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Abstract. It is known that a number of algebraic properties of the braid
groups extend to arbitrary finite Coxeter type Artin groups. Here we show how
to extend the results to more general groups that we call Garside groups.

Define a Gaussian monoid to be a finitely generated cancellative monoid
where the expressions of a given element have bounded lengths, and where left
and right lower common multiples exist. A Garside monoid is a Gaussian monoid
in which the left and right l.c.m.’s satisfy an additional symmetry condition. A
Gaussian group and a Garside group are respectively the group of fractions of a
Gaussian monoid and of a Garside monoid. Braid groups and, more generally,
finite Coxeter type Artin groups are Garside groups. We determine algorith-
mic criterions in terms of presentations for recognizing Gaussian and Garside
monoids and groups, and exhibit infinite families of such groups. We describe
simple algorithms that solve the word problem in a Gaussian group, show that
theses algorithms have a quadratic complexity if the group is a Garside group,
and prove that Garside groups have quadratic isoperimetric inequalities. We
construct normal forms for Gaussian groups, and prove that, in the case of a
Garside group, the language of normal forms is regular, symmetric, and geodesic,
has the 5-fellow traveller property, and has the uniqueness property. This shows
in particular that Garside groups are geodesically fully biautomatic. Finally,
we consider an automorphism of a finite Coxeter type Artin group derived from
an automorphism of its defining Coxeter graph, and prove that the subgroup of
elements fixed by this automorphism is also a finite Coxeter type Artin group
that can be explicitely determined.
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1. INTRODUCTION

The positive braid monoid (on n+ 1 strings) is the monoid B4 that admits the presen-
tation

(:L’l,.. -y Iy ’ Tl = TjT4 if ”L —j| Z 2, LiLi41T; = Lij4+1LiTi+1 if 1= 1, e, = 1> .

It was considered by Garside in [18] and plays a prominent role in the theory of braid
groups. In particular, several properties of the braid groups are derived from extensive
investigations of the positive braid monoids (see for example [2], [16], [17]).

A first observation is that the defining relations of B, are homogeneous. Thus,
one may deal with a length function v : By — N which associates to a in B, the
length of any expression of a. For a, b in By, we say that a is a left divisor of b or,
equivalently, that b is a right multiple of a if there exists ¢ in B, such that b is ac. The
existence of the length function guarantees that left divisibility is a partial order on
By. Tt was actually proved in [18] that any two elements of B have a lowest common
right multiple. Moreover, B, has left and right cancellation properties, namely, ab = ac
implies b = ¢, and ba = ca implies b = ¢. Ore’s criterion says: if a monoid M has left
and right cancellation properties, and if any two elements of M have a common right
multiple, then M embeds in its group of (right) fractions (see [10, Theorem 1.23)).
This group is (M *+ M~1)/ =, where M~! is the dual monoid of M, and = is the
congruence relation generated by the pairs (zz=!,1) and (z7'2,1), = in M. By the
previous considerations, B, satisfies Ore’s conditions, and, therefore, embeds in its
group of fractions. This is the braid group on n + 1 strings.

The fundamental element of By, usually denoted by A, is the lowest common right
multiple of 21, ...,z,. It is also the lowest common left multiple of z1,...,z,, and A?
generates the center of the braid group. Furthermore, the set of left divisors of A is
equal to the set of right divisors of A.

This situation was simultaneously generalised by Brieskorn and Saito [5], and by
Deligne [15], to a family of monoids and groups called finite Coxeter type Artin monoids
and groups. Like the braid groups, these groups have nice normal forms (see [5] and
[15]), have fast word problem solutions (see [29]), and are biautomatic (see [8] and [9]),
all these properties being proved through a deep study of the Artin monoids.

In this paper, we shall extend the previous results to a larger class of monoids and
groups, which we naturally propose to term Garside. These groups are characterized
as being groups of fractions for monoids in which the divisibility relations form lattices
of a certain type. Equivalently, these monoids are characterized by the fact that they
admit a presentation of the type (S | R) where R is a list of relations of the form

{r...=y...;z,y € S}



(subject to additional conditions), i.e., for every pair of generators (z, y), there is exactly
one relation that prescribes how to complete x and y on the right in order to obtain
equal elements. Observe that, in such cases, the graph LR(S, R) of [26] is a clique, so
these presentations are quite different from those for which Adjan has proved in [1] an
embeddability result, namely those such that LR(S, R) has no cycle.

We say that a finitely generated monoid M is atomic if there exists a mapping
v : M — N satisfying v(a) > 0 for a # 1, and v(ab) > v(a) + v(b) for a,b in M. As
for the positive braid monoids, the existence of such a mapping implies that the left
divisibility relation is a partial order on M. We say that M is right Gaussian if, in
addition, it has left cancellation property and if any two elements of M have a lowest
common right multiple. Left Gaussian monoids are defined symmetrically. A Gaussian
monoid is a left and right Gaussian monoid. By Ore’s criterion, such a monoid embeds
in its group of fractions. A Gaussian group is the group of fractions of a Gaussian
monoid.

An element @ in a monoid M is an atom if it is indecomposable, namely, a = bc
implies b = 1 or ¢ = 1. We prove in Section 2 that: if M is an atomic monoid, then the
set of atoms of M is finite and generates M. Note that the atoms of B, are exactly
the initial generators x1,...,xy,.

Let M be a Gaussian monoid. Let A; denote the lowest common right multiple of
the atoms, and let A, denote the lowest common left multiple of the atoms. We say
that M is a Garside monoid if the set of left divisors of Ay is equal to the set of right
divisors of A,. Positive braid monoids, and, more generally, finite Coxeter type Artin
monoids are Garside monoids. A Garside group is the group of fractions of a Garside
monoid.

Let S be a finite set, and let S* denote the free monoid generated by S. A comple-
ment on S is simply a mapping f : S x S — S* that satisfies f(x,z) = ¢ for all z in
S, where € denotes the empty word. The monoid associated with f on the right is the
monoid Mg(S, f) that admits the presentation

(S| zf(y,x) =yf(x,y) for x,y € 5) .

Similarly, G (S, f) is the group that admits the same presentation. If S is {z1,...,2,}

and f is defined by
€ for i = j,
f(zi,zj) = {xi@"j for |i — j] =1,
X for |i — j| > 2,

then Mg(S, f) is the positive braid monoid and G(S, f) is the braid group on n + 1
strings. Artin monoids and groups have also the form Mg (S, f) and Gg(S, f) respec-



tively. In [14], the first author shows that, under certain conditions described in Section
3, the monoid Mx(S, f) is left Gaussian.

In Section 4 we prove that the converse is true, namely, if M is a right Gaus-
sian monoid, then it has the form Mg(S, f) for some S, f that satisfy the conditions
mentioned above. Then we describe necessary, sufficient, and effective conditions for
Mz (S, f) to be a Garside monoid. This is applied in Section 5 to exhibit infinite families
of Garside groups that include torus knot groups, fundamental groups of complements
of complex lines through the origin, and some “braid groups” associated with complex
reflection groups.

Our main tool in this paper is an algorithmic process, called the word reversing
process. 1t is described in Section 3. It was first introduced in [11] and [12] in order
to study a special group related to the self-distributive identity, and was developed
in [14]. It is shown in [14] that this word reversing process gives rise to very simple
algorithms which solve the word problem in a group of the form Gx(S, f), whenever
(S, f) satisfies the conditions mentioned before. In particular, they apply to the braid
groups and have, in this case, a quadratic complexity. Tatsuoka uses in [29] a similar
algorithmic process for showing that finite Coxeter type Artin groups have quadratic
isoperimetric inequalities. We observe in Section 6 that the same ideas provide an algo-
rithm which solves the word problem for general Gaussian groups, that this algorithm
has a quadratic complexity in the case of Garside groups, and that Garside groups
have quadratic isoperimetric inequalities—this result holds more generally for small
Gaussian groups, a intermediate class between arbitrary Gaussian groups and Garside
groups.

We construct normal forms for Gaussian groups in Section 7, and prove in Section 8
that, in the case of Garside groups, the language of normal forms is regular, geodesic,
symmetric, has the 5-fellow traveller property, and has the uniqueness property. This
shows in particular that Garside groups are geodesically fully biautomatic. These
normal forms are nothing but those of [9] in the case of finite Coxeter type Artin
groups, and our proof of Theorem 8.1 is inspired by the proof of [9, Theorem 0.1].

In the last section we apply the techniques developed in this paper to prove an
original theorem on finite Coxeter type Artin groups. We consider an automorphism of
a finite Coxeter type Artin group derived from an automorphism of its defining Coxeter
graph. We prove that the subgroup of elements fixed by this automorphism is also a
finite Coxeter type Artin group that can be explicitly determined.



2. ATomic, GAUSSIAN, AND (GARSIDE
MONOIDS AND GROUPS

Let S be a finite set (of letters). We write S* for the free monoid generated by S, and
(SUS™1)* for the free monoid generated by S U S™!, where S~! is a set in one-to-one
correspondence with S whose elements represent the inverses of the elements of S. The
elements of S* will be called positive words, while the elements of (S U S™1)* will be
simply called words. The general form of a monoid generated by S is S*/ =, where =
is a congruence relation on S*. Similarly, the general form of a group generated by S
is (SUS™1)*/=, where = is a congruence relation on (SUS™1)* that includes all pairs
(xz~1,e) and (ztx,€), z in S, € denoting the empty word. In general, we shall denote
by W the class of the word w in a monoid S*/= or in a group (SU S™1)*/=. If W is a,

we say that w represents a or, equivalently, that w is an expression of a.

ProprosITION 2.1. Let M be a monoid. The following conditions are equivalent:

i) There exists a mapping v : M — N satisfying v(a) < v(ab) for all a,b in M,
b#1.

ii) There exists a mapping v : M — N satisfying v(b) < v(ab) for all a,b in M,
a # 1.

iii) There exists a mapping v : M — N satisfying v(a) > 0 for all a in M, a # 1,
and satistying

v(a) + v(b) < v(ab) (2.1)

for all a,b in M.
iv) For any set S that generates M and for any a in M, the lengths of the expressions
of a in S* have a finite upper bound.

Proof. Let S be any set that generates the monoid M. Assume first (i). Considering
the case a = 1 gives v(b) > 1 for all b # 1. It follows that, if the word w represents a,
then lg(w) < v(a) holds. This gives (iv). Similarly, (ii) implies (iv), and so does (iii),
as the latter clearly implies (i) and (ii).

Now, assume (iv). The mapping

v:a— sup{lg(w) ; we S* and w = a} (2.2)
satisfies (2.1), which establishes (iii). O

DEFINITION. A finitely generated monoid M is atomic if it satisfies the equivalent
conditions of Proposition 2.1. An element a of M is an atom if it is indecomposable,
namely, a = bc implies b =1 or ¢ = 1.



PROPOSITION 2.2. Let M be an atomic monoid. The subsets of M that generate M are
exactly those subsets that include the set of all atoms. In particular, the set of atoms
generates M and is finite.

Proof. Let X be a generating set of M. Let a be an atom (if such an element exists).
There exist x1,...,z, in X such that a is z; ... z,. By definition, there exists an index
i such that x; is 1 if j # ¢. Then a = z; is in X. We prove now that the set of atoms
generates M. We pick a in M and prove by induction on v(a) that a is a finite product
of atoms. If a is not an atom, then it is equal to a product bec, where b, ¢ are in M and
v(b),v(c) are strictly less than v(a). By induction hypothesis, b and ¢ are both finite
products of atoms, thus so is a. (In particular, atoms exist.) O

It follows that the mapping v defined by (2.2) does not depend on the generating
set S; for a in M, v(a) is the maximal length of an expression of a as a product of
atoms. We write ||a|| for v(a) and we call it the norm of a.

Although atomicity is a rather weak assumption, it implies strong properties for
the divisibility relations of the involved monoids. We recall that a is a left divisor of b,
or that b is a right multiple of a, if there exists c¢ satisfying b = ac. If in addition we
require ¢ # 1, we say that a is a proper left divisor of b. Of course, right divisors and
left multiples are defined symmetrically.

PROPOSITION 2.3. Let M be a finitely generated monoid. Then M is atomic if and only
if the left divisibility relation is a partial order and every element of M admits only
finitely many left divisors.

Proof. Assume that M is atomic. If a is a proper left divisor of b, then |la|| < ||b]|. So,
the left divisibility relation is a partial order. The length of a word which represents
an element a is at most ||a||, thus there are only finitely many of them.

Assume now that the left divisibility relation is a partial order and that every
element of M admits only finitely many left divisors. Let S be a generating set of M.
Suppose that the element a can be represented by a word 7 ...xzp with x1,...,2,in S.
Then the classes of 7 ...x; are pairwise distinct, since the class of x; ... z; is a proper
divisor of the class of x1 ... x; for ¢« < j. Hence £ must be bounded above by the number
of left divisors of a. We conclude using Proposition 2.1.iv. O

In the context of atomic monoids, left and right divisibility are orderings. We
consider now the possible existence of lowest upper bounds and greatest lower bounds
in these orderings, namely, the existence of lowest common multiples and greatest
common divisors. We use a Vg b and a A, b to denote respectively the right l.c.m. and



the left g.c.d. of a and b. Similarly, we use a V, b and a A b to denote respectively the
left 1.c.m. and the right g.c.d. of a and b.

DEFINITION. A finitely generated monoid M is a right Gaussian monoid if:

i) M is a left cancellative atomic monoid;

ii) a Vg b exists for all a,b in M.
In a right Gaussian monoid M, the element a A, b exists for all a, b in M; it is the right
l.c.m. of the common left divisors of @ and b. In particular, left divisibility turns M
into a lattice. Left Gaussian monoids are defined symmetrically. A Gaussian monoid
is a right and left Gaussian monoid. Such a monoid satisfies Ore’s conditions, and
thus embeds in its group of (right) fractions. A Gaussian group is the group of (right)
fractions of a Gaussian monoid.

As shown in the next proposition, weaker assumptions about right divisibility are
sufficient to guarantee that a given monoid is a Gaussian monoid. A monoid M is left
regular if any two elements of M have a common left multiple.

ProprosITION 2.4. Let M be a right Gaussian monoid. Then M is a left Gaussian
monoid if and only if it is right cancellative and left regular.

Proof. We assume that M is right cancellative and left regular and we prove that left
l.c.m.’s always exist. Let a,b be elements of M. Choose ¢ and d such that da = ¢b holds
and ||da| is minimal. We claim that da is the left l.c.m. of @ and b in M. Consider
a common left multiple of a and b, say d'a = ¢/b. By left regularity, there exist e, ¢’
satisfying ed = €’d’. Let €” be the right l.c.m. of e and ¢’. By hypothesis, e and €' are
left divisors of ed, thus there exists d” such that ed is equal to €”’d”. Now, ed = e'd’
implies ecb = eda = €’d'a = €'c'b, therefore, by right cancellativity, ec = €¢/¢’. Hence, e
and €’ are left divisors of ec as well, and so is €”. There exists ¢’ such that ec is equal
to €”c”. This gives €”’d"a = eda = ecb = €”c"b, hence d"a = b by left cancellativity.
Then d”a is a common left multiple of @ and b, and, by construction, ||d"a| < ||dall
and d is a left multiple of d”’. The only possibility is d” to be equal to d, thus d’'a is a
left multiple of da. O

We introduce now two special families of Gaussian monoids and groups.

If M is a right Gaussian monoid, and a, b belong to M, we use a \z b to denote
the unique element c that satisfies bc = a Vz b. Symmetrically, if M is a left Gaussian
monoid, a \, b denotes the element ¢ that satisfies ca = a Vv, b.

DEFINITION. A right Gaussian monoid is right small if there exists a finite subset of M
that generates M and is closed under \g, i.e., a \z b belongs to M whenever a and b



do. Left smallleft Gaussian monoids are defined symmetrically. A Gaussian monoid is
small if it is both left and right small. A small Gaussian group is the group of fractions
of a small Gaussian monoid.

DEFINITION. Let M be a Gaussian monoid. We denote by Ap the right l.c.m. of all
atoms of M and call it the right fundamental element of M. The left divisors of Ay
are called right simple elements of M. Similarly, we denote by A, the left l.c.m. of all
atoms and call it the left fundamental element of M. The right divisors of A, are called
left simple elements.

DEFINITION. A Gaussian monoid M is a Garside monoid if the set of right simple
elements is equal to the set of left simple elements; these elements are then called
simple elements. In that case, A, is equal to Ag, it is denoted by A, and is called
the fundamental element of M. A Garside group is the group of fractions of a Garside
monoid.

ProprosITION 2.5. Every Garside monoid is a small Gaussian monoid—thus every Gar-
side group is a small Gaussian group.

Proof. Assume that M is a Garside monoid, and let a, b be simple elements of M.
Then a Vy b is right simple, and there exists ¢ satisfying

A = (aVgb)e=b(a\zb)c.

So (a \g b)c is left simple, hence right simple, and, therefore, a \r b is (right) simple.
This shows that the set of all simple elements of M, which is finite by Proposition 2.3,
is closed under the operation \z. The argument is similar for the operation \,. O

PRrRoOPOSITION 2.6. Let M be a Garside monoid, and let S be the set of its atoms. There
exists a permutation ¢ : S — S satisfying

A-xz=46(z) A

for all x in S. In particular, if n is the order of §, then A™ lies in the center of the
Garside group defined by M.

Proof. Let a be a simple element of M. There exists a simple element o’ satisfying
A = d'a. There exists another simple element §(a) satisfying A = d(a)a’. Then we
have

A-a=6(a)-a -a=68a) A. (2.3)



By left and right cancellativity, the mapping 9§ is well-defined and injective. By Propo-
sition 2.3, there are only finitely many simple elements, thus J is a permutation of the
simple elements. The value of §(a) is completely determined by (2.3), thus, a = be
implies 6(a) = 6(b)d(c). So, 6 maps non-atoms to non-atoms, therefore maps atoms to
atoms, thus induces a permutation of S. O

EXAMPLE #1 (Artin groups). Let S be a finite set. A Cozxeter matriz over S is a matrix
M = (ms4)stes indexed by the elements of S and satisfying:

i) mss =1for s €S

i) mer =mus € {2,3,4,...,00} for s,t € S, s # t.
The Cozxeter group associated with M (or with T') is:

W=(S|s*=1(forseS), (st)™* =1 (for s,t €S, s #t, mey <)) .

The Artin monoid and the Artin group associated with M (or with I') are respectively
the monoid A and the group A defined by the presentation

(S | prod(s,t;msy) = prod(t, s;msy) if mgsy < 00)

where prod(s,t;m) stands for (st)™/? if m is even, and for (st)(™~D/2s if m is odd.

The monoid Ay (resp. the group A) is said to be of finite Coxeter type if W is finite.

The defining relations of A are homogeneous, thus A is atomic, the norm is equal
to the word length, and the atoms are the elements of S.

By [5], Ay is a Gaussian monoid if and only if it is of finite Coxeter type. In that
case, Ay embeds in A, and A is the Gaussian group defined by A..

Finite Coxeter type Artin groups are actually Garside groups. The set of simple
elements is {7(w);w € W} and the fundamental element is A = 7(wp), where wy is
the element of maximal length in W, and 7 is the natural set-section of the canonical
projection of A onto W defined as follows. Let w in W. We choose a reduced expression
w = 81...8, of wand we map w to the element s; ...s, of A,. By Tits’ solution of the
word problem for Coxeter groups [30], this definition does not depend on the choice of
the reduced expression of w.

We will see other examples of Garside groups in Section 5. However, we first need
to introduce reversing processes in Section 3 and to give in Section 4 some criteria to
check whether a given monoid is a Garside monoid.

Remark. In this paper, we only consider the case of finitely generated monoids and
groups. However, most of the subsequent results about Gaussian groups and some
of the results about Garside groups can be extended to more general cases provided
atomicity remains satisfied, as is the case for the infinite braid group By, or for the
groups investigated in [13] and [14].



3. REVERSING PROCESSES

We give in this section basic definitions on reversing processes and a summary of those
results of [14] that we will need in this paper. We refer to [14] for the proofs. We recall
from Section 1 the following definition.

DEFINITION. Let S be a finite set. A complement on S is a mapping
f:9x8—8*

such that f(z,z) is the empty word for all  in S. The monoid associated with f on
the right is the monoid Mg(S, f) that admits the presentation

(S| xf(y,z) =yf(z,y) forz,y € 5) , (3.1)

namely, the monoid S*/ 51{ , Where E}J; is the congruence relation on S* generated by the
pairs (xf(y,x),yf(z,y)), for x,y in S. Similarly, Gx(S, f) is the group that admits the
previous presentation. One can also associate with f on the left the monoid M, (S, f)
and the group G, (S, f), both given by the presentation

(S| f(z,y)x = f(y,x)y for z,y € 5) .

DEFINITION. A mapping v : S* — N is a right norm for the complement f if

v(u) < v(zu) and v(uxf(y,z)v) = v(uyf(z,y)v) (3.2)

holds for all z,y in S, and for all u,v in S*. We say that (.5, f) satisfies Condition I
if S* admits a right norm for the complement f.

PROPOSITION 3.1. The monoid My (S, f) is atomic if and only if (S, f) satisfies Condi-
tion Iy.

Proof. Assume that there exists a mapping v satisfying (3.2). Using the definition
of the congruence relation E}J; and a trivial induction, we see that u E,J; v implies
v(u) = v(v), so that v induces a well-defined mapping on Mg(S, f). This mapping
satisfies Condition (i) of Proposition 2.1. Conversely, if M is atomic, then the mapping

v defined on S* by v(u) = ||u|| satisfies (3.2). O

DEFINITION. A word w in (S U S™1H)* is f-reversible (on the right) in one step to a
word w’ if w’ is obtained from w by replacing some subword z =1y (with =,y in S) with

10



the corresponding word f(y,z)f(z,y)~!. For p > 0, w is f-reversible (on the right) in
p steps to w' if there exists a length p + 1 sequence in (S U S~™H)* from w to w’ such
that every term is f-reversible to the next one in one step.

The f-reversing process can continue as long as the current word contains a pair
2”1y, When no pair of this form remains, namely, when the word has the form uv™!
with v and v positive words, we say that the f-reversing process was successful for the
initial word w. At this point, some ambiguity could occur in our definition as a given
word may contain several reversing patterns of the form z~'y and we have not given a
rule for choosing the order of the reversing steps. The next result shows that this does
not matter.

PROPOSITION 3.2 [14, Lemma 1.1]. Assume that there is at least one way to reverse
the word w into some word uv™', where u,v are positive words. Then any sequence of
reversing transformations starting from w leads to uv~"' in the same number of steps.
O

DEFINITION. For w in (S U S™H)*, R,{(w) denotes the unique word of the form uv=1,

with u,v positive words, that is obtained from w by the right f-reversing process, if
such a word exists. In that case, the right f-numerator of w, denoted by N,{(w), is the
word u, and the right f-denominator of w, denoted by D};(w), is the word v. For w,v
in S*, we denote by C’,{ (u,v) the right f-numerator of v~lu, if it exists.

If R} (w) exists, then R](w™!) also exists and is equal to R} (w)™!, and we have
NS (w™1) = DI(w) and Df(w™!) = NJ(w). In particular, for u,v in S*, if CJ (u,v)
exists, then C’Rf(v,u) also exists and R,J;(v_lu) is equal to C}{(u, v)C}{(v,u)_l.
DerINITION. We say that (.5, f) satisfies Condition Il if: for all x,y,z in S, either the
words C’,{(z, xf(y,x)) and C’g(z, yf(z,y)) both exist and are E,];—equivalent, or neither
of them exists.

DerFINITION. We say that (S, f) satisfies Condition I if Cf (u,v) exists for all u,v in
S*. Note that (S, f) satisfies Condition Il if and only if R} (w) exists for all w in
(SUS—H*,

PROPOSITION 3.3 [14, Lemma 1.4]. Assume that (S, f) satisfies Conditions I and IIy.
Then, for u,v,u,v1 in S*, wu; =i, vvy holds if and only if the words C’,{(u,v) and
C’g(v,u) exist and there exists a word w in S* satisfying uq E,?; C’,{(v,u)w and vy E};

¢ (u,v)w. O

11



(The proof of [14] uses the hypothesis that the elements of S have norm 1. This
additional hypothesis can be dropped by resorting both to the length and the norm in
the inductive argument.)

PROPOSITION 3.4 [14, Lemma 1.5(i)]. Assume that (S, f) satisfies Conditions Ir and IIy.
Let u,v be arbitrary words in S*. The class of u in My(S, f) is a left divisor of the
class of v if and only if C’,ﬁf (u,v) exists and is empty. In particular, u and v represent
the same element of My(S, f) if and only if both C’,{(u, v) and C’,{(v,u) exist and are
empty. U

PROPOSITION 3.5 [14, Lemma 1.5(ii)]. Assume that (.S, f) satisfies Conditions I and IIy.

Then the operation C’}{ is compatible with the congruence relation E}; , namely, u E}; o’

and v =}, v' hold, and C}{(u, v) exists, then C’,{(u’, V') also exists and is =/ _equivalent

to C’,ﬁf(u, v). O

ProposITION 3.6 [14, Proposition 1.6]. Assume that (S, f) satisfies Conditions I, and
II;. Then the monoid Mg(S, f) has the left cancellation property. O

ProposITION 3.7 [14, Lemma 1.7]. Assume that (S, f) satisfies Conditions Iy, Iy,
and IIT;. Let G be the group of fractions of Mg(S, f). Two words w and w' in (SUS~1)*
represent the same element of G if and only if there exist two positive words u and u’
in §* satisfying N (w)u = NJ (w')u' and D (w)u =L DI (w')/. O

The following theorem is a direct consequence of the previous results.

THEOREM 3.8. Let S be a finite set, and let f be a complement on S. If (S, f) satisfies
Conditions Iy, I, and IIl, then My(S, f) is a right Gaussian monoid. O

DEFINITION. Assume that f is a complement on S. A set of positive words S’ is closed
under C,;Jf if, for all u, v in S’, C’g(u,v) exists and belongs to S’. We say that (S, f)
satisfies Condition IIT} if there exists a finite subset S’ of S* that includes S and is
closed under 01{ . Note that Condition ITL} holds if and only if the closure of S under C}{
exists and is finite.

LEMMA 3.9. 1) Assume that f is a complement on S, and S’ is a subset of S* that
includes S and is closed under C{. Then (S, f) satisfies Condition IIy.

ii) Assume, in addition, that the length of every word in S’ is bounded above by L,
and that the number of steps needed to reverse a word of the form v~ 'v with u, v in S’
is bounded above by N. Then the f-reversing of a word w of length £ in (S U S~1)*
ends within at most N2 /4 steps with a word of length at most L{.
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Proof. Assume that w can be written

where each word u; is a positive word belonging to S’, and e; is =1. Let p be the
number of e;’s equal to 1. A simple inductive argument shows that Rg (w) exists and
has the form
Rg(w) =1.. .vpvp_jl...v[l,

where, for each j, v; is an element of S’, and that the f-reversing of w decomposes into
p(¢ —p) f-reversings of words of the form wl_lwg with wi, wo in S’. So f-reversing of w
is always successful, and, in the case when L and N are finite, we obtain the bounds
of Lemma 3.9.ii since p(¢ — p) < £?/4 always holds. O

In particular, Condition III} implies Condition II1y.

THEOREM 3.10. Let S be a finite set, and let f be a complement on S. If (S, f) satisfies
Conditions I, I, and III;}, then My (S, f) is a right small right Gaussian monoid.

Proof. Assume that (S, f) satisfies Conditions I, II; and III;], and that S’ is a set of
positive words that includes S and is closed under C’F{ . By Theorem 3.8, My(S, f) is
a right Gaussian monoid. By Proposition 3.3, for u, v in S*, UCI{ (u,v) represents the
right l.c.m. of the elements w and v, so C’,{(u, v) represents the element @ \r 7. So the

subset of Mg(S, f) consisting of all elements represented by words in S’ is closed under
the operation \z. O

Everything we have said so far about left divisibility of course holds mutatis mu-
tandis for right divisibility. We then speak about the left f-reversing process, about
the functions RLf and C’Lf , and about Conditions I, IT,,, IIT,,, and IIL;".

COROLLARY 3.11. Let M be a monoid, let S be a finite generating set of M, and let
f,g be two complements on S such that M admits both presentations:

(S |xf(y,x) =yf(z,y), z,y €5) and (S | g(z,y)x = g(y,2)y, z,y € 5) .

If (S, f) satisfies Conditions Iy, II,, and III; (resp. IIL} ), and (S, g) satisfies Conditions
L, II,, and III, (resp. III"), then M is a Gaussian monoid (resp. a small Gaussian
monoid). O

Observe that, although reversing processes are quite effective, there is no general
algorithmic method for establishing that a given pair (S, f) satisfies Condition IIly; a
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systematic verification would entail infinitely many reversings. On the other hand, the
verification of Condition III] is easier: it suffices to start with the set S and to close
it inductively under C’,{ . If the condition fails, we shall never know it, but, if it holds,
we shall know it after a finite number of computation steps.

The situation is similar with Condition II;: as it stands, it is not clear how to verify
it systematically, for we have no way to decide whether two given words are or not Eg—
equivalent. However, we can replace Condition Il with a nearly equivalent condition

which does not resort to E,J; .

DerINITION. We say that (S, f) satisfies Condition IL} if: for all z,y, z in S, the word

CL(CL (2,2 f(y, 2)), CL (2, yf(2,1))) (3.3)

exists and is empty.

ProrosiTioN 3.12. Condition I} implies Condition II,. Conversely, if (S, f) satisfies
Conditions I, II; and III, then it satisfies Condition I} as well.

Proof. Assume that (S, f) satisfies II7. The hypothesis that C’F{(u,v) and Cg(v, u)
exist and are empty always implies that v and v are E};—equivalent (without any as-
sumption about f). So II] implies that, for every z,y, z in S, the words CI{(Z, xf(y,x))
and C’I{ (z,yf(x,y)) exist and are E};—equivalent. Hence II; holds.

Conversely, assume that (S, f) satisfies I, Il and Ill;. By IIl, the words C}:{(z, zf(y,x))
and C’,:J: (z,yf(z,y)) exist, and, by Proposition 3.5, they are Eg—equivalent. Hence, by
Proposition 3.4, the complement (3.3) is empty. O

4. PRESENTATIONS

We have stated in Theorems 3.8 and 3.10 sufficient conditions for a monoid given by a
complemented presentation to be a (small) Gaussian monoid. In this section, we show
that these conditions are also necessary. We also determine in terms of presentations
necessary and sufficient conditions for a monoid to be a Garside monoid. This of course
also applies to Gaussian groups and to Garside groups.

Our first step (Theorem 4.1) is to show that Gaussian monoids can always be
presented using complements.

DEFINITION. Let M be a right Gaussian monoid, and let S be a finite generating set of
M. A right l.c.m. selector on S in M is a complement f on S such that zf(y,z) and
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yf(z,y) both represent = Vi y in M for all z,y in S. Left l.c.m. selectors are defined
symmetrically for left Gaussian monoids.

THEOREM 4.1. Let M be a right Gaussian monoid, let S be a finite generating set
of M, and let f be a right l.c.m. selector on S in M. Then M is isomorphic to the
monoid Mg(S, f).

Proof. By hypothesis, there exists a congruence relation = on S* such that M is
S*/=. By construction, for every pair (z,y) in S x S, the words zf(y,z) and yf(z,y)
represent the left l.c.m. of x and y in M, so xf(y,x) = yf(x,y) holds. Since the pairs
(xf(y,z),yf(z,y)) generate the congruence relation =/, we deduce that u =/ v implies
u = v, namely, that the monoid M is a quotient of the monoid Mg(S, f).

We use now the hypothesis that M is atomic to prove that the surjective homomor-
phism associated with this quotient is actually an isomorphism. To this end, we define
the norm of a positive word u as the norm of its class in M, and we prove inductively
on n that: if v and v have norm at most n, then v = v implies u E}; v. If nis 0, then
u and v must be the empty word, and the result is obvious. Otherwise, due to the
existence of the norm, neither v nor v may be the the empty word. So, write u as zu;
and v as yv;. By construction, the class of x f(y,x) in M is the smallest common right
multiple of z and y, and the class of xu; is a common right multiple of z and y as well.
So, there must exist a positive word w satisfying u; = f(y, x)w and v; = f(z,y)w. By
induction hypothesis, uq =/ f(y,x)w and vy =/ f(x,y)w hold, thus we get

w=auy =} xf(y,x)w =4 yf (e, y)w = yo, = v,

as we wished. Note that the case © = y is also covered in the previous argument. O

THEOREM 4.2. Let M be a right Gaussian monoid, let S be an arbitrary finite generating
set of M, and let f be an arbitrary right lL.c.m. selector on S in M. Then (S, f)
satisfies Conditions Iy, II, and III. If, in addition, M is left small, then (S, f) satisfies
Condition IIT; .

The following lemma is a preliminary result to the proof of Theorem 4.2.

LeEmMA 4.3. Let M be a right Gaussian monoid, let S be a finite generating set of
M, and let f be a right l.c.m. selector on S in M. Then C’,{(u,v) exists, UC’,{(U,U)
represents u Vi U, and Cg(u,v) represents u \r U, for all u,v in S*.

Proof. We prove inductively on n that: if || Vi 9| < n holds, then CJ (u,v) exists
and UCFJ: (u,v) represents u Vy T. If n is 0, the only possibility is that v and v are the
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empty word, and everything is obvious. Assume n > 1. If either v or v is the empty
word, then everything is obvious again. So, assume v = zu; and v = yv;, where x
and y belong to S. By hypothesis, u Vi U is a common right multiple of x and y, thus
x Vp y divides @ V; U. By hypothesis, x Vy y is both the class of x f(y,x) and the class
of yf(x,y). By construction, @ V; ¥ is a common multiple of Zuy and z f(y, x), so the
l.c.m. of these elements is a left divisor of w Vx U. We have

-'E—ul\/R xf(y,x) = x(u_l\/R f(yax)) :

This shows that the norm of uy Vi f(y, z) is at most n— 1. So, the induction hypothesis
shows that the words CJ (u1, f(y, ) and Cf (f(y, ), u1) exist, and that uC{ (f(y, z), uy)
represents U Vi xf(y,x) = U Vg y. A symmetric argument shows that the words
Cl (v, f(z,y)) and CL (f(z,y),v1) exist and that vCf (f(x,y),v1) represents z V.

Let w be xf(y,z), let ugs be C’,{(ul,f(y,:z:)), and let vy be C’,{(vl,f(a:,y)). By
construction, @ Vi v is the right l.c.m. of wuz and wvs (which are u V; y and = Vz ©
respectively). Again, the right l.c.m. of W3 and 73 has a norm strictly less than n. So,
q{ (ug,v2) and C’I{ (v2, ug) exist and 'UQCI{ (ug, v2) represents Uz Vi U3.

The word v~ lu is f-reversible to

Ul_l ' f(m,y) ' f(yvx)_l U,
and then to
CL(f(x,y),v1) - CL(vr, fla,y) ™" - Cf (ur, f(y,2)) - CL (f(y, 2),ur) 7,

which is C’F{(f(x, Y), vl)-vgl-UQ-C}:{(f(y, x),u1) !, The latter word in turn is f-reversible
to
Gl (f(,9),01) - Gl (uz,02) - G (v2,u2) ™ GL(f (9, ), u1) ™

So, C’,{ (u,v) exists and is equal to

Gl (f(@,),v1) - Cf (uz, va) .

Now, we have

v Cf (u,v) =5+ G (f(x,y),v1) - C (g, v2) = (0 Vr y) - G (uz, v2)
=W Do - Cf (ug,v0) =W - (W3 Vi 13) = U Vi V.
This completes the proof. O

Proof of Theorem 4.2. The pair (S, f) satisfies Condition I; by Proposition 3.1. By
the previous lemma, (5, f) satisfies Condition III;. So, it remains to show that: if
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x,1y,z are elements of S, then Cg(z,xf(y,x)) and C’g(z,yf(a:,y)) are Eg—equivalent.

Now, xf(y,x) represents the right l.c.m. of x and y, and xf(y,:z:)C’,{(z,:z:f(y,x)) rep-
resents the right l.c.m. of x Vi y and z, namely, the right l.c.m. of z,y, and z. Sim-
ilarly, yf(x,y)Cg(z,yf(:v,y)) represents the right l.c.m. of z,y, and 2. The words
xf(y,x) and yf(x,y) are equivalent as well, so, by left cancellativity, we conclude that
C;—{(z, zf(y,x)) and C,{(z, yf(z,y)) are equivalent.

Assume now in addition that B is a finite subset of M that includes S and is closed
under the operation \z. Let S’ be the set of all positive words that represent elements
of B. Because B is finite and, for every a in M, the lengths of the expressions of a are
bounded by ||al|, the set S’ is finite. Now, for u, v in S’, the word C,{(v, u) represents
v \z U, so it belongs to S’. Hence the set S witnesses that Condition III} holds. O

Let us now consider the case of Garside monoids. We define below Conditions IV,
and IV, which refine Conditions I} and III;*, and show that Garside monoids are
characterized by the conjunction of Conditions Iy, I, II,, IV, and [V, (Theorems
4.4 and 4.9).

DEFINITION. Assume that f is a complement on S. For x1,...,z;in S, let Jg(ml, ey Tk)
denote the word inductively defined (if it exists) by

Jf( ) . X1 for k = 1,
p(T1,...,2) = J,{(xl, o 71'k_1)CRf($k7JRf(QL'1, ..., Tk—1)) otherwise.
The word J?(x1,. .., ) is defined symmetrically in the same way.

DerINITION. We say that (S, f, g) satisfies Condition IViy if there is an enumeration
x1,...,xy of the elements of S such that J,ﬁf(a:l, ..., &p) exists and such that

C’Lg(Jg(xl, . ,xn)xi,Jg(xl, )

exists and is the empty word for every x; in S. Condition IV, is defined symmetrically.

So, if (S, f) satisfies Conditions I; and I, then JRJ: (x1,...,x)) represents the right
Lem. of 1, ...,z in Mg(S, f), if it exists. If, in addition, S = {x1,...,z,} is the set
of atoms of My(S, f) and (S5, f, g) satisfies Condition Vi, then the right l.c.m. A, of

the atoms exists and is represented by Jg (T1,...,Tp).

THEOREM 4.4. Let S be a finite set, and let f, g be complements on S. Assume that
i) The monoids Mg(S, f) and M, (S, g) coincide;
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ii) The set of atoms of Mg(S, f) is S;

iii) The pair (S, f) satisfies Conditions I and Ilg;

iv) The pair (S, g) satisfies Conditions (I, and) I ;

v) The triple (S, f,g) satisfies Conditions IV; and Vg .
Then Mg(S, f) is a Garside monoid.

The following lemmas 4.5-4.8 are preliminary results to the proof of Theorem 4.4.
We write M for the monoid both presented as Mg(S, f) and M, (S, g), and we assume
until the end of the proof of Theorem 4.4 that S is the set of atoms of M, that M
is atomic—i.e., that (5, f) satisfies Condition I and, equivalently, that (S, g) satisfies
Condition I,—and that (S, f) and (S, g) satisfy respectively Condition II; and II.

LEMMA 4.5. Assume that (S, f, g) satisfies Condition IVi. Then there exists a permu-
tation 0 : S — S such that
AR'ZC:5(£L’)'AR

holds for all z in S.

Proof. Let x be an atom. Condition IV, says that CLg(J,{(:Ul, ey T, J,{(xl, ceeyTp))
exists and is empty. By Proposition 3.4, this means that Ay is a right divisor of Agzx.
So, there exists d(x) in M such that Agzx is equal to §(z)Az. By Proposition 3.6, the
monoid M has the right cancellation property, thus d(x) is well-defined. We immedi-
ately deduce, for every product of atoms, the equality

Ap-xy...2 =0(x1)...0(xk) - Ag
So, we can extend ¢ to an endomorphism of M such that

always holds. The fact that M is left and right cancellative guarantees that § is well-
defined and injective. Note that (4.1) uniquely defines the value of §(a). In particular,
ArAr = Ap Ay implies 6(Ag) = Ag. Now, if a is a left divisor of Ag, then d(a) is a left
divisor of 0(Ag) = Ag. So, right simple elements are globally preserved under §, and,
because 4 is injective and there are finitely many left simple elements (Proposition 2.3),
we conclude that § induces a permutation of the right simple elements. Moreover, this
permutation preserves left divisibility, hence maps non-atoms to non-atoms, therefore
maps atoms to atoms. So, it induces a permutation of S. O

LEMMA 4.6. Assume that (S, f,g) satisfies Conditions IV, and IVg,. Then A, is equal
to Ag.
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Proof. Let x be an atom. By Lemma 4.5, there exists an atom J(z) such that Azz is
equal to 6(x)Ag. Since Ag is the right L.c.m. of all atoms, there exists an element a in
M satisfying Ar = 0(x)a. By left cancellativity, we have ax = Ag, thus = divides Ay
on the right. Since A, is the left l.c.m. of all atoms, it follows that A, divides Ar on
the right, and, therefore, that ||A.| < ||Ag|| holds. Similarly, Ay divides A, on the left
and ||Ag|| < ||AL]| holds, thus A, is equal to Ag. O

Whenever (S, f, g) satisfies Conditions Vi and IV, we use A to denote the com-
mon value of Ar and A, in M.

LEMMA 4.7. Assume that (S, f, g) satisfies Conditions IV;y and IVy,. Let a be an element
of M. Then the following conditions are equivalent.

i) a is a right simple element.

ii) a is a left simple element.

iii) There exists a’ and o’ in M such that A is equal to a’aa”.

Proof. Let a be a right simple element. From the proof of Lemma 4.5, we know that
there exists a right simple element §(a) satisfying Aa = d(a)A. By definition, there
exists @’ in M satisfying d(a)a’ = A. By left cancellativity, A = d’a, thus a is a Irft
simple element. This shows that (i) implies (ii). Similarly, (ii) implies (i). It is obvious
that either (i) or (ii) implies (iii). It remains to show that (iii) implies (i). Assume
A = d’ad”. Then aa” is a right divisor of A, thus it is a left divisor of A as well,
therefore a is a left divisor of A. O

LEMMA 4.8. Assume that (S, f,g) satisfies Conditions IVz and IVg,. Then (S, f)
satisfies Condition IIL} .

Proof.  Assume that u, v are positive words that represent simple elements. There
exist positive words u1, vy satisfying

wuy = vy =1 J}{(xl, ce iy Tp)-
By Proposition 3.3, C’,ﬁf (u,v) exists and there is a positive word w satisfying
vC’,ﬁf(u, v)w =/ Jg(xl, cey Tp) (4.2)

By Lemma 4.7, the element a represented by C’,{(u, v) is simple, as (4.2) givesTaw = A.
Hence the set of all expressions of simple elements of M, which is finite by Proposi-
tion 2.3, is closed under CJ{ . O
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Proof of Theorem /./. The pair (S, f) satisfies Condition IIT;] by Lemma 4.8. Similarly,
(S, g) satisfies Condition II,*. So, M is a small Gaussian monoid by Theorem 3.10.
Finally, M is a Garside monoid by Lemma 4.7. O

THEOREM 4.9. Let M be a Garside monoid, let S be the set of atoms of M, let f be
a right l.c.m. selector on S in M, and let g be a left l.c.m. selector on S in M. Then
(S, f, g) satisfies Conditions IV, and Vg, .

Proof. Let x1,...,x, be an enumeration of the atoms of M. Lemma 4.3 and an easy
inductive argument show that Jg (x1,...,z)) exists and represents the right l.c.m. of

x1,...,xE. In particular, J,{(xl, ...,Ty) exists and represents A = A. Now, let = be
an atom. Since Az = §(z)A holds (Proposition 2.5), A divides Az on the right, thus,
by Proposition 3.4, C’Lg(Jg(:cl, e X)X, Jg(xl, ...,Ty)) exists and is empty. O

5. EXAMPLES

We have seen that finite Coxeter type Artin groups are Garside groups. Although
the definition in terms of l.c.m.’s seems to be rather natural, we have found only
few examples of Gaussian groups and Garside groups in the literature. However, the
criterions of Section 4 enable us to construct a number of new examples.

The first remark is:

LEMMA 5.1. Assume that S is a two-element set, and that f is any complement on S.
Then (S, f) satisfies Conditions I, and II, .

Proof. Assume S = {z,y}. The only thing we have to verify for II; is that the words
C’g(:v, xf(y,z)) and C’g(x, yf(z,y)) either both exist and are equivalent, or that neither
of them exists. Now a direct computation gives

C’g(a:,xf(y,x)) = Cg(&f, f(yvx)) =g,
Cl(z,yf(x,y) = CL(f(z,9), f(z,y) = <.

The argument is similar for Condition I7,. O

ExAMPLE #2. For p, g positive integers, let G, 4 be the group with presentation

(z,y | 2P =y2ly) . (5.1)

We claim that, for p > ¢, G, 4 is a small Gaussian group, but not a Garside group.
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Let S be the set {z,y}, and let M, ,; be the monoid that admits (5.1) as a presen-
tation. Then M, , is both My(S, f) and M, (S, g) where the complements f and g are
defined by

fly,x) =21 flz,y) =2, g(z,y)=2"", g(y,z) =y

We shall verify that (S, f) satisfies Conditions I, II; and III when p > ¢ holds.
Observe that, for p < ¢, M, , is certainly not atomic, since we have

P = quy — yywqqu—py — .= yk‘—&-lqu(xq—py)k

for every k. We henceforth assume p > q.

For I, unless p = q + 2, the relation is not homogeneous, and we cannot simply
use the length as the mapping v. However, it is clear that the mapping v defined by
v(e)=0,v(z) =2, v(y) =p—q and v(uwv) = v(u) + v(v) is a right norm for f.

Condition II; is automatically verified by Lemma 5.1.

For Condition III], we claim that the closure of S under the complement CPJ; is the
set

§' = {a%0 <i < plU{alyz®;0<jk <q}.

This results from the following explicit equalities, which are verified directly:
C]{ (.’Ei, xi’) _ xsup(i—i’,O),
froi .4 k _ 9 for ¢ < ] s
Ci (2, 2yz”) {xq_ky otherwise,

Foogo kgt k[ a0 K ygsel=it0 for j £ 40
Ci (27yz”, 7 yx™ ) = {xsuI)(k—k’,O) for j = j5'.

Due to the symmetry in the defining relations, it is obvious that the complement g
satisfies Conditions I, II, and III;'. By Theorem 3.10, we conclude that M, , is a
small Gaussian monoid, and that G, 4 is a Gaussian group.

This group is not a Garside group. Indeed, x and y are atoms in M, 4, and we imme-
diately find A = A, = 2P = ya?y, corresponding to JF{(I, y) = xP. Now Condition IV
fails, for we find

Cf (aPy, xP) = x1.

This failure corresponds to the fact that the element represented by yx? is right simple
in M, 4, but it is not left simple.

EXAMPLE #3. For p a positive integer, let M, be the monoid with presentation
(zy | oy =yz) . (5.2)
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We claim that M, embeds in its group of fractions, that M), is a right Gaussian monoid,
but, for p > 2, that M, is neither a left Gaussian monoid, nor a right small right
Gaussian monoid.

It is clear that the monoid M), is both Mg(S, f) and M, (S, g), where S is {z,y},
and f, g are the complements defined by

flxy) ==, fly,z)=v", g(z,y)=y, gy.x)=ay’ "

We consider Conditions Iy, II; and IIl; for (S, f). For I, we cannot simply define a
left norm v by attributing fixed values to the letters as in Example #2, for the number
of letters z is the same in both sides of (5.2). Now, defining inductively v by v(e) =0
and

v(zw) =v(w)+1,  v(yw) = v(w) +pl,

where |w|, denotes the number of letters z in w, gives a right norm for (5, f). Indeed,
we find for every word v

v(zyPv) = v(v) + pt +1 = v(yav),

which is enough as |xyPv|, and |yzv|, both are equal to |v|, + 1. Hence (S, f) satisfies
Condition I.

By Lemma 5.1, it satisfies Condition II5.

Now, let S’ be the set {z} U {y/;5 > 0}. It is easy to verify that S’ is closed

under C’Rf , due to the formulas
Cl(z,y) =2, Caly/,2) =y (5.3)

So, by Lemma 3.9, (5, f) satisfies Condition III, and, therefore, M, is a right Gaussian
monoid. Now, (5.3) shows that the closure of S under ¢ contains the word y?" for
every k, so it cannot be finite for p > 2. So M, is not right small.

Because M), is atomic, we know that (5, g) satisfies Condition I, and, by Lemma 5.1,
it satisfies Condition II, as well. Hence, by Proposition 3.6, the monoid M, is left
cancellative, and, by Ore’s criterion, it embeds in its group of fractions. However (5, g)
does not satisfy Condition III,. Indeed, the word w = xy?~'2~! is g-reversible on the
left in two steps to the word y~lwy, and, therefore, it is g-reversible in 2k steps to
y~*wy” for every k: thus the g-reversing of w cannot be successful.

We turn now to the construction of Garside groups. The following propositions 5.2
and 5.3 provide a machinery to produce infinite families of such groups.

ProprosITION 5.2. Consider a finite set S = {x1,...,z,}, n positive words ui, ..., u, in
S*, and a permutation ¢ of {1,...,n}. We assume that:
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i) There exists a mapping v of S to the positive integers which, when extended
to S* by v(e) = 0 and v(uv) = v(u) + v(v), satisfies

v(z1u175(1)) = V(T2u2T5(2)) = - .. = V(TpUnTs(n)); (5.4)
ii) For every index k, there exists an index j satisfying
TRUg = UjT5(j) - (5.5)
Let M be the monoid defined by the presentation
(T1, -y Tn | TIUITs(1) = To2UTs(2) = - .. = TpUnTs(p)) -

Then M is a Garside monoid.
Proof. Let f and g be the complements on S defined by

f(@i,xj) = wjzs) and  g(xi, ;) = T5-13)Us—1(5)

for i # j. Then the monoid M is both My(S, f) and M,(S,g). Hypothesis (i) guaran-
tees that the mapping v is a right norm for the complement f, thus, by Proposition
3.1, M is an atomic monoid. The congruence relation =; is generated by the pairs
(:z:iui:v(;(i), :cjujx5(j)) and the length of w;u;xs(;) is strictly greater than 1, thus, if z; is
in S, then there is no word besides z; in S* E,{—equivalent to x;. In particular, the
elements of S are atoms. So, by Proposition 2.2, S is the set of atoms of M. A direct
calculation gives:

Cl (wg, i f (2, 77)) = {“z’%(i) for i = j and i # k,
€ otherwise.

So, C’,{(azk, zif(xj,x;)) and C’,{(mk, xjf(x;,x;5)) exist and are Eg-equivalent in any case,
thus (S, f) satisfies Condition II;. Similarly, (.5, g) satisfies Condition II,. An easy
inductive argument on k£ shows:

Jf B 1 fOI' k = 1,
R(.Tl,..-,xk) - {xlulx(S(l) fOI‘ k Z 2.

In particular, Jg(ml, ..., Tp) exists and is equal to T1u1zs(1). Equality (5.5) and a direct
calculation show that C’Lg(:z:lulm5(1)mk, xlulx(g(l)) exists and is the empty word for all xj
in S. So, (S, f,g) satisfies Condition IVjz. Similarly, (5, f, g) satisfies Condition IV, .
We conclude by Theorem 4.4 that M is a Garside monoid. O

23



ExXAMPLE #4. Consider a finite set S = {z1,...,x,} and n positive integers p1,...,p,
strictly greater than 1. Then, by Proposition 5.2, the group

(1, | 2t =2l = .. = a2P)
is a Garside group. Here, x5, = 4, u; = :l;fi_2, and the mapping v is defined as
follows. We choose n positive integers t1,...,t, satisfying t1p; = tops = ... = t,pn,

and we set
V(@i @iy ooy ) =ty + iy .. 1,

Torus knot groups have the form

(z,y | 2" = y7)

(see [27, Chapter 3]), thus are among these examples.

ExaMpPLE #5. Let xq,...,x, be p letters and let m be a positive integer. Then
prod(xi,...,xp;m) denotes the word
prod(zy,...,Tp;m) = T1T2... TpT1xa . .. .
m f;::tors
Consider now a finite set S = {x1,...,x,} and two positive integers pand m, 2 < p <n

and 2 < m. By Proposition 5.2, the group

(1,...,2n | prod(z1,...,2zp;m) = prod(za, ..., Tpr1;m) = ... = prod(Tp—psi, - - ., Tn;m)

= prod(Zp—p12,...,&n,x1;m) = ... = prod(Tn,, T1,...,Tp—1;M))
is a Garside group. The group
(X1, Ty | T129 .. Xy =X Xy = ... = TpT1 ... Tp1)

is the fundamental group of the complement of n lines through the origin in C? (see
[25] or [28]). The group

(X1, Ty | 129 = 223 = ... = THX1)

is the Artin group of type I2(n), however, the Garside monoid having the previous
presentation is not an Artin monoid. According to [6], the group

(2,9, 2 | xyz = yzw = zay)
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is the braid group associated with the complex reflection groups of type G7, G11, and
G119, and the group
(x,y,z | zyzey = yzaeyz = zeyzr)

is the braid group associated with the complex reflection group of type Gaa.

EXAMPLE #6. One can mix the presentations of Examples #4 and #5 to get new ones.
For example,

2 5
(T1,72,23,T4,T5 | ¥] = T3 = T3T4T5T3 = T4T5T3T4 = T5TIT4T5)
is a Garside group.

ProrosiTiON 5.3. Consider n Garside monoids M, ..., M,, and n positive integers
P1,---,Pn. Let A; denote the fundamental element of M;. We assume that:

i) There is a mapping v; : M; — N satisfying v;(a) > 0 for all a in M;, a # 1, and
vi(ab) = vi(a) + v;(b) for all a,b in M;;

ii) If M; has only one atom, namely, if M; is isomorphic to Z, then p; > 2.
Let = be the congruence relation on (Mj x My % ... x M,) generated by the pairs
(AP A?j), and let M be the quotient

M = (My x My x...x M)/

Then M is a Garside monoid.

Proof. Let S; be the set of atoms of M;, let f; be a right l.c.m. selector on .S; in M;,
let g; be a Irft l.c.m. selector on S; in M;, and let u; be a positive word in S} that
represents A;. Set

S=5USU...UsS,.
We define a complement f on S by: for  in S; and y in Sj,

[ Hilew) for i =
flz,y) = C}_{j(uj,y) . u;’j_l for @ # j.

Similarly, we define a complement g on S by: for z in S; and y in 5},

. gz(ajay) fOI‘ i = ’j,
o) = {0 i

By construction, M admits both presentations:
(S| 2f(y,x) =yf(z,y), x,y €5) and (S |g(z,y)x = g(y, )y, x,y €5) .
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Let v; : Sf — N be the mapping defined by v;(v) = v;(v). We choose n positive
integers t1,. .., t, satisfying t1pi1vq(u1) = topare(uz) = ... = typpvn(uy,) and we define
a mapping v : S* — N as follows. Let v be in §*. We write v = v;,vj, ... v;,., where v,
is in S;‘j . Then

V(U) = ti, Vi (Uil) + tiQViQ(UiQ) +.ooF tiryir(vir) .

By Assumption (i), this mapping is well-defined and is a right norm for the complement
f, thus, by Proposition 3.1, M is an atomic monoid.

The congruence relation =}, is generated by the pairs (zfily,z),yfi(x,y)), x,y in
Siand i in {1,...,n}, and by the pairs (u 7uy’), i,jin {1,...,n}. The lengths of both
zfi(y,z) and ul" are strictly greater than 1, thus, if z is in S, then there is no word
besides z in S* =/ »-equivalent to x. In particular, the elements of S are atoms. By
Proposition 2.2, S is the set of atoms of M.

A direct calculation gives: for x in S;, y in S;, and z in S,

; Ol (2,2 fi(y, @) [ fori=j=k,
Ci(z.2f(y,2)) = § CI(CL (wi, 2), fiy, @) -l fori=j #k,
€ for @ # j.

So, C’F{(Z,xf(y,x)) and C’g(z,yf(a:,y)) exist and are =} »-equivalent in any case, thus
(S, f) satisfies Condition II. Similarly, (S, g) satisfies Condltlon 1I,,.

Without lost of generality, we may assume that there is an enumeration zy,...,z,

of the elements of S; such that ng (x1,...,2,) is u. A direct calculation gives: for y
in SoU...US,,

C’,{(y, up) = uff U and C’f(y, HN=c¢. (5.6)

We extend the previous enumeration to an enumeration x1, ..., 2y, ri1,..., Ty of S.

By (5.6), J{ (z1,...,xm) exists and is equal to uf*. Now, let = be in S;. By Propo-

Di _f

sition 2.5, there is y in S; such that vz and yul” are

_,J; equivalent to ul*, the word u}'x is E,J;—equivalent to yul", thus, by Proposition 3.4,

Cf (ul'z,ul") exists and is the empty word. This shows that (S, f, g) satisfies Condi-
tion IV;z. Similarly, (S, f, g) satisfies Condition IVs,. We conclude by Theorem 4.4 that
M is a Garside monoid. O

»-equivalent. Since uf' is

EXAMPLE #7. Proposition 5.3 applied to the Artin groups of type Bs and A3 shows
that the group

<$1,$2,$3,y1,yz7y3 \ T1X2X1T2 = T2X1X2X1, T1T3 = X3L1, T2T3T2 = T3T2T3,

YIY2y1 = YoY1Y2, Y1Y3 = Y3Y1, YoysYz = y3yey3, (z12223)% = (y1y2ysyiyey1)®)

26



is a Garside group. (Expressions of the fundamental elements of the Artin groups of
type An, By, and D,, can be found in [24].)

ExXAMPLE #8. It is proved in [3] that the braid group on n strings has a presentation
with generators {ats;n >t > s > 1} and with defining relations

Aisrq = arqars for (t—7r)(t —q)(s —7)(s —q) > 0,

QpsQgr = QprQrs = QgrQpr  for all t, s, r withn >t >s>r > 1.

These relations are complement relations, but they are incomplete as there is no com-
plement for a;s and a4 in the cases ¢ > r > s > qgand r >t > ¢ > s. However, the
above relations imply

AtsQrQsqg = QrqQigQrs fort>1r > s>,

AtsQtgQrs = QrgQrtQgs for r >t >q > s,

and gathering the four series of relations gives a presentation of the type Gx(S, f). The
relations are homogeneous, so (5, f) satisfies Condition I;. By a long verification, it
is shown in [3] that (5, f) satisfies Condition II;, and that the l.c.m. A of the genera-
tors exists and enjoys all desired properties, so that the monoid My(S, f) is a Garside
monoid. It follows in particular that the braid group equipped with this new presen-
tation is eligible for the general algorithms and normal forms presented in the next
sections.

6. WORD PROBLEM AND ISOPERIMETRIC INEQUALITIES

Let G be a group given by a presentation (S|R), where R is some subset of (S US™1)*.
The word problem in G consists in finding an algorithm which determines whether a
word w in (S U S™1)* represents the identity in G.

Reversing processes give rise to algorithms which solve the word problem for Gaus-
sian groups (Theorems 6.1 and 6.3). These algorithms were introduced in [14]. By
Lemma 3.9, both have quadratic complexity in the case of a small Gaussian group—
hence, in particular, in the case of a Garside group.

THEOREM 6.1. Let M be a right cancellative right Gaussian monoid, and let G be the
group of (right) fractions of M. Let S be a finite generating set of M and let f be a
right l.c.m. selector on S in M. Then a word w in (S U S™!)* represents the identity
of G if and only if the word R};(Dg(w)_l]\f]{(w)) is empty.
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Proof. By construction, the words w and R{; (w) represent the same element of G. The
latter word is N (w)DJ (w)™. Hence it represents 1 in G if and only if the positive
words N,{ (w) and D,{ (w) represent the same element of G. The hypotheses guarantee
that M embeds in @, so the latter condition is equivalent to N7 (w) =/ D} (w). By
Proposition 3.4, this in turn is equivalent to the fact that both C’PJ; (Ng (w), D}J; (w)) and
C}{(D,{(w), Ng(w)) are empty, i.e., that R,{(Dg(w)_lNg(w)) is the empty word. O

PROPOSITION 6.2. Let M be a Gaussian monoid, and let G be the group of (right)
fractions of M. Let S be a finite generating set of M, let f be a right I.c.m. selector on
S in M, and let g be a left I.c.m. selector on S in M. Two words w and w' in (SUS™1)*
represent the same element of G if and only if NLg(Rf;(w)) is equivalent to NLg(RI{ (w)),
and D?(R](w)) is equivalent to DI(R}(w')).

Proof. Every word w in (8 U S™1)* represents in G the same element as R (R} (w)).
In particular, if N?(R}(w)) is equivalent to N7(RI(w')) and D?(RL(w)) is equivalent
to DY(RL(w')), then w and w’ represent the same element of G.

We assume now that w and w’ represent the same element of G. By Proposition
3.7, there exist positive words u, v/ such that N7 (w)u is equivalent to N{ (w')u' and

Di(w)u is equivalent to D} (w')u’. By construction, the word N (w)uu='D (w)~! is

g-reversible on the left to the word N/ (w)Dg (w)~!, thus we have
NY (R (w)) = C¢ (DY (w)u, N (w)u) .

Similarly, we have

NY(RL(w')) = (DL (w' ), NI (w' ') .
It follows by Proposition 3.5 that Nf(R{(w)) is equivalent to NJ(RL(w’)). Similarly,
DY (R} (w)) is equivalent to DY (R} (w')). O

THEOREM 6.3. Let M be a Gaussian monoid, and let G be the group of (right) fractions
of M. Let S be a finite generating set of M, let f be a right I.c.m. selector on S in M,
let g be a left lL.c.m. selector on S in M. Then a word w in (S U S™1)* represents the
identity of G if and only if the word Rf(R,if(w)) is empty.

Proof. Obvious from Proposition 6.2: as it is a positive word, N/ (R,J; (w)) is equivalent
to € (if and) only if it is empty. Similarly, DY (Rg (w)) is equivalent to ¢ (if and) only if
it is empty. O

DEeFINITION. Let G be a group given by a finite presentation (S|R). Let F'(S) denote
the free group generated by S, and let R¥(5) denote the normal subgroup of F (S)
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generated by R. Let a be an element of R(S). Then a can be written in the form

a = (Br{ By (Bars? By ) - (Burer B ) (6.1)

where f3; is in F'(S), r; is in R, and e; is in {£1}. The lowest n satisfying (6.1) is called
the combinatorial area of o and is denoted by area(«). The group G has a quadratic
isoperimetric inequality if there exists a constant ¢ > 0 such that

area(a) < c¢-lgg(a)?

holds for all o in RF(%). This definition depends neither on the choice of the (finite)
generating set, nor on the choice of the (finite) set of relations.

We prove in Section 8 that Garside groups are biautomatic groups. By [17, Theorem
2.3.12], it follows that such groups have quadratic isoperimetric inequalities. However,
as shown in the next theorem, reversing processes together with Lemma 3.9 give rise to
the same result in a (strictly) larger framework. In [29], Tatsuoka proves this for finite
Coxeter type Artin groups using similar techniques.

THEOREM 6.4. Let G be the group of (right) fractions of a right cancellative right small
right Gaussian monoid. Then G has a quadratic isoperimetric inequality.

Proof. Let M be the monoid considered, let S be the set of atoms of M, and let f be
a right l.c.m. selector on S in M. We take S as generating set of G and

R={zf(y,2)f(z,y) 'y~ z,y € S}

as set of relations. For w in (S U S™1)*, we denote by red(w) the element of F(S)
represented by w. One can easily verify that: if w in (S US™1)* is f-reversible in one
step to w’, then red(w) can be written in the form

red(w) = (Brf™1) - red(w’) (6.2)

where  is in F(5), and r belongs to R. Iterating (6.2) and using Lemma 3.9, we
deduce that there exists a constant K > 0 such that: for all w in (S U S™1)* of length
¢, red(w) can be written in the form

red(w) = (ﬁlrlﬁl_l) e (ﬁnrnﬂgl) . red(N,{(w)Dg(w)_l) (6.3)

where 3; is in F(S), r; is in R, and n < K/2/4 holds. Similarly, we find that
red(Dﬁcr (w)_lNHJf(w)) can be written in the form

red(Df (w) " N (w)) = (8171817 - (Briy By~ ) - red (RE(DY (w) ™' N (w)))  (6.4)

n’''n'Mn
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where 3/ is in F(S), r! is in R, and n’ < K/(?/4 holds.

Now, if red(w) is in R¥(®), then, by Theorem 6.1, Rg(Dg(w)_lN,{(w)) is empty.
Conjugating by red(D{(w)) in (6.4), and introducing the hypothesis that red(w) be-
longs to RF(S) i.e., that the word Rg(DI{(w)_lNg (w)) is empty, we obtain an equality
of the form

d Nf Df -1 — / —1 / —1 6 5
red(Ni (w) Dg (w)™") = (11917 ) - (T V) (6.5)

where ; is in F'(S). Finally (6.3) and (6.5) imply that the combinatorial area of red(w)
is at most K/?/2. O

The previous computation shows more generally that every upper bound for the
number of elementary steps in a reversing process gives an isoperimetric inequality in
the associated group. In the case of Example #3 the only upper bound on the length
of the reversing process is exponential with respect to the length of the initial word,
correponding to the fact that the group involved satisfies an exponential isoperimetric
inequality. This raises two questions:

QUESTION #1. For which functions 7" does there exist a right Gaussian monoid Mg(S, f)
such that T'(¢) is the minimal upper bound on the number of steps of the f-reversing
of all length ¢ words?

Let us mention that [12] gives an example where the only known upper bound about
the number of steps for reversing a length £ word is a tower of exponentials of height 2¢.
This example however is not exactly relevant for the present question as it involves an
infinite set of generators. Another related question involving the complexity of word
reversing is:

QUESTION #2. Assume that the monoid M admits two presentations Mz (S, f), M. (S, g)
and M is a right small right Gaussian monoid; is M necessarily a (small) Gaussian
monoid?
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7. NORMAL FORMS

DEFINITION. Let M be a Gaussian monoid. For a in M, mz(a) denotes the left g.c.d. of
a and Ag, and dza denotes the element of M satisfying a = mz(a) - Oza.

LEmMMA 7.1. Let M be a Gaussian monoid. For a in M, there exists a non-negative
integer k satisfying OFa = 1.

Proof. Since Ay is the right l.c.m. of all atoms, a # 1 implies mz(a) # 1. This gives
|0ral| < ||a|| for a # 1, thus there exists a non-negative integer k satisfying d%¥a = 1. O

DEeFINITION. Let M be a Gaussian monoid. Let a be in M. The degree of a, denoted
by deg(a), is the lowest k satisfying 9¥a = 1. Then the expression

8deg(a) -1 a)

a = Tr(a) - mr(Opa) - ... mr(Ok

is called the normal form of a.

In order to define normal forms for Gaussian groups, we first need Proposition 7.4
and its corollary to guarantee that such forms exist and are unique.

From now on and till the end of this section, we fix the following assumptions: M
is a Gaussian monoid, S is the set of atoms of M, f is a right l.c.m. selector on S in M,
g is a left l.c.m. selector on S in M, and G is the group of (right) fractions of M.

LeEMMA 7.2. Let x,y be in S, x #y. Then C?(f(y,z), f(z,y)) is equal to .

Proof. Let a be the element of M represented by f(y,z), and let b be the element of
M represented by f(x,y). If CZ(f(y,z), f(x,y)) is empty, then, by Proposition 3.4, b
divides a on the right. Since xa = yb holds, it follows that x divides y on the left, thus
x is equal to y since both are atoms. This is a contradiction, thus C7(f(y, ), f(z,y))
is non-empty. The word CY(f(y,z), f(z,y))f(y,x) represents the left l.c.m. of a and b.
The equality xa = yb shows that xa is a common left multiple of @ and b. So, there
exists a word v in S* such that vCY(f(y,z), f(z,y))f(y,x) represents za. By right
cancellation, it follows that vC? (f(y, z), f(x,y)) represents x, thus, since z is an atom,
v is empty and C?(f(y,z), f(x,y)) is equal to x. O

Taking Lemma 7.2 into account, the proof of the following lemma is the same as
the proof of [14, Lemma 2.11]. So, we do not include it here.

LemMA 7.3 [14, Lemma 2.11]. Let w,w’ be two words in (SUS™1)*. If w is f-reversible
on the right to w’, then there exists a positive word v in S* such that vN/(w') is
equivalent to N/ (w) and vD?(w') is equivalent to D?(w). O
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PROPOSITION 7.4. Let ¢ be in G and let w be a word in (S U S™1)* which represents c.
If a word of the form v~ ‘v, with u,v in S*, also represents c, then there exists w’ in S*
such that u is equivalent to w'DY(R}(w)) and v is equivalent to w' N (R} (w)).

Proof. By Lemma 7.3, there exists w’ in S* such that u is equivalent to w’ D7 (Rg (u=1v))
and v is equivalent to w’NLg(R,{ (v~'v)). By Theorem 6.1, Df(R,{(u_lv)) is equivalent
to DY(R!(w)) and NZ(RL(u='v)) is equivalent to N7(RZ(w)). O

COROLLARY 7.5. Let ¢ be an element of G. There exists a unique pair (a,b) in M x M
satisfying ¢ = a~'b and a A, b = 1. Moreover, if w in (S U S™1)* represents c, then
DY (R} (w)) represents a and N (R} (w)) represents b. O

DEFINITION. Let ¢ be an element of G. Let a, b be elemnts of G such that ¢ is a~'b and
a /\;, b is 1. Then the expression

c= WR(ageg(a)_la)_l o Tr(Oga) T (@) T (D) - R (ORD) - ... WR(ﬁgeg(b)_lb)

is called the normal form of c¢. By Corollary 7.5, such a form always exists and is
unique.

The normal forms defined above are nothing but those of [9] in the case of finite
Coxeter type Artin groups. Because of the existence of the fundamental element A and
of the permutation § of Proposition 2.5, the normal forms of [5] and [18], and those of
[15], [2], [8], [17] can also easily be extended to all Garside groups.

Let ¢ be in G and let w be a word in (S U S~1)* which represents c. We now
describe an algorithm that gives the normal form of ¢ starting from w. Let a,b in M
be satisfying ¢ = a~'b and a A, b = 1. By Corollary 7.4, a is represented by DLg(RIJ; (w))
and b is represented by N7 (Rg(w)). So, it remains to describe how to find the normal

form of an element of M. Let x1,...,z, be an enumeration of the atoms, and let
JHJ: (z1,...,xy) be the word defined just before Theorem 4.4. As pointed out before,
Jg (z1,...,xy,) represents Ar and can be effectively computed. Now, Proposition 7.7

below gives an algorithm which determines an expression of uw A, v for all u,v in S*.
This ends our algorithm since: if uy represents mz(a) and u represents a, then, by
Lemma 4.3, C}{ (u,up) represents Oga.

LEMMA 7.6. Let a,b,a’,b' in M satisfy aa’ = b/ = a Vz b. Then we have

a \/R b - (a /\L b)(a/ \/L b/) .
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Proof. Let a”,b” in M satisty a”a’ = b"V = d’ v, b'. Because aa’ = bb' is a common
left multiple of o’ and ¥/, there exists e satisfying aa’ = bb' = e(a’ V., V') = ea’a’ = bV’
We prove that e is a A, b. By right cancellation, a = ea” and b = eb” hold, thus e is a
common left divisor of a and b. Let e; be a common left divisor of a and b. Let aq, by
in M satisfy a = eja; and b = e1by. By left cancellation, aja’ = b1b’ holds. So, there
exists ¢ in M satisfying aya’ = bib’ = c¢(a’ vV, V') = ca”a’ = cb”b'. By right cancellation,
a1 = ca” and by = cb” hold, thus a = ejca” = ea” and b = e;cb” = eb” holds as well. It
follows, by right cancellation, that e; is a left divisor of e. O

PROPOSITION 7.7. Let u,v be in S*. Then WA, is represented by C2 (N (RL (v=1w)), u).

Proof. Let a,b,a’,b/ in M satisfy a = u, b = v, and ad’ = b’ = a Vz b. By Lemma
4.3, ' is represented by CJ (v,u) and ¥’ is represented by cf (u,v), thus a’ VvV, b is
represented by CZ(C{ (v, u), Cf (u,v))Cf (v,u). The element a Vy b is represented by
uCFjir (v,u). Finally, by Lemma 7.6 and Lemma 4.3, a A, b is represented by

CY(CH(CE (v, u), CF (u,v)CL (v, w), uCY (v, w))C (NE(RL (v u)),u) . O

8. AUTOMATIC STRUCTURE

We shall prove here that Garside groups are biautomatic groups. Roughly speaking,
this means that there exists a finite state automaton that computes the normal forms
of Section 7. The key point that explains automaticity is the fact that, if a, b are
elements of a Garside monoid, then the value of the g.c.d. (ab) A, A depends only on a
and on b A, A, i.e., the ‘state’ of ab depends only on a and on the ‘state’ of b—but not
on the whole of b. It is easy to see that such a result fails in the case of Example #2,
and this makes it unlikely that a general automaticity result holds for small Gaussian
groups even if they satisfy a quadratic isoperimetric inequality.

Our proof of Theorem 8.1 is inspired by the proof of [9, Theorem 0.1]. In particular,
the proofs of Lemmas 8.6 and 8.7 are the same as the proofs of [8, Proposition 3.1] and
[8, Proposition 3.3] respectively. We do not include them here.

DEFINITION. A finite state automaton is a quintuple F = (Q, A, 1, Y, qo), where Q is
a finite set, called the state set, A is a finite set, called the alphabet, u: Q x A — Q
is a function, called the transition function, Y is a subset of (), whose elements are

33



called the accept states, and qq is in (), and is called the start state. For ¢ in () and
w=1x1...T, in A*, we define the state u(q, w) inductively on n by

( w)_{q for n = 0,
oA, W) = w(p(q, 1 ... Xp—1), ) form > 1.

Then
Lr ={we A" ; plg,w) €Y}

is called the language recognized by F. A regular language is a language recognized by
a finite state automaton.

DEeFINITION. Let G be a group, and let S be a generating set of G. The length (with
respect to S) of an element ¢ of G, denoted by lgg(c), is the shortest length of a word
in (SUS™1)* representing c. The distance between two elements ¢ and d in G, denoted
by dg(c,d), is the length of ¢~'d.

DEFINITION. Let G be a group, and let S be a finite generating set of G. A language
L in (SUS™Y* represents G if all the elements of G are represented by elements of L.
The language L has the uniqueness property if every element of GG is represented by a
unique element of L. It is symmetric if L is equal to L™, where L™! is the language
obtained by formally inverting the elements of L. It is geodesic if the length of w is
equal to the length of w for all w in L. For w = 25" ... 25" in (SUS™1)* and for ¢ in
N, we write

1 fort =0,
w(t) = {xilet for 1 <t <n,
w for t > n.
Let k be a positive integer. We say that L has the r-fellow traveller property if: for
w,w’ in L,
ds(w(t), w'(t)) < k- ds(w, )

holds for all non-negative integers t.

DEFINITION. A group G is automatic if there exist a finite generating set S of G, a
constant x > 0, and a regular language L in (S U S~1)*, such that L represents G' and
has the s-fellow traveller property. If, in addition, L' also has the k-fellow traveller
property, then G is called biautomatic. If L is symmetric, G is called fully biautomatic.
If L is geodesic, G is called geodesically automatic. We refer to [17] for a general
exposition on automatic groups.

From now on and till the end of this section, we fix the following assumptions: M
is a Garside monoid, S is the set of atoms of M, f is a right l.c.m. selector on S in M,
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g is a left l.c.m. selector on S in M, ¥ is the set of simple elements different from
the identity, = is the congruence on ¥* such that M is ¥*/ =, and G is the group of
fractions of M.

The goal of this section is to prove the following theorem.

Tureorem 8.1. Let L be the language in (X U X~1)* of all normal forms. Then L is
regular, represents (G, has the uniqueness property, is symmetric, is geodesic, and has
the 5-fellow traveller property.

COROLLARY 8.2. The group G is fully geodesically biautomatic.

Note that, since L is regular, has the uniqueness property, and is geodesic, it can
be used to compute with standard methods the growth series of G with respect to X.

By definition, the language L of normal forms represents G, has the uniqueness
property, and is symmetric. So, it remains to prove that L is regular, has the 5-fellow
traveller property, and is geodesic. This is the object of Propositions 8.3, 8.5, and 8.9
below.

ProprosITION 8.3. The language of normal forms is regular.

The following lemma 8.4 is a preliminary result to the proof of Proposition 8.3. For
a simple element o, we denote by ¢* the simple element satisfying oo™ = A.

LEMMA 8.4. Let 01,...,0, be in 3. Then the following conditions are equivalent.
i) The word o105 .. .0y, is a normal form.
ii) The word 00,41 is a normal form for i =1,... ,n— 1.
iii) 0f Ny 041 is 1 fori=1,...,n — 1.

Proof.  Assume (i). By construction, o;0;41...0, is a normal form. The element o;
is a common left divisor of 7;0;51 and A, thus o; divides mz(7;0;51) on the left. The
element 7y (c;0,11) divides @;0,11 on the left, and &;0,11 divides &;0;11-..0, on the
left, thus 7z (7;0;71) divides ;0,11 ---0, on the left. Since this element is simple, it
follows that mz(770;51) divides mz(d7;0:41---0,) = o; on the left, and, therefore, that
7w (070:11) is equal to o;. Then 0441 is 0x(7;0,+1) and 0;0;4+1 is a normal form.
Conversely, assume (ii). We prove by induction on n that o10...0, is a normal
form. The result is vacuously true if n is 1. We assume n > 1. Let a and @’ in M be
represented by o103 ...0, and o3 ... 0, respectively. By induction hypothesis, o2 ... 0,
is the normal form of a’. The element oy divides a on the left and is simple, thus it
divides mz(a) on the left. Let a be the simple element of M satisfying o1 = mx(a).
There exists b in M such that mz(a)b is a. By left cancellation, we deduce that ab is
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a’, thus, since « is a simple element, that « divides 7z (a’) = o2 on the left. Let 5 be
the simple element of M satisfying a8 = o3. From the equivalence

o109 = o108 = mr(a)f

we deduce that mz(a) divides a702 on the left, thus divides o1 on the left since o109 is
a normal form. This shows that 7z (a) is o1, and, therefore, that o109 ... 0y, is a normal
form.

Writing A = oo™, we obtain when o, ¢’ are simple elements:

oo’ Ny A =00' N, oot =o(0’ A o) .

So, oo’ is a normal form, namely, oo’ A\, A is o, if and only if o/ A, o* is 1. This gives
the equivalence of (ii) and (iii). O

Proof of Proposition 8.3. We define V as YU X1 U {vg,v1}, Aas TUX ! and YV as
YUY U {ve}. The function p: V x A — V is defined by: for o, 7 in X,

M(U()v 0) =0, M(U()v 071) = 0-71

p(vr,0) =v1,  plo,07t) =

,U(U,T)Z{T ifo*N, T=1

~1
. g, T = V1
v; otherwise » Hlo, )

_1 T fonT=1 -1 1 {7'_1 ifon =1
o, T) = . ) o T ) = )
ul ) { v1 otherwise & ) U1 otherwise

By Lemma 8.4, the language of normal forms is recognized by F = (V, A, u, Y, vp). O
ProPOSITION 8.5. The language of normal forms has the 5-fellow traveller property.

The following lemmas 8.6-8.8 are preliminary results to the proof of Proposition
8.5.

LEMMA 8.6 [8, Proposition 3.1]. Let a be in M, and let o be a simple element. Let
0102 ...0p and 7172 ... 74 be the normal forms of a and oa respectively. Then q is equal
to p or to p+1, and there exist simple elements o, . .., &y, 51, .., By (namely, elements
of ¥ U {1}) satisfying

n=oa1, T=fic10 (1=2,...,p), Tpy1 =By,

o= (i=1,...,p)

where 1,11 is 1 if q is equal to p. O
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LEMMA 8.7 [8, Proposition 3.3]. Let a be in M, and let o be a simple element. Let
0102 ...0p and T T2 ... T4 be the normal forms of a and ac respectively. Then q is equal
to p or to p+1, and there exist simple elements 71, . .., ", (namely, elements of X U{1})
satisfying

ViTitl -+ Tqg = Oigl - . Op0 (8.1)
fori=1,...,p. 0O
LEMMA 8.8. Let a,b in M be such that a A\, b is 1, and let o0 be a simple element. Then
ac N, b is a simple element of M.

Proof. Since ao A, b divides aA A, b on the left, it suffices to prove Lemma 8.8 for o = A.
Let 0102 ...0p, and 7172 ... 7, be the normal forms of a and b respectively. Let ¢ be the
permutation of Proposition 2.5 extended to M. Then A§~(oy)...571(0},) is the normal
form of aA = A§~1(a). Let a’ and & in M be represented by 716~ (01)...671(0,) and
Ty ... T4 respectively. We have aA = 11a’ and b = ¥/, thus

aA N b=T1(d NV .
We prove now that a’ A, b’ is 1. From the equivalence
nA=nm ()" = A7)
we deduce that (75)* is 71(71), and, therefore,
(TN o)=Y ) A0 o) =0 (mALo) =1

By Lemma 8.4, it follows that 776 1(a1)...57(0p) is the normal form of a’. From
Lemma 8.4, we also deduce that 71" A, 72 is 1, and, 71 = mz(a’) and 75 = 7z(b') imply
that this element is @’ A, ' Ar A. So, a’ A, b is 1, too. O

Proof of Proposition 8.5. Let ¢ be in G, let o be in X, and let € be in {£1}. Let w and
w’ be the normal forms of ¢ and co® respectively. We prove

ds(w(t),w'(t)) <5 (8.2)

for every non-negative integer ¢t. Let u,v be normal forms. Then (8.2) together with
an easy inductive argument on dx(@,v) shows

ds (u(t),v(t)) <5 - dx(u,)

for every non-negative integer t. Note that: if ¢/ is co~!, then c is co. So, we may
assume that ¢ is 1.
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Let a,b in M satisfy ¢ = a™'b and a A, b = 1. Let a1...ap and By ... 05, be the

normal forms of a and b respectively. The word w is «,, L a;lﬁl o B Let vy
-1

b .al_lfyl ...7%. By Lemma 8.7,

be the normal form of bo, and let wq be «
ds(w(t), w1 (1)) < 1 (8.3)

holds for every non-negative integer t. By Lemma 8.8, a/\; bo is a simple element, say p.
Let1 o and 7] be the simple elements satisfying a1 = paj and 1 = pyf, and let wy be

. cay ()T Y y2 . . ye. Clearly,

dx(wy(t),wa(t)) <2 (8.4)

holds for every non-negative integer t. Let a’,b’ in M satisfy co = (a’) "'’ and a/ AL b =
1. Then o’ and V' are represented by o ava . .. ap and v{y2 . . . ¢ respectively. Let oy . ..o,

and 7 . .. Ts be the normal forms of a’ and ' respectively. Then w'is o' ... o7 7y ... 7
and, by Lemma 8.6,

dss (W (t), @ (1)) < 2 (8.5)

holds for every non-negative integer ¢. The inequalities (8.3), (8.4), and (8.5) clearly
give (8.2). O

ProprosITION 8.9. The language of normal forms is geodesic.

Proof. Let ¢ be in G, let w be an expression of ¢ in (¥ UX~1)* and let wy be the
normal form of c. We prove that the length of w is greater or equal to the length of
wo. We write w as 77! ...75", v; in ¥ and g; in {£1}. We choose an expression u; of ;
in S*. Then c is represented by uj'...uS" in (S U S™1)*. Let p be the number of ;s
equal to 1. Following the proof of Lemma 3.9, one can establish:
RI(RL(uS .. uin)) = vyt O Un—pt - U

where v; is a word in S* that represents a simple element, namely, an element of XU{1}.
Let a,b in M satisfy ¢ = a~'b and a A, b = 1. By Corollary 7.5, Up—p ... U1 represents
a, and vp_py1 ... v, represents b. This shows that there exist expressions o ... a4 of a
and 1 ...0p of b in X* satisfying k41 < n.

So, it remains to prove that: if a is in M, w is an expression of ¢ in ¥*, and wy is
the normal form of a, then the length of w is greater or equal to the length of wg. This
is a direct consequence of Lemma 8.6 together with an easy induction argument on the
length of w. O
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9. AUTOMORPHISMS OF A (GAUSSIAN MONOID

In this section, we consider an automorphism of a Gaussian monoid and the induced
automorphism of the associated Gaussian group, and we study the submonoid and
subgroup of elements fixed by this automorphism. Then we state and prove Theorem
9.3 concerning the special case where the monoid is a finite Coxeter type Artin monoid.

We first remark that the group of automorphisms of a Gaussian monoid is finite
since any of them permutes the atoms, and these generate the monoid.

LEMMA 9.1. Let M be a Gaussian monoid, and let ¢ be an automorphism of M. Let
a,b be in M. Then

Pp(a Ve b) = ¢(a) Vr ¢(b) and é(a A, b) = ¢(a) N, (D) .

Proof. The element a divides a Vg b on the left, thus ¢(a) divides ¢(a Vg b) on the
left. Similarly, ¢(b) divides ¢(a Vz b) on the left, hence ¢(a) Vi ¢(b) divides ¢(a Vg b) on
the left. The same argument applied to ¢(a), ¢(b), and ¢!, shows that a Vg b divides
¢~ (p(a) Vi ¢(b)) on the left, and, therefore, that ¢(a Vg b) divides ¢(a) Vi ¢(b) on the
left. So, ¢p(aVxzb) is equal to ¢(a) Vy ¢(b). A similar argument gives the second equality
(concerning g.c.d.’s). O

DEFINITION. Let M be a monoid, and let ¢ be an automorphism of M. We set
M? ={a€ M ; ¢(a)=a},
the ¢-trivial submonoid of M. The ¢-orbit of an element a in M is {¢*(a) ; k € Z}.

THEOREM 9.2. Let M be a Gaussian monoid, let S be the set of atoms of M, let G be
the group of fractions of M, and let ¢ be an automorphism of M.

i) The ¢-trivial submonoid M? is a Gaussian monoid.

ii) Let X1, ..., Xy be the ¢-orbits in S. Let y; denote the right l.c.m. of the elements
of X;. Then y1,...,y, generate M?.

iii) The group of fractions of M? is equal to G?.

Proof.  The restriction to M? of the norm of M satisfies the equivalent conditions
of Proposition 2.1, thus M? is atomic. The monoid M? inherits the left and right
cancellation properties from M. If a,b are in M?, then, by Lemma 9.1, we have

d(a Ve b) = ¢(a) Ve ¢(b) = a Ve b,

thus a Vz b is also in M?, and, therefore, is the right l.c.m. of @ and b in M?. Similarly,
left l.c.m.’s also exist in M?. This proves that M? is a Gaussian monoid.
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We write X; as {x1,...,2,}, where ¢(x;) is zj11 for j =1,...,7 — 1, and ¢(z,) is
x1. By Lemma 9.1, we have

¢(yi):¢(1’1 \/R---\/er):¢(x1)vR---vR¢($T):x2vR---vaTva1:yi7

thus y; is in M?. Now, let a be in M?. We prove by induction on the norm of a that
a is in the submonoid generated by yi,...,ys. The result is obvious if the norm of a
is 0. We assume that the norm of a is greater than 0. Let x; be an atom of M that
divides a on the left. Let X; = {x1,...,2,} be the ¢-orbit of x;. We assume as before
that ¢(x;) is xj4q for j =1,...,r —1, and ¢(z,) is x1. If z; divides a on the left, then
() = xj41 also divides a = ¢(a) on the left. So, all the elements of X; divides a
on the left, and, therefore, 1; divides a on the left. Let a’ in M be such that y;a’ is a.
From the equality

yia' = a = ¢(a) = ¢(y;)o(a’) = yip(a’)

and from left cancellation, we deduce that o’ is in M?. By induction hypothesis, it
follows that o', and then also a, are in the submonoid generated by 1, ..., ye.

The group of fractions of M? is obviously included in G®. It remains to show that:
if ¢ is in G?, then c¢ is in the group of fractions of M?. By Corollary 7.5, ¢ can be
uniquely written as a~!b, where a,b are in M, and a A, b is 1. Now, ¢ = ¢(c) is also
#(a)"1o(b), the elements ¢(a) and ¢(b) are in M, and ¢(a) A, ¢(b) = ¢(a A, b) is 1.
By uniqueness, it follows that ¢(a) is a and ¢(b) is b, thus a,b are both in M?. This
proves that c is in the group of fractions of M?. O

Remark. The set {y1,...,ye} of Proposition 9.2.ii is not necessarily the set of atoms of
M?. For example, if M is given by the presentation

<1‘1,902,903,$4 | T1T2T1 = T2X1T2 = T3T4X3 = $4CE3904> )
and ¢ is defined by
d(x1) = x2, d(x2) =21, d(x3) = X3, P(T4) = X4,

then £ is 3, y1 is x1xoxy, Yo is x3, Y3 is x4, and yoysy2 is equal to y.

We now consider a Coxeter graph I' and an automorphism ¢ of I'. This induces an
automorphism of the associated Artin monoid A4, and any automorphism of A arises
from an automorphism of I'. We list below the pairs (I', ¢), where I' is a connected
finite type Coxeter graph, and ¢ is a non-trivial automorphism of I". The vertices of I"
are numbered according to [19, page 58].

i) I is of type Ay, and ¢(x;) is xp_;4q fori=1,... 0.
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ii) I is of type Dy, ¢(x;) is x; for i =1,...,0 — 2, ¢(xp_1) is x4, and ¢(xy) is z4_1.

iii) I is of type Dy, ¢(x1) is x3, ¢(x2) is z2, ¢(x3) is x4, and ¢(x4) is x1.

iv) I' is of type Es, ¢(z1) is z6, ¢(22) is 2, ¢(x3) is x5, d(z4) is 24, ¢(5) is 3,
and ¢(xg) is 7.

v) T is of type Fy, ¢(x1) is x4, ¢(x2) is z3, ¢(x3) is xo, and ¢(x4) is x1.

vi) I is of type I2(p), ¢(x1) is x2, and ¢(x2) is z7.

THEOREM 9.3. Let I' be a finite type Coxeter graph, let ¢ be an automorphism of T,
and let A be the Artin group associated with I'. Then A? is also a finite Coxeter type
Artin group.

Theorem 9.3 is proved for Artin groups of type A, in [21, Corollary 2.25] using
topological methods where the Artin groups considered are viewed as groups of isotopy
classes of diffeomorphisms of surfaces. Another proof for the Artin group of type Fjg
is proposed in [21, Appendice|. This is due to J. Michel [22], is based on the fact that
a similar result holds for finite Coxeter groups, and can be extended in a case by case
proof for Artin groups associated with connected finite type Coxeter graphs. The proof
given here is independent from the previous ones and works in the general case, even
if " is not connected.

Proof. ~ We start recalling some well-known definitions and results concerning finite
Coxeter type Artin groups. We refer to [5] and [15] for the proofs. We also assume the
reader to be familiar with the theory of Coxeter groups and refer to [4] and [20] for
general expositions.

Let S be the set of atoms of Ay, let M = (my;)ses be the Coxeter matrix repre-
sented by I', and let W be the Coxeter group associated with I'. For a subset X of S
we write:

My = (ms,t)s,tGXa

I'x, the Coxeter graph which represents Mx,

Wx, the subgroup of W generated by X,

Ax, the subgroup of A generated by X.

Following the conventions of [23], we shall call the subgroup Wx a parabolic subgroup.
It is the Coxeter group associated with I'x. Similarly, Ax is called parabolic subgroup
and is the Artin group associated with I'x (see [31] and [23]). We denote by 6 : A — W
the homomorphism which sends = to x for all x in S. This homomorphism has a
natural set-section 7 : W — A, defined in Section 2. The set of simple elements is
{r(w);w € W} and the fundamental element is A = 7(wyp), where wy is the element of
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maximal length in W. A direct consequence of the existence of 7 is: if a is a simple
element of A, then we have

lgs(a) =lgs(0(a)) (9-1)

Now, let X1,..., X, be the ¢-orbits in S, and let y; be the right l.c.m. of the elements
of Xz

Assertion. Fori,j in {1,...,1}, i # j, there exists an integer m; ; > 2 satisfying

Yi Ve yj = prod(yi, yj; m; ;) = prod(y;, yi; mi ;) - (9.2)

This assertion proves Theorem 9.3. Indeed, by Theorem 9.2, (A, )? is generated by
Y1,...,ye and is a Gaussian monoid. By Theorem 4.1 and (9.2), it follows that (A, )?
is the Artin monoid associated with the Coxeter matrix M = (m; ;). Note that, by [5],
an Artin monoid is Gaussian if and only if it is of finite Coxeter type. So, the Coxeter
group associated with M is finite. Finally, still by Theorem 9.2, A? is the group of
fractions of (A4 )?, hence is the Artin group associated with M.

Proof of the assertion. Let X = X; U X;. Then y; is the right L.c.m. of the elements of
X; and is in (Ax,)+, y; is the right l.c.m. of the elements of X; and is in (Ax;), and
Y; Vg y; is the right l.c.m. of the elements of X and is in (Ax)+. In particular, y; Vi y;
is a simple element. Let w; be the element of maximal length in Wy, and let w; be
the element of maximal length in Wx,. Then y; is 7(w;) and y; is 7(w;).

Let a1 in (Ax)+ be such that y;a; is y; Vg yj. If a1 is the identity, then y; is equal
to y; Vg y;, thus w; is also the element of maximal length of Wx. This is known not to
be the case, therefore a; is not the identity. We choose x in X which divides a; on the
left. The element y;x is simple since it divides y; Vi y; on the left. The atom z is in
X, otherwise, if x is in X;, then

lgs(0(yiz)) = lgg(wiz) <lgg(w;) + 1 =lgg(yiz) ,

and this contradicts (9.1). Since both y; and y; Vi y; are in (A4)?, a; is also in (A4)?.
From the same argument as that given in the proof of Theorem 9.2.ii, it follows that y;
divides a; on the left. Let a in (Ax )4 be such that y;y;a2 is y; Vg y;. If as is not the
identity, then one may choose z in X which divides as on the left, this element has to
be in X; (otherwise y;y;x does not satisfy (9.1)), and then y; divides as on the left. An
iteration of this argument finally shows that there exists an integer m > 2 satisfying

Yi Ve yj = prod(y;, yj;m) .
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Similarly, there exists an integer m’ > 2 satisfying

Yi Ve y; = prod(y;, yi;m’) .

We have m = m/, otherwise (say m < m') there exists a in (Ax)4 satisfying

Yi Ve yj = prod(y;, yi;m') = y;prod(vi, y;; m)a = y;(yi Ve yj)a ,

and this is not possible. Setting /m; ; = m = m/, this finishes the proof of the assertion.
O

A careful reading of the proof of Theorem 9.3 gives a method for finding the Coxeter
matrix M = (10, ;) that determines the Artin group A?. For a subset X of S, we denote
by nx the maximal length of an element of Wx. It is known to be equal to the sum of
the exponents of Wx. The length of y; is ny,, the length of y; is nx,, and the length
of y; Vg yj is nx. So, (9.2) gives:

mw'(nxi —l—?’LXj) =2nx . (9.3)
Now, the following proposition is a direct consequence of (9.3).

ProprosITION 9.4. Let I' be a connected finite type Coxeter graph, let A be the Artin
group associated with I', and let ¢ be a non-trivial automorphism of I'.

i) If A is of type Ay, then A? is of type By, where k is £/2 if { is even, and k is
(¢+1)/2 if ¢ is odd.

ii) If A is of type D, and ¢ has order 2, then A? is of type By_;.

iii) If A is of type D4 and ¢ has order 3, then A? is of type I>(6) = Ga.

iv) If A is of type Eg, then A? is of type Fy.

v) If A is of type Fy, then A® is of type I5(8).

vi) If A is of type Iz(p), then A? is of type A;. O
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