups, and prove that, in the case of a
Garside group, the language of normal forms is regular, symmetric, and geodesic,
has the 5-fellow traveller property, and has the uniqueness property. This shows
in particular that Garside groups are geodesically fully biautomatic. Finally,
we consider an automorphism of a finite Coxeter type Artin group derived from
an automorphism of its defining Coxeter graph, and prove that the subgroup of
elements fixed by this automorphism is also a finite Coxeter type Artin group
that can be explicitely determined.
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1. Introduction

The positive braid monoid (on n + 1 strings) is the monoid B+ that admits the presen-
tation

〈x1, . . . , xn | xixj = xjxi if |i − j| ≥ 2, xixi+1xi = xi+1xixi+1 if i = 1, . . . , n − 1〉 .

It was considered by Garside in [18] and plays a prominent rôle in the theory of braid
groups. In particular, several properties of the braid groups are derived from extensive
investigations of the positive braid monoids (see for example [2], [16], [17]).

A first observation is that the defining relations of B+ are homogeneous. Thus,
one may deal with a length function ν : B+ → N which associates to a in B+ the
length of any expression of a. For a, b in B+, we say that a is a left divisor of b or,
equivalently, that b is a right multiple of a if there exists c in B+ such that b is ac. The
existence of the length function guarantees that left divisibility is a partial order on
B+. It was actually proved in [18] that any two elements of B+ have a lowest common
right multiple. Moreover, B+ has left and right cancellation properties, namely, ab = ac
implies b = c, and ba = ca implies b = c. Ore’s criterion says: if a monoid M has left
and right cancellation properties, and if any two elements of M have a common right
multiple, then M embeds in its group of (right) fractions (see [10, Theorem 1.23]).
This group is (M ∗ M−1)/ ≡, where M−1 is the dual monoid of M , and ≡ is the
congruence relation generated by the pairs (xx−1, 1) and (x−1x, 1), x in M . By the
previous considerations, B+ satisfies Ore’s conditions, and, therefore, embeds in its
group of fractions. This is the braid group on n + 1 strings.

The fundamental element of B+, usually denoted by ∆, is the lowest common right
multiple of x1, . . . , xn. It is also the lowest common left multiple of x1, . . . , xn, and ∆2

generates the center of the braid group. Furthermore, the set of left divisors of ∆ is
equal to the set of right divisors of ∆.

This situation was simultaneously generalised by Brieskorn and Saito [5], and by
Deligne [15], to a family of monoids and groups called finite Coxeter type Artin monoids
and groups. Like the braid groups, these groups have nice normal forms (see [5] and
[15]), have fast word problem solutions (see [29]), and are biautomatic (see [8] and [9]),
all these properties being proved through a deep study of the Artin monoids.

In this paper, we shall extend the previous results to a larger class of monoids and
groups, which we naturally propose to term Garside. These groups are characterized
as being groups of fractions for monoids in which the divisibility relations form lattices
of a certain type. Equivalently, these monoids are characterized by the fact that they
admit a presentation of the type 〈S | R〉 where R is a list of relations of the form

{x . . . = y . . . ; x, y ∈ S}
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(subject to additional conditions), i.e., for every pair of generators (x, y), there is exactly
one relation that prescribes how to complete x and y on the right in order to obtain
equal elements. Observe that, in such cases, the graph LR(S, R) of [26] is a clique, so
these presentations are quite different from those for which Adjan has proved in [1] an
embeddability result, namely those such that LR(S, R) has no cycle.

We say that a finitely generated monoid M is atomic if there exists a mapping
ν : M → N satisfying ν(a) > 0 for a �= 1, and ν(ab) ≥ ν(a) + ν(b) for a, b in M . As
for the positive braid monoids, the existence of such a mapping implies that the left
divisibility relation is a partial order on M . We say that M is right Gaussian if, in
addition, it has left cancellation property and if any two elements of M have a lowest
common right multiple. Left Gaussian monoids are defined symmetrically. A Gaussian
monoid is a left and right Gaussian monoid. By Ore’s criterion, such a monoid embeds
in its group of fractions. A Gaussian group is the group of fractions of a Gaussian
monoid.

An element a in a monoid M is an atom if it is indecomposable, namely, a = bc
implies b = 1 or c = 1. We prove in Section 2 that: if M is an atomic monoid, then the
set of atoms of M is finite and generates M . Note that the atoms of B+ are exactly
the initial generators x1, . . . , xn.

Let M be a Gaussian monoid. Let ∆R denote the lowest common right multiple of
the atoms, and let ∆L denote the lowest common left multiple of the atoms. We say
that M is a Garside monoid if the set of left divisors of ∆R is equal to the set of right
divisors of ∆L. Positive braid monoids, and, more generally, finite Coxeter type Artin
monoids are Garside monoids. A Garside group is the group of fractions of a Garside
monoid.

Let S be a finite set, and let S∗ denote the free monoid generated by S. A comple-
ment on S is simply a mapping f : S × S → S∗ that satisfies f(x, x) = ε for all x in
S, where ε denotes the empty word. The monoid associated with f on the right is the
monoid MR(S, f) that admits the presentation

〈S | xf(y, x) = yf(x, y) for x, y ∈ S〉 .

Similarly, GR(S, f) is the group that admits the same presentation. If S is {x1, . . . , xn}
and f is defined by

f(xi, xj) =




ε for i = j,
xixj for |i − j| = 1,
xi for |i − j| ≥ 2,

then MR(S, f) is the positive braid monoid and GR(S, f) is the braid group on n + 1
strings. Artin monoids and groups have also the form MR(S, f) and GR(S, f) respec-

3



tively. In [14], the first author shows that, under certain conditions described in Section
3, the monoid MR(S, f) is left Gaussian.

In Section 4 we prove that the converse is true, namely, if M is a right Gaus-
sian monoid, then it has the form MR(S, f) for some S, f that satisfy the conditions
mentioned above. Then we describe necessary, sufficient, and effective conditions for
MR(S, f) to be a Garside monoid. This is applied in Section 5 to exhibit infinite families
of Garside groups that include torus knot groups, fundamental groups of complements
of complex lines through the origin, and some “braid groups” associated with complex
reflection groups.

Our main tool in this paper is an algorithmic process, called the word reversing
process. It is described in Section 3. It was first introduced in [11] and [12] in order
to study a special group related to the self-distributive identity, and was developed
in [14]. It is shown in [14] that this word reversing process gives rise to very simple
algorithms which solve the word problem in a group of the form GR(S, f), whenever
(S, f) satisfies the conditions mentioned before. In particular, they apply to the braid
groups and have, in this case, a quadratic complexity. Tatsuoka uses in [29] a similar
algorithmic process for showing that finite Coxeter type Artin groups have quadratic
isoperimetric inequalities. We observe in Section 6 that the same ideas provide an algo-
rithm which solves the word problem for general Gaussian groups, that this algorithm
has a quadratic complexity in the case of Garside groups, and that Garside groups
have quadratic isoperimetric inequalities—this result holds more generally for small
Gaussian groups, a intermediate class between arbitrary Gaussian groups and Garside
groups.

We construct normal forms for Gaussian groups in Section 7, and prove in Section 8
that, in the case of Garside groups, the language of normal forms is regular, geodesic,
symmetric, has the 5-fellow traveller property, and has the uniqueness property. This
shows in particular that Garside groups are geodesically fully biautomatic. These
normal forms are nothing but those of [9] in the case of finite Coxeter type Artin
groups, and our proof of Theorem 8.1 is inspired by the proof of [9, Theorem 0.1].

In the last section we apply the techniques developed in this paper to prove an
original theorem on finite Coxeter type Artin groups. We consider an automorphism of
a finite Coxeter type Artin group derived from an automorphism of its defining Coxeter
graph. We prove that the subgroup of elements fixed by this automorphism is also a
finite Coxeter type Artin group that can be explicitly determined.
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2. Atomic, Gaussian, and Garside
monoids and groups

Let S be a finite set (of letters). We write S∗ for the free monoid generated by S, and
(S ∪ S−1)∗ for the free monoid generated by S ∪ S−1, where S−1 is a set in one-to-one
correspondence with S whose elements represent the inverses of the elements of S. The
elements of S∗ will be called positive words, while the elements of (S ∪ S−1)∗ will be
simply called words. The general form of a monoid generated by S is S∗/≡, where ≡
is a congruence relation on S∗. Similarly, the general form of a group generated by S
is (S ∪S−1)∗/≡, where ≡ is a congruence relation on (S ∪S−1)∗ that includes all pairs
(xx−1, ε) and (x−1x, ε), x in S, ε denoting the empty word. In general, we shall denote
by w the class of the word w in a monoid S∗/≡ or in a group (S ∪ S−1)∗/≡. If w is a,
we say that w represents a or, equivalently, that w is an expression of a.

Proposition 2.1. Let M be a monoid. The following conditions are equivalent:
i) There exists a mapping ν : M → N satisfying ν(a) < ν(ab) for all a, b in M ,

b �= 1.
ii) There exists a mapping ν : M → N satisfying ν(b) < ν(ab) for all a, b in M ,

a �= 1.
iii) There exists a mapping ν : M → N satisfying ν(a) > 0 for all a in M , a �= 1,

and satisfying
ν(a) + ν(b) ≤ ν(ab) (2.1)

for all a, b in M .
iv) For any set S that generates M and for any a in M , the lengths of the expressions

of a in S∗ have a finite upper bound.

Proof. Let S be any set that generates the monoid M . Assume first (i). Considering
the case a = 1 gives ν(b) ≥ 1 for all b �= 1. It follows that, if the word w represents a,
then lg(w) ≤ ν(a) holds. This gives (iv). Similarly, (ii) implies (iv), and so does (iii),
as the latter clearly implies (i) and (ii).

Now, assume (iv). The mapping

ν : a �→ sup{lg(w) ; w ∈ S∗ and w = a} (2.2)

satisfies (2.1), which establishes (iii). �


Definition. A finitely generated monoid M is atomic if it satisfies the equivalent
conditions of Proposition 2.1. An element a of M is an atom if it is indecomposable,
namely, a = bc implies b = 1 or c = 1.
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Proposition 2.2. Let M be an atomic monoid. The subsets of M that generate M are
exactly those subsets that include the set of all atoms. In particular, the set of atoms
generates M and is finite.

Proof. Let X be a generating set of M . Let a be an atom (if such an element exists).
There exist x1, . . . , xr in X such that a is x1 . . . xr. By definition, there exists an index
i such that xj is 1 if j �= i. Then a = xi is in X. We prove now that the set of atoms
generates M . We pick a in M and prove by induction on ν(a) that a is a finite product
of atoms. If a is not an atom, then it is equal to a product bc, where b, c are in M and
ν(b), ν(c) are strictly less than ν(a). By induction hypothesis, b and c are both finite
products of atoms, thus so is a. (In particular, atoms exist.) �


It follows that the mapping ν defined by (2.2) does not depend on the generating
set S; for a in M , ν(a) is the maximal length of an expression of a as a product of
atoms. We write ‖a‖ for ν(a) and we call it the norm of a.

Although atomicity is a rather weak assumption, it implies strong properties for
the divisibility relations of the involved monoids. We recall that a is a left divisor of b,
or that b is a right multiple of a, if there exists c satisfying b = ac. If in addition we
require c �= 1, we say that a is a proper left divisor of b. Of course, right divisors and
left multiples are defined symmetrically.

Proposition 2.3. Let M be a finitely generated monoid. Then M is atomic if and only
if the left divisibility relation is a partial order and every element of M admits only
finitely many left divisors.

Proof. Assume that M is atomic. If a is a proper left divisor of b, then ‖a‖ < ‖b‖. So,
the left divisibility relation is a partial order. The length of a word which represents
an element a is at most ‖a‖, thus there are only finitely many of them.

Assume now that the left divisibility relation is a partial order and that every
element of M admits only finitely many left divisors. Let S be a generating set of M .
Suppose that the element a can be represented by a word x1 . . . x� with x1, . . . , x� in S.
Then the classes of x1 . . . xi are pairwise distinct, since the class of x1 . . . xi is a proper
divisor of the class of x1 . . . xj for i < j. Hence � must be bounded above by the number
of left divisors of a. We conclude using Proposition 2.1.iv. �


In the context of atomic monoids, left and right divisibility are orderings. We
consider now the possible existence of lowest upper bounds and greatest lower bounds
in these orderings, namely, the existence of lowest common multiples and greatest
common divisors. We use a ∨R b and a ∧L b to denote respectively the right l.c.m. and
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the left g.c.d. of a and b. Similarly, we use a ∨L b and a ∧R b to denote respectively the
left l.c.m. and the right g.c.d. of a and b.

Definition. A finitely generated monoid M is a right Gaussian monoid if:
i) M is a left cancellative atomic monoid;
ii) a ∨R b exists for all a, b in M .

In a right Gaussian monoid M , the element a∧L b exists for all a, b in M ; it is the right
l.c.m. of the common left divisors of a and b. In particular, left divisibility turns M
into a lattice. Left Gaussian monoids are defined symmetrically. A Gaussian monoid
is a right and left Gaussian monoid. Such a monoid satisfies Ore’s conditions, and
thus embeds in its group of (right) fractions. A Gaussian group is the group of (right)
fractions of a Gaussian monoid.

As shown in the next proposition, weaker assumptions about right divisibility are
sufficient to guarantee that a given monoid is a Gaussian monoid. A monoid M is left
regular if any two elements of M have a common left multiple.

Proposition 2.4. Let M be a right Gaussian monoid. Then M is a left Gaussian
monoid if and only if it is right cancellative and left regular.

Proof. We assume that M is right cancellative and left regular and we prove that left
l.c.m.’s always exist. Let a, b be elements of M . Choose c and d such that da = cb holds
and ‖da‖ is minimal. We claim that da is the left l.c.m. of a and b in M . Consider
a common left multiple of a and b, say d′a = c′b. By left regularity, there exist e, e′

satisfying ed = e′d′. Let e′′ be the right l.c.m. of e and e′. By hypothesis, e and e′ are
left divisors of ed, thus there exists d′′ such that ed is equal to e′′d′′. Now, ed = e′d′

implies ecb = eda = e′d′a = e′c′b, therefore, by right cancellativity, ec = e′c′. Hence, e
and e′ are left divisors of ec as well, and so is e′′. There exists c′′ such that ec is equal
to e′′c′′. This gives e′′d′′a = eda = ecb = e′′c′′b, hence d′′a = c′′b by left cancellativity.
Then d′′a is a common left multiple of a and b, and, by construction, ‖d′′a‖ ≤ ‖da‖
and d is a left multiple of d′′. The only possibility is d′′ to be equal to d, thus d′a is a
left multiple of da. �


We introduce now two special families of Gaussian monoids and groups.
If M is a right Gaussian monoid, and a, b belong to M , we use a \R b to denote

the unique element c that satisfies bc = a ∨R b. Symmetrically, if M is a left Gaussian
monoid, a \L b denotes the element c that satisfies ca = a ∨L b.

Definition. A right Gaussian monoid is right small if there exists a finite subset of M
that generates M and is closed under \R, i.e., a \R b belongs to M whenever a and b
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do. Left small left Gaussian monoids are defined symmetrically. A Gaussian monoid is
small if it is both left and right small. A small Gaussian group is the group of fractions
of a small Gaussian monoid.

Definition. Let M be a Gaussian monoid. We denote by ∆R the right l.c.m. of all
atoms of M and call it the right fundamental element of M . The left divisors of ∆R

are called right simple elements of M . Similarly, we denote by ∆L the left l.c.m. of all
atoms and call it the left fundamental element of M . The right divisors of ∆L are called
left simple elements.

Definition. A Gaussian monoid M is a Garside monoid if the set of right simple
elements is equal to the set of left simple elements; these elements are then called
simple elements. In that case, ∆L is equal to ∆R, it is denoted by ∆, and is called
the fundamental element of M . A Garside group is the group of fractions of a Garside
monoid.

Proposition 2.5. Every Garside monoid is a small Gaussian monoid—thus every Gar-
side group is a small Gaussian group.

Proof. Assume that M is a Garside monoid, and let a, b be simple elements of M .
Then a ∨R b is right simple, and there exists c satisfying

∆ = (a ∨R b)c = b(a \R b)c.

So (a \R b)c is left simple, hence right simple, and, therefore, a \R b is (right) simple.
This shows that the set of all simple elements of M , which is finite by Proposition 2.3,
is closed under the operation \R. The argument is similar for the operation \L. �


Proposition 2.6. Let M be a Garside monoid, and let S be the set of its atoms. There
exists a permutation δ : S → S satisfying

∆ · x = δ(x) · ∆

for all x in S. In particular, if n is the order of δ, then ∆n lies in the center of the
Garside group defined by M .

Proof. Let a be a simple element of M . There exists a simple element a′ satisfying
∆ = a′a. There exists another simple element δ(a) satisfying ∆ = δ(a)a′. Then we
have

∆ · a = δ(a) · a′ · a = δ(a) · ∆ . (2.3)
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By left and right cancellativity, the mapping δ is well-defined and injective. By Propo-
sition 2.3, there are only finitely many simple elements, thus δ is a permutation of the
simple elements. The value of δ(a) is completely determined by (2.3), thus, a = bc
implies δ(a) = δ(b)δ(c). So, δ maps non-atoms to non-atoms, therefore maps atoms to
atoms, thus induces a permutation of S. �

Example #1 (Artin groups). Let S be a finite set. A Coxeter matrix over S is a matrix
M = (ms,t)s,t∈S indexed by the elements of S and satisfying:

i) ms,s = 1 for s ∈ S;
ii) ms,t = mt,s ∈ {2, 3, 4, . . . ,∞} for s, t ∈ S, s �= t.

The Coxeter group associated with M (or with Γ) is:

W = 〈S | s2 = 1 (for s ∈ S), (st)ms,t = 1 (for s, t ∈ S, s �= t, ms,t < ∞)〉 .

The Artin monoid and the Artin group associated with M (or with Γ) are respectively
the monoid A+ and the group A defined by the presentation

〈S | prod(s, t;ms,t) = prod(t, s; ms,t) if ms,t < ∞〉 ,

where prod(s, t;m) stands for (st)m/2 if m is even, and for (st)(m−1)/2s if m is odd.
The monoid A+ (resp. the group A) is said to be of finite Coxeter type if W is finite.

The defining relations of A+ are homogeneous, thus A+ is atomic, the norm is equal
to the word length, and the atoms are the elements of S.

By [5], A+ is a Gaussian monoid if and only if it is of finite Coxeter type. In that
case, A+ embeds in A, and A is the Gaussian group defined by A+.

Finite Coxeter type Artin groups are actually Garside groups. The set of simple
elements is {τ(w);w ∈ W} and the fundamental element is ∆ = τ(w0), where w0 is
the element of maximal length in W , and τ is the natural set-section of the canonical
projection of A onto W defined as follows. Let w in W . We choose a reduced expression
w = s1 . . . sr of w and we map w to the element s1 . . . sr of A+. By Tits’ solution of the
word problem for Coxeter groups [30], this definition does not depend on the choice of
the reduced expression of w.

We will see other examples of Garside groups in Section 5. However, we first need
to introduce reversing processes in Section 3 and to give in Section 4 some criteria to
check whether a given monoid is a Garside monoid.

Remark. In this paper, we only consider the case of finitely generated monoids and
groups. However, most of the subsequent results about Gaussian groups and some
of the results about Garside groups can be extended to more general cases provided
atomicity remains satisfied, as is the case for the infinite braid group B∞, or for the
groups investigated in [13] and [14].
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3. Reversing processes

We give in this section basic definitions on reversing processes and a summary of those
results of [14] that we will need in this paper. We refer to [14] for the proofs. We recall
from Section 1 the following definition.

Definition. Let S be a finite set. A complement on S is a mapping

f : S × S → S∗

such that f(x, x) is the empty word for all x in S. The monoid associated with f on
the right is the monoid MR(S, f) that admits the presentation

〈S | xf(y, x) = yf(x, y) for x, y ∈ S〉 , (3.1)

namely, the monoid S∗/≡f
R , where ≡f

R is the congruence relation on S∗ generated by the
pairs (xf(y, x), yf(x, y)), for x, y in S. Similarly, GR(S, f) is the group that admits the
previous presentation. One can also associate with f on the left the monoid ML(S, f)
and the group GL(S, f), both given by the presentation

〈S | f(x, y)x = f(y, x)y for x, y ∈ S〉 .

Definition. A mapping ν : S∗ → N is a right norm for the complement f if

ν(u) < ν(xu) and ν(uxf(y, x)v) = ν(uyf(x, y)v) (3.2)

holds for all x, y in S, and for all u, v in S∗. We say that (S, f) satisfies Condition IR
if S∗ admits a right norm for the complement f .

Proposition 3.1. The monoid MR(S, f) is atomic if and only if (S, f) satisfies Condi-
tion IR.

Proof. Assume that there exists a mapping ν satisfying (3.2). Using the definition
of the congruence relation ≡f

R and a trivial induction, we see that u ≡f
R v implies

ν(u) = ν(v), so that ν induces a well-defined mapping on MR(S, f). This mapping
satisfies Condition (i) of Proposition 2.1. Conversely, if M is atomic, then the mapping
ν defined on S∗ by ν(u) = ‖u‖ satisfies (3.2). �


Definition. A word w in (S ∪ S−1)∗ is f-reversible (on the right) in one step to a
word w′ if w′ is obtained from w by replacing some subword x−1y (with x, y in S) with
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the corresponding word f(y, x)f(x, y)−1. For p ≥ 0, w is f-reversible (on the right) in
p steps to w′ if there exists a length p + 1 sequence in (S ∪ S−1)∗ from w to w′ such
that every term is f -reversible to the next one in one step.

The f -reversing process can continue as long as the current word contains a pair
x−1y. When no pair of this form remains, namely, when the word has the form uv−1

with u and v positive words, we say that the f -reversing process was successful for the
initial word w. At this point, some ambiguity could occur in our definition as a given
word may contain several reversing patterns of the form x−1y and we have not given a
rule for choosing the order of the reversing steps. The next result shows that this does
not matter.

Proposition 3.2 [14, Lemma 1.1]. Assume that there is at least one way to reverse
the word w into some word uv−1, where u, v are positive words. Then any sequence of
reversing transformations starting from w leads to uv−1 in the same number of steps.
�


Definition. For w in (S ∪ S−1)∗, Rf
R (w) denotes the unique word of the form uv−1,

with u, v positive words, that is obtained from w by the right f -reversing process, if
such a word exists. In that case, the right f-numerator of w, denoted by Nf

R (w), is the
word u, and the right f-denominator of w, denoted by Df

R (w), is the word v. For u, v

in S∗, we denote by Cf
R (u, v) the right f -numerator of v−1u, if it exists.

If Rf
R (w) exists, then Rf

R (w−1) also exists and is equal to Rf
R (w)−1, and we have

Nf
R (w−1) = Df

R (w) and Df
R (w−1) = Nf

R (w). In particular, for u, v in S∗, if Cf
R (u, v)

exists, then Cf
R (v, u) also exists and Rf

R (v−1u) is equal to Cf
R (u, v)Cf

R (v, u)−1.

Definition. We say that (S, f) satisfies Condition IIR if: for all x, y, z in S, either the
words Cf

R (z, xf(y, x)) and Cf
R (z, yf(x, y)) both exist and are ≡f

R -equivalent, or neither
of them exists.

Definition. We say that (S, f) satisfies Condition IIIR if Cf
R (u, v) exists for all u, v in

S∗. Note that (S, f) satisfies Condition IIIR if and only if Rf
R (w) exists for all w in

(S ∪ S−1)∗.

Proposition 3.3 [14, Lemma 1.4]. Assume that (S, f) satisfies Conditions IR and IIR.

Then, for u, v, u1, v1 in S∗, uu1 ≡f
R vv1 holds if and only if the words Cf

R (u, v) and

Cf
R (v, u) exist and there exists a word w in S∗ satisfying u1 ≡f

R Cf
R (v, u)w and v1 ≡f

R

Cf
R (u, v)w. �
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(The proof of [14] uses the hypothesis that the elements of S have norm 1. This
additional hypothesis can be dropped by resorting both to the length and the norm in
the inductive argument.)

Proposition 3.4 [14, Lemma 1.5(i)]. Assume that (S, f) satisfies Conditions IR and IIR.
Let u, v be arbitrary words in S∗. The class of u in MR(S, f) is a left divisor of the

class of v if and only if Cf
R (u, v) exists and is empty. In particular, u and v represent

the same element of MR(S, f) if and only if both Cf
R (u, v) and Cf

R (v, u) exist and are
empty. �


Proposition 3.5 [14, Lemma 1.5(ii)]. Assume that (S, f) satisfies Conditions IR and IIR.

Then the operation Cf
R is compatible with the congruence relation ≡f

R , namely, u ≡f
R u′

and v ≡f
R v′ hold, and Cf

R (u, v) exists, then Cf
R (u′, v′) also exists and is ≡f

R -equivalent

to Cf
R (u, v). �


Proposition 3.6 [14, Proposition 1.6]. Assume that (S, f) satisfies Conditions IR and
IIR. Then the monoid MR(S, f) has the left cancellation property. �


Proposition 3.7 [14, Lemma 1.7]. Assume that (S, f) satisfies Conditions IR, IIR,
and IIIR. Let G be the group of fractions of MR(S, f). Two words w and w′ in (S∪S−1)∗

represent the same element of G if and only if there exist two positive words u and u′

in S∗ satisfying Nf
R (w)u ≡f

R Nf
R (w′)u′ and Df

R (w)u ≡f
R Df

R (w′)u′. �


The following theorem is a direct consequence of the previous results.

Theorem 3.8. Let S be a finite set, and let f be a complement on S. If (S, f) satisfies
Conditions IR, IIR, and IIIR, then MR(S, f) is a right Gaussian monoid. �


Definition. Assume that f is a complement on S. A set of positive words S′ is closed
under Cf

R if, for all u, v in S′, Cf
R (u, v) exists and belongs to S′. We say that (S, f)

satisfies Condition III+
R if there exists a finite subset S′ of S∗ that includes S and is

closed under Cf
R . Note that Condition III+

R holds if and only if the closure of S under Cf
R

exists and is finite.

Lemma 3.9. i) Assume that f is a complement on S, and S′ is a subset of S∗ that

includes S and is closed under Cf
R . Then (S, f) satisfies Condition IIIR.

ii) Assume, in addition, that the length of every word in S′ is bounded above by L,
and that the number of steps needed to reverse a word of the form u−1v with u, v in S′

is bounded above by N . Then the f -reversing of a word w of length � in (S ∪ S−1)∗

ends within at most N�2/4 steps with a word of length at most L�.
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Proof. Assume that w can be written

w = ue1
1 . . . ue�

� ,

where each word ui is a positive word belonging to S′, and ei is ±1. Let p be the
number of ei’s equal to 1. A simple inductive argument shows that Rf

R (w) exists and
has the form

Rf
R (w) = v1 . . . vpv

−1
p+1 . . . v−1

� ,

where, for each j, vj is an element of S′, and that the f -reversing of w decomposes into
p(�−p) f -reversings of words of the form w−1

1 w2 with w1, w2 in S′. So f -reversing of w
is always successful, and, in the case when L and N are finite, we obtain the bounds
of Lemma 3.9.ii since p(� − p) ≤ �2/4 always holds. �


In particular, Condition III+
R implies Condition IIIR.

Theorem 3.10. Let S be a finite set, and let f be a complement on S. If (S, f) satisfies
Conditions IR, IIR, and III+

R , then MR(S, f) is a right small right Gaussian monoid.

Proof. Assume that (S, f) satisfies Conditions IR, IIR and III+
R , and that S′ is a set of

positive words that includes S and is closed under Cf
R . By Theorem 3.8, MR(S, f) is

a right Gaussian monoid. By Proposition 3.3, for u, v in S∗, vCf
R (u, v) represents the

right l.c.m. of the elements u and v, so Cf
R (u, v) represents the element u \R v. So the

subset of MR(S, f) consisting of all elements represented by words in S′ is closed under
the operation \R. �


Everything we have said so far about left divisibility of course holds mutatis mu-
tandis for right divisibility. We then speak about the left f -reversing process, about
the functions Rf

L and Cf
L , and about Conditions IL, IIL, IIIL, and III+

L .

Corollary 3.11. Let M be a monoid, let S be a finite generating set of M , and let
f, g be two complements on S such that M admits both presentations:

〈S | xf(y, x) = yf(x, y), x, y ∈ S〉 and 〈S | g(x, y)x = g(y, x)y, x, y ∈ S〉 .

If (S, f) satisfies Conditions IR, IIR, and IIIR (resp. III+
R ), and (S, g) satisfies Conditions

IL, IIL, and IIIL (resp. III+
L ), then M is a Gaussian monoid (resp. a small Gaussian

monoid). �


Observe that, although reversing processes are quite effective, there is no general
algorithmic method for establishing that a given pair (S, f) satisfies Condition IIIR; a
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systematic verification would entail infinitely many reversings. On the other hand, the
verification of Condition III+

R is easier: it suffices to start with the set S and to close
it inductively under Cf

R . If the condition fails, we shall never know it, but, if it holds,
we shall know it after a finite number of computation steps.

The situation is similar with Condition IIR: as it stands, it is not clear how to verify
it systematically, for we have no way to decide whether two given words are or not ≡f

R -
equivalent. However, we can replace Condition IIR with a nearly equivalent condition
which does not resort to ≡f

R .

Definition. We say that (S, f) satisfies Condition II+
R if: for all x, y, z in S, the word

Cf
R (Cf

R (z, xf(y, x)), Cf
R (z, yf(x, y))) (3.3)

exists and is empty.

Proposition 3.12. Condition II+
R implies Condition IIR. Conversely, if (S, f) satisfies

Conditions IR, IIR and IIIR, then it satisfies Condition II+
R as well.

Proof. Assume that (S, f) satisfies II+
R . The hypothesis that Cf

R (u, v) and Cf
R (v, u)

exist and are empty always implies that u and v are ≡f
R -equivalent (without any as-

sumption about f). So II+
R implies that, for every x, y, z in S, the words Cf

R (z, xf(y, x))
and Cf

R (z, yf(x, y)) exist and are ≡f
R -equivalent. Hence IIR holds.

Conversely, assume that (S, f) satisfies IR, IIR and IIIR. By IIIR, the words Cf
R (z, xf(y, x))

and Cf
R (z, yf(x, y)) exist, and, by Proposition 3.5, they are ≡f

R -equivalent. Hence, by
Proposition 3.4, the complement (3.3) is empty. �


4. Presentations

We have stated in Theorems 3.8 and 3.10 sufficient conditions for a monoid given by a
complemented presentation to be a (small) Gaussian monoid. In this section, we show
that these conditions are also necessary. We also determine in terms of presentations
necessary and sufficient conditions for a monoid to be a Garside monoid. This of course
also applies to Gaussian groups and to Garside groups.

Our first step (Theorem 4.1) is to show that Gaussian monoids can always be
presented using complements.

Definition. Let M be a right Gaussian monoid, and let S be a finite generating set of
M . A right l.c.m. selector on S in M is a complement f on S such that xf(y, x) and
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yf(x, y) both represent x ∨R y in M for all x, y in S. Left l.c.m. selectors are defined
symmetrically for left Gaussian monoids.

Theorem 4.1. Let M be a right Gaussian monoid, let S be a finite generating set
of M , and let f be a right l.c.m. selector on S in M . Then M is isomorphic to the
monoid MR(S, f).

Proof. By hypothesis, there exists a congruence relation ≡ on S∗ such that M is
S∗/≡. By construction, for every pair (x, y) in S × S, the words xf(y, x) and yf(x, y)
represent the left l.c.m. of x and y in M , so xf(y, x) ≡ yf(x, y) holds. Since the pairs
(xf(y, x), yf(x, y)) generate the congruence relation ≡f

R , we deduce that u ≡f
R v implies

u ≡ v, namely, that the monoid M is a quotient of the monoid MR(S, f).
We use now the hypothesis that M is atomic to prove that the surjective homomor-

phism associated with this quotient is actually an isomorphism. To this end, we define
the norm of a positive word u as the norm of its class in M , and we prove inductively
on n that: if u and v have norm at most n, then u ≡ v implies u ≡f

R v. If n is 0, then
u and v must be the empty word, and the result is obvious. Otherwise, due to the
existence of the norm, neither u nor v may be the the empty word. So, write u as xu1

and v as yv1. By construction, the class of xf(y, x) in M is the smallest common right
multiple of x and y, and the class of xu1 is a common right multiple of x and y as well.
So, there must exist a positive word w satisfying u1 ≡ f(y, x)w and v1 ≡ f(x, y)w. By
induction hypothesis, u1 ≡f

R f(y, x)w and v1 ≡f
R f(x, y)w hold, thus we get

u = xu1 ≡f
R xf(y, x)w ≡f

R yf(x, y)w ≡f
R yv1 = v ,

as we wished. Note that the case x = y is also covered in the previous argument. �


Theorem 4.2. Let M be a right Gaussian monoid, let S be an arbitrary finite generating
set of M , and let f be an arbitrary right l.c.m. selector on S in M . Then (S, f)
satisfies Conditions IR, IIR, and IIIR. If, in addition, M is left small, then (S, f) satisfies
Condition III+

R .

The following lemma is a preliminary result to the proof of Theorem 4.2.

Lemma 4.3. Let M be a right Gaussian monoid, let S be a finite generating set of
M , and let f be a right l.c.m. selector on S in M . Then Cf

R (u, v) exists, vCf
R (u, v)

represents u ∨R v, and CR(u, v) represents u \R v, for all u, v in S∗.

Proof. We prove inductively on n that: if ‖u ∨R v‖ ≤ n holds, then Cf
R (u, v) exists

and vCf
R (u, v) represents u ∨R v. If n is 0, the only possibility is that u and v are the
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empty word, and everything is obvious. Assume n ≥ 1. If either u or v is the empty
word, then everything is obvious again. So, assume u = xu1 and v = yv1, where x
and y belong to S. By hypothesis, u ∨R v is a common right multiple of x and y, thus
x ∨R y divides u ∨R v. By hypothesis, x ∨R y is both the class of xf(y, x) and the class
of yf(x, y). By construction, u ∨R v is a common multiple of xu1 and xf(y, x), so the
l.c.m. of these elements is a left divisor of u ∨R v. We have

xu1 ∨R xf(y, x) = x(u1 ∨R f(y, x)) .

This shows that the norm of u1∨R f(y, x) is at most n−1. So, the induction hypothesis
shows that the words Cf

R (u1, f(y, x)) and Cf
R (f(y, x), u1) exist, and that uCf

R (f(y, x), u1)
represents u ∨R xf(y, x) = u ∨R y. A symmetric argument shows that the words
Cf

R (v1, f(x, y)) and Cf
R (f(x, y), v1) exist and that vCf

R (f(x, y), v1) represents x ∨R v.
Let w be xf(y, x), let u2 be Cf

R (u1, f(y, x)), and let v2 be Cf
R (v1, f(x, y)). By

construction, u ∨R v is the right l.c.m. of wu2 and wv2 (which are u ∨R y and x ∨R v
respectively). Again, the right l.c.m. of u2 and v2 has a norm strictly less than n. So,
Cf

R (u2, v2) and Cf
R (v2, u2) exist and v2C

f
R (u2, v2) represents u2 ∨R v2.

The word v−1u is f -reversible to

v−1
1 · f(x, y) · f(y, x)−1 · u1 ,

and then to

Cf
R (f(x, y), v1) · Cf

R (v1, f(x, y))−1 · Cf
R (u1, f(y, x)) · Cf

R (f(y, x), u1)−1,

which is Cf
R (f(x, y), v1)·v−1

2 ·u2·Cf
R (f(y, x), u1)−1. The latter word in turn is f -reversible

to
Cf

R (f(x, y), v1) · Cf
R (u2, v2) · Cf

R (v2, u2)−1 · Cf
R (f(y, x), u1)−1 .

So, Cf
R (u, v) exists and is equal to

Cf
R (f(x, y), v1) · Cf

R (u2, v2) .

Now, we have

v · Cf
R (u, v) = v · Cf

R (f(x, y), v1) · Cf
R (u2, v2) = (v ∨R y) · Cf

R (u2, v2)

= w · v2 · Cf
R (u2, v2) = w · (u2 ∨R v2) = u ∨R v.

This completes the proof. �


Proof of Theorem 4.2. The pair (S, f) satisfies Condition IR by Proposition 3.1. By
the previous lemma, (S, f) satisfies Condition IIIR. So, it remains to show that: if
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x, y, z are elements of S, then Cf
R (z, xf(y, x)) and Cf

R (z, yf(x, y)) are ≡f
R -equivalent.

Now, xf(y, x) represents the right l.c.m. of x and y, and xf(y, x)Cf
R (z, xf(y, x)) rep-

resents the right l.c.m. of x ∨R y and z, namely, the right l.c.m. of x, y, and z. Sim-
ilarly, yf(x, y)Cf

R (z, yf(x, y)) represents the right l.c.m. of x, y, and z. The words
xf(y, x) and yf(x, y) are equivalent as well, so, by left cancellativity, we conclude that
Cf

R (z, xf(y, x)) and Cf
R (z, yf(x, y)) are equivalent.

Assume now in addition that B is a finite subset of M that includes S and is closed
under the operation \R. Let S′ be the set of all positive words that represent elements
of B. Because B is finite and, for every a in M , the lengths of the expressions of a are
bounded by ‖a‖, the set S′ is finite. Now, for u, v in S′, the word Cf

R (v, u) represents
v \R u, so it belongs to S′. Hence the set S′ witnesses that Condition III+

R holds. �


Let us now consider the case of Garside monoids. We define below Conditions IVLR

and IVRL which refine Conditions III+
R and III+

L , and show that Garside monoids are
characterized by the conjunction of Conditions IR, IIR, IIL, IVLR, and IVRL (Theorems
4.4 and 4.9).

Definition. Assume that f is a complement on S. For x1, . . . , xk in S, let Jf
R (x1, . . . , xk)

denote the word inductively defined (if it exists) by

Jf
R (x1, . . . , xk) =

{
x1 for k = 1,
Jf

R (x1, . . . , xk−1)C
f

R (xk, J
f

R (x1, . . . , xk−1)) otherwise.

The word Jg
L (x1, . . . , xk) is defined symmetrically in the same way.

Definition. We say that (S, f, g) satisfies Condition IVLR if there is an enumeration
x1, . . . , xn of the elements of S such that Jf

R (x1, . . . , xn) exists and such that

Cg
L (Jf

R (x1, . . . , xn) xi, J
f

R (x1, . . . , xn))

exists and is the empty word for every xi in S. Condition IVRL is defined symmetrically.

So, if (S, f) satisfies Conditions IR and IIR, then Jf
R (x1, . . . , xk) represents the right

l.c.m. of x1, . . . , xk in MR(S, f), if it exists. If, in addition, S = {x1, . . . , xn} is the set
of atoms of MR(S, f) and (S, f, g) satisfies Condition IVLR, then the right l.c.m. ∆L of
the atoms exists and is represented by Jf

R (x1, . . . , xn).

Theorem 4.4. Let S be a finite set, and let f , g be complements on S. Assume that
i) The monoids MR(S, f) and ML(S, g) coincide;
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ii) The set of atoms of MR(S, f) is S;
iii) The pair (S, f) satisfies Conditions IR and IIR;
iv) The pair (S, g) satisfies Conditions (IL and) IIL;
v) The triple (S, f, g) satisfies Conditions IVLR and IVRL.

Then MR(S, f) is a Garside monoid.

The following lemmas 4.5–4.8 are preliminary results to the proof of Theorem 4.4.
We write M for the monoid both presented as MR(S, f) and ML(S, g), and we assume
until the end of the proof of Theorem 4.4 that S is the set of atoms of M , that M
is atomic—i.e., that (S, f) satisfies Condition IR and, equivalently, that (S, g) satisfies
Condition IL—and that (S, f) and (S, g) satisfy respectively Condition IIR and IIL.

Lemma 4.5. Assume that (S, f, g) satisfies Condition IVLR. Then there exists a permu-
tation δ : S → S such that

∆R · x = δ(x) · ∆R

holds for all x in S.

Proof. Let x be an atom. Condition IVLR says that Cg
L (Jf

R (x1, . . . , xn)x, Jf
R (x1, . . . , xn))

exists and is empty. By Proposition 3.4, this means that ∆R is a right divisor of ∆Rx.
So, there exists δ(x) in M such that ∆Rx is equal to δ(x)∆R. By Proposition 3.6, the
monoid M has the right cancellation property, thus δ(x) is well-defined. We immedi-
ately deduce, for every product of atoms, the equality

∆R · x1 . . . xk = δ(x1) . . . δ(xk) · ∆R .

So, we can extend δ to an endomorphism of M such that

∆R · a = δ(a) · ∆R (4.1)

always holds. The fact that M is left and right cancellative guarantees that δ is well-
defined and injective. Note that (4.1) uniquely defines the value of δ(a). In particular,
∆R∆R = ∆R∆R implies δ(∆R) = ∆R. Now, if a is a left divisor of ∆R, then δ(a) is a left
divisor of δ(∆R) = ∆R. So, right simple elements are globally preserved under δ, and,
because δ is injective and there are finitely many left simple elements (Proposition 2.3),
we conclude that δ induces a permutation of the right simple elements. Moreover, this
permutation preserves left divisibility, hence maps non-atoms to non-atoms, therefore
maps atoms to atoms. So, it induces a permutation of S. �


Lemma 4.6. Assume that (S, f, g) satisfies Conditions IVLR and IVRL. Then ∆L is equal
to ∆R.
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Proof. Let x be an atom. By Lemma 4.5, there exists an atom δ(x) such that ∆Rx is
equal to δ(x)∆R. Since ∆R is the right l.c.m. of all atoms, there exists an element a in
M satisfying ∆R = δ(x)a. By left cancellativity, we have ax = ∆R, thus x divides ∆R

on the right. Since ∆L is the left l.c.m. of all atoms, it follows that ∆L divides ∆R on
the right, and, therefore, that ‖∆L‖ ≤ ‖∆R‖ holds. Similarly, ∆R divides ∆L on the left
and ‖∆R‖ ≤ ‖∆L‖ holds, thus ∆L is equal to ∆R. �


Whenever (S, f, g) satisfies Conditions IVLR and IVRL, we use ∆ to denote the com-
mon value of ∆R and ∆L in M .

Lemma 4.7. Assume that (S, f, g) satisfies Conditions IVLR and IVRL. Let a be an element
of M . Then the following conditions are equivalent.

i) a is a right simple element.
ii) a is a left simple element.
iii) There exists a′ and a′′ in M such that ∆ is equal to a′aa′′.

Proof. Let a be a right simple element. From the proof of Lemma 4.5, we know that
there exists a right simple element δ(a) satisfying ∆a = δ(a)∆. By definition, there
exists a′ in M satisfying δ(a)a′ = ∆. By left cancellativity, ∆ = a′a, thus a is a lrft
simple element. This shows that (i) implies (ii). Similarly, (ii) implies (i). It is obvious
that either (i) or (ii) implies (iii). It remains to show that (iii) implies (i). Assume
∆ = a′aa′′. Then aa′′ is a right divisor of ∆, thus it is a left divisor of ∆ as well,
therefore a is a left divisor of ∆. �


Lemma 4.8. Assume that (S, f, g) satisfies Conditions IVLR and IVRL. Then (S, f)
satisfies Condition III+

R .

Proof. Assume that u, v are positive words that represent simple elements. There
exist positive words u1, v1 satisfying

uu1 ≡f
R vv1 ≡f

R Jf
R (x1, . . . , xn).

By Proposition 3.3, Cf
R (u, v) exists and there is a positive word w satisfying

vCf
R (u, v)w ≡f

R Jf
R (x1, . . . , xn) . (4.2)

By Lemma 4.7, the element a represented by Cf
R (u, v) is simple, as (4.2) gives v a w = ∆.

Hence the set of all expressions of simple elements of M , which is finite by Proposi-
tion 2.3, is closed under Cf

R . �
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Proof of Theorem 4.4. The pair (S, f) satisfies Condition III+
R by Lemma 4.8. Similarly,

(S, g) satisfies Condition III+
L . So, M is a small Gaussian monoid by Theorem 3.10.

Finally, M is a Garside monoid by Lemma 4.7. �


Theorem 4.9. Let M be a Garside monoid, let S be the set of atoms of M , let f be
a right l.c.m. selector on S in M , and let g be a left l.c.m. selector on S in M . Then
(S, f, g) satisfies Conditions IVLR and IVRL.

Proof. Let x1, . . . , xn be an enumeration of the atoms of M . Lemma 4.3 and an easy
inductive argument show that Jf

R (x1, . . . , xk) exists and represents the right l.c.m. of
x1, . . . , xk. In particular, Jf

R (x1, . . . , xn) exists and represents ∆R = ∆. Now, let x be
an atom. Since ∆x = δ(x)∆ holds (Proposition 2.5), ∆ divides ∆x on the right, thus,
by Proposition 3.4, Cg

L (Jf
R (x1, . . . , xn)x, Jf

R (x1, . . . , xn)) exists and is empty. �


5. Examples

We have seen that finite Coxeter type Artin groups are Garside groups. Although
the definition in terms of l.c.m.’s seems to be rather natural, we have found only
few examples of Gaussian groups and Garside groups in the literature. However, the
criterions of Section 4 enable us to construct a number of new examples.

The first remark is:

Lemma 5.1. Assume that S is a two-element set, and that f is any complement on S.
Then (S, f) satisfies Conditions IIR and IIL.

Proof. Assume S = {x, y}. The only thing we have to verify for IIR is that the words
Cf

R (x, xf(y, x)) and Cf
R (x, yf(x, y)) either both exist and are equivalent, or that neither

of them exists. Now a direct computation gives

Cf
R (x, xf(y, x)) = Cf

R (ε, f(y, x)) = ε,

Cf
R (x, yf(x, y)) = Cf

R (f(x, y), f(x, y)) = ε.

The argument is similar for Condition IIL. �


Example #2. For p, q positive integers, let Gp,q be the group with presentation

〈 x, y | xp = yxqy 〉 . (5.1)

We claim that, for p > q, Gp,q is a small Gaussian group, but not a Garside group.
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Let S be the set {x, y}, and let Mp,q be the monoid that admits (5.1) as a presen-
tation. Then Mp,q is both MR(S, f) and ML(S, g) where the complements f and g are
defined by

f(y, x) = xp−1, f(x, y) = xqy, g(x, y) = xp−1, g(y, x) = yxq.

We shall verify that (S, f) satisfies Conditions IR, IIR and III+
R when p > q holds.

Observe that, for p ≤ q, Mp,q is certainly not atomic, since we have

xp = yxqy = yyxqyxq−py = · · · = yk+1xqy(xq−py)k

for every k. We henceforth assume p > q.
For IR, unless p = q + 2, the relation is not homogeneous, and we cannot simply

use the length as the mapping ν. However, it is clear that the mapping ν defined by
ν(ε) = 0, ν(x) = 2, ν(y) = p − q and ν(uv) = ν(u) + ν(v) is a right norm for f .

Condition IIR is automatically verified by Lemma 5.1.
For Condition III+

R , we claim that the closure of S under the complement Cf
R is the

set
S′ = {xi; 0 ≤ i < p} ∪ {xjyxk; 0 ≤ j, k ≤ q}.

This results from the following explicit equalities, which are verified directly:

Cf
R (xi, xi′) = xsup(i−i′,0),

Cf
R (xi, xjyxk) =

{
ε for i ≤ j,
xq−ky otherwise,

Cf
R (xjyxk, xj′yxk′

) =
{

xq−k′
yxsup(j−j′,0) for j �= j′,

xsup(k−k′,0) for j = j′.

Due to the symmetry in the defining relations, it is obvious that the complement g
satisfies Conditions IL, IIL and III+

L . By Theorem 3.10, we conclude that Mp,q is a
small Gaussian monoid, and that Gp,q is a Gaussian group.

This group is not a Garside group. Indeed, x and y are atoms in Mp,q, and we imme-
diately find ∆R = ∆L = xp = yxqy, corresponding to Jf

R (x, y) = xp. Now Condition IVLR

fails, for we find
Cg

L (xpy, xp) = xq.

This failure corresponds to the fact that the element represented by yxq is right simple
in Mp,q, but it is not left simple.

Example #3. For p a positive integer, let Mp be the monoid with presentation

〈 x, y | xyp = yx 〉 . (5.2)
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We claim that Mp embeds in its group of fractions, that Mp is a right Gaussian monoid,
but, for p ≥ 2, that Mp is neither a left Gaussian monoid, nor a right small right
Gaussian monoid.

It is clear that the monoid Mp is both MR(S, f) and ML(S, g), where S is {x, y},
and f , g are the complements defined by

f(x, y) = x, f(y, x) = yp, g(x, y) = y, g(y, x) = xyp−1.

We consider Conditions IR, IIR and IIIR for (S, f). For IR, we cannot simply define a
left norm ν by attributing fixed values to the letters as in Example #2, for the number
of letters x is the same in both sides of (5.2). Now, defining inductively ν by ν(ε) = 0
and

ν(xw) = ν(w) + 1, ν(yw) = ν(w) + p|w|x ,

where |w|x denotes the number of letters x in w, gives a right norm for (S, f). Indeed,
we find for every word v

ν(xypv) = ν(v) + p|v|x+1 + 1 = ν(yxv),

which is enough as |xypv|x and |yxv|x both are equal to |v|x + 1. Hence (S, f) satisfies
Condition IR.

By Lemma 5.1, it satisfies Condition IIR.
Now, let S′ be the set {x} ∪ {yj ; j ≥ 0}. It is easy to verify that S′ is closed

under Cf
R , due to the formulas

Cf
R (x, yj) = x, CR(yj , x) = ypj . (5.3)

So, by Lemma 3.9, (S, f) satisfies Condition IIIR, and, therefore, Mp is a right Gaussian
monoid. Now, (5.3) shows that the closure of S under Cf

R contains the word ypk
for

every k, so it cannot be finite for p ≥ 2. So Mp is not right small.
Because Mp is atomic, we know that (S, g) satisfies Condition IL, and, by Lemma 5.1,

it satisfies Condition IIL as well. Hence, by Proposition 3.6, the monoid ML is left
cancellative, and, by Ore’s criterion, it embeds in its group of fractions. However (S, g)
does not satisfy Condition IIIL. Indeed, the word w = xyp−1x−1 is g-reversible on the
left in two steps to the word y−1wy, and, therefore, it is g-reversible in 2k steps to
y−kwyk for every k: thus the g-reversing of w cannot be successful.

We turn now to the construction of Garside groups. The following propositions 5.2
and 5.3 provide a machinery to produce infinite families of such groups.

Proposition 5.2. Consider a finite set S = {x1, . . . , xn}, n positive words u1, . . . , un in
S∗, and a permutation δ of {1, . . . , n}. We assume that:
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i) There exists a mapping ν of S to the positive integers which, when extended
to S∗ by ν(ε) = 0 and ν(uv) = ν(u) + ν(v), satisfies

ν(x1u1xδ(1)) = ν(x2u2xδ(2)) = . . . = ν(xnunxδ(n)); (5.4)

ii) For every index k, there exists an index j satisfying

xkuk = ujxδ(j) . (5.5)

Let M be the monoid defined by the presentation

〈x1, . . . , xn | x1u1xδ(1) = x2u2xδ(2) = . . . = xnunxδ(n)〉 .

Then M is a Garside monoid.

Proof. Let f and g be the complements on S defined by

f(xi, xj) = ujxδ(j) and g(xi, xj) = xδ−1(i)uδ−1(i)

for i �= j. Then the monoid M is both MR(S, f) and ML(S, g). Hypothesis (i) guaran-
tees that the mapping ν is a right norm for the complement f , thus, by Proposition
3.1, M is an atomic monoid. The congruence relation ≡f

R is generated by the pairs
(xiuixδ(i), xjujxδ(j)) and the length of xiuixδ(i) is strictly greater than 1, thus, if xi is
in S, then there is no word besides xi in S∗ ≡f

R -equivalent to xi. In particular, the
elements of S are atoms. So, by Proposition 2.2, S is the set of atoms of M . A direct
calculation gives:

Cf
R (xk, xif(xj , xi)) =

{
uixδ(i) for i = j and i �= k,
ε otherwise.

So, Cf
R (xk, xif(xj , xi)) and Cf

R (xk, xjf(xi, xj)) exist and are ≡f
R -equivalent in any case,

thus (S, f) satisfies Condition IIR. Similarly, (S, g) satisfies Condition IIL. An easy
inductive argument on k shows:

Jf
R (x1, . . . , xk) =

{
x1 for k = 1,
x1u1xδ(1) for k ≥ 2.

In particular, Jf
R (x1, . . . , xn) exists and is equal to x1u1xδ(1). Equality (5.5) and a direct

calculation show that Cg
L (x1u1xδ(1)xk, x1u1xδ(1)) exists and is the empty word for all xk

in S. So, (S, f, g) satisfies Condition IVLR. Similarly, (S, f, g) satisfies Condition IVRL.
We conclude by Theorem 4.4 that M is a Garside monoid. �
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Example #4. Consider a finite set S = {x1, . . . , xn} and n positive integers p1, . . . , pn

strictly greater than 1. Then, by Proposition 5.2, the group

〈x1, . . . , xn | xp1
1 = xp2

2 = . . . = xpn
n 〉

is a Garside group. Here, xδ(i) = xi, ui = xpi−2
i , and the mapping ν is defined as

follows. We choose n positive integers t1, . . . , tn satisfying t1p1 = t2p2 = . . . = tnpn,
and we set

ν(xi1xi2 . . . xir) = ti1 + ti2 + . . . + tir .

Torus knot groups have the form

〈x, y | xp = yq〉

(see [27, Chapter 3]), thus are among these examples.

Example #5. Let x1, . . . , xp be p letters and let m be a positive integer. Then
prod(x1, . . . , xp;m) denotes the word

prod(x1, . . . , xp; m) = x1x2 . . . xpx1x2 . . .︸ ︷︷ ︸
m factors

.

Consider now a finite set S = {x1, . . . , xn} and two positive integers p and m, 2 ≤ p ≤ n
and 2 ≤ m. By Proposition 5.2, the group

〈x1, . . . , xn | prod(x1, . . . , xp;m) = prod(x2, . . . , xp+1;m) = . . . = prod(xn−p+1, . . . , xn;m)
= prod(xn−p+2, . . . , xn, x1;m) = . . . = prod(xn, x1, . . . , xp−1;m)〉

is a Garside group. The group

〈x1, . . . , xn | x1x2 . . . xn = x2 . . . xnx1 = . . . = xnx1 . . . xn−1〉

is the fundamental group of the complement of n lines through the origin in C2 (see
[25] or [28]). The group

〈x1, . . . , xn | x1x2 = x2x3 = . . . = xnx1〉

is the Artin group of type I2(n), however, the Garside monoid having the previous
presentation is not an Artin monoid. According to [6], the group

〈x, y, z | xyz = yzx = zxy〉
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is the braid group associated with the complex reflection groups of type G7, G11, and
G19, and the group

〈x, y, z | xyzxy = yzxyz = zxyzx〉
is the braid group associated with the complex reflection group of type G22.

Example #6. One can mix the presentations of Examples #4 and #5 to get new ones.
For example,

〈x1, x2, x3, x4, x5 | x2
1 = x5

2 = x3x4x5x3 = x4x5x3x4 = x5x3x4x5〉
is a Garside group.

Proposition 5.3. Consider n Garside monoids M1, . . . , Mn, and n positive integers
p1, . . . , pn. Let ∆i denote the fundamental element of Mi. We assume that:

i) There is a mapping νi : Mi → N satisfying νi(a) > 0 for all a in Mi, a �= 1, and
νi(ab) = νi(a) + νi(b) for all a, b in Mi;

ii) If Mi has only one atom, namely, if Mi is isomorphic to Z+, then pi ≥ 2.
Let ≡ be the congruence relation on (M1 ∗ M2 ∗ . . . ∗ Mn) generated by the pairs
(∆pi

i ,∆pj

j ), and let M be the quotient

M = (M1 ∗ M2 ∗ . . . ∗ Mn)/≡ .

Then M is a Garside monoid.

Proof. Let Si be the set of atoms of Mi, let fi be a right l.c.m. selector on Si in Mi,
let gi be a lrft l.c.m. selector on Si in Mi, and let ui be a positive word in S∗

i that
represents ∆i. Set

S = S1 ∪ S2 ∪ . . . ∪ Sn .

We define a complement f on S by: for x in Si and y in Sj ,

f(x, y) =

{
fi(x, y) for i = j,
C

fj
R (uj , y) · upj−1

j for i �= j.

Similarly, we define a complement g on S by: for x in Si and y in Sj ,

g(x, y) =
{

gi(x, y) for i = j,
upi−1

i · Cgi
L (x, ui) for i �= j.

By construction, M admits both presentations:

〈S | xf(y, x) = yf(x, y), x, y ∈ S〉 and 〈S |g(x, y)x = g(y, x)y, x, y ∈ S〉 .
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Let νi : S∗
i → N be the mapping defined by νi(v) = νi(v). We choose n positive

integers t1, . . . , tn satisfying t1p1ν1(u1) = t2p2ν2(u2) = . . . = tnpnνn(un) and we define
a mapping ν : S∗ → N as follows. Let v be in S∗. We write v = vi1vi2 . . . vir , where vij

is in S∗
ij

. Then

ν(v) = ti1νi1(vi1) + ti2νi2(vi2) + . . . + tirνir(vir) .

By Assumption (i), this mapping is well-defined and is a right norm for the complement
f , thus, by Proposition 3.1, M is an atomic monoid.

The congruence relation ≡f
R is generated by the pairs (xfi(y, x), yfi(x, y)), x, y in

Si and i in {1, . . . , n}, and by the pairs (upi
i , u

pj

j ), i, j in {1, . . . , n}. The lengths of both
xfi(y, x) and upi

i are strictly greater than 1, thus, if x is in S, then there is no word
besides x in S∗ ≡f

R -equivalent to x. In particular, the elements of S are atoms. By
Proposition 2.2, S is the set of atoms of M .

A direct calculation gives: for x in Si, y in Sj , and z in Sk,

Cf
R (z, xf(y, x)) =




Cfi
R (z, xfi(y, x)) for i = j = k,

Cfi
R (Cfi

R (ui, x), fi(y, x)) · upi−1
i for i = j �= k,

ε for i �= j.

So, Cf
R (z, xf(y, x)) and Cf

R (z, yf(x, y)) exist and are ≡f
R -equivalent in any case, thus

(S, f) satisfies Condition IIR. Similarly, (S, g) satisfies Condition IIL.
Without lost of generality, we may assume that there is an enumeration x1, . . . , xr

of the elements of S1 such that Jf1
R (x1, . . . , xr) is u1. A direct calculation gives: for y

in S2 ∪ . . . ∪ Sn,
Cf

R (y, u1) = up1−1
1 and Cf

R (y, up1
1 ) = ε . (5.6)

We extend the previous enumeration to an enumeration x1, . . . , xr, xr+1, . . . , xm of S.
By (5.6), Jf

R (x1, . . . , xm) exists and is equal to up1
1 . Now, let x be in Si. By Propo-

sition 2.5, there is y in Si such that upi
i x and yupi

i are ≡f
R -equivalent. Since up1

1 is
≡f

R -equivalent to upi
i , the word up1

1 x is ≡f
R -equivalent to yup1

1 , thus, by Proposition 3.4,
Cg

L (up1
1 x, up1

1 ) exists and is the empty word. This shows that (S, f, g) satisfies Condi-
tion IVLR. Similarly, (S, f, g) satisfies Condition IVRL. We conclude by Theorem 4.4 that
M is a Garside monoid. �


Example #7. Proposition 5.3 applied to the Artin groups of type B3 and A3 shows
that the group

〈x1, x2, x3, y1, y2, y3 | x1x2x1x2 = x2x1x2x1, x1x3 = x3x1, x2x3x2 = x3x2x3,

y1y2y1 = y2y1y2, y1y3 = y3y1, y2y3y2 = y3y2y3, (x1x2x3)6 = (y1y2y3y1y2y1)3〉
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is a Garside group. (Expressions of the fundamental elements of the Artin groups of
type An, Bn, and Dn can be found in [24].)

Example #8. It is proved in [3] that the braid group on n strings has a presentation
with generators {ats;n ≥ t > s ≥ 1} and with defining relations

atsarq = arqats for (t − r)(t − q)(s − r)(s − q) > 0,

atsasr = atrats = asratr for all t, s, r with n ≥ t > s > r ≥ 1.

These relations are complement relations, but they are incomplete as there is no com-
plement for ats and arq in the cases t > r > s > q and r > t > q > s. However, the
above relations imply

atsatrasq = arqatqars for t > r > s > q,

atsatqars = arqartaqs for r > t > q > s,

and gathering the four series of relations gives a presentation of the type GR(S, f). The
relations are homogeneous, so (S, f) satisfies Condition IR. By a long verification, it
is shown in [3] that (S, f) satisfies Condition IIR, and that the l.c.m. ∆ of the genera-
tors exists and enjoys all desired properties, so that the monoid MR(S, f) is a Garside
monoid. It follows in particular that the braid group equipped with this new presen-
tation is eligible for the general algorithms and normal forms presented in the next
sections.

6. Word problem and isoperimetric inequalities

Let G be a group given by a presentation 〈S|R〉, where R is some subset of (S ∪S−1)∗.
The word problem in G consists in finding an algorithm which determines whether a
word w in (S ∪ S−1)∗ represents the identity in G.

Reversing processes give rise to algorithms which solve the word problem for Gaus-
sian groups (Theorems 6.1 and 6.3). These algorithms were introduced in [14]. By
Lemma 3.9, both have quadratic complexity in the case of a small Gaussian group—
hence, in particular, in the case of a Garside group.

Theorem 6.1. Let M be a right cancellative right Gaussian monoid, and let G be the
group of (right) fractions of M . Let S be a finite generating set of M and let f be a
right l.c.m. selector on S in M . Then a word w in (S ∪ S−1)∗ represents the identity

of G if and only if the word Rf
R (Df

R (w)−1Nf
R (w)) is empty.
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Proof. By construction, the words w and Rf
R (w) represent the same element of G. The

latter word is Nf
R (w)Df

R (w)−1. Hence it represents 1 in G if and only if the positive
words Nf

R (w) and Df
R (w) represent the same element of G. The hypotheses guarantee

that M embeds in G, so the latter condition is equivalent to Nf
R (w) ≡f

R Df
R (w). By

Proposition 3.4, this in turn is equivalent to the fact that both Cf
R (Nf

R (w), Df
R (w)) and

Cf
R (Df

R (w), Nf
R (w)) are empty, i.e., that Rf

R (Df
R (w)−1Nf

R (w)) is the empty word. �


Proposition 6.2. Let M be a Gaussian monoid, and let G be the group of (right)
fractions of M . Let S be a finite generating set of M , let f be a right l.c.m. selector on
S in M , and let g be a left l.c.m. selector on S in M . Two words w and w′ in (S∪S−1)∗

represent the same element of G if and only if Ng
L (Rf

R (w)) is equivalent to Ng
L (Rf

R (w′)),
and Dg

L (Rf
R (w)) is equivalent to Dg

L (Rf
R (w′)).

Proof. Every word w in (S ∪ S−1)∗ represents in G the same element as Rg
L(Rf

R (w)).
In particular, if Ng

L (Rf
R (w)) is equivalent to Ng

L (Rf
R (w′)) and Dg

L (Rf
R (w)) is equivalent

to Dg
L (Rf

R (w′)), then w and w′ represent the same element of G.
We assume now that w and w′ represent the same element of G. By Proposition

3.7, there exist positive words u, u′ such that Nf
R (w)u is equivalent to Nf

R (w′)u′ and
Df

R (w)u is equivalent to Df
R (w′)u′. By construction, the word Nf

R (w)uu−1Df
R (w)−1 is

g-reversible on the left to the word Nf
R (w)Df

R (w)−1, thus we have

Ng
L (Rf

R (w)) = Cg
L (Df

R (w)u, Nf
R (w)u) .

Similarly, we have
Ng

L (Rf
R (w′)) = Cg

L (Df
R (w′)u′, Nf

R (w′)u′) .

It follows by Proposition 3.5 that Ng
L (Rf

R (w)) is equivalent to Ng
L (Rf

R (w′)). Similarly,
Dg

L (Rf
R (w)) is equivalent to Dg

L (Rf
R (w′)). �


Theorem 6.3. Let M be a Gaussian monoid, and let G be the group of (right) fractions
of M . Let S be a finite generating set of M , let f be a right l.c.m. selector on S in M ,
let g be a left l.c.m. selector on S in M . Then a word w in (S ∪ S−1)∗ represents the

identity of G if and only if the word Rg
L(Rf

R (w)) is empty.

Proof. Obvious from Proposition 6.2: as it is a positive word, Ng
L (Rf

R (w)) is equivalent
to ε (if and) only if it is empty. Similarly, Dg

L (Rf
R (w)) is equivalent to ε (if and) only if

it is empty. �


Definition. Let G be a group given by a finite presentation 〈S|R〉. Let F (S) denote
the free group generated by S, and let RF (S) denote the normal subgroup of F (S)
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generated by R. Let α be an element of RF (S). Then α can be written in the form

α = (β1r
e1
1 β−1

1 )(β2r
e2
2 β−1

2 ) . . . (βnren
n β−1

n ) (6.1)

where βi is in F (S), ri is in R, and ei is in {±1}. The lowest n satisfying (6.1) is called
the combinatorial area of α and is denoted by area(α). The group G has a quadratic
isoperimetric inequality if there exists a constant c > 0 such that

area(α) ≤ c · lgS(α)2

holds for all α in RF (S). This definition depends neither on the choice of the (finite)
generating set, nor on the choice of the (finite) set of relations.

We prove in Section 8 that Garside groups are biautomatic groups. By [17, Theorem
2.3.12], it follows that such groups have quadratic isoperimetric inequalities. However,
as shown in the next theorem, reversing processes together with Lemma 3.9 give rise to
the same result in a (strictly) larger framework. In [29], Tatsuoka proves this for finite
Coxeter type Artin groups using similar techniques.

Theorem 6.4. Let G be the group of (right) fractions of a right cancellative right small
right Gaussian monoid. Then G has a quadratic isoperimetric inequality.

Proof. Let M be the monoid considered, let S be the set of atoms of M , and let f be
a right l.c.m. selector on S in M . We take S as generating set of G and

R = {xf(y, x)f(x, y)−1y−1; x, y ∈ S}
as set of relations. For w in (S ∪ S−1)∗, we denote by red(w) the element of F (S)
represented by w. One can easily verify that: if w in (S ∪ S−1)∗ is f -reversible in one
step to w′, then red(w) can be written in the form

red(w) = (βrβ−1) · red(w′) (6.2)

where β is in F (S), and r belongs to R. Iterating (6.2) and using Lemma 3.9, we
deduce that there exists a constant K > 0 such that: for all w in (S ∪ S−1)∗ of length
�, red(w) can be written in the form

red(w) = (β1r1β
−1
1 ) . . . (βnrnβ−1

n ) · red(Nf
R (w)Df

R (w)−1) (6.3)

where βi is in F (S), ri is in R, and n ≤ K�2/4 holds. Similarly, we find that
red(Df

R (w)−1Nf
R (w)) can be written in the form

red(Df
R (w)−1Nf

R (w)) = (β′
1r

′
1β

′
1
−1) . . . (β′

n′r′n′β′
n′

−1) · red(Rf
R (Df

R (w)−1Nf
R (w))) (6.4)
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where β′
i is in F (S), r′i is in R, and n′ ≤ K�2/4 holds.

Now, if red(w) is in RF (S), then, by Theorem 6.1, Rf
R (Df

R (w)−1Nf
R (w)) is empty.

Conjugating by red(Df
R (w)) in (6.4), and introducing the hypothesis that red(w) be-

longs to RF (S), i.e., that the word Rf
R (Df

R (w)−1Nf
R (w)) is empty, we obtain an equality

of the form
red(Nf

R (w)Df
R (w)−1) = (γ1r

′
1γ

−1
1 ) . . . (γn′r′n′γ−1

n′ ) (6.5)

where γi is in F (S). Finally (6.3) and (6.5) imply that the combinatorial area of red(w)
is at most K�2/2. �


The previous computation shows more generally that every upper bound for the
number of elementary steps in a reversing process gives an isoperimetric inequality in
the associated group. In the case of Example #3 the only upper bound on the length
of the reversing process is exponential with respect to the length of the initial word,
correponding to the fact that the group involved satisfies an exponential isoperimetric
inequality. This raises two questions:

Question #1. For which functions T does there exist a right Gaussian monoid MR(S, f)
such that T (�) is the minimal upper bound on the number of steps of the f -reversing
of all length � words?

Let us mention that [12] gives an example where the only known upper bound about
the number of steps for reversing a length � word is a tower of exponentials of height 2�.
This example however is not exactly relevant for the present question as it involves an
infinite set of generators. Another related question involving the complexity of word
reversing is:

Question #2. Assume that the monoid M admits two presentations MR(S, f), ML(S, g)
and M is a right small right Gaussian monoid; is M necessarily a (small) Gaussian
monoid?
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7. Normal forms

Definition. Let M be a Gaussian monoid. For a in M , πR(a) denotes the left g.c.d. of
a and ∆R, and ∂Ra denotes the element of M satisfying a = πR(a) · ∂Ra.

Lemma 7.1. Let M be a Gaussian monoid. For a in M , there exists a non-negative
integer k satisfying ∂k

R a = 1.

Proof. Since ∆R is the right l.c.m. of all atoms, a �= 1 implies πR(a) �= 1. This gives
‖∂Ra‖ < ‖a‖ for a �= 1, thus there exists a non-negative integer k satisfying ∂k

R a = 1. �

Definition. Let M be a Gaussian monoid. Let a be in M . The degree of a, denoted
by deg(a), is the lowest k satisfying ∂k

R a = 1. Then the expression

a = πR(a) · πR(∂Ra) · . . . · πR(∂deg(a)−1
R a)

is called the normal form of a.

In order to define normal forms for Gaussian groups, we first need Proposition 7.4
and its corollary to guarantee that such forms exist and are unique.

From now on and till the end of this section, we fix the following assumptions: M
is a Gaussian monoid, S is the set of atoms of M , f is a right l.c.m. selector on S in M ,
g is a left l.c.m. selector on S in M , and G is the group of (right) fractions of M .

Lemma 7.2. Let x, y be in S, x �= y. Then Cg
L (f(y, x), f(x, y)) is equal to x.

Proof. Let a be the element of M represented by f(y, x), and let b be the element of
M represented by f(x, y). If Cg

L (f(y, x), f(x, y)) is empty, then, by Proposition 3.4, b
divides a on the right. Since xa = yb holds, it follows that x divides y on the left, thus
x is equal to y since both are atoms. This is a contradiction, thus Cg

L (f(y, x), f(x, y))
is non-empty. The word Cg

L (f(y, x), f(x, y))f(y, x) represents the left l.c.m. of a and b.
The equality xa = yb shows that xa is a common left multiple of a and b. So, there
exists a word v in S∗ such that vCg

L (f(y, x), f(x, y))f(y, x) represents xa. By right
cancellation, it follows that vCg

L (f(y, x), f(x, y)) represents x, thus, since x is an atom,
v is empty and Cg

L (f(y, x), f(x, y)) is equal to x. �

Taking Lemma 7.2 into account, the proof of the following lemma is the same as

the proof of [14, Lemma 2.11]. So, we do not include it here.

Lemma 7.3 [14, Lemma 2.11]. Let w, w′ be two words in (S∪S−1)∗. If w is f -reversible
on the right to w′, then there exists a positive word v in S∗ such that vNg

L (w′) is
equivalent to Ng

L (w) and vDg
L (w′) is equivalent to Dg

L (w). �
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Proposition 7.4. Let c be in G and let w be a word in (S ∪ S−1)∗ which represents c.
If a word of the form u−1v, with u, v in S∗, also represents c, then there exists w′ in S∗

such that u is equivalent to w′Dg
L (Rf

R (w)) and v is equivalent to w′Ng
L (Rf

R (w)).

Proof. By Lemma 7.3, there exists w′ in S∗ such that u is equivalent to w′Dg
L (Rf

R (u−1v))
and v is equivalent to w′Ng

L (Rf
R (u−1v)). By Theorem 6.1, Dg

L (Rf
R (u−1v)) is equivalent

to Dg
L (Rf

R (w)) and Ng
L (Rf

R (u−1v)) is equivalent to Ng
L (Rf

R (w)). �


Corollary 7.5. Let c be an element of G. There exists a unique pair (a, b) in M ×M
satisfying c = a−1b and a ∧L b = 1. Moreover, if w in (S ∪ S−1)∗ represents c, then

Dg
L (Rf

R (w)) represents a and Ng
L (Rf

R (w)) represents b. �


Definition. Let c be an element of G. Let a, b be elemnts of G such that c is a−1b and
a ∧L b is 1. Then the expression

c = πR(∂deg(a)−1
R a)−1 · . . . · πR(∂Ra)−1 · πR(a)−1 · πR(b) · πR(∂Rb) · . . . · πR(∂deg(b)−1

R b)

is called the normal form of c. By Corollary 7.5, such a form always exists and is
unique.

The normal forms defined above are nothing but those of [9] in the case of finite
Coxeter type Artin groups. Because of the existence of the fundamental element ∆ and
of the permutation δ of Proposition 2.5, the normal forms of [5] and [18], and those of
[15], [2], [8], [17] can also easily be extended to all Garside groups.

Let c be in G and let w be a word in (S ∪ S−1)∗ which represents c. We now
describe an algorithm that gives the normal form of c starting from w. Let a, b in M
be satisfying c = a−1b and a∧L b = 1. By Corollary 7.4, a is represented by Dg

L (Rf
R (w))

and b is represented by Ng
L (Rf

R (w)). So, it remains to describe how to find the normal
form of an element of M . Let x1, . . . , xn be an enumeration of the atoms, and let
Jf

R (x1, . . . , xn) be the word defined just before Theorem 4.4. As pointed out before,
Jf

R (x1, . . . , xn) represents ∆R and can be effectively computed. Now, Proposition 7.7
below gives an algorithm which determines an expression of u ∧L v for all u, v in S∗.
This ends our algorithm since: if u0 represents πR(a) and u represents a, then, by
Lemma 4.3, Cf

R (u, u0) represents ∂Ra.

Lemma 7.6. Let a, b, a′, b′ in M satisfy aa′ = bb′ = a ∨R b. Then we have

a ∨R b = (a ∧L b)(a′ ∨L b′) .
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Proof. Let a′′, b′′ in M satisfy a′′a′ = b′′b′ = a′ ∨L b′. Because aa′ = bb′ is a common
left multiple of a′ and b′, there exists e satisfying aa′ = bb′ = e(a′∨L b′) = ea′′a′ = eb′′b′.
We prove that e is a ∧L b. By right cancellation, a = ea′′ and b = eb′′ hold, thus e is a
common left divisor of a and b. Let e1 be a common left divisor of a and b. Let a1, b1

in M satisfy a = e1a1 and b = e1b1. By left cancellation, a1a
′ = b1b

′ holds. So, there
exists c in M satisfying a1a

′ = b1b
′ = c(a′ ∨L b′) = ca′′a′ = cb′′b′. By right cancellation,

a1 = ca′′ and b1 = cb′′ hold, thus a = e1ca
′′ = ea′′ and b = e1cb

′′ = eb′′ holds as well. It
follows, by right cancellation, that e1 is a left divisor of e. �


Proposition 7.7. Let u, v be in S∗. Then u∧Lv is represented by Cg
L (Ng

L (Rf
R (v−1u)), u).

Proof. Let a, b, a′, b′ in M satisfy a = u, b = v, and aa′ = bb′ = a ∨R b. By Lemma
4.3, a′ is represented by Cf

R (v, u) and b′ is represented by Cf
R (u, v), thus a′ ∨L b′ is

represented by Cg
L (Cf

R (v, u), Cf
R (u, v))Cf

R (v, u). The element a ∨R b is represented by
uCf

R (v, u). Finally, by Lemma 7.6 and Lemma 4.3, a ∧L b is represented by

Cg
L (Cg

L (Cf
R (v, u), Cf

R (u, v))Cf
R (v, u), uCf

R (v, u))Cg
L (Ng

L (Rf
R (v−1u)), u) . �


8. Automatic structure

We shall prove here that Garside groups are biautomatic groups. Roughly speaking,
this means that there exists a finite state automaton that computes the normal forms
of Section 7. The key point that explains automaticity is the fact that, if a, b are
elements of a Garside monoid, then the value of the g.c.d. (ab)∧L ∆ depends only on a
and on b∧L ∆, i.e., the ‘state’ of ab depends only on a and on the ‘state’ of b—but not
on the whole of b. It is easy to see that such a result fails in the case of Example #2,
and this makes it unlikely that a general automaticity result holds for small Gaussian
groups even if they satisfy a quadratic isoperimetric inequality.

Our proof of Theorem 8.1 is inspired by the proof of [9, Theorem 0.1]. In particular,
the proofs of Lemmas 8.6 and 8.7 are the same as the proofs of [8, Proposition 3.1] and
[8, Proposition 3.3] respectively. We do not include them here.

Definition. A finite state automaton is a quintuple F = (Q, A, µ, Y, q0), where Q is
a finite set, called the state set, A is a finite set, called the alphabet, µ : Q × A → Q
is a function, called the transition function, Y is a subset of Q, whose elements are
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called the accept states, and q0 is in Q, and is called the start state. For q in Q and
w = x1 . . . xn in A∗, we define the state µ(q, w) inductively on n by

µ(q, w) =
{

q for n = 0,
µ(µ(q, x1 . . . xn−1), xn) for n ≥ 1.

Then
LF = {w ∈ A∗ ; µ(q0, w) ∈ Y }

is called the language recognized by F . A regular language is a language recognized by
a finite state automaton.

Definition. Let G be a group, and let S be a generating set of G. The length (with
respect to S) of an element c of G, denoted by lgS(c), is the shortest length of a word
in (S ∪S−1)∗ representing c. The distance between two elements c and d in G, denoted
by dS(c, d), is the length of c−1d.

Definition. Let G be a group, and let S be a finite generating set of G. A language
L in (S ∪ S−1)∗ represents G if all the elements of G are represented by elements of L.
The language L has the uniqueness property if every element of G is represented by a
unique element of L. It is symmetric if L is equal to L−1, where L−1 is the language
obtained by formally inverting the elements of L. It is geodesic if the length of w is
equal to the length of w for all w in L. For w = xε1

1 . . . xεn
n in (S ∪ S−1)∗ and for t in

N, we write

w(t) =




1 for t = 0,
xε1

1 . . . xεt
t for 1 ≤ t ≤ n,

w for t ≥ n.
Let κ be a positive integer. We say that L has the κ-fellow traveller property if: for
w, w′ in L,

dS(w(t), w′(t)) ≤ κ · dS(w,w′)

holds for all non-negative integers t.

Definition. A group G is automatic if there exist a finite generating set S of G, a
constant κ > 0, and a regular language L in (S ∪ S−1)∗, such that L represents G and
has the κ-fellow traveller property. If, in addition, L−1 also has the κ-fellow traveller
property, then G is called biautomatic. If L is symmetric, G is called fully biautomatic.
If L is geodesic, G is called geodesically automatic. We refer to [17] for a general
exposition on automatic groups.

From now on and till the end of this section, we fix the following assumptions: M
is a Garside monoid, S is the set of atoms of M , f is a right l.c.m. selector on S in M ,
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g is a left l.c.m. selector on S in M , Σ is the set of simple elements different from
the identity, ≡ is the congruence on Σ∗ such that M is Σ∗/≡, and G is the group of
fractions of M .

The goal of this section is to prove the following theorem.

Theorem 8.1. Let L be the language in (Σ ∪ Σ−1)∗ of all normal forms. Then L is
regular, represents G, has the uniqueness property, is symmetric, is geodesic, and has
the 5-fellow traveller property.

Corollary 8.2. The group G is fully geodesically biautomatic.

Note that, since L is regular, has the uniqueness property, and is geodesic, it can
be used to compute with standard methods the growth series of G with respect to Σ.

By definition, the language L of normal forms represents G, has the uniqueness
property, and is symmetric. So, it remains to prove that L is regular, has the 5-fellow
traveller property, and is geodesic. This is the object of Propositions 8.3, 8.5, and 8.9
below.

Proposition 8.3. The language of normal forms is regular.

The following lemma 8.4 is a preliminary result to the proof of Proposition 8.3. For
a simple element σ, we denote by σ∗ the simple element satisfying σσ∗ = ∆.

Lemma 8.4. Let σ1, . . . , σn be in Σ. Then the following conditions are equivalent.
i) The word σ1σ2 . . . σn is a normal form.
ii) The word σiσi+1 is a normal form for i = 1, . . . , n − 1.
iii) σ∗

i ∧L σi+1 is 1 for i = 1, . . . , n − 1.

Proof. Assume (i). By construction, σiσi+1 . . . σn is a normal form. The element σi

is a common left divisor of σiσi+1 and ∆, thus σi divides πR(σiσi+1) on the left. The
element πR(σiσi+1) divides σiσi+1 on the left, and σiσi+1 divides σiσi+1 . . . σn on the
left, thus πR(σiσi+1) divides σiσi+1 . . . σn on the left. Since this element is simple, it
follows that πR(σiσi+1) divides πR(σiσi+1 . . . σn) = σi on the left, and, therefore, that
πR(σiσi+1) is equal to σi. Then σi+1 is ∂R(σiσi+1) and σiσi+1 is a normal form.

Conversely, assume (ii). We prove by induction on n that σ1σ2 . . . σn is a normal
form. The result is vacuously true if n is 1. We assume n ≥ 1. Let a and a′ in M be
represented by σ1σ2 . . . σn and σ2 . . . σn respectively. By induction hypothesis, σ2 . . . σn

is the normal form of a′. The element σ1 divides a on the left and is simple, thus it
divides πR(a) on the left. Let α be the simple element of M satisfying σ1α ≡ πR(a).
There exists b in M such that πR(a)b is a. By left cancellation, we deduce that αb is
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a′, thus, since α is a simple element, that α divides πR(a′) = σ2 on the left. Let β be
the simple element of M satisfying αβ ≡ σ2. From the equivalence

σ1σ2 ≡ σ1αβ ≡ πR(a)β

we deduce that πR(a) divides σ1σ2 on the left, thus divides σ1 on the left since σ1σ2 is
a normal form. This shows that πR(a) is σ1, and, therefore, that σ1σ2 . . . σn is a normal
form.

Writing ∆ = σσ∗, we obtain when σ, σ′ are simple elements:

σσ′ ∧L ∆ = σσ′ ∧L σσ∗ = σ(σ′ ∧L σ∗) .

So, σσ′ is a normal form, namely, σσ′ ∧L ∆ is σ, if and only if σ′ ∧L σ∗ is 1. This gives
the equivalence of (ii) and (iii). �


Proof of Proposition 8.3. We define V as Σ ∪ Σ−1 ∪ {v0, v1}, A as Σ ∪ Σ−1, and Y as
Σ ∪ Σ−1 ∪ {v0}. The function µ : V × A → V is defined by: for σ, τ in Σ,

µ(v0, σ) = σ, µ(v0, σ
−1) = σ−1

µ(v1, σ) = v1, µ(v1, σ
−1) = v1

µ(σ, τ) =
{

τ if σ∗ ∧L τ = 1
v1 otherwise

, µ(σ, τ−1) = v1

µ(σ−1, τ) =
{

τ if σ ∧L τ = 1
v1 otherwise

, µ(σ−1, τ−1) =
{

τ−1 if σ ∧L τ∗ = 1
v1 otherwise

By Lemma 8.4, the language of normal forms is recognized by F = (V, A, µ, Y, v0). �


Proposition 8.5. The language of normal forms has the 5-fellow traveller property.

The following lemmas 8.6–8.8 are preliminary results to the proof of Proposition
8.5.

Lemma 8.6 [8, Proposition 3.1]. Let a be in M , and let σ be a simple element. Let
σ1σ2 . . . σp and τ1τ2 . . . τq be the normal forms of a and σa respectively. Then q is equal
to p or to p+1, and there exist simple elements α1, . . . , αp, β1, . . . , βp (namely, elements
of Σ ∪ {1}) satisfying

τ1 ≡ σα1, τi ≡ βi−1αi (i = 2, . . . , p), τp+1 = βp,

σi ≡ αiβi (i = 1, . . . , p)

where τp+1 is 1 if q is equal to p. �
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Lemma 8.7 [8, Proposition 3.3]. Let a be in M , and let σ be a simple element. Let
σ1σ2 . . . σp and τ1τ2 . . . τq be the normal forms of a and aσ respectively. Then q is equal
to p or to p+1, and there exist simple elements γ1, . . . , γp (namely, elements of Σ∪{1})
satisfying

γiτi+1 . . . τq ≡ σi+1 . . . σpσ (8.1)

for i = 1, . . . , p. �


Lemma 8.8. Let a, b in M be such that a∧L b is 1, and let σ be a simple element. Then
aσ ∧L b is a simple element of M .

Proof. Since aσ∧Lb divides a∆∧Lb on the left, it suffices to prove Lemma 8.8 for σ = ∆.
Let σ1σ2 . . . σp and τ1τ2 . . . τq be the normal forms of a and b respectively. Let δ be the
permutation of Proposition 2.5 extended to M . Then ∆δ−1(σ1) . . . δ−1(σp) is the normal
form of a∆ = ∆δ−1(a). Let a′ and b′ in M be represented by τ∗

1 δ−1(σ1) . . . δ−1(σp) and
τ2 . . . τq respectively. We have a∆ = τ1a

′ and b = τ1b
′, thus

a∆ ∧L b = τ1(a′ ∧L b′) .

We prove now that a′ ∧L b′ is 1. From the equivalence

τ1∆ ≡ τ1τ
∗
1 (τ∗

1 )∗ ≡ ∆(τ∗
1 )∗ ,

we deduce that (τ∗
1 )∗ is δ−1(τ1), and, therefore,

(τ∗
1 )∗ ∧L δ−1(σ1) = δ−1(τ1) ∧L δ−1(σ1) = δ−1(τ1 ∧L σ1) = 1 .

By Lemma 8.4, it follows that τ∗
1 δ−1(σ1) . . . δ−1(σp) is the normal form of a′. From

Lemma 8.4, we also deduce that τ∗
1 ∧L τ2 is 1, and, τ∗

1 = πR(a′) and τ2 = πR(b′) imply
that this element is a′ ∧L b′ ∧L ∆. So, a′ ∧L b′ is 1, too. �


Proof of Proposition 8.5. Let c be in G, let σ be in Σ, and let ε be in {±1}. Let w and
w′ be the normal forms of c and cσε respectively. We prove

dΣ(w(t), w′(t)) ≤ 5 (8.2)

for every non-negative integer t. Let u, v be normal forms. Then (8.2) together with
an easy inductive argument on dΣ(u, v) shows

dΣ(u(t), v(t)) ≤ 5 · dΣ(u, v)

for every non-negative integer t. Note that: if c′ is cσ−1, then c is c′σ. So, we may
assume that ε is 1.
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Let a, b in M satisfy c = a−1b and a ∧L b = 1. Let α1 . . . αp and β1 . . . βq be the
normal forms of a and b respectively. The word w is α−1

p . . . α−1
1 β1 . . . βq. Let γ1 . . . γ�

be the normal form of bσ, and let w1 be α−1
p . . . α−1

1 γ1 . . . γ�. By Lemma 8.7,

dΣ(w(t), w1(t)) ≤ 1 (8.3)

holds for every non-negative integer t. By Lemma 8.8, a∧Lbσ is a simple element, say µ.
Let α′

1 and γ′
1 be the simple elements satisfying α1 ≡ µα′

1 and γ1 ≡ µγ′
1, and let w2 be

α−1
p . . . α−1

2 (α′
1)

−1γ′
1γ2 . . . γ�. Clearly,

dΣ(w1(t), w2(t)) ≤ 2 (8.4)

holds for every non-negative integer t. Let a′, b′ in M satisfy cσ = (a′)−1b′ and a′∧L b′ =
1. Then a′ and b′ are represented by α′

1α2 . . . αp and γ′
1γ2 . . . γ� respectively. Let σ1 . . . σr

and τ1 . . . τs be the normal forms of a′ and b′ respectively. Then w′ is σ−1
r . . . σ−1

1 τ1 . . . τs

and, by Lemma 8.6,
dΣ(w2(t), w′(t)) ≤ 2 (8.5)

holds for every non-negative integer t. The inequalities (8.3), (8.4), and (8.5) clearly
give (8.2). �


Proposition 8.9. The language of normal forms is geodesic.

Proof. Let c be in G, let w be an expression of c in (Σ ∪ Σ−1)∗, and let w0 be the
normal form of c. We prove that the length of w is greater or equal to the length of
w0. We write w as γε1

1 . . . γεn
n , γi in Σ and εi in {±1}. We choose an expression ui of γi

in S∗. Then c is represented by uε1
1 . . . uεn

n in (S ∪ S−1)∗. Let p be the number of εi’s
equal to 1. Following the proof of Lemma 3.9, one can establish:

Rg
L(Rf

R (uε1
1 . . . uεn

n )) = v−1
1 . . . v−1

n−pvn−p+1 . . . vn ,

where vi is a word in S∗ that represents a simple element, namely, an element of Σ∪{1}.
Let a, b in M satisfy c = a−1b and a ∧L b = 1. By Corollary 7.5, vn−p . . . v1 represents
a, and vn−p+1 . . . vn represents b. This shows that there exist expressions α1 . . . αk of a
and β1 . . . β� of b in Σ∗ satisfying k + l ≤ n.

So, it remains to prove that: if a is in M , w is an expression of a in Σ∗, and w0 is
the normal form of a, then the length of w is greater or equal to the length of w0. This
is a direct consequence of Lemma 8.6 together with an easy induction argument on the
length of w. �
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9. Automorphisms of a Gaussian monoid

In this section, we consider an automorphism of a Gaussian monoid and the induced
automorphism of the associated Gaussian group, and we study the submonoid and
subgroup of elements fixed by this automorphism. Then we state and prove Theorem
9.3 concerning the special case where the monoid is a finite Coxeter type Artin monoid.

We first remark that the group of automorphisms of a Gaussian monoid is finite
since any of them permutes the atoms, and these generate the monoid.

Lemma 9.1. Let M be a Gaussian monoid, and let φ be an automorphism of M . Let
a, b be in M . Then

φ(a ∨R b) = φ(a) ∨R φ(b) and φ(a ∧L b) = φ(a) ∧L φ(b) .

Proof. The element a divides a ∨R b on the left, thus φ(a) divides φ(a ∨R b) on the
left. Similarly, φ(b) divides φ(a∨R b) on the left, hence φ(a)∨R φ(b) divides φ(a∨R b) on
the left. The same argument applied to φ(a), φ(b), and φ−1, shows that a ∨R b divides
φ−1(φ(a) ∨R φ(b)) on the left, and, therefore, that φ(a ∨R b) divides φ(a) ∨R φ(b) on the
left. So, φ(a∨R b) is equal to φ(a)∨R φ(b). A similar argument gives the second equality
(concerning g.c.d.’s). �


Definition. Let M be a monoid, and let φ be an automorphism of M . We set

Mφ = {a ∈ M ; φ(a) = a},
the φ-trivial submonoid of M . The φ-orbit of an element a in M is {φk(a) ; k ∈ Z}.

Theorem 9.2. Let M be a Gaussian monoid, let S be the set of atoms of M , let G be
the group of fractions of M , and let φ be an automorphism of M .

i) The φ-trivial submonoid Mφ is a Gaussian monoid.
ii) Let X1, . . . , X� be the φ-orbits in S. Let yi denote the right l.c.m. of the elements

of Xi. Then y1, . . . , y� generate Mφ.
iii) The group of fractions of Mφ is equal to Gφ.

Proof. The restriction to Mφ of the norm of M satisfies the equivalent conditions
of Proposition 2.1, thus Mφ is atomic. The monoid Mφ inherits the left and right
cancellation properties from M . If a, b are in Mφ, then, by Lemma 9.1, we have

φ(a ∨R b) = φ(a) ∨R φ(b) = a ∨R b ,

thus a∨R b is also in Mφ, and, therefore, is the right l.c.m. of a and b in Mφ. Similarly,
left l.c.m.’s also exist in Mφ. This proves that Mφ is a Gaussian monoid.
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We write Xi as {x1, . . . , xr}, where φ(xj) is xj+1 for j = 1, . . . , r − 1, and φ(xr) is
x1. By Lemma 9.1, we have

φ(yi) = φ(x1 ∨R . . . ∨R xr) = φ(x1) ∨R . . . ∨R φ(xr) = x2 ∨R . . . ∨R xr ∨R x1 = yi ,

thus yi is in Mφ. Now, let a be in Mφ. We prove by induction on the norm of a that
a is in the submonoid generated by y1, . . . , y�. The result is obvious if the norm of a
is 0. We assume that the norm of a is greater than 0. Let x1 be an atom of M that
divides a on the left. Let Xi = {x1, . . . , xr} be the φ-orbit of x1. We assume as before
that φ(xj) is xj+1 for j = 1, . . . , r − 1, and φ(xr) is x1. If xj divides a on the left, then
φ(xj) = xj+1 also divides a = φ(a) on the left. So, all the elements of Xi divides a
on the left, and, therefore, yi divides a on the left. Let a′ in M be such that yia

′ is a.
From the equality

yia
′ = a = φ(a) = φ(yi)φ(a′) = yiφ(a′)

and from left cancellation, we deduce that a′ is in Mφ. By induction hypothesis, it
follows that a′, and then also a, are in the submonoid generated by y1, . . . , y�.

The group of fractions of Mφ is obviously included in Gφ. It remains to show that:
if c is in Gφ, then c is in the group of fractions of Mφ. By Corollary 7.5, c can be
uniquely written as a−1b, where a, b are in M , and a ∧L b is 1. Now, c = φ(c) is also
φ(a)−1φ(b), the elements φ(a) and φ(b) are in M , and φ(a) ∧L φ(b) = φ(a ∧L b) is 1.
By uniqueness, it follows that φ(a) is a and φ(b) is b, thus a, b are both in Mφ. This
proves that c is in the group of fractions of Mφ. �


Remark. The set {y1, . . . , y�} of Proposition 9.2.ii is not necessarily the set of atoms of
Mφ. For example, if M is given by the presentation

〈x1, x2, x3, x4 | x1x2x1 = x2x1x2 = x3x4x3 = x4x3x4〉 ,

and φ is defined by

φ(x1) = x2, φ(x2) = x1, φ(x3) = x3, φ(x4) = x4 ,

then � is 3, y1 is x1x2x1, y2 is x3, y3 is x4, and y2y3y2 is equal to y1.

We now consider a Coxeter graph Γ and an automorphism φ of Γ. This induces an
automorphism of the associated Artin monoid A+, and any automorphism of A+ arises
from an automorphism of Γ. We list below the pairs (Γ, φ), where Γ is a connected
finite type Coxeter graph, and φ is a non-trivial automorphism of Γ. The vertices of Γ
are numbered according to [19, page 58].

i) Γ is of type A�, and φ(xi) is x�−i+1 for i = 1, . . . , �.
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ii) Γ is of type D�, φ(xi) is xi for i = 1, . . . , � − 2, φ(x�−1) is x�, and φ(x�) is x�−1.
iii) Γ is of type D4, φ(x1) is x3, φ(x2) is x2, φ(x3) is x4, and φ(x4) is x1.
iv) Γ is of type E6, φ(x1) is x6, φ(x2) is x2, φ(x3) is x5, φ(x4) is x4, φ(x5) is x3,

and φ(x6) is x1.
v) Γ is of type F4, φ(x1) is x4, φ(x2) is x3, φ(x3) is x2, and φ(x4) is x1.
vi) Γ is of type I2(p), φ(x1) is x2, and φ(x2) is x1.

Theorem 9.3. Let Γ be a finite type Coxeter graph, let φ be an automorphism of Γ,
and let A be the Artin group associated with Γ. Then Aφ is also a finite Coxeter type
Artin group.

Theorem 9.3 is proved for Artin groups of type An in [21, Corollary 2.25] using
topological methods where the Artin groups considered are viewed as groups of isotopy
classes of diffeomorphisms of surfaces. Another proof for the Artin group of type E6

is proposed in [21, Appendice]. This is due to J. Michel [22], is based on the fact that
a similar result holds for finite Coxeter groups, and can be extended in a case by case
proof for Artin groups associated with connected finite type Coxeter graphs. The proof
given here is independent from the previous ones and works in the general case, even
if Γ is not connected.

Proof. We start recalling some well-known definitions and results concerning finite
Coxeter type Artin groups. We refer to [5] and [15] for the proofs. We also assume the
reader to be familiar with the theory of Coxeter groups and refer to [4] and [20] for
general expositions.

Let S be the set of atoms of A+, let M = (ms,t)s,t∈S be the Coxeter matrix repre-
sented by Γ, and let W be the Coxeter group associated with Γ. For a subset X of S
we write:

MX = (ms,t)s,t∈X ,
ΓX , the Coxeter graph which represents MX ,
WX , the subgroup of W generated by X,
AX , the subgroup of A generated by X.

Following the conventions of [23], we shall call the subgroup WX a parabolic subgroup.
It is the Coxeter group associated with ΓX . Similarly, AX is called parabolic subgroup
and is the Artin group associated with ΓX (see [31] and [23]). We denote by θ : A → W
the homomorphism which sends x to x for all x in S. This homomorphism has a
natural set-section τ : W → A+ defined in Section 2. The set of simple elements is
{τ(w);w ∈ W} and the fundamental element is ∆ = τ(w0), where w0 is the element of
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maximal length in W . A direct consequence of the existence of τ is: if a is a simple
element of A+, then we have

lgS(a) = lgS(θ(a)) (9.1)

Now, let X1, . . . , X� be the φ-orbits in S, and let yi be the right l.c.m. of the elements
of Xi.

Assertion. For i, j in {1, . . . , l}, i �= j, there exists an integer m̃i,j ≥ 2 satisfying

yi ∨R yj = prod(yi, yj ; m̃i,j) = prod(yj , yi; m̃i,j) . (9.2)

This assertion proves Theorem 9.3. Indeed, by Theorem 9.2, (A+)φ is generated by
y1, . . . , y� and is a Gaussian monoid. By Theorem 4.1 and (9.2), it follows that (A+)φ

is the Artin monoid associated with the Coxeter matrix M̃ = (m̃i,j). Note that, by [5],
an Artin monoid is Gaussian if and only if it is of finite Coxeter type. So, the Coxeter
group associated with M̃ is finite. Finally, still by Theorem 9.2, Aφ is the group of
fractions of (A+)φ, hence is the Artin group associated with M̃ .

Proof of the assertion. Let X = Xi ∪Xj . Then yi is the right l.c.m. of the elements of
Xi and is in (AXi)+, yj is the right l.c.m. of the elements of Xj and is in (AXj )+, and
yi ∨R yj is the right l.c.m. of the elements of X and is in (AX)+. In particular, yi ∨R yj

is a simple element. Let wi be the element of maximal length in WXi , and let wj be
the element of maximal length in WXj . Then yi is τ(wi) and yj is τ(wj).

Let a1 in (AX)+ be such that yia1 is yi ∨R yj . If a1 is the identity, then yi is equal
to yi ∨R yj , thus wi is also the element of maximal length of WX . This is known not to
be the case, therefore a1 is not the identity. We choose x in X which divides a1 on the
left. The element yix is simple since it divides yi ∨R yj on the left. The atom x is in
Xj , otherwise, if x is in Xi, then

lgS(θ(yix)) = lgS(wix) < lgS(wi) + 1 = lgS(yix) ,

and this contradicts (9.1). Since both yi and yi ∨R yj are in (A+)φ, a1 is also in (A+)φ.
From the same argument as that given in the proof of Theorem 9.2.ii, it follows that yj

divides a1 on the left. Let a2 in (AX)+ be such that yiyja2 is yi ∨R yj . If a2 is not the
identity, then one may choose x in X which divides a2 on the left, this element has to
be in Xi (otherwise yiyjx does not satisfy (9.1)), and then yi divides a2 on the left. An
iteration of this argument finally shows that there exists an integer m ≥ 2 satisfying

yi ∨R yj = prod(yi, yj ; m) .
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Similarly, there exists an integer m′ ≥ 2 satisfying

yi ∨R yj = prod(yj , yi;m′) .

We have m = m′, otherwise (say m < m′) there exists a in (AX)+ satisfying

yi ∨R yj = prod(yj , yi;m′) = yjprod(yi, yj ;m)a = yj(yi ∨R yj)a ,

and this is not possible. Setting m̃i,j = m = m′, this finishes the proof of the assertion.
�


A careful reading of the proof of Theorem 9.3 gives a method for finding the Coxeter
matrix M̃ = (m̃i,j) that determines the Artin group Aφ. For a subset X of S, we denote
by nX the maximal length of an element of WX . It is known to be equal to the sum of
the exponents of WX . The length of yi is nXi , the length of yj is nXj , and the length
of yi ∨R yj is nX . So, (9.2) gives:

m̃i,j(nXi + nXj ) = 2nX . (9.3)

Now, the following proposition is a direct consequence of (9.3).

Proposition 9.4. Let Γ be a connected finite type Coxeter graph, let A be the Artin
group associated with Γ, and let φ be a non-trivial automorphism of Γ.

i) If A is of type A�, then Aφ is of type Bk, where k is �/2 if � is even, and k is
(� + 1)/2 if � is odd.

ii) If A is of type D� and φ has order 2, then Aφ is of type B�−1.
iii) If A is of type D4 and φ has order 3, then Aφ is of type I2(6) = G2.
iv) If A is of type E6, then Aφ is of type F4.
v) If A is of type F4, then Aφ is of type I2(8).
vi) If A is of type I2(p), then Aφ is of type A1. �
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