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Abstract
Say that an element of a free group is a pure conjugate if it can
be expressed from the generators using exclusively the conjugacy
operation. We study free reductions in words representing pure
conjugates. Using finite state automata, we attribute to the letters
in such words levels that live in some free left distributive system.
If a certain conjecture about this system is true, then reduction
can occur only between letters lying on the same level. Under this
conjecture, we establish restrictions on the form of those identi-
ties satisfied by group conjugacy, and we construct unique normal
forms for large families of pure conjugates. We also show how to
use group conjugacy to solve a problem related to the word prob-
lem of left self-distributivity.
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1. Introduction

The conjugacy operation of a group

x∧y = xyx−1

is a typical example of a binary operation that is both left self-distributive
and idempotent, i.e., that satisfies the identities

x∧(y∧z) = (x∧y)∧(x∧z), (LD)
x∧x = x. (I)
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Except in trivial cases, this operation does not satisfy the entropic law,
and, therefore, a group equipped with conjugacy is not a mode. However,
it is closely connected with modes: for instance, using the free differential
calculus of [1], we project the conjugacy operation of a free group onto the
entropic operation

x∧y = (1 − t)x + ty

of an affine space.
Let us consider the question of axiomatizing group conjugacy. If we

consider simultaneously the conjugacy operation ∧ and the dual operation ∨

defined by x∨y = x−1yx, then the answer is easy: the identities satisfied
by ∧ and ∨ are the consequences of the four identities expressing that ∧ and
∨ are self- and mutually left distributive, and of the two additional identities
x∧(x∨y) = x∨(x∧y) = y. In other words, the systems (F, ∧, ∨) where F is a
free group are, up to a symmetry, the free quandles of [10] and [15].

In the case of the operation ∧ alone, the question remains widely open.
It was not even known until recently whether ∧ is completely axiomatized
by (LD) and (I). Actually, it is not: D. Larue has constructed in [11] an
infinite series of independent identities that are satisfied by conjugacy and
are not consequences of (LD) and (I). An example of such an identity is

((x∧y)∧y)∧(x∧z) = (x∧y)∧((y∧x)∧z). (1.1)

This example appears also in [7].
The only general positive result about axiomatization of group conju-

gacy is the result of [11] that those identities satisfied by ∧ are exactly those
identities that hold in every left cancellative binary system satisfying (LD)
and (I), i.e., in every idempotent rack in the terminology of [9].

There is no reason to believe that the above mentioned identities give
a complete axiomatization of group conjugacy. In this paper, we study the
question by proving that certain forms of identities are a priori impossible—
at least if a certain conjecture about the left self-distributive law is true.

In the sequel, V denotes a fixed countable sequence of variables, and
T denotes the set of all formal terms constructed using variables in V and
a single binary operator denoted ∧. We say that two terms t, t′ in T are
LD-equivalent, denoted t =LD t′, if the identity t = t′ is a consequence of
Identity (LD).

Definition. Assume that t0 and t are terms in T . We say that t0 � t holds,
or that t0 is a proper prefix of t, if there exist finitely many terms t1, . . ., tk
such that t is (. . .((t0∧t1)∧t2). . .)∧tk. We say that t0 �LD t (resp. t0 �LD t)
holds if there exist terms t′0 and t′ satisfying t′0 =LD t0, t′ =LD t and t′0 � t′

(resp. t′0 � t′ or t′0 = t′).
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Definition. The term t is LD-monotone if there exist distinct variables
x1, . . ., xm such that t �LD x1

∧. . .∧xm holds. The identity t1 = t2 is LD-
monotone if both t1 and t2 are LD-monotone terms.

In the above definition, as everywhere subsequently, missing brackets
are to be added on the right: x∧y∧z stands for (x∧y)∧z. One can verify
that neither (I) nor any of the identities of [11] like (1.1) above is an LD-
monotone identity. The main statement we shall discuss is:

Conjecture A. Group conjugacy satisfies no LD-monotone identity except
those that are consequences of left self-distributivity.

A binary system made of a set equipped with a binary operation that
satisfies Identity (LD) is called an LD-system. By construction, the binary
system (T/ =LD, ∧) is a free LD-system based on V . We denote by Λ this
free LD-system, and by πLD the canonical projection of T onto Λ. For t a
term, we shall usually write t for πLD(t). If t is a term and t is a, we say
that t represents a.

A non-trivial property of the left self-distributive law is that the prefix
relation of terms induces a (strict) partial ordering on the free LD-system Λ
[11] [4]. This partial ordering is still denoted �.

Definition. An element a of Λ is decomposable if there exist distinct vari-
ables x1, . . ., xm in V such that a can be written a = a1

∧. . .∧an with
x1

∧. . .∧xm � a1 � . . . � an.

Conjecture B. The square function of Λ is injective on decomposable
elements: if a1, a2 are decomposable in Λ and a1

∧a1 = a2
∧a2 holds, then

a1 and a2 are equal.

Our main result here is:

Proposition 1.1. Conjecture B implies Conjecture A.

The previous general study can be translated into a study of the conju-
gacy operation of a free group. In the sequel, we denote by F a free group
based on V .
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Definition. An element a of the free group F is a pure conjugate if it can
be expressed using exclusively variables in V and the conjugacy operation ∧.
The set of all pure conjugates in F is denoted C. Thus, C is the closure
of V under ∧ in the LD-system (F, ∧).

For instance, xyxy−1x−1 is a pure conjugate, as we have in F the
equality xyxy−1x−1 = ((x∧y)∧x, as well as xyxy−1x−1 = x∧y∧x.

Saying that every pure conjugate can be expressed using exclusively ∧

and variables means that such an element is the evaluation in (F, ∧) of some
term of T . We denote by eval this evaluation mapping.

The very fact that non-trivial algebraic identities are satisfied by the
conjugacy operation implies that the mapping eval is not injective. For
instance, we have eval(x∧x) = eval(x) = x.

A natural problem is to find a section for eval, i.e., to construct, for
every pure conjugate in F , a distinguished, ‘normal’ term that represents
it. We have no general solution, but, if Conjecture A is true, we can obtain
a partial solution.

Definition. A pure conjugate is monotone if it can be represented by an
LD-monotone term.

We define in Section 8 the notion of a special term. Then we prove

Proposition 1.2. Assume that Conjecture A is true. Then every monotone
pure conjugate in F is represented by a unique special term, in an effective
way, i.e., there exists an algorithm that, starting with a monotone pure
conjugate a, returns the unique special term t such that a is eval(t).

One of the possible interests of this result is that, assuming that Con-
jecture A is true, it gives a large family of terms with pairwise distinct
evaluations in (F, ∧). Because group conjugacy satisfies both (LD) and (I),
these terms must be pairwise LDI-inequivalent, with the obvious definition
that t and t′ are LDI-equivalent if the identity t = t′ is a consequence of the
conjunction of (LD) and (I). It is not known whether LDI-equivalence is
a decidable relation, and very few techniques are available for constructing
LDI-inequivalent terms.

In the other direction, we can use group conjugacy to solve problems
about LD-systems. Let z be a fixed variable, and T1 be the set of all terms
constructed using z and the operator ∧. For t in T , we define the skeleton
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of t to be the term in T1 obtained from t by replacing each variable with z.
It is known that two LD-equivalent terms having the same skeleton must be
equal. In other words, if we are given the skeleton of a term t and its class
in Λ, there is exactly one way to choose the variables of t. It is natural to
ask for an algorithmic solution.

Definition. An element a of Λ is monotone if it can be represented by an
LD-monotone term.

Proposition 1.3. There exists an algorithm that, assuming that Conjec-
ture A is true and starting with a monotone element a of Λ and a skeleton s
in T1, returns the (unique) term t with skeleton s that represents a, if such
a term exists.

The organization of the paper is as follows. In Section 2, we fix the
framework and consider the case when product and conjugacy are considered
simultaneously. In Section 3, we introduce the conjugacy words precisely,
and we prove some basic relations involving the so-called Z-level of the let-
ters. In Section 4, we describe the connection between the prefixes of the
conjugate words and the geometry of the terms that represent them. In
Section 5, we introduce automata and show how to use a deterministic au-
tomaton to control free reductions in a word. In Section 6, we consider the
specific automaton associated with a term. In Section 7, we prove Propo-
sition 1.1 and various related results about conjugate words. In Section 8,
we define the notion of a special term and prove the normal form result
stated as Proposition 1.2. Finally, we develop in Section 9 the algorithm
mentioned in Proposition 1.3.

2. LD-monoids

Besides the pure conjugates, which have been defined in Section 1 as those
elements of F that can be obtained from the generators using exclusively
the conjugacy operation, it will be useful to consider those elements that
can be obtained from the generators using both conjugacy and product.

Definition. An element a of F is a conjugate if it can be expressed using
exclusively variables in V , the product and the operation ∧. The set of all
conjugates is denoted by C̃. Thus, C̃ is the closure of V in (F, ·, ∧).

For instance (still assuming that x and y belong to V ), the word xy
is a conjugate—while Proposition 4.5 below will show that it is not a pure
conjugate.
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Lemma 2.1. (C̃, ·) is the submonoid of (F, )̇ generated by C.

Proof. Let C∗ denote the submonoid of F generated by C. The only point
we have to prove is that C∗ is closed under operation ∧. This follows from
the formula (a1. . .an)∧(b1. . .bm) = c1. . .cm, where ci is a1

∧. . .∧an
∧bi. �

Definition. The algebraic system (M, ·, 1, ∧) is an LD-monoid if (M, ·, 1)
is a monoid, and the following mixed identities holds in M :

x · y = (x∧y) · x, (LDM1)
(x · y) ∧ z = x∧(y∧z), (LDM2)

x∧(y · z) = (x∧y) · (x∧z), (LDM3)
x∧1 = 1. (LDM4)

Note that, in every LD-monoid, the second operation is left self-
distributive and satisfies 1∧x = x for every x. The following fact is obvious:

Proposition 2.2. Assume that (G, ·, 1) is a group. Then (G, ·, 1, ∧) is an
LD-monoid.

Like pure conjugates, conjugates are the evaluation in (F, ·, ∧) of some
terms. Here, we have to consider terms involving two binary operation
symbols, say · and ∧. We write T̃ for the set of all such terms, extended
with an additional term 1 that represents the unit. We still use eval for
the surjective evaluation mapping of T̃ onto C̃, as it extends the evaluation
mapping of T onto C.

We say that two terms t, t′ in T̃ are LDM-equivalent, written t =LDM t′,
if the identity t = t′ is a consequence of the axioms of LD-monoids. The
latter are denoted (LDM) in the sequel. As for the case of one operation,
the system (T̃ / =LDM , ·, ∧) is a free LD-monoid based on V . We denote it
by Λ̃, and we write πLDM for the canonical projection of T̃ onto Λ̃. Again,
for t in T̃ , we shall usually write t for πLDM(t).

Definition. The set T ∗ is the subset of T̃ consisting of those terms of the
form t1 · . . . · tm with t1, . . ., tm in T , i.e., involving the operator ∧ only.
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Lemma 2.3. [13, 3] (i) There exists a function red of T̃ onto T ∗ that maps
every term to an LDM-equivalent term. For t = t1 · . . . · tm in T ∗ and x
in V , the term red(t∧x) is t1

∧. . .∧tm
∧x, thus it belongs to T .

(ii) Two terms t, t′ in T ∗ are LDM-equivalent if and only if for each
variable x the terms red(t∧x) and red(t′∧x) are LD-equivalent.

(iii) For t, t′ in T and x a variable, the terms t and t′ are LD-equivalent
if and only if the terms t∧x and t′∧x are LD-equivalent.

By (i) above, all elements of Λ̃ can be represented by terms in T ∗—
and, therefore, by the existence of eval, so do all elements of C̃ (this implies
Lemma 2.1). By (ii) and (iii), two terms in T are LDM-equivalent if and
only if they are LD-equivalent. So the inclusion of T into T̃ induces an
embedding of Λ into Λ̃, and we shall from now on consider Λ as a sub-LD-
system of Λ̃. Then, by (i), every element in Λ̃ is a finite product of elements
of Λ. Finally, the mapping a �→ a∧x is an injection of Λ̃ into Λ for every
variable x in V .

Definition. Let t be a term in T . Then t admits a unique decomposition
of the form t = t1

∧. . .∧tm
∧x with x a variable in V and t1, . . ., tm terms

in T . We define varR(t) to be x, and t− and t+ to be respectively the terms
t1 · . . . · tm and t1 · . . . · tm · x in T ∗ (t− is 1 if t is x).

Lemma 2.4. The mappings varR, − and + induce well-defined mappings
of Λ respectively into V , Λ̃ and Λ̃.

Proof. When we apply (LD) once to the term t = t1
∧. . .∧tm

∧x,
either we apply it inside some subterm ti, or we replace t with
t1

∧. . .∧(ti∧ti+1)∧ti
∧. . .∧tm

∧x, or we replace t with t1
∧. . .∧ti+1

∧t′i
∧. . .∧tm

∧x,
where ti is ti+1

∧t′i. In every case, the value of x, as well as the value of m,
is unchanged. So varR(t) depends only on the LD-class of t.

Assume then that the terms t = t1
∧. . .∧tm

∧x and t′ = t′1
∧. . .∧t′m′

∧x′

are LD-equivalent. By the argument above, we have m = m′ and x = x′.
By Lemma 2.3(ii), the terms t− and (t′)− are LDM-equivalent if and only if
the terms red(t−∧x) and red((t′)−∧x) are LD-equivalent: by construction,
this means that the terms t and t′ are LD-equivalent. Similarly, the terms
t+ and (t′)+ are LDM-equivalent if and only if the terms red(t+∧x) and
red((t′)+∧x) are LD-equivalent. Now the latter terms are respectively LD-
equivalent to t∧t and t′∧t′, and t =LD t′ implies t∧t =LD t′∧t′. �
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We shall naturally still denote by varR the mapping of Λ to V induced
by varR, and by − and + the mappings of Λ into Λ̃ induced by − and +. For
instance, we have in Λ̃ the equalities

varR((x∧y)∧x) = x, ((x∧y)∧x)− = x∧y, ((x∧y)∧x)+ = (x∧y)x = xy.

Lemma 2.5. For every element a in Λ, the equalities

a = a−∧varR(a) (2.1)
a+ = a− · varR(a) = a · a− (2.2)

(a∧a)− = a+ (2.3)

hold in Λ̃.

Proof. Assume that varR(a) is x. The equalities a = a−∧x and a+ = a− · x
are obvious from the definition. Then, by (LDM1), a− · x is (a−∧x) · a−,
i.e., by (2.1), a · a−. Finally, we have a∧a = a−∧x∧x = (a− · x)∧x = a+∧x,
hence (a∧a)− is a+. �

3. Conjugate words

As usual, the elements of the free group F are represented by reduced words
over the alphabet V ∪ V −1, where V −1 denotes a disjoint copy of V . We
denote by W the free monoid of all words over V ∪ V −1. For w in W ,
we denote by w the free reduct of w, i.e., the word obtained from w by
iteratively deleting all patterns xx−1 and x−1x with x in V . We write
w =FG w′ if w and w′ represent the same element of F . Finally, we denote
by w−1 the word obtained from w by reversing the ordering of the letters
and replacing every letter x±1 by its inverse x∓1.

Definition. The mapping conj : T̃ −→ W is defined inductively by the
rules

conj(t) =




t if t is a variable,
conj(t0)conj(t1)conj(t0)−1 if t is t0

∧t1,
conj(t0)conj(t1) if t is t0 · t1.

The words of the form conj(t) for t in T ∗ are called conjugate words. The
words of the form conj(t) for t in T are called pure conjugate words.

By construction, we have:
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Lemma 3.1. For every term t, eval(t) is conj(t).

The difference between conjugate words and conjugates is that the
former need not be freely reduced in general. For instance, if t is the term
(x∧y)∧x, conj(t) is the word xyx−1xxy−1x−1, while eval(t) is the reduced
word xyxy−1x−1. Most of our work in the sequel consists in trying to control
the free reductions that may occur in conjugate words.

We shall always consider a word w of length � in W as a mapping of
the integer interval {1, . . ., �} into V ∪ V −1. Thus, for 1 ≤ p ≤ �, we write
w(p) for the p-th letter of w. Similarly, w�{p1, . . ., p2} denotes the subword
of w that comprises the letters from the p1-th to the p2-th.

If w(p) is x±1, we say that p is a position of x in w. The sign sign(p, w)
of the position p in the word w is + or − according to whether the letter w(p)
lies in V or in V −1.

Proposition 3.2. Assume that w is a pure conjugate word, or a pure
conjugate. Then the length � of w is odd, the median letter of w is positive,
and w(� + 1 − p) = w(p)−1 holds for every non-median position p.

Proof. By induction on the term t, the properties are obvious for the
words conj(t). Then they are preserved under free reduction. �

Definition. Assume that w is a word in W . We write ‖w‖+ and ‖w‖−
respectively for the total number of positive and of negative positions in w—
so that the length of w is always ‖w‖+ + ‖w‖−. The Z-balance of w is
‖w‖+ − ‖w‖−. For p a position in w, the Z-level of p in w is the difference

Z-level(p, w) = ‖w�{1, . . ., p − 1}‖+ − ‖w�{1, . . ., p}‖−.

Example 3.3. The pure conjugate word conj((x∧y)∧x) = xyx−1xxy−1x−1

has Z-balance +1, and the Z-levels of its 7 positions are

p 1 2 3 4 5 6 7
w(p) x y x−1 x x y−1 x−1

Z-level(p, w) 0 1 1 1 2 2 1

Lemma 3.4. Assume that w is a word of length �. Then the equality

Z-level(� + 1 − p, w) = Z-balance(w) + Z-level(p, w−1) (3.1)

holds for 1 ≤ p ≤ �.
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Proof. By definition, w−1(q) is w(� + 1 − q)−1 for every position q, so we
have

Z-level(p, w−1) = ‖w−1�{1, . . ., p − 1}‖+ − ‖w−1�{1, . . ., p}‖−
= ‖w�{� + 2 − p, . . ., �}‖− − ‖w�{� + 1 − p, . . ., �}‖+

= ‖w‖− − ‖w�{1, . . ., � + 1 − p}‖−
− ‖w‖+ + ‖w�{1, . . ., � − p}‖+

= −Z-balance(w) + Z-level(� + 1 − p, w),

which gives (3.1). �

Proposition 3.5. Assume that w is a pure conjugate word. Then the
Z-balance of w is +1; position 1 has Z-level 0 in w, while all subsequent
positions have Z-level ≥ 1. If the length of w is at least 2, the last position
has Z-level 1.

Proof. The result is proved for conj(t) inductively on t. Everything is
obvious when t is a variable. Assume t = t0

∧t1. Write w for conj(t), wi

for conj(ti), i = 0, 1, and �, �0 and �1 respectively for the lengths of w,
w0 and w1. By definition, w is w0w1w

−1
0 , so, by induction hypothesis,

Z-balance(w) is 1 + 1 − 1 = 1. For 1 ≤ p ≤ �0, we have

Z-level(p, w) = Z-level(p, w0),

so, by induction hypothesis, this number is 0 for p = 1 and ≥ 1 for p ≥ 2.
Then, for 1 ≤ p ≤ �1, we have

Z-level(�0 + p, w) = Z-balance(w0) + Z-level(p, w1).

By induction hypothesis, Z-balance(w0) is 1, and Z-level(p, w1) is ≥ 0, so
Z-level(�0 + p, w) ≥ 1 holds. Finally, for 1 ≤ p ≤ �0, we have by For-
mula (3.1)

Z-level(� + 1 − p, w) = Z-balance(w) + Z-level(p, w−1)
= 1 + Z-level(p, w0)

and we conclude as above. �

Proposition 3.6. The mapping conj is injective on T ∗.
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Proof. Assume that w is conj(t1 ·. . .·tm). We can retrieve the words conj(t1),
. . ., conj(tm) from w. Indeed, by Proposition 3.5, the Z-balance of w is m.
The first position corresponding to conj(tm) in w has Z-level m − 1, while
all subsequent positions have level ≥ m. So conj(tm) can be isolated, and,
by repeating the process, so can conj(tm−1), . . ., conj(t2).

It suffices now to prove injectivity on T . Assume w = conj(t). Then w
has length 1 if and only if t is a variable, and, in this case, w is that vari-
able. Otherwise, assume t = t0

∧t1. Then w is conj(t0)conj(t1)conj(t0)−1,
and it suffices to recognize where the subword conj(t1) begins in w. By
Proposition 3.5, the first position coming from conj(t1) has Z-level 1, while
all subsequent positions have level ≥ 2, except the last position, which also
has level 1. �

Definition. The term t is injective if every variable occurs at most once
in t.

Corollary 3.7. The mapping eval is injective on injective terms of T ∗.

Proof. An easy induction shows that, if t is an injective term in T ∗, then the
word conj(t) is freely reduced. Indeed, assume t = t0

∧t1 or t = t0 · t1. By
induction hypothesis, the words conj(t0) and conj(t1) are reduced. Now no
reduction can occur between the words conj(t0) or conj(t0)−1 and conj(t1),
as these words involve disjoint variables. So, for t an injective term, eval(t)
is merely equal to conj(t) and injectivity follows from Proposition 3.5. �

4. Addresses and cuts

Here we describe a correspondence between the geometry of the terms and
the positions in the associated conjugate words.

In order to be able to refer precisely to the variables in a term, we
introduce addresses. To this end, we consider a term of T as a binary tree.
The tree associated with a variable has a single node labelled with this
variable. The tree associated with t0

∧t1 admits the tree associated with t0
as its left subtree and the tree associated with t1 as its right subtree.

For instance, the tree associated with the term (x∧y)∧x is

x y

x .
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We introduce now addresses for the nodes of binary trees: the address
of a node consists of a finite sequence of 0’s and 1’s that describes the path
from the root of the tree to the considered node, 0 standing for a left forking
and 1 for a right forking. We use Λ (empty word) to represent the address
of the root of the tree. If t is a term in T , we say that u is an address in t if
u is the address of a terminal node of (the tree associated with) t, and we
write t(u) for the variable that occurs at this node.

For instance, there are 3 addresses in the term t = (x∧y)∧x, namely 00,
01 and 1, and we have t(00) = t(1) = x and t(01) = y.

There exists a natural left–right ordering of the addresses: we say that
u1 lies on the right of u2 if there exists an address u such that u1 begins
with u1 and u2 begins with u0.

Definition. Assume that u1, u2 are addresses. We say that u1 covers u2

if there exists an address u and a positive integer k such that u1 is u1k and
u2 begins with u0. A stack in the term t is a finite sequence of addresses
(u1, . . ., um) in t such that ui covers ui+1 for each i.

Example 4.1. There are 7 stacks in the term (x∧y)∧x, namely (00), (01),
(01, 00), (1), (1, 01, 00), (1, 01), and (1, 00).

Lemma 4.2. Assume that t0 and t1 are terms in T and t is t0
∧t1. Assume

that 1k is the rightmost address in t. The stacks in t are: the sequences
(0u1, . . ., 0um) with (u1, . . ., um) a stack in t0, the sequences (1u1, . . ., 1um)
with (u1, . . ., um) a stack in t1, and the sequences (1k, 0u1, . . ., 0um) with
(u1, . . ., um) a stack in t0.

Proof. The addresses covered by 0u are exactly those addresses of the
form 0u′ where u′ is covered by u. If u contains at least one 0, the addresses
covered by 1u are exactly those addresses of the form 1u′ where u′ is covered
by u. Finally, the addresses covered by 1k are all addresses of the form 1i0u
with i < k. �

Definition. Assume that t is a term in T and p is a position in the
word conj(t). The origin of p in t is the sequence of addresses defined
inductively by the following rules:

(i) Assume that t is a variable. Then p is necessarily 1, and the origin
of p in t is (Λ);

(ii) Assume that t is t0
∧t1, and 1 ≤ p ≤ �0 holds, where �0 is the

length of conj(t0). Let (u1, . . ., um) be the origin of p in t0, � be the length
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of conj(t), and 1k be the rightmost address in t. Then the origins of p
and � + 1 − p in t are respectively (0u1, . . ., 0um) and (1k, 0u1, . . ., 0um),

(iii) Assume that t is t0
∧t1, and 1 ≤ p ≤ �1 holds, where �i is the length

of conj(ti). Let (u1, . . ., um) be the origin of p in t1. Then the origin of �0+p
in t is (1u1, . . ., 1um).

Example 4.3. Let (once more) t be the term (x∧y)∧x. Then the origins
of the 7 letters in the word conj(t) are as follows:

p 1 2 3 4 5 6 7
w(p) x y x−1 x x y−1 x−1

origin of p (00) (01) (01, 00) (1) (1, 01, 00) (1, 01) (1, 00)

Proposition 4.4. For every term t in T , the origin mapping establishes
a bijection between the positions in the word conj(t) and the stacks in the
term t.

Proof. Induction on t. The result is straightforward if t is a variable. As-
sume t = t0

∧t1, and let �i be the length of the word conj(ti) for i = 0, 1,
and � be the length of conj(t). The positions in conj(t) are the �0 positions
in conj(t0), followed by �1 positions of the form �0 + p with p a position
in conj(t1), followed by �0 positions of the form � + 1 − p with p a posi-
tion in conj(t0). Then the induction hypothesis and Lemma 4.2 give the
result. �

Definition. Assume that t is a term in T , u is an address in t and p
is a position in conj(t). We say that p comes from u in t if u is the last
component in the origin of p in t.

Proposition 4.5. Assume that t is a term in T and u is an address in t
that contains i letters 0 and j letters 1. Let w be the word conj(t). Then
there are 2i positions in w that come from u. If p1 < . . . < p2i are these
positions, we have for every k

w(pk) = t(u)(−1)k+1
, Z-level(pk, w) = j + F (k),

where F is the universal function inductively defined by F (1) = 0 and
F (k) = 1 + F (2m+1 − k + 1) for 2m < k ≤ 2m+1. Moreover, the length of
the origin of pk in t, i.e., the number of addresses it comprises, is F (k) + 1.
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Proof. Straightforward using induction on t. �

For instance, we see that, if t is (x∧y)∧x, then 4 positions in the
word conj(t) come from 00, namely those underlined in xyx−1xxy−1x−1.
The corresponding Z-levels are 0, 1, 2, and 1, and the associated stacks,
namely (00), (01, 00), (1, 01, 00) and (1, 00), have respective length 1, 2, 3,
and 2.

Definition. Assume that t is a term in T , and that u is an address in t.
The cut of t at u is the term cut(t, u) inductively defined by the following
rules:

(i) If t is a variable and u is Λ, then cut(t, u) is t;
(ii) If t is t0

∧t1 and u is 0u0 for some address u0 in t0, then cut(t, u) is
cut(t0, u0);

(iii) If t is t0
∧t1 and u is 1u1 for some address u1 in t1, then cut(t, u)

is t0
∧cut(t1, u1).

The term cut(t, u) is the term obtained from t by forgetting everything
on the right of u. For instance, t = (x∧y)∧x has 3 cuts, namely

cut(t, 00) = x, cut(t, 01) = x∧y, cut(t, 1) = t.

Definition. Assume that t is a term in T , and � is the length of the
word conj(t). The mapping t� of {1, . . ., �} into Λ is defined by

t�(p) = πLD(cut(t, u1)∧. . .∧cut(t, um)),

where (u1, . . ., um) is the origin of p in t. The Λ̃-level of p in w is t�(p)−.

Example 4.6. Letting once more t be the term (x∧y)∧x, we find:

p 1 2 3 4 5 6 7

w(p) x y x−1 x x y−1 x−1

t�(p) x x∧y (x∧y)∧x (x∧y)∧x x∧y∧x ((x∧y)∧x)∧x∧y ((x∧y)∧x)∧x

Λ̃-level(p, w) 1 x x∧y x∧y xy ((x∧y)∧x) x (x∧y)∧x

Lemma 4.7. Assume that t0 and t1 are terms in T , and t is t0
∧t1. Let

�, �0 and �1 be respectively the length of the words conj(t), conj(t0) and
conj(t1). Then the equality

t�(p) =




t�0(p) if 1 ≤ p ≤ �0 holds, (4.1)
t0

∧ t�1(p1) if p is �0 + p1 with 1 ≤ p1 ≤ �1, (4.2)
t ∧ t�0(p0) if p is � + 1 − p0 with 1 ≤ p0 ≤ �0 (4.3)

holds for every position p in conj(t).
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Proof. Assume that the origin of p0 in t0 is (u1, . . ., um). Then the origin
of p0 in t is (0u1, . . ., 0um), and we have

t�(p0) = πLD(cut(t, 0u1)∧. . .∧cut(t, 0um))

= πLD(cut(t0, u1)∧. . .∧cut(t0, um)) = t�0(p0).

Similarly, assume that the origin of p1 in t1 is (u1, . . ., um). Then the origin
of �0 + p1 in t is (1u1, . . ., 1um), and we have

t�(�0 + p1) = πLD(cut(t, 1u1)∧. . .∧cut(t, 1um))
= πLD((t0∧cut(t1, u1))∧. . .∧(t0∧cut(t1, um)))

= t0
∧ πLD(cut(t1, u1)∧. . .∧cut(t1, um)) = t0

∧ t�1(p1).

Finally, the origin of � + 1 − p0 in t is (1k, 0u1, . . ., 0um), where 1k is the
rightmost address in t, and we have

t�(� + 1 − p) = πLD(cut(t, 1k)∧cut(t, 0u1)∧. . .∧cut(t, 0um))

= πLD(t∧cut(t0, u1)∧. . .∧cut(t0, um)) = t ∧ t�0(p0). �

Proposition 4.8. Assume that t is a term in T , that w is the word conj(t),
and that � is the length of w. Let �′ = (� + 1)/2. Then we have

t�(�′) = t, t�(�′ + p) = t ∧ t(�′ − p) for 1 ≤ p < �′,

Λ̃-level(1, w) = 1, Λ̃-level(�′, w) = t−, Λ̃-level(�, w) = t.

Proof. An obvious induction using Lemma 4.7. Observe that the origin of
the median position �′ is a stack of the form (1k). �

The fact that (F, ·, ∧) is an LD-monoid implies that the evaluation
mapping of T̃ onto C̃ factors through Λ̃, and its restriction to T factors
through Λ. We shall denote by eval the surjective homomorphism of Λ̃ onto
C̃ such that eval(t) = eval(t) holds for every term t in T̃ .

Proposition 4.9. Assume that t is a term in T , w is conj(t) and p is a
position in w. Then the equivalences

w�{1, . . ., p} =FG eval(t�(p)sign(p,w)) (4.4)
w�{1, . . ., p − 1} =FG eval(t�(p)−sign(p,w)) (4.5)

hold in W .
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Proof. Induction on t. If t is a variable, the result is obvious. So assume
t = t0

∧t1. Write wi for conj(ti). Assume first 1 ≤ p ≤ �0. Using the
induction hypothesis and (4.1), we find

w�{1, . . ., p} = w0�{1, . . ., p}
=FG eval(t�0(p)sign(p,w0)) = eval(t�(p)sign(p,w)).

The computation is similar for p − 1.
Assume now p = �0 + p1 with 1 ≤ p1 ≤ �1. Then, by (4.2), we have

t�(p) = t0
∧ t�1(p1), which implies

t�(p)sign(p,w) = t0 · t�1(p1)sign(p1,w1).

Thus, using the induction hypothesis, we find

w�{1, . . ., p} = w0 · (w�{�0 + 1, . . ., �0 + p1})
= w0 · (w1�{1, . . ., p1})
=FG eval(t0 · t�1(p1)sign(p1,w1)) = eval(t�(p)sign(p,w)).

Again the computation is similar for p − 1. We just have to notice that,
if p1 is 1, then the sign of p1 in w1 is +, so that (4.5) claims that w0 is
equivalent to eval(t0), which is obvious.

Finally assume p = � + 1 − p0, where p0 is a position in w0. By (4.3),
we have t�(p) = t0

∧t�(p0) and sign(p, w) = −sign(p0, w0), which implies

t�(p)sign(p,w) = t · t�0(p0)−sign(p0,w0).

Using the induction hypothesis, we deduce

w�{1, . . ., p} = w0w1w
−1
0 · (w0�{1, . . ., p0 − 1})

=FG w · (w0�{1, . . ., p0 − 1})
=FG eval(t · t�0(p0)−sign(p0,w0)) = eval(t�(p)sign(p,w)).

Again, the computation is similar for p − 1. �

Corollary 4.10. Every prefix of a conjugate (viewed as a reduced word)
is still a conjugate.
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Definition. Assume that t is a term in T and w is conj(t). A main position
in w is a position p whose origin in t is a stack of length 1.

By Proposition 4.5, one main position in the word conj(t) is associated
with each address u in t, namely the least position that comes from u. For
instance, if t is (x∧y)∧x, there are 3 addresses in t, and the corresponding
3 main positions in the word conj(t) are underlined in xyx−1xxy−1x−1.

Corollary 4.11. Assume that t is a term in T and p is a main position in
the word conj(t). Then the equivalence

conj(t)�{1, . . ., p − 1} =FG conj(cut(t, u)−)

holds, where u denotes the address p comes from in t.

Proof. Obvious from Formula (4.5), as, in the present case, t�(p) is the
LD-class of the term cut(t, u). �

5. Automata

Our main task is to control reductions in conjugate words. The first, obvious
remark is that Z-level provides us with a useful tool. In the sequel, we write
lg(w) for the length of the word w.

Definition. Assume that the word w′ is obtained from the word w by one
step of free reduction, say by deleting two letters x, x−1 or x−1, x at posi-
tions p0, p0 +1. We let H(w,w′) denote the partial mapping of {1, . . ., lg(w)}
onto {1, . . ., lg(w′)} defined by H(w,w′)(p) = p for p < p0 and H(w,w′)(p) =
p − 2 for p > p0 + 1. If �w = (w0, . . ., wn) is a sequence of one step free re-
ductions, we denote by H�w the product H(wn,wn−1)◦. . .◦H(w1,w2)◦H(w1,w0).

By construction, H�w is the partial surjection of {1, . . ., lg(w0)} onto
{1, . . ., lg(wn)} that specifies the positions in wn of those letters in w0 that
have not vanished in the considered sequence of reductions.

Definition. Assume that w freely reduces to w′. We say that a sequence
of positions (p′1, . . ., p

′
m) is an heir of a sequence of positions (p1, . . ., pm)

for (w, w′) if there exists at least one sequence �w = (w0, . . ., wn) such that
w0 is w, wn is w′, and p′i is H�w(pi) for every i.
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Lemma 5.1. Assume that (p′) is an heir of (p) for (w, w′). Then the
Z-level of p′ in w′ is equal to the Z-level of p in w.

Proof. It suffices to consider the case of a single reduction. Assume that p0

and p0 +1 have been deleted. For p < p0, it is obvious that the Z-levels of p
in w and w′ are equal. Assume now p > p0 + 1, and let p′ be p − 2. Then
(p′) is an heir of (p), and we have

‖w′�{1, . . ., p′ − 1}‖+ = ‖w�{1, . . ., p − 1}‖+ − 1,

‖w′�{1, . . ., p′}‖− = ‖w�{1, . . ., p}‖− − 1,

and, therefore, the Z-levels are equal. �

Definition. Assume that w is a word. Two positions p1 < p2 in w are
mutually reducible if both w�{p1, . . ., p2} and w�{p1 + 1, . . ., p2 − 1} freely
reduce to the empty word.

In other words, p1 and p2 are mutually reducible if and only if there is
a sequence of reductions from w in which all positions between p1 and p2

vanish, and p1 and p2 then vanish simultaneously. This in particular implies
that there exists a letter x such that w(p1) is x±1 and w(p2) is x∓1.

Proposition 5.2. Assume that p1 and p2 are mutually reducible positions
in w. Then the Z-levels of p1 and p2 in w must be equal.

Proof. The hypothesis means that there exists a word w′ and a pair of
positions (p′, p′ + 1) in w′ that is an heir of (p1, p2) for (w, w′), and, in
addition, w(p1) and w(p2) are mutually inverse letters. Now it is clear that,
both in the case of xx−1 and of x−1x, the Z-levels of p′ and p′ + 1 in w′ are
equal. We conclude by Lemma 5.1. �

Definition. The position p is strong in the word w if it is mutually reducible
with no other position.

Proposition 5.3. Assume that t is a term in T . Then, for each variable x
that occurs in t, the first position of x in the word conj(t) is strong.

This results from the following stronger result:
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Lemma 5.4. Assume that w is conj(t) for some term t, and that p0 is a
position of the letter x in w such that, for all positions p < p0 of x±1 in w,
the Z-level of p in w is strictly higher than the Z-level of p0 in w. Then p
is strong in w.

Proof. Assume that p0 is mutually reducible with p′0 in conj(t). By Propo-
sition 5.2, the Z-level of p′0 is equal to the Z-level h of p0. Hence, by
hypothesis, we must have p′0 > p0. By Proposition 4.5, p0 must be a pos-
itive position, so p′0 is a negative one. Now, by Proposition 4.5 again, a
negative position of x on Z-level h in a word conj(t) is always preceded by a
positive position on level h− 1. So there must exist a position p1 < p′0 of x
on level h − 1. By hypothesis, we must have p0 < p1. Now the hypothesis
that p0 and p′0 are mutually reducible implies that there exists a position p′1
with p0 < p′1 < p′0 that is mutually reducible with p1. If we have chosen
p1 to be minimal, p1 satisfies the same hypotheses as p0. So the argument
repeats indefinitely, and we find an infinite series of positions with Z-levels
h, h − 1, h − 2, etc., which is impossible. �

For instance, we deduce that, in the word conj((x∧y)∧x) =
xyx−1xxy−1x−1, the first two positions are strong. Of course, we can-
not expect all positions to be strong, since free reductions must happen in
the word conj(t) whenever t is not an injective term.

Our idea now is to replace Z-levels by more subtle levels that provide
a better control.

An important feature about Z-levels is their local character. As one
easily verifies, in order to compute the Z-level of p in w, it suffices to know
the Z-level of p − 1 and the (signs of) the letters occurring at p − 1 and
p. Such a local character is reminiscent of the action of an automaton that
reads a word.

Definition. Let Σ be a (finite) set. An automaton A with state set Σ and
alphabet V consists of a set of triples in Σ × V × Σ that we call the tran-
sitions of A, and, in addition, of a distinguished state that we call the start
state. We shall write σ

x−→ σ′ for the triple (σ, x, σ′). The automaton A
is deterministic if, for every σ in Σ and x in V , there exists at most one
transition of the form σ

x−→ σ′, and, for every σ′ in Σ and every x in V ,
there exists at most one transition of the form σ

x−→ σ′.

Example 5.5. (The augmentation automaton) The collection {(σ, x, σ +
1); σ ∈ Z, x ∈ S} completed with the distinguished state 0 is a deterministic
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automaton with state set Z and alphabet V . This automaton will be de-
noted AZ. We call it the augmentation automaton, as it is connected with
the standard augmentation mapping of F onto Z. It is usual to associate
with an automaton an oriented graph with labelled edges: vertices corre-
spond to states, and there is a x-labelled arrow from state σ to state σ′ if
and only if σ

x−→ σ′ is a transition of the considered automaton. The start
state is indicated with an entering arrow. The graph associated with AZ is
displayed in Figure 5.1.

. . . . . .0 1 2 3x, y.. x, y.. x, y.. x, y.. x, y..

Figure 5.1: The augmentation automaton AZ

Definition. Assume that A is an automaton with state set Σ and alpha-
bet V , and that w = xe1

1 . . .xe�

� is a word in W . A reading of w by A is a
sequence of states (σ0, . . ., σ�) such that σ0 is the start state of A and, for
every i, if ei is +1, then σi

xi−→ σi+1 is a transition of A, and, if ei is −1,
then σi+1

xi−→ σi is a transition of A. The word w can be read by A if there
exists at least one reading of w by A.

For instance, the word xyx−1xxy−1x−1 can be read by the automa-
ton AZ of Example 5.5. The (unique) reading is

0 x−→ 1
y−→ 2 x−1

−→ 1 x−→ 2 x−→ 3
y−1

−→ 2 x−1

−→ 1.

Lemma 5.6. Assume that A is a deterministic automaton on V . Then,
for every word w in W , there exists at most one reading of w by A.

Proof. This is obvious as, at each step, there exists, by definition, at most
one possible transition. �

Definition. Assume that A is a deterministic automaton on V , and that
the word w in W can be read by A. Let (σ0, . . ., σ�) the reading of w by A.
For p a position in w, the A-level of p in w is defined to be σp−1 if p is a
positive position, and to be σp if p is a negative position. The A-balance
of w is σ�.
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Proposition 5.7. Every word can be read by the automaton AZ. The
AZ-balance a word is equal to its Z-balance, and the AZ-level of a position
coincides with its Z-level.

Proof. Straightforward from the explicit definitions. For every word w
in W , the final state reached after w has been read by the automaton AZ

is ‖w‖+ − ‖w‖−. �

We have seen in Proposition 5.2 that mutually reducible positions must
have the same Z-level, hence the same AZ-level. This property extends to
the A-level for every deterministic automaton.

Proposition 5.8. Assume that A is a deterministic automaton, and that
the word w can be read by A. Assume that w reduces to w′. Then w′ can
be read by A, the A-balance of w′ is equal to the A-balance of w. If (p′) is
an heir of (p) for (w, w′), then the A-level of p′ in w′ is equal to the A-level
of p in w.

Proof. It suffices to consider the case of a single reduction. Assume that p0

and p0 +1 have been deleted in the reduction of w to w′. Let (σ0, . . ., σ�) be
the reading of w by A. We claim that the states σp0−1 and σp0+1 coincide.
Indeed, either w(p0) is a letter x of V , and, by definition, we have both
σp0−1

x−→ σp0 and σp0+1
x−→ σp0 , or w(p0) is a letter x−1, and, by definition,

we have both σp0

x−→ σp0−1 and σp0

x−→ σp0+1. In both cases, σp0−1 =
σp0+1 follows from the hypothesis that A is deterministic. We deduce that
(σ0, . . ., σp0−1, σp0+2. . ., σ�) is the reading of w′ by A. �

Proposition 5.9. Assume that A is a deterministic automaton, and that
the word w can be read by A. Assume that p1 and p2 are mutually reducible
positions in w. Then the A-levels of p1 and p2 in w must be equal.

Proof. It suffices to repeat the proof of Proposition 5.3 using Proposition 5.8
in place of Proposition 5.2. �

Example 5.10. (The Cayley automaton) We let AF be the automaton with
state set F and alphabet V that admits as transitions all triples a

x−→ ax for
a in F and x in V . The start set is the unit 1. Then AF is a deterministic
automaton. The graph of AF is the Cayley graph of the group F , so it
is natural to call AF the Cayley automaton of F . As for AZ, it is easy to
verify that every word in W can be read by AF . Then the AF -balance of
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the word w is simply the projection w of w in F . For instance, the reading
of the word xyx−1xxy−1x−1 by AF is

1 x−→ x
y−→ xy

x−1

−→ xyx−1 x−→ xy
x−→ xyx

y−1

−→ xyxy−1 x−1

−→ xyxy−1x−1.

We have displayed in Figure 5.2 the fragment of the graph of AF involved
in the previous reading.

1 x

xy

xyx−1 xyx

xyxy−1

xyxy−1x−1

x
y

x
x

y

x

Figure 5.2: The Cayley automaton AF (fragment)

6. The automaton of a term

The Cayley automaton of Example 5.10 detects all possible reductions in
the words: if two positions are mutually reducible, they they must have the
same AF -level, and, conversely, it is easy to verify that, if two positions
have the same AF -level, then they are mutually reducible. Actually, this
result is essentially a tautology, and it probably cannot really help us here.
We introduce now new, less trivial automata with state sets included in the
free LD-monoid Λ̃.

Definition. Assume that t is a term in T . The transitions of the automa-
ton At are the triples

t�(p)− x−→ t�(p)+

where p is a position in the word conj(t) and x is the letter of V that occurs
at position p in conj(t)—i.e., x is varR(t�(p)). The start state of At is 1.

Example 6.1. Let again t be the term (x∧y)∧x. Then the graph of the
automaton At is displayed in Figure 6.1. We see that this automaton hap-
pens to be deterministic. The word conj(t) = xyx−1xxy−1x−1 can be read
by At, and the corresponding states are

1 x−→ x
y−→ xy

x−1

−→ x∧y
x−→ xy

x−→ xyx
y−1

−→ ((x∧y)∧x)x x−1

−→ (x∧y)∧x.
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1 x

xy

x∧y xyx

((x∧y)∧x)x
(x∧y)∧x

x
y

xx

y

x

Figure 6.1: The automaton of the term (x∧y)∧x

On the other hand, the automaton of the term x∧x is displayed on
Figure 6.2, and we see that it is not deterministic, since two x-labelled
arrows arrive at state xx.

1 x

xx

x∧x

x
x

x

Figure 6.2: The automaton of the term x∧x

Lemma 6.2. For every state a of the automaton At and every x in V ,

there is at most one transition of the form a
x−→ a′ in At.

Proof. According to Lemma 2.5 and to the definition of At, we see that,
if a

x−→ a′ is a transition of At, then the equality a′ = a x holds in the
monoid Λ̃. �

Lemma 6.3. Assume that the term t is t0
∧t1. Then the transitions of the

automaton At are:

(i) all transitions a
x−→ a′ of At0 ;

(ii) all transitions t0 a
x−→ t0 a′ for a

x−→ a′ a transition of At1 ;

(iii) all transitions t a
x−→ t a′ for a

x−→ a′ a transition of At0 .

Proof. This is a restatement of Lemma 4.7. �

Proposition 6.4. Assume that t is a term in T , let w be the word conj(t)
and � be the length of w. Then the sequence

(1, t�(1)sign(1,w), t�(2)sign(2,w), . . ., t�(�)sign(�,w)) (6.1)
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is a reading of w by At that ends with state t. If At is deterministic, then,

for every position p, the At-level of p in w is its Λ̃-level and the At-balance
of w is t.

Proof. Use induction on t. Everything is obvious if t is a variable. So
assume t = t0

∧t1. We write wi for conj(ti), and �i for the length of wi. By
induction hypothesis, the sequence

(1, t�0(1)sign(1,w0), . . ., t�0(�0)
sign(�0,w0)) (6.2)

is a reading of w0 by At0 that ends with state t0. By (4.1), (6.2) is also the
sequence

(1, t�(1)sign(1,w), . . ., t�(�0)sign(�0,w)), (6.3)

and, therefore, it is a reading of w0 by At.
Now, always by induction hypothesis, the sequence

(1, t�1(1)sign(1,w1), . . ., t�1(�1)
sign(�1,w1)) (6.4)

is a reading of the word w1 by the automaton At1 that ends with state t1.
By (4.2), multiplying all states in (6.4) by t0 on the left gives the sequence

(1, t�(�0 + 1)sign(�0+1,w), . . ., t�(�0 + �1)sign(�0+�1,w)), (6.5)

which is therefore a reading of the word w1 by At that starts with state
t0 · 1 = t0 and ends with state t0 · t1.

Similarly, by (4.3), multiplying all states in (6.3) by t on the left gives
the sequence

(t, t�(�)sign(�,w), . . ., t�(� + 1 − �0)sign(�+1−�0,w)), (6.6)

a reading of w0 by At that starts with state t and ends with state t · t0.
Reversing (6.6) gives the sequence

(t�(� + 1 − �0)sign(�+1−�0,w), . . ., t�(�)sign(�,w), t), (6.7)

hence a reading of the word w−1
0 by At that starts with state t · t0 and ends

with state t. Now, by Identity (LDM1), we have in the LD-monoid Λ̃

t · t0 = t0∧t1 · t0 = (t0∧t1) · t0 = t0 · t1 = t0 · t1.

Concatenating the three sequences (6.3), (6.5) and (6, 7) yields se-
quence (6, 1), which is therefore a reading of the word w0w1w

−1
0 = w by At

which starts with state 1 and ends with state t.
The formulas for the At-level and the At-balance are then straightfor-

ward consequences of our definitions. �
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Proposition 6.5. Assume that t is a term in T and w is conj(t). Assume
that p1 and p2 are positions of mutually inverse letters in w, i.e., there
exists x in V such that w(p1) is x±1 and w(p2) is x∓1.

(i) If the Λ̃-levels of p1 and p2 in w are equal, then p1 and p2 are
mutually reducible in w.

(ii) If, in addition, the automaton At is deterministic, then the converse
of (i) is true.

Proof. (i) Assume that p1 and p2 have the same Λ̃-level in w. Assume
for instance p1 < p2. Assume first that p1 is a positive position in w. By
Proposition 4.9, we have

w�{1, . . ., p1 − 1} =FG eval(t�(p1)−) = eval(Λ̃-level(p1, w))

= eval(Λ̃-level(p2, w)) = eval(t�(p2)−) =FG w�{1, . . ., p2}.

Hence, the word w�{p1, . . ., p2} reduces to 1, and p1 and p2 are mutu-
ally reducible. Similarly, if p1 is negative and p2 is positive, we find
that w�{1, . . ., p1} and w�{1, . . ., p2 − 1} are equivalent. Hence, the word
w�{p1 + 1, . . ., p2 − 1} reduces to 1, and, again, p1 and p2 are mutually
reducible.

(ii) Assume now that the automaton At is deterministic. If p1 and p2

are mutually reducible, then, by Proposition 5.10, the At-levels of p1 and
p2 must be equal. �

Corollary 6.6. Assume that t is a term in T such that At is deterministic.
Let w be the word conj(t). Then two positions p1, p2 in w are mutually
reducible if and only if t�(p1) and t�(p2) are equal in Λ and, in addition,
w(p1) and w(p2) have opposite signs.

The key technical point that enables the automaton At to control the
reductions in conjugate words is the following result:

Lemma 6.7. Assume that p is a main position in the word conj(t). Then
t�(p′) � t�(p) holds for every position p′ > p in conj(t).

Proof. We prove inductively on t the statement:
t�(p′) � t�(p) holds for p+ ≥ p′ > p, where p+ is the main position
that immediately follows p in conj(t), if such a position exists, and
for p′ > p otherwise.
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As the relation � is transitive, this implies the lemma. Now the statement
is vacuously true if t is a variable. Assume t = t0

∧t1. Let u be the address
p comes from in t. Assume first that u begins with 0. Then t�(p) is t�0(p). If
p is not the last main position in conj(t0), then the next main position p+

in conj(t) is the next main position in conj(t0), and the induction hypoth-
esis gives the result. Assume now that p is the last main position in the
word conj(t0). This means that the address p comes from an address of the
form 01i and that p+ comes from an address of the form 10j . The induction
hypothesis gives t�(p′) = t�0(p

′) � t�0(p) = t�(p) for p+ > p′ > p, so it remains
to consider the case of p+ itself. Now, by construction, we have

t�(p) = cut(t, 01i) = t0, t�(p+) = cut(t, 10j) = t0
∧t1(0j),

so t�(p+) � t�(p) clearly holds.
Assume now that u begins with 1. Again, if p is not the last main

position in conj(t), then p is �0 +p1 where �0 is the length of conj(t0) and p1

is a certain main position in conj(t1). In this case, p+ is �0 + p+
1 , where p+

1

is the main position in conj(t1) that immediately follows p1. By induction
hypothesis, we have t�1(p

′
1) � t�1(p1) for p+

1 ≥ p′1 ≥ p1. Multiplying on the
left by t0 does not change the ordering, and this gives the desired result.
It remains to consider the case when p is the last main position in conj(t).
Then p is �0 + p1, where p1 is the last main position in t1. The previous
argument gives t�(p′) � t�(p) for �1 + �0 ≥ p′ > p, where �1 is the length
of conj(t1). It remains to consider the case p′ > �0 + �1. Now, in this case,
u has the form 1j , and t�(p) is t. By construction, t�(p′) is t∧t�0(p0) for
some p0, and, therefore, t�(p′) � t�(p) is clear. �

Definition. The position p is semistrong in the word w if it is mutually
reducible with no position p′ > p.

Proposition 6.8. Assume that the automaton At is deterministic. Then
every main position in the word conj(t) is semistrong.

Proof. Assume that p is a main position in the word conj(t). By Propo-
sition 6.5, p can be mutually reducible only with a position on the same
Λ̃-level. Now, by Lemma 6.6, no position p′ > p can lie on the same Λ̃-level
as p, since � is a strict partial ordering. �

Definition. Assume that t is a term in T , and s is a term in T ∗. Then s
is a subcut of t if there exists an address u in t such that s is cut(t, u)−.
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All proper prefixes of a term t are subcuts of t. Indeed, if we have
t = (. . .((t0∧t1)∧t2). . .)∧tk, then t0 is equal to cut(t, 0k−110j)−, where j is
the unique integer such that 0k−110j is an address in t.

Proposition 6.9. Assume that the automaton At is deterministic. Then
the mapping eval is injective on subcuts of t—hence, in particular, on pre-
fixes of t.

Proof. Assume that u1, u2 are distinct addresses in t, and let p1, p2 be the
associated main positions in conj(t). We assume p1 < p2. By Corollary 4.11,
we have

conj(t)�{1, . . ., pi − 1} =FG conj(cut(t, ui)−)

for i = 1, 2. Assume that eval(cut(t, u1)−) and eval(cut(t, u2)−) are equal.
We deduce that the word conj(t)�{p1, . . ., p2 − 1} reduces to 1, so, in par-
ticular, the position p1 must be mutually reducible with some position p′1
with p1 < p′1 < p2: this contradicts Proposition 6.7. �

Observe that, if the automaton At is deterministic and s is a subcut of t,
then the reduced word eval(s) can be read by At, and, by Proposition 4.5,
its At-balance is the class s. Thus, as far as subcuts of t are concerned, the
automaton At provides a section for the projection eval.

7. Monotone terms

We now come back to the questions considered in Section 1.

Definition. An element a of Λ is monotone if there exist distinct vari-
ables x1, . . ., xm in V such that a � x1

∧. . .∧xm holds. An element a of Λ̃ is
monotone if there exists a monotone element b in Λ such that a is b−. The
sets of all monotone elements in Λ and Λ̃ are denoted respectively Λmono

and Λ̃mono.

Using the results of [6], one easily shows that, if a is an element in Λ
satisfying a � x1

∧. . .∧xm with x1, . . ., xm being distinct elements of V , then
a∧x1 � x1

∧. . .∧xm holds as well. It follows that Λmono is included in Λ̃mono,
i.e., our two definitions of monotonicity are compatible.

Note that, by definition, an element of Λ is monotone if and only if
it can be represented by an LD-monotone term, and, similarly, an element
of Λ̃ is monotone if it can be represented by some term t− where t is an
LD-monotone term in T . Such terms t− will be called LDM-monotone
terms, and an identity will be called LDM-monotone if its two members are
LDM-monotone terms in T ∗.
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Conjecture Ã. Every LDM-monotone identity that holds in every sys-
tem (G, ·, ∧), where (G, ·) is a group, is a consequence of (LDM).

An LD-monotone identity is an LDM-identity, and, by Lemma 2.3,
every consequence of (LDM) that involves only terms in T is a consequence
of (LD). Hence Conjecture Ã implies Conjecture A.

Proposition 7.1. Conjecture Ã is true if and only if the mapping eval is
injective on Λ̃mono.

Proof. Assume that t1 and t2 are LDM-monotone terms in T ∗ and that
the reduced words eval(t1) and eval(t2) are equal in the free group F . Let
G be any group, and f be a mapping of V into G. Because F is a free
group, eval(f(t1)) = eval(f(t2)) holds as well, where f(t) denotes the result
of replacing every variable x in t with its image under f . This means that
the identity t1 = t2 holds in (G, ·, ∧). So, if Conjecture Ã is true, t1 = t2
follows from (LDM), i.e., t1 and t2 represent the same element of Λ̃mono.

Conversely, if some LDM-monotone identity t1 = t2 holds in every LD-
monoid (G, ·, ∧), it holds in particular in (F, ·, ∧), and we have eval(t1) =
eval(t2). If Conjecture Ã is false, this applies to at least one identity where
t1 and t2 are not LDM-equivalent, which means that their images in Λ̃mono

are not equal. �

Definition. If w is a word in W , Var(w) denotes the enumeration without
repetition of those variables that appear in w, ordered according to their
leftmost position (ignoring the sign). Similarly, if t is a term in T , Var(t)
is the enumeration without repetition of those variables that appear in t
ordered according to their leftmost address. The definition is extended to T ∗

by concatenating the sequences and removing the possible repetitions.

Lemma 7.2. For every term t in T ∗, the sequences Var(t), Var(conj(t)),
and Var(eval(t)) coincide.

Proof. An immediate induction gives the first equality. For the second, we
may assume t in T , and we have to check that the free reductions in the
word conj(t) cannot the change the order of the leftmost positions of each
letter. Now, by Proposition 5.3, each such position is strong in conj(t). �

Lemma 7.3. Assume that t1 and t2 are LD-monotone terms in T and
eval(t−1 ) = eval(t−2 ) holds. Then there exist distinct variables x1, . . ., xm

such that both t1 �LD x1
∧. . .∧xm and t2 �LD x1

∧. . .∧xm hold.
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Proof. By definition, there exist distinct variables x1, . . ., xm such that
t1 �LD x1

∧. . . ∧ xm holds. By definition, there must exist terms t′1 and t′0
respectively LD-equivalent to t1 and to x1

∧. . .∧xm such that t′1 is a prefix
of t′0. By Lemma 7.2, the sequence Var(t1) is equal to Var(conj(t′1)), and the
sequence Var(x1

∧. . .∧xm), which is (x1, . . ., xm), is equal to Var(conj(t′0)).
Now, by construction, the word conj(t′1) is a prefix of the word conj(t′0),
so we conclude that Var(t1) is an initial segment of (x1, . . ., xm). If, more-
over, m is chosen to be minimal, then Var(t1) is exactly (x1, . . ., xm). Now
Var(t−1 ) is equal to Var(t1), i.e., to (x1, . . ., xm), unless if t1 is LD-equivalent
to x1

∧. . .∧xm, in which case Var(t−1 ) is (x1, . . ., xm−1).
Assume now that t1 and t2 are LD-monotone terms satisfying

eval(t−1 ) = eval(t−2 ). There exists variables x1, . . ., xm and y1, . . ., yn

such that t1 �LD x1
∧. . .∧xm and t2 �LD y1

∧. . .∧yn hold. Assume that m
and n have been chosen to be minimal. Assume first t1 �LD x1

∧. . .∧xm and
t2 �LD y1

∧. . .∧yn. By the argument above, we find

(x1, . . ., xm) = Var(t−1 ) = Var(eval(t−1 )) = Var(t−2 ) = (y1, . . ., yn),

and, therefore, t2 �LD x1
∧. . .∧xm holds. Assume now t1 =LD x1

∧. . .∧xm

and t2 �LD y1
∧. . .∧yn. The previous argument gives now (x1, . . ., xm−1) =

(y1, . . ., yn), which implies t2 �LD x1
∧. . .∧xm−1, and, therefore, t2 �LD

x1
∧. . .∧xm as �LD is a transitive relation and x1

∧. . .∧xm−1 �LD x1
∧. . .∧xm

holds trivially. The argument is similar for t1 �LD x1
∧. . .∧xm and t2 =LD

y1
∧. . .∧yn. Finally assume t1 =LD x1

∧. . .∧xm and t2 =LD y1
∧. . .∧yn. The

previous argument gives (x1, . . ., xm−1) = (y1, . . ., yn−1). Let t′2 be the term
obtained from t2 by replacing yn with xm. Because ym occurs only at the
rightmost address in t2, we have (t′2)

− = t−2 , and t′2 =LD y1
∧. . .∧yn−1

∧xm =
x1

∧. . .∧xm−1
∧xm. �

Definition. For t in T , the derived term ∂t is defined inductively by the
rules

∂t =
{

t if t is a variable,
∂t0

∧∧∂t1 if t is t0
∧t1,

where, for s, t in T , s∧∧t itself is defined inductively by s∧∧t = s∧t if t is a
variable, and s∧∧t = (s∧∧t0)∧(s∧∧t1) if t is t0

∧t1.

Definition. The term t′ is an LD-expansion of the term t if t′ is obtained
from t by iteratively replacing some subterm of the form s0

∧s1
∧s2 by the

corresponding term (s0
∧s1)∧(s0

∧s2).
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It is clear that, if t′ is an LD-expansion of t, then t′ and t are LD-
equivalent. An easy induction shows that ∂t is always an LD-expansion
of t, and, that, if t0 is a prefix of t, then ∂t0 is a prefix of ∂t. The terms ∂kt
are cofinal in the LD-equivalence class of t in the following sense:

Proposition 7.4. [2] Assume that t, t′ are terms in T . Then t and t′ are
LD-equivalent if and only if ∂kt is an LD-expansion of t′ for k large enough.

Corollary 7.5. Assume that t is a term in T and a is an element of Λ. Then
a � t holds if and only if, for every k large enough, a can be represented by
a prefix of ∂kt.

Definition. For n > 0 and k ≥ 0, the automaton Am,k is defined to be the
automaton At, where t is the term ∂k(z1

∧. . .∧zm) and (z1, z2, . . .) is some
fixed sequence of distinct variables in V .

Proposition 7.6. Assume that the automaton Am,k is deterministic for

every m, k. Then Conjecture Ã is true.

Proof. By Proposition 7.1, it suffices to prove that the mapping eval is
injective on Λ̃mono. Assume that a1, a2 are elements of Λmono satisfying
eval(a−

1 ) = eval(a−
2 ). By Lemma 7.3, up to changing the names of the

variables, we may assume that ai � z1
∧. . .∧zm holds in Λ̃ for i = 1, 2. By

Corollary 7.5, there exists k ≥ 0 such that a1 and a2 can be represented by
prefixes of ∂k(z1

∧. . .zm), say t1 and t2. Thus t−1 and t−2 , which represent a−
1

and a−
2 by definition, are subcuts of ∂k(z1

∧. . .zm). If the automaton Am,k

is deterministic, Proposition 6.9 forces a−
1 and a−

2 to be equal. �

Now clearly Proposition 1.1 follows from:

Proposition 7.7. Assume that Conjecture B is true. Then the automa-
ton Am,k is deterministic for every m, k.

Proof. Let t be the term ∂k(x1
∧. . .∧xm). We wish to prove that At is

deterministic. According to Lemma 6.2, it suffices to show that, if a1
x−→ a′

and a2
x−→ a′ are transitions of At, then a1 and a2 must be equal. Now,

by Lemma 2.5, the previous condition implies a′ = a1 · x = a2 · x in Λ̃. Let
bi be ai

∧x for i = 1, 2. By construction, b1 is a value of of the function t�.
Hence, by definition, there exist a stack (u1, . . ., un) in t such that b1 is
πLD(cut(t, u1)∧. . .∧cut(t, un)). Now, if the address u′ lies on the right of the
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address u, the relation cut(t, u) �LD cut(t, u′) always holds [6]. Hence b1 is
decomposable, and so is b2. Now, by Formula (2.3), we have, for i = 1, 2,

(bi
∧bi)− = b+

i = (ai
∧x)+ = ai · x = a′,

and b1
∧b1 is equal to b2

∧b2. If Conjecture B is true, this implies b1 = b2,
hence a1 = b−1 = b−2 = a2, and At is deterministic. �

Let us mention that the converse of Proposition 7.7 is true: using
techniques of [6], one can show that, up to a change of variables, every de-
composable element of Λ is a value of ∂k(z1

∧. . .∧zm)� for k, m large enough,
and, therefore, if distinct decomposable elements had the same square in Λ,
then the corresponding automaton Ak,m could not be deterministic.

Computer experiments involving more than 104 cuts of ∂k(z1
∧z2

∧. . .)
with k ≤ 5 have failed to provide any counterexample to Conjectures A or B.
We have presently no proof of them, except for the cases associated with
k = 0, k = 1 and, partially, k = 2, where specific arguments exist—thus,
defining an LD-monotone term of degree k to be one that is LD-equivalent
to a prefix of ∂k(z1

∧z2
∧. . .), we may state that group conjugacy satisfies

no LD-monotone identity of degree ≤ 2 except those that are consequences
of (LD). The missing piece for a general proof seems to be a normal form for
the decomposable elements of Λ in the spirit of the special terms constructed
in the next section for representing the monotone elements.

8. Special terms

We turn to the construction of normal forms. Under Conjecture A, we know
that the mapping eval is injective on the subset Λmono of Λ. The techniques
of [6], or, alternatively, [13] and [14], make it easy to construct a unique
normal form for the elements of Λmono, thus leading to a normal form for
those elements of C that come from LD-monotone terms.

The key point is that there exists a simple relation between the
set Λmono and the free LD-system on one generator Λ1.

As in Section 1, we fix a variable z and we denote by T1 the set of
all terms constructed using only z and the operator ∧. We write φ for the
forgetful projection of T onto T1 that replaces every variable with z. Of
course, φ induces a surjective homomorphism, still denoted φ, of Λ onto Λ1.

Proposition 8.1. The mapping φ induces a surjection of Λmono onto Λ1.
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Proof. We construct sections for φ whose images are included in Λmono as
follows. Let �x = (x1, x2, . . .) be an (infinite) sequence of distinct variables.
Assume that a is an element of Λ1. By Proposition 7.4, there exist integers m
and k such that a is represented by some prefix of the term ∂k(z∧. . .∧z),
m times z. By construction, the prefixes of a term are exactly the cuts
of this term associated with addresses of the form 0k. So, we have an
equality of the form a = πLD(cut(∂k(z∧. . .∧z), 0k)). Then we define ψ�x(a)
as πLD(cut(∂k(x1

∧. . .∧xm), u)). Due to the compatibility between cuts and
derivability, ψ�x is well-defined. Then, by construction, every element a of
the image of ψ�x satisfies a � x1

∧. . .∧xm for m large enough, and the image
of ψ�x is included in Λmono. �

The image of ψ�x is exactly the subset of Λmono consisting of those
elements a for which the sequence Var(a) is an initial segment of �x. So
every element in Λmono belongs to the image of some mapping ψ�x. By [6]
(or [13]), normal forms are known for Λ1. Then it suffices to transport them
to Λmono using the mappings ψ�x.

Definition. The left height htL(t) of a term t is the maximal number of 0’s
in an address in t.

Definition. Assume that t is a term in T . If htL(t) is at most 1, we
let Θ(t) be t. Otherwise, t has a unique decomposition t = t1

∧. . .∧tm+1

where htL(tm) = htL(t) − 1 and htL(tm+1) < htL(t). Then we let Θ(t) be
t1

∧. . .∧tm
∧x, where x is the leftmost variable in t.

Definition. Assume that t and t′ are terms in T , say t = t1
∧. . .∧tm

∧x,
t′ = t′1

∧. . .∧t′m′
∧x′, where x and x′ are variables. We say that t >Lex t′ holds

if either there exists k such that t1 = t′1, . . ., tk−1 = t′k−1 and tk >Lex t′k
hold, or m > m′ and t1 = t′1, . . ., tm′ = t′m′ hold. Thus, the relation >Lex

is a partial lexicographical ordering of the terms (partial, as we fixed no
ordering on the variables).

Definition. (i) A special term of degree 0 is a term of the form x1
∧. . .∧xm

with x1, . . ., xm distinct variables;
(ii) For k ≥ 1, a special term of degree k is a term of the form

t1
∧. . .∧tm+1 where m ≥ 1, t1, . . ., tm are special terms of degree k − 1, tm

is a special term of degree ≤ k − 1, and Θ(ti) >Lex ti+1 holds for all i ≤ m.

By definition, the normal terms of [6] involve an infinite series of vari-
ables denoted a, b, c, . . . Then a term t is special in the present sense if and
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only if there exists a sequence of distinct variables (x1, x2, . . .) and a term t′

normal in the sense of [6] such that t is obtained from t′ by replacing a with
x1, b with x1

∧x2, c with x1
∧x2

∧x3, etc. Repeating in the present framework
the proof of [6, Theorem 3.5] gives:

Proposition 8.2. (i) Every monotone element of Λ is represented by a
unique special term.

(ii) There is an effective function that maps every LD-monotone term
to the unique special term it is LD-equivalent to. This function lies in the
complexity class DSPACE(exp∗(O(2n))), where exp∗(x) denotes a tower of
base 2 exponentials of height x.

It is clear that Proposition 8.2 implies Proposition 1.2.

9. An algorithm

We recall that φ denotes the forgetful projection of T onto T1 that replaces
every variable with z, a unique fixed variable. The value of φ(t) is called the
skeleton of t. Let us say that two terms t, t′ are LD-comparable if t �LD t′

or t′ �LD t holds.
By the results of [2] completed in [4], we have:

Proposition 9.1. Two terms t, t′ with the same skeleton are LD-
comparable if and only if they are equal.

Corollary 9.2. For every skeleton s and every sequence of distinct variables
(x1, . . ., xm), there exists at most one LD-monotone term t with skeleton s
such that Var(t) is (x1, . . ., xm).

We consider here the problem of algorithmically finding the unique
term t mentioned in Corollary 9.2, i.e., we start with a skeleton s and we
wish to replace the variables z with variables among x1, . . ., xm so as to
obtain an LD-monotone term, if this is possible.

The problem is certainly decidable. Indeed we can always use the
‘stupid’ algorithm consisting of systematically considering all possible
choices (there are finitely many of them), and, for each of them, testing
whether the term so obtained is LD-equivalent to x1

∧. . .∧xm or one of its
prefixes using one of the algorithms of [4].

If Conjecture A is true, we can solve the question in a much better
way by using group conjugacy and the algorithm below, which was first
considered in [5].
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Assume that f is a mapping of V into itself. For w in W , we denote
by f(w) the word obtained from w by replacing every letter x±1 with the
corresponding letter f(x)±1. For t in T , we denote by f(t) the term obtained
from t by replacing every variable x with the corresponding vaiable f(x).

We fix two disjoint infinite series of variables (x1, x2, . . .) and
(y1, y2, . . .), supposed to be included in V . For s in T1, we write s̃ for
the injective term obtained from s by substituting y1, y2, . . . for the vari-
ables z of s starting from the left. For instance, if s is (z∧z)∧z, then s̃ is
(y1

∧y2)∧y3.

Definition. Assume that w is a word in V . We say that w is solvable if the
first letter y±1

j in w is a yj , and it is immediately preceded by a letter x−1
i .

In this case, we define ϕ(w) to be the mapping of V into itself that maps
yj to xi and keeps all other variables unchanged.

According to Proposition 3.2, every word conj(t) for t in T is ‘skew-
symmetric’. We use below half-conj(t) to denote the first half of the word
conj(t), defined as the prefix of conj(t) with length (� + 1)/2 if conj(t) has
length �.

Algorithm 9.3. Input: A skeleton s in T1.
Process: Let n be the number of addresses in s.
Start with

f0 := id, w0 := x−1
n . . .x−1

2 x−1
1 half-conj(s̃);

For k := 1 to n, if wk−1 is solvable, do
fk := ϕ(wk−1)◦fk−1, wk := fk(wk−1);

Output: The term fn(s), if no obstruction has occurred.

Example 9.4. Let us consider the skeleton s = (z∧z)∧z. Then s̃ is
(y1

∧y2)∧y3, and half-conj(s̃) is y1y2y
−1
1 y3. Algorithm 9.3 running on s gives:

f0 = id, w0 := x−1
3 x−1

2 x−1
1 y1 y2 y−1

1 y3,

f1 : y1 �→ x1, w1 = x−1
3 x−1

2 y2 x−1
1 y3,

f2 : y1 �→ x1, y2 �→ x2, w2 = x−1
3 x−1

1 y3,

f2 : y1 �→ x1, y2 �→ x2, y3 �→ x1, w3 = x−1
3 .

Finally, the term f3(s) is (x1
∧x2)∧x1, an LD-monotone term with skeleton s.

Proposition 9.5. Assume that Conjecture A is true. Then Algorithm 9.3
is correct, i.e., it gives the unique solution of the problem when it exists.
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Proof. Assume that t is an LD-monotone term and let s be the skeleton
of t. We assume that t �LD x1

∧. . .∧xm holds. We first consider the case
t =LD x1

∧. . .∧xm. Let u1, . . ., un be the enumeration of the addresses in s
(i.e., in t) from left to right, and let p1, . . ., pn be the associated main
positions in the word conj(t). We use fk and wk for the function and the
word occurring at step k in the algorithm running on s, and we use tk for
the term fk(s̃)—if it exists. We show inductively on k that fk maps yj to
t(uj) for j = 1, . . ., k, that wk exists and that it satisfies

wk =FG half-conj(t)−1 · half-conj(tk).

If k is 0, everything is obvious. Otherwise, by induction hypothesis, the
variables y1, . . ., yk−1 have been replaced by variables xi in the word wk−1.
So yk is the leftmost y variable in wk−1. Its first position in wk−1 cor-
responds to the main position pk coming from address uk. By induction
hypothesis, we have

(half)-conj(tk)�{1, . . ., pk − 1} = (half)-conj(t)�{1, . . ., pk − 1}, (9.1)

and, therefore

half-conj(t)−1·half-conj(tk)�{1, . . ., pk − 1}
= half-conj(t)−1 · half-conj(t)�{1, . . ., pk − 1}
=FG (half-conj(t)�{pk, . . .})−1.

By Proposition 6.7, position pk is semistrong in the word conj(t). This
implies that the first letter of half-conj(t)�{pk, . . .}, which is t(uk) by con-
struction, cannot vanish in a subsequent free reduction. It follows that the
reduct of the word half-conj(t)−1(half-conj(tk)�{1, . . ., pk − 1}) ends with
the letter t(uk)−1. This means that the word wk−1 is solvable, and that fk

is defined to map yk to t(uk). Then wk exists, and, because wk is fk(wk−1)
while tk is fk(tk−1), Relation (9.1) for k − 1 implies Relation (9.1) for k.

Finally, if we relax the hypothesis from t =LD x1
∧. . .∧xm to t �LD

x1
∧. . .∧xm, the argument remains valid. Indeed, there exist in this case

terms t′1, . . ., t′r such that the term t′ = (. . .((t∧t′1)
∧t′2)

∧. . .)∧t′r satisfies
t′ =LD x1

∧. . .∧xm. Now the word conj(t) is a prefix of the word conj(t′),
and running Algorithm 9.3 on the skeleton of t is merely the beginning
of running it in the skeleton of t′. In the latter case, we know that the
algorithm gives the desired subtitution, so it does it as well in the former
case. �
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Remark. Replacing the conjugate words by half-conjugate words in Algo-
rithm 9.3 is just a matter of shortening the words, as only the first half is
really involved. We could of course use the full conjugate words as well.

A natural question is whether Algorithm 9.3 always succeeds or, in-
dependently of Conjecture A, whether every skeleton is the skeleton of
an LD-monotone term. The answer is negative. For instance, one can
prove that the term ((z∧z)∧z)∧z∧z∧z cannot be the skeleton of any LD-
monotone term—but its LD-expansion ((z∧z)∧z)∧(z∧z)∧z∧z is the skeleton
of ((x1

∧x2)∧x1)∧(x1
∧x2)∧x3

∧x4, an LD-monotone term. This example is an
illustration of the following result:

Proposition 9.6. Every skeleton has an LD-expansion that is the skeleton
of an LD-monotone term.

Proof. As was mentioned above, every term in T1 admits an expansion that
is a prefix of a term of the form ∂k(z∧. . .∧z). Now any image of the latter
prefix under a mapping ψ�x is an LD-monotone term. �

Let us finally mention that all constructions and conjectures devel-
oped here can be extended without any change to the case where the
terms z1

∧. . .∧zm are replaced with any other injective term.
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