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GAUSSIAN GROUPS ARE TORSION FREE

Patrick DEHORNOY

Abstract. Assume that G is a group of fractions of a cancellative monoid
where lower common multiples exist and divisibility has no infinite descending
chain. Then G is torsion free. The result applies in particular to all finite
Coxeter type Artin groups.

Finding an elementary proof for the fact that Artin’s braid groups are torsion
free has been reported to be a longstanding open question [9]. The existence
of a linear ordering of the braids that is left compatible with product [4] has
provided such a proof—see also [10]. The argument applies to Artin groups
of type Bn as well, but it remains rather specific, and there seems to be little
hope to extend it to a much larger family of groups. On the other hand, we
have observed in [5] and [6] that Garside’s analysis of the braids [8] applies to
a large family of groups, namely all groups of fractions associated with certain
monoids where divisibility has a lattice structure or, equivalently, all groups
that admit a presentation of a certain syntactic form. Such groups have been
called Gaussian in [6]. It is shown in the latter paper that all finite Coxeter
type Artin groups, as well as a number of other groups like torus knot groups or
some complex reflection groups, are Gaussian. In the present paper, we give an
extremely simple argument proving that all Gaussian groups are torsion-free.
However, the argument applies to an even larger family of groups of fractions.

Assume that M is a monoid. For a, b in M , we say that b is a proper right
divisor of a—or that a is a proper left multiple of b—if there exist c �= 1 such
that a is cb. We say that M is right Noetherian if the relation of being a proper
right divisor has no infinite descending chain. By standard arguments, this
is equivalent to the existence of a mapping ρ of M to the ordinals such that
ρ(cb) > ρ(b) holds whenever c is not 1.

We say that the monoid M is right Gaussian if it is right Noetherian, left
cancellative, and every pair of elements (a, b) in M admits a right lower common
multiple, i.e., there exists an element c that is a right multiple both of a and b
and every common right multiple of a and b is a right multiple of c. The
present notion of a right Gaussian monoid is slightly more general than the one
considered in [6], which essentially corresponds to the special case where the
rank function ρ mentioned above has integer values. Left Gaussian monoids are
defined symmetrically. A Gaussian monoid is a monoid that is both left and
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right Gaussian. If M is a Gaussian monoid—or, simply, a right cancellative right
Gaussian monoid—it satisfies Ore’s conditions [2], and therefore it embeds in
a group of (right) fractions (every element of the group is a fraction ab−1 with
a, b in the corresponding monoid). We say that a group is Gaussian if it is a
group of fractions of a Gaussian monoid.

By [1] or [7], all finite Coxeter type Artin groups are Gaussian. Proposi-
tion 2 below gives an effective criterion for recognizing Gaussian groups from
presentations. This, in particular, allows us to construct a number of examples
in [6].

The result we shall prove here is:

Theorem 1. Assume that G is the group of right fractions of a right cancellative
right Gaussian monoid. Then G is torsion-free.

The main idea in the proof is to use words for representing the elements of the
groups and to work directly at the level of words rather than in the associated
groups. More specifically, we resort to the word reversing process of [3] and [5]—
also considered in [11]—that expresses every element of the considered group as
a fraction, and we compute the numerators and denominators of the successive
powers of an arbitrary element of the group.

Definition. Let S be a nonempty set. A complement on S is a mapping f of
S × S into the free monoid S∗ generated by S such that f(x, x) is the empty
word ε for every x in S.

Assume that f is a complement on S. We denote by Mf the monoid with
presentation

〈S ; {xf(y, x) = yf(x, y) ; x, y ∈ S}〉, (1)

i.e., the monoid S∗/≡f , where ≡f is the congruence on S∗ generated by all pairs
of the form (xf(y, x), yf(x, y)) with x, y in S. Similarly, we denote by Gf the
group that admits (1) as a presentation. The elements of Gf will be represented
by words in (S ∪ S−1)∗, where S−1 is a disjoint copy of S.

By definition, the words y−1x and f(x, y)f(y, x)−1 represent the same ele-
ment of Gf for all x, y in S. The key idea is to give an orientation to this
equivalence, i.e., to use it as a rewriting rule that switches the negative and the
positive letters in a word.

Definition. Assume that f is a complement on S. We denote by �f the least
reflexive transitive relation on (S ∪ S−1)∗ that is compatible with the product
on both sides and that contains all pairs of the form (y−1x, f(x, y)f(y, x)−1)
for x, y in S.
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One easily verifies that, for every word w in (S ∪ S−1)∗, there exists at most
one pair (u, v) in S∗ × S∗ such that w �f uv−1 holds. Since w �f w′ always
implies that w and w′ represent the same element of Gf , the relation above gives
a decomposition of the element represented by w as a fraction, and it is natural
to call u and v the numerator and the denominator of w. We shall denote them
respectively by N(w) and D(w).

Finally, for u and v in S∗, we define C(u, v) to be D(u−1v), if it exists. The
mapping C is an extension of the mapping f : by definition, for x, y in S, C(x, y)
exists and it is equal to f(x, y). An easy induction shows that, if u and v are
words in S∗ and C(u, v) and C(v, u) exist, then the equivalence

u C(v, u) ≡f v C(u, v) (2)

holds.

Proposition 2. [6] Right Gaussian monoids are exactly those monoids of
the form Mf where f is a complement on a set S that satisfies the following
conditions:

I: there exists a mapping ρ of S∗ to the ordinals that is compatible with ≡f

and that satisfies ρ(xu) > ρ(u) for every x in S and every u in S∗;
II: for all x, y, z in S, either the words C(f(x, y), f(z, y)) and

C(f(x, z), f(y, z)) do not exist, or both exist and they are ≡f -equivalent;
III: for every word w in (S ∪ S−1)∗, the words N(w) and D(w) exist.

(The result of [6] deals only with the case where the rank mapping ρ takes
integer values, which amounts to considering a more restricted notion of Noethe-
rianity. However, the argument remains the same in the general case, and the
latter appears as more natural.)

It follows that we can study Gaussian monoids by using complements and the
derived notions, i.e., we can resort to the techniques of [5]. The basic technical
result is the following lemma.

Lemma 3. Assume that f is a complement on S that satisfies Conditions I
and II. Let u, v, u′, v′ be arbitrary words in S∗. Then the following are
equivalent:

(i) The equivalence uv′ ≡f vu′ holds;
(ii) The words C(v, u) and C(u, v) exist, and there exists a word w in S∗ such

that both v′ ≡f C(v, u)w and u′ ≡f C(u, v)w hold.

In the previous statement, it is clear that (ii) implies (i), so the point is
to show that (i) implies (ii): this is made by using an induction on the ordi-
nal ρ(uv′), where ρ is a rank function witnessing that the complement f satisfies
Condition I, and this is a rather direct extension of the corresponding result
in [5].

Two important corollaries of the previous lemma are:
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Lemma 4. Assume that f is a complement on S that satisfies Conditions I
and II. Let u, v be arbitrary word in S∗. Then u ≡f v holds if and only if the
words C(u, v) and C(v, u) both exist and are empty.

Proof. If u ≡f v holds, Lemma 3 guarantees that the words C(v, u) and
C(u, v) exist, and that there exists a word w in S∗ that satisfies ε ≡f

C(v, u)w ≡f C(u, v)w. Now, by construction, the latter equivalences imply
C(v, u) = C(u, v) = ε.

Thus, under the previous hypotheses, two words u, v in S∗ are ≡f -equivalent
if and only if u−1v �f ε holds, i.e., if iteratively replacing patterns x−1y with
the corresponding pattern f(x, y)f(y, x)−1 in the word u−1v leads eventually
to an empty word.

Lemma 5. [5] Assume that f is a complement on S that satisfies Conditions I,
II, and III. Let w, w′ be arbitrary words in (S ∪ S−1)∗. Then w and w′

represent the same element of Gf if and only if there exist words u, u′ in S∗

satisfying both N(w) u ≡f N(w′) u′ and D(w) u ≡f D(w′) u′.

We turn now to the specific argument that is relevant for studying torsion
in Gf . Though nearly trivial, the next result is the core of the argument.

Lemma 6. Assume that f is a complement on S that satisfies Conditions I
and II. Assume in addition that the monoid Mf is right cancellative. Assume
that u, v are words in S∗ such that C(C(u, v), C(v, u)) and C(C(v, u), C(u, v))
exist and are empty. Then C(u, v) and C(v, u) are empty as well.

Proof. By Lemma 4, the hypothesis implies C(u, v) ≡f C(v, u). By Formula (2),
we have uC(v, u) ≡f vC(u, v), hence uC(v, u) ≡f vC(v, u). Using the hypothesis
that Mf is right cancellative, we deduce u ≡f v, which, by Lemma 4, implies
that C(u, v) and C(v, u) are empty.

Lemma 7. Assume that f is a complement on S that satisfies Condition III.
Let w be an arbitrary word in (S ∪ S−1)∗. For, for every positive integer n, we
have

N(wn) = u1u2. . .un, D(wn) = v1v2. . .vn (3)

where u1, . . ., vn are defined inductively by u1 = N(w), v1 = D(w), ui+1 =
C(ui, vi), and vi+1 = C(vi, ui).
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Proof. We use induction on n. If n is 1, the result is obvious. Otherwise, using
the induction hypothesis and the relations v−1

i ui �f ui+1v
−1
i+1, i = 1, . . ., n − 1,

which follow from the definition of ui+1 and vi+1, we find

wn = wn−1w �f u1u2. . .un−1v
−1
n−1. . .v

−1
2 v−1

1 u1v
−1
1

�f u1u2. . .un−1v
−1
n−1. . .v

−1
2 u2v

−1
2 v−1

1

. . .

�f u1u2. . .un−1v
−1
n−1un−1v

−1
n−1. . .v

−1
2 v−1

1 ,

�f u1u2. . .un−1unv−1
n v−1

n−1. . .v
−1
2 v−1

1 ,

which gives (3) by definition of the numerator and denominator.

Lemma 8. Assume that f is a complement on S that satisfies Conditions I, II,
and III. Assume in addition that the monoid Mf is right cancellative. Let w
be an arbitrary word in (S ∪ S−1)∗. Then w represents 1 in Gf if and only if
the equalities

N(w2) = N(w) and D(w2) = D(w) (4)

hold.

Proof. By construction, the words w and N(w)D(w)−1 represent the same
element of Gf . So (4) implies that w and w2 represent the same element of Gf ,
and, therefore, that w represents 1.

Conversely, let us first observe that the hypotheses of the lemma imply that
the monoid Mf embeds in the group Gf . Indeed, assume that w, w′ are words
in S∗ that represent the same element of Gf . By Lemma 5, there exist words u,
u′ in S∗ that satisfy N(w) u ≡f N(w′) u′ and D(w) u ≡f D(w′) u′. By
construction, N(w) is w, and D(w) is the empty word ε, and the same holds
for w′, so the equivalences become wu ≡f w′u′ and u ≡f u′. We deduce wu ≡f

w′u, and w ≡f w′ whenever Mf is right cancellative.
Assume now that w is a word in (S ∪ S−1)∗ that represents 1. So does

N(w)D(w)−1. Hence N(w) and D(w) represent the same element of Gf . By
the previous result, N(w) ≡f D(w) holds. By Lemma 4, this implies

C(N(w), D(w)) = C(D(w), N(w)) = ε. (5)

Now, by Lemma 7, we have the following equalities of words

N(w2) = N(w)C(N(w), D(w)), and D(w2) = D(w)C(D(w), N(w)).

So (5) gives the result.
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We can now prove Theorem 1. Let w be an arbitrary word in (S ∪S−1)∗. As
in Lemma 7, we define inductively two sequences of positive words u1, u2, . . .,
v1, v2, . . . by u1 = N(w), v1 = D(w), ui+1 = C(ui, vi), vi+1 = C(vi, ui). By
Formula (3), we have

N(wn) = u1u2. . .un, D(wn) = v1v2. . .vn,

N(w2n) = u1u2. . .u2n, D(w2n) = v1v2. . .v2n.

Assume that wn represents 1 in Gf . Then, by Lemma 8, the words N(wn) and
N(w2n) on the one hand, and D(wn) and D(w2n) on the other hand, are equal,
which means that each of the words un+1, . . ., u2n and vn+1, . . ., v2n is empty.
Now Lemma 6 tells us that ui+2 = vi+2 = ε implies ui+1 = vi+1 = ε provided
that i is at least 1. So the assumption un+1 = vn+1 = ε implies u2 = v2 = ε,
i.e.,

N(w2) = N(w) and D(w2) = D(w).

By Lemma 8, this means that w represents 1 in Gf .

Remark 9. Most of the results about word reversing can be extended to
the case where the complement is not unique, which corresponds to monoids
where common multiples exist, but not necessarily lower common multiples. In
this case, convenient versions of Proposition 2 and Lemmas 3, 4, 5 hold, but
the lack of uniqueness for the numerators and denominators causes Lemma 8
to fail. However, it is easy to see that Theorem 1 cannot hold in general in
this framework. Indeed, a typical example of a group eligible for the previous
approach is the group

〈x, y ; xy = yx, x2 = y2〉,

where we have two ways of completing the pair (x, y). Now, in this group, we
have xy−1 �= 1, but (xy−1)2 = 1.
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