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ABSTRACT
The infinite braid group B∞ admits a left self-distributive structure. In particular, it
includes a free monogenerated left self-distributive system, and, therefore, it inherits all
properties of the latter object. Here we discuss how such algebraic properties translate
into the language of braids. We state new results about braids and propose a list of open
questions.
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There exists a deep connection between the geometry of braids, described by Artin’s
braid group B∞, and the geometry of the left self-distributivity identity x(yz) =
(xy)(xz), which turns out to be described by some extension of B∞ [5]. One of the
consequences of this connection is the existence of a left self-distributive operation
on braids, called here braid exponentiation. This operation is highly non-trivial,
and, in particular, every braid in B∞ generates under exponentiation a free left
self-distributive system—a free LD-system for short.

In recent years, a number of properties of LD-systems in general and of free LD-
systems in particular have been established, either by a direct algebraic approach
[5] [6] [15] [16] . . ., or as an application of results about elementary embeddings
in set theory [25] [26] [14]. . . Let us define a special braid to be a braid that can
be generated from the unit braid using solely braid exponentiation. Then special
braids form a free LD-system, and, therefore, they inherit all properties of such
systems. So every algebraic result about free LD-systems must admit a counterpart
in the language of braids. In this paper, we investigate such translations.

This study leads to new results about braid exponentiation, and about the linear
ordering of braids introduced in [5] and reconstructed recently in [18]. The main
new results we establish in this paper are: a complete study of left and right di-
vision in the system (B∞, ∧); an intrinsic combinatorial characterization of special
braids, which was missing up to now, and which results in an effective algorithm
for recognizing special braids; a seemingly optimal compatibility result between the
linear ordering of braids and their exponentiation, namely that b < a∧b holds for
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every b when a is positive or special; an explicit embedding of the extended braids
defined in [12] into B∞ and a characterization of its image.

Besides, we are naturally led to a number of new open questions. Typically, such
questions arise when we consider the possible extension to arbitrary braids of those
properties of special braids that come from self-distributive algebra. Most of these
“strange” questions about braids seem to be non-trivial, and we hope that they can
be of interest for topologists.

The paper comprises five sections. In Section 1, we investigate braid exponenti-
ation and the associated division and iterated power operations. In Section 2, we
concentrate on special braids, and their connection with the action of braids on
self-distributive systems. In Section 3, we consider the linear ordering of braids and
its compatibility with braid exponentiation. In Section 4, we discuss the possible
projection of the previous properties onto quotients of the braid group B∞. Finally,
we consider in Section 5 the extended braids of [12], which leads to new questions
about (ordinary) braids.

The author thanks M. Picantin for helpful comments, and R. Fenn for pointing
out an inaccuracy.

1. Braid Exponentiation

We follow the standard notations of [1]: Bn denotes the group of n strand braids,
which can be defined as the group generated by n − 1 generators σ1, . . ., σn−1

submitted to the relations

σiσj = σjσi for |i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1. (1.1)

Here σi corresponds to the elementary braid where the (i+1)-th strand crosses over
the i-th strand. The group B∞ is the direct limit of the groups Bn with respect to
the natural embedding of Bn into Bn+1 that corresponds to adding a new strand
on the right. In other words, B∞ is the group generated by an infinite sequence
of generators σ1, σ2, . . . indexed by the positive integers and submitted to (1.1).
Positive braids are defined as those braids that admit at least one expression where
no negative letter σ−1

i occurs. The monoid of all positive braids is denoted by B+
∞.

It will be convenient to use the specific notation τp for the positive braid that lets
the p + 1-th strand cross over the strands 1 to p, i.e., τp = σp. . .σ2σ1. We define τ0

to be the unit braid 1.
p︷ ︸︸ ︷

. . .

Figure 1.1. The braid τp (here p = 3)

As was shown in [5], a new binary operation on B∞ arises as the projection on B∞
of a canonical operation on some extension of B∞ that describes the geometry of
the left self-distributive identity. This operation is the braid exponentiation defined
by

a∧b = a · sh(b) · σ1 · sh(a)−1,
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a

b

a−1

Figure 1.2. The braid a∧b

(We recall that sh is the shift endomorphism of B∞.)
The following result is proved in [5]:

Proposition 1.1. Every braid in B∞ generates a free LD-system under exponen-
tiation.

The result applies in particular to the unit braid 1 (the braid that is represented
by a diagram with no crossing).

Definition. The braid b is special if it belongs to the closure of {1} under expo-
nentiation. The set of all special braids is denoted Bsp

∞ .

So, every special braid admits an expression involving only 1 and exponentiation.
For instance, 1, σ1, which is 1∧1, σ2σ1, which is 1∧(1∧1), σ2

1σ−1
2 , which is (1∧1)∧1,

. . . are special braids.

1.1. Left division

We consider first left division in the system (B∞, ∧). Because the shift endo-
morphism of the group B∞ is injective, braid exponentiation is left cancellative:
a∧b = a∧b′ implies b = b′. It follows that, when we are given two braids a and c,
there exists at most one braid b satisfying a∧b = c. Here we study whether such a
quotient actually exists. In the case of special braids, the answer is known.

Proposition 1.2. Assume that a and c are special braids. Then the following are
equivalent:

(i) There exists a special braid b satisfying a∧b = c;
(ii) The equality a∧c = (a∧a)∧c holds.

Proof. The fact that (i) implies (ii) does not use the hypothesis that a and b are
special: it results from the equality a∧(a∧b) = (a∧a)∧(a∧b), which trivially holds
in every LD-system. The converse implication is proved in [6] (in the context
of abstract free LD-systems) using the existence of a unique normal form for the
elements of a monogenerated free LD-system (a rather sophisticated result—using
the normal form of [25] is also possible). ¥

The previous result suggests naturally that we look for a similar criterion in the
case of arbitrary braids. We begin with an easy remark.
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Lemma 1.3. For b in B∞, the following are equivalent:
(i) The braids sh(b) and σ1 commute;
(ii) The braid b belongs to sh(B∞).

Proof. It is clear that (ii) implies (i). Conversely, assume that b belongs to Bn.
Then, using the “handle trick” of Figure 1.3, we have

sh(b)−1 σ−1
1 sh(b)σ1 = sh(b)−1 σ2. . .σn b σ−1

n . . .σ−1
2 . (1.2)

So, if sh(b) and σ1 commute, we obtain

b = σ−1
n . . .σ−1

2 sh(b)σ2. . .σn,

and the latter expression belongs to sh(B∞) explicitely. ¥

b−1

b

b−1

b

Figure 1.3: The handle trick

(See [19] for more general results about centralizers in B∞.) We can easily prove
the counterpart of Proposition 1.2.

Proposition 1.4. Assume that a and c are braids. Then the following are equiv-
alent:

(i) There exists a braid b satisfying a∧b = c;
(ii) The equality a∧c = (a∧a)∧c holds.

Proof. As above, (i) obviously implies (ii). Conversely, the equality a∧b = c develops
into

sh(b) = a−1 c sh(a) σ−1
1 ,

so (i) is equivalent to the braid a−1 c sh(a)σ−1
1 belonging to sh(B∞). By Lemma 1.3,

the latter condition is equivalent to the fact that sh(a−1 c sh(a)σ−1
1 ) commutes

with σ1. Now, developing a∧c = (a∧a)∧c gives

sh(c)σ1 = sh(a) σ1 sh(a−1 c)σ1 sh2(a) σ−1
2 sh2(a−1),

which is equivalent to

sh(a−1c sh(a)σ−1
1 ) = σ1 sh(a−1 c sh(a) σ−1

1 )σ−1
1 .

This is precisely the above condition that sh(a−1 c sh(a) σ−1
1 ) and σ1 commute. So

(ii) implies (i). ¥
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1.2. Right division

The case of right division is different, as no uniqueness can be expected in general:
we just have seen above that, if c is equal to a∧b, then a∧c and (a∧a)∧c are equal, a
result that holds in (B∞, ∧) as well as in each LD-system. However, we can study
right division rather easily. The following technical result will be used several times
in the sequel.

Lemma 1.5. Assume that b is a braid in B∞, and n is a positive integer. The
following are equivalent:

(i) The braid b belongs to Bn;
(ii) The equality

sh(b) = τ−1
n b τn (1.3)

holds.

Proof. The fact that (i) implies (ii) follows from Figure 1.4 below. For the converse
implication, we assume b 6= 1. Let p be the least index such that b belongs to Bp.
If p > n holds, the braid τ−1

n b τn belongs to Bp, while sh(b) does not, so (1.3) is
impossible. ¥

b b=

Figure 1.4: The shift in Bn

Lemma 1.6. Assume that b belongs to Bn, and p < n holds. Then the following
are equivalent:

(i) The braid b belongs to Bp;
(ii) The braid b commutes with σn. . .σp+1.

Proof. By Lemma 1.5, b belongs to Bp if and only if sh(b) is equal to τ−1
p b τp.

Now, as b belongs to Bn, sh(b) is equal to τ−1
n b τn. The equality τ−1

p b τp = τ−1
n b τn

amounts to b commuting with τnτ
−1
p . ¥

We are now ready to describe right division in (B∞, ∧). In the sequel, we say that
two braids b, b′ in B∞ are Bn-conjugate if there exists some braid a in Bn such that
b′ = aba−1 holds. The well-known solution by Garside of the conjugacy problem
of Bn [21] does not solve the “partial conjugacy problem” of recognizing whether
two braids in Bn′ , n′ > n, are Bn-conjugate. However, the argument showing that
the conjugacy problem of a biautomatic group is solvable shows that the partial
conjugacy problem associated with a parabolic subgroup is solvable as well, and
this applies in particular to the parabolic subgroup Bn of Bn′ when n′ > n holds.
Indeed, using the notations of [17, Th. 2.5.7], deciding whether b and b′ are Bn-
conjugate amounts to deciding whether the (effectively computable) automaton M b

b′

accepts at least one word over the alphabet {σ1, . . ., σn−1}.
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Proposition 1.7. Assume that b, c are braids. Then the following are equivalent:
(i) There exists a in Bn satisfying a∧b = c;
(ii) The braids c τ−1

n and sh(bτ−1
n−1) are Bn-conjugate.

If the previous conditions are satisfied, the braids a in Bn satisfying a∧b = c are
those braids of the form a0d, where a0 is an arbitrary braid satisfying a0

∧b = c and
d is an arbitrary braid that commutes with sh(bτ−1

n−1).

Proof. Assume that a belongs to Bn. Using (1.3), we obtain, for every b, the
equality

a∧b = a sh(bτ−1
n−1) a−1 τn. (1.4)

Hence, a∧b = c is equivalent to

c τ−1
n = a sh(bτ−1

n−1) a−1. (1.5)

Thus the equivalence of (i) and (ii) is proved. Assume now that c = a0
∧b

holds. Then, by (1.5), c = (a0d)∧b holds if and only if sh(bτ−1
n−1) is equal to

d sh(bτ−1
n−1) d−1. ¥

Corollary 1.8. For all braids a, a′, and every positive integer p, the following are
equivalent:

(i) The equality a∧τp−1 = a′∧τp−1 holds;
(ii) The braid a−1a′ belongs to Bp.

Proof. Assume that a, a′ belong to Bn, where n ≥ p holds. By the previous
result, (i) holds if and only if the braid a−1a′ commutes with sh(τp−1τ

−1
n−1), which

is σ−1
p+1. . .σ

−1
n , hence if and only if it commutes with σn. . .σp+1. By Lemma 1.6,

this means that a−1a′ belongs to Bp. ¥

We see in particular that the mapping a 7→ a∧1 is injective on B∞, a property that
extends a similar result in every monogenerated free LD-system.

1.3. Right powers

We consider now the iterated powers of braids with respect to exponentiation. In
the sequel, we use x[m] and x[m] to denote the m-th right and left powers of x defined
inductively by

x[1] = x[1] = x, x[m+1] = x∧x[m], x[m+1] = x[m]
∧x.

For instance, an easy induction gives the formula

1[m] = τm−1 (= σm−1. . .σ2σ1). (1.6)

In the case of special braids, precise results about right powers are known.
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Definition. For b a special braid, the height ht(b) of b is defined as follows: ht(1)
is 1, and, for b 6= 1, ht(b) is the least value of sup(ht(b1),ht(b2)) + 1 when (b1, b2)
ranges over all pairs such that b is b1

∧b2.

For instance, the height of σ1 is 2, the height of σ2σ1 (which is 1[3]) and σ2
1σ−1

2

(which is 1[3]) is 3, etc. The height of a special braid is the height of a minimal
binary tree that expresses b in terms of 1 and ∧. We shall also use in the sequel the
exponent sum ε(b) of a braid b, where ε is the augmentation homomorphism of B∞
to Z that maps every generator σi to 1.

Lemma 1.9. Assume that b is a special braid.
(i) The equality b∧τm−1 = τm holds for m ≥ ht(b).
(ii) The equality b[m−ε(b)] = 1[m] = τm−1 holds for m ≥ ht(b). In particular, we

have b[ht(b)−ε(b)] = τht(b)−1.

Proof. (i) We prove inductively on p ≥ 1 that the property holds for ht(b) ≤ p. If
p is 1, b must be 1, and the result follows from (1.6). Otherwise, there must exist
special braids b1 and b2 such that b is b1

∧b2, and ht(b1) and ht(b2) are at most p−1.
Assume m ≥ p. Using the induction hypothesis, we find

b∧τm−1 = (b1
∧b2)∧τm−1 = (b1

∧b2)∧(b1
∧τm−2) = b1

∧(b2
∧τm−2) = b1

∧τm−1 = τm.

(ii) The argument is similar for the second formula. If p is 1, b is 1, ε(b) is 0, and
the result is obvious. Otherwise, assume b = b1

∧b2 with ht(b1) < p and ht(b2) < p.
We observe that b[k] is equal to b1

∧b
[k]
2 for every k, and that ε(b) is ε(b2) + 1. So,

using the induction hypothesis, we find for m ≥ p

b[m−ε(b)] = b1
∧b

[m−ε(b)]
2 = b1

∧b
[m−1−ε(b2)]
2

= b1
∧1[m−1] = b1

∧b
[m−1−ε(b1)]
1 = b

[m−ε(b1)]
1 = 1[m],

which completes the proof. ¥

So it is natural to ask whether the relations of Lemma 1.9 extend to arbitrary braids
or, in the contrary, characterize special braids. As for the first relation, it extends
to the whole of B∞.

Proposition 1.10. Assume that b belongs to B∞. Then the following are equiva-
lent:

(i) The braid b belongs to Bn;
(ii) The equality b∧τn−1 = τn holds.

Proof. The explicit value of b∧τn−1 is b τn sh(b−1). If b belongs to Bn, i.e., if b can
be expressed as a product of generators σ±1

i with i < n, then bτn is equal to τnsh(b),
and (ii) holds.

Conversely, assume that b does not belong to Bn. Let m the least integer such
that b belongs to Bm+1. By the results of [10], we know that b admits an expression
where exactly one of σm, σ−1

m occurs. It follows that sh(b) has an expression where
exactly one of σm+1, σ−1

m+1 occurs, and the same holds for bτn−1sh(b)−1τ−1
n . Hence,

by the results of [5], the latter braid cannot be the unit braid. ¥
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Corollary 1.11. Assume that c is a special braid. Then, for every braid b, the
equality b∧c[m] = c[m+1] holds for m large enough.

Proof. Proposition 1.10 tell us that, for every braid b, the equality b∧1[m] = 1[m+1]

holds for m large enough. The corollary follows, since, by Lemma 1.9, there exists p
such that c[m] is 1[m+p] for m large enough. ¥

The previous result does not extend to the case of an arbitrary braid c. For instance,
if c is σ−1

1 , then c[m] is σm. . .σ2σ
−1
1 , and 1∧c[m], which is σm+1. . .σ3σ

−1
2 σ1, is never

equal to c[m+1], which is σm+1. . .σ3σ2σ
−1
1 .

Similarly, Lemma 1.9(ii) does not extend to arbitrary braids: as was mentioned
above, σ−1

1
[m] is σm. . .σ2σ

−1
1 , and, therefore, no right power of σ−1

1 may be a right
power of 1. We shall come back on the question in Section 4 below.

We finish this section with two open questions. It follows from Lemma 1.9 and
Proposition 1.10 that, if b is a special braid of height n, then b belongs to Bn.

Question 1.12. Is the converse implication true, i.e., is the height of every special
braid that belongs to Bn bounded above by n?

A positive answer would in particular imply that there are at most 2n special braids
in Bn.

Question 1.13. Does (B∞, ∧) include a free LD-system on two generators, i.e., do
there exist two braids b1, b2 such that the closure of {b1, b2} under exponentiation
is a free LD-system based on {b1, b2}?

We conjecture a negative answer. Observe that Corollary 1.11 implies that a possible
free sub-LD-system of rank 2 of B∞ contains no special braid. Indeed, if c is special,
and b1, b2 are arbitrary braids, then Corollary 1.11 implies b1

∧c[m] = b2
∧c[m] for

m large enough. But, by the results of [4], no equality of the form b1
∧x = b2

∧x may
hold in a free LD-system based on the set {b1, b2}.

2. Special Braids

In this section, we give a combinatorial characterization of special braids by means
of an action of braids on sequences of braids (“braid colorings”). This results in
particular in an effective algorithm that recognizes whether a given braid word
represents a special braid, and, if so, provides an explicit decomposition of this
braid in terms of the unit braid and exponentiation.
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2.1. The action of braids on LD-systems

Assume that (Σ, ∧) is an LD-system where all left translations are bijections, i.e.,
(Σ, ∧) is an automorphic set in the sense of [2] or a rack in the sense of [20]—or, in
a slightly different framework, a crystal in the sense of [22]. Then the formula

(a1, . . ., an)σi = (a1, . . ., ai−1, ai∧ai+1, ai, ai+2, . . ., an) (2.1)

defines an action of Bn on Σn. This action can be described in terms of colorings
of the strands of a braid: for b a braid and ~a a sequence in Σn, the value of (~a) b
is the sequence of output colors obtained when the input colors ~a are attributed to
the top ends of the strands of b and the colors are propagated according to the rule

a1 a2

a1
∧a2 a1

a1 a2

a2 a satisfying a2
∧a = a1.

However, the hypothesis that the translations of the LD-system (Σ, ∧) are bijective
can be relaxed into the hypothesis that these translations are injective, i.e., the
system (Σ, ∧) is left cancellative, at the expense of considering a partial action [5]:
(~a) b need no longer exist for every sequence ~a in Σn, but it remains true that, for
every braid word w, there exists a sequence ~a such that (~a)w exists, and that, if
w, w′ are braid words representing the same braid b, and ~a is a sequence such that
both (~a)w and (~a)w′ exist, then the latter sequences are equal, and (~a) b can be
unambiguously defined to be (~a)w.

As B∞ equipped with exponentiation is a left cancellative LD-system, it is eligible
for the previous partial action. So (2.1) defines a partial action of Bn on Bn

∞ for
every n, hence a partial action of B∞ on the set of all sequences from B∞ indexed
by positive integers. Observe that the restriction of the action to B+

∞ is everywhere
defined, for problems with division occur only at negative crossings. .

The following argument is easy, but it relies upon deep results about free LD-
systems.

Lemma 2.1. Assume that ~a is a sequence of special braids and (~a) b exists. Then
the latter sequence consists of special braids.

Proof. It suffices to show that each elementary step in the action introduces only
special braids. Now, by definition, if a and b are special braids, so is a∧b, and the case
of positive crossings is trivial. On the other hand, assume that a and c are special
braids, and b is a braid satisfying a∧b = c. By the trivial part of Proposition 1.4,
the equality a∧c = (a∧a)∧c holds in B∞, hence in Bsp

∞ . Now, by the non-trivial part
of Proposition 1.2, this implies that there exists b′ in Bsp

∞ that satisfies a∧b′ = c.
Finally, by left cancellativity, b must be equal to b′, i.e., b must be a special braid.
So the action of negative crossings introduces special braids only. ¥

We characterize special braids as follows:
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Proposition 2.2. Let b be an arbitrary braid. Then the following are equivalent:
(i) The braid b is special;
(ii) The sequence (1, 1, 1, . . .) b exists, and it is equal to (b, 1, 1, . . .).

Proof. First we prove that (i) implies (ii) using induction on the length of a braid
word that represents b. It is clear that (ii) holds when b is 1. Assume that b is
b1
∧b2, and b1, b2 satisfy (ii). Then we find

(1, 1, . . .) b = ((((1, 1, . . .) b1) sh(b2))σ1) sh(b−1
1 )

= (((b1, 1, 1, . . .) sh(b2))σ1) sh(b−1
1 )

= ((b1, b2, 1, 1, . . .)σ1) sh(b−1
1 )

= (b, b1, 1, 1, . . .) sh(b−1
1 )

= (b, 1, 1, 1, . . .).

Indeed, for the last step, the hypothesis on b1 implies that (b1, 1, 1, . . .) b−1
1 is defined

and equal to (1, 1, . . .), and, similarly, (b, b1, 1, 1, . . .) sh(b−1
1 ) is defined and equal

to (b, 1, 1, . . .). Conversely, assume that b satisfies (ii). The braid 1 is special, so
Lemma 2.1 tells us that b is special. ¥

Thus, a special braid is a braid that produces itself using braid coloring and starting
from unit braids, according to the scheme

1 1 1 1

b 1 1 1

b

Proposition 2.3. There exists an algorithm that recognizes whether a given braid
word represents a special braid, and, if so, gives an expression of this braid in terms
of the unit braid and exponentiation.

Proof. Let w be an arbitrary braid word. We decide whether w represents a special
braid as follows: first, we reverse w into an equivalent braid word uv−1 with u,
v positive using the method of [7]; then, we compute (1, 1, 1, . . .) uv−1. By [5],
it is known that, if (~a) w′ is defined for at least one braid word w′ equivalent
to w, then (~a) uv−1 must be defined. Then w represents a special braid if and
only if the previous computation is successful and it ends with a sequence of the
form (b, 1, 1, . . .), i.e., all components from the second are trivial. The latter point
can be effectively tested using one of the many algorithms that solve the word
problem of braids. Moreover, there exists an effective left division algorithm in free
monogenerated LD-systems [6]. Hence, we can obtain an effective expression of the
special braids involved in (1, 1, 1, . . .) uv−1 in terms of 1 and exponentiation. ¥

Example 2.4. Let w be the braid word σ−1
2 σ−1

1 σ2
2σ1. We first reverse w into the

equivalent word σ2
1σ−1

2 . Then we compute (1, 1, 1) σ2
1σ−1

2 : thus u is here σ2
1 , and v

is σ2. The value of (1, 1, 1)σ2
1 is ((1∧1)∧1, 1∧1, 1). Then, in order to apply v, we have

to divide 1∧1 by 1 on the left. In the present case, the result is obvious: division is
possible and the quotient is 1. So we see that (1, 1, 1) σ2

1σ−1
2 is ((1∧1)∧1, 1, 1), and,

finally, we conclude that w represents the special braid (1∧1)∧1, i.e., 1[3].
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2.2. Special decompositions

The previous results allow us to express every braid in terms of special braids, in
an effective way.

Definition. Assume that b is a braid and (b1, b2, . . .) is a finite sequence of special
braids—or an infinite sequence eventually equal to 1. We say that (b1, b2, . . .) is a
special decomposition for b if the equality

b = b1 · sh(b2) · sh2(b3) · . . . (2.2)

holds.

Proposition 2.5. Let b be an arbitrary braid. Then the following are equivalent:
(i) The braid b admits a special decomposition;
(ii) The sequence (1, 1, 1, . . .) b is defined.

In this case, the special decomposition of b is unique, and it is equal to (1, 1, 1, . . .) b.

Proof. Assume that (a1, a2, . . .) is a sequence of braids eventually equal to 1, and
that (a1, a2, . . .) b is equal to (b1, b2, . . .). Then, an easy induction on the length of b
gives the equality

b1 sh(b2) sh2(b3). . . = a1 sh(a2) sh2(a3). . . b. (2.3)

In particular, if (1, 1, . . .) b is equal to (b1, b2, . . .), we obtain b = b1 sh(b2) sh2(b3). . .
As the braid 1 is special, we are sure that all braids bi are special. So (ii) implies (i).

Conversely, assume b = b1 sh(b2) sh2(b3). . . with b1, b2, . . . special. Then we obtain
successively

(1, 1, . . .) b = (1, 1, . . .) b1 sh(b2) sh2(b3). . .

= (b1, 1, 1, . . .) sh(b2) sh2(b3). . .

= (b1, b2, 1, 1, . . .) sh2(b3). . . = . . . = (b1, b2, b3, . . .).

This proves that (i) implies (ii) and, in addition, that the special decomposition is
unique when it exists. ¥

Corollary 2.6. Every positive braid admits a unique special decomposition.

Proof. If b belongs to B+
∞, then, by construction, the sequence (1, 1, . . .) b is defined

since possible obstructions occur only with negative crossings. ¥

Notice that the algorithm of Proposition 2.3 allows us to effectively obtain the
possible special decomposition of a braid.

If we consider positive braids with a fixed number of strands, we can say a little
more. Indeed, if b lies in B+

n , the special decomposition of b contains n factors only,
i.e., we have b = b1sh(b2). . .shn−1(bn) for some special braids b1, . . ., bn. However,
it must be noticed that the braids bi involved in the decomposition need not belong
to Bn—and, actually, they do not in general: for instance the special decomposition
of σ2

1 , which lies in B2, is (σ2
1σ−1

2 ) sh(σ1), and σ2
1σ−1

2 does not belong to B2.
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Proposition 2.7. The positive braids that are special are exactly the braids 1[m],
i.e., those braids of the form σm−1. . .σ2σ1.

Proof. We use induction on the length of (a positive expression of) b. The result
is obviously true for the unit braid 1. Now assume that b is positive and bσi is
special. Since b is positive, (1, 1, . . .) b exists. Let (b1, b2, . . .) be the latter sequence.
If i is not equal to 1, the i-th component of (1, 1, . . .) bσi is equal to bi∧bi+1, which
cannot be 1. Thus i must be 1. The hypothesis that bσ1 is special then implies
b1 = b3 = b4 = . . . = 1, i.e., (1, 1, . . .) b = (1, b2, 1, 1, . . .). Applying (2.2), we see
that b is equal to sh(b2). Now, by construction, b2 is positive, and it is special, as
(1, 1, . . .) b2 is equal to (b2, 1, 1, . . .). By induction hypothesis, b2 is 1[m] for some m,
and, then, b is 1[m+1]. ¥

It is then easy to characterize those braids for which the decomposition of (2.2)
involves only positive braids.

Proposition 2.8. Let b be an arbitrary braid. Then the following are equivalent:

(i) The braid b admits a special decomposition consisting of positive braids;

(ii) The braid b is a positive simple braid, i.e., there exists an integer n such that
b divides Garside’s fundamental braid ∆n.

Proof. Assume that (1, 1, 1, . . .) b is (b1, b2, . . .). By Proposition 2.5, the braids bi
are special. If we assume in addition that bi is positive, then, by Proposition 2.7,
there must exist an integer mi such that bi is σmi−1. . .σ1. If this occurs for every i,
we obtain

b = (σm1−1. . .σ1)(σm2−1. . .σ2). . ., (2.4)

which shows that b is positive braid where any two strands cross at most once, thus
a divisor of ∆n for n large enough.

Conversely, if b is a positive simple braid, then it is well-known that it admits
a decomposition of the form (2.4), where mi is the initial position of the strand
that finishes at position i in b. By uniqueness, we know that this decomposition
coincides with the one associated with (1, 1, 1, . . .) b. So (i) holds. ¥

In particular, the special decomposition of ∆n is

∆n = (σn−1. . .σ1) sh(σn−2. . .σ1) . . . shn−2(σ1).

12



3. The Linear Ordering of Braids

One of the most important properties of free LD-systems is the existence of canonical
linear orderings. In particular, there exists on every monogenerated free LD-system
a unique linear ordering such that the inequality a < a∧b holds for all a, b. So, as
special braids form a free monogenerated LD-system, there exists a unique linear or-
dering of special braids that satisfies the previous inequality. We consider now an ex-
tension of this ordering to arbitrary braids. The existence of special decompositions
enables us to first define a linear ordering on positive braids: if b and b′ are positive
braids—or, more generally, two braids that admit special decompositions—we say
that b < b′ holds if, letting (b1, b2, . . .) and (b′1, b

′
2, . . .) be their special decomposi-

tions, the sequence (b1, b2, . . .) precedes the sequence (b′1, b
′
2, . . .) with respect to the

lexicographical extension of the ordering on special braids: (b1, b2, . . .) < (b′1, b
′
2, . . .)

holds if b1 < b′1 holds, or if b1 = b′1 and b2 < b′2 hold, etc. Finally, we extend the
linear ordering to the whole of B∞ by using the fact that every braid is the quotient
of two positive braids: for b an arbitrary braid, we say that b > 1 if b is equal
to b−1

1 b2 where b1 and b2 are positive braids satisfying b1 < b2. One verifies [5] that
this definition is non-ambiguous, and that the braid ordering extends the ordering
of special braids.

Definition. The braid b is σ1-positive (resp. σ1-negative, resp. σ1-neutral) if it
admits at least one expression where σ1 occurs, but σ−1

1 does not (resp. σ−1
1 occurs,

but σ1 does not, resp. neither σ1 nor σ−1
1 occurs).

In particular, a braid is σ1-neutral if and only if it belongs to the image of the shift
endomorphism.

Proposition 3.1. [5], [10] (i) Let b1, b2 be special braids. Then b1 < b2 holds if
and only if the braid b−1

1 b2 is σ1-positive.
(ii) Let b1, b2 be arbitrary braids. Then b1 < b2 holds if and only if there exists a

nonnegative integer k and a σ1-positive braid b such that b−1
1 b2 is shk(b).

Observe in particular that (i) implies that the quotient of two special braids is never
σ1-neutral except if it is trivial, i.e., if the considered special braids are equal. The
existence of the linear ordering of braids implies, and, actually, is equivalent to the
following trichotomy property:

Corollary 3.2. Let b be an arbitrary braid. Then exactly one of the following
cases occurs:

(i) The braid b is σ1-positive;
(ii) The braid b is σ1-negative;
(iii) The braid b is σ1-neutral.

An alternative approach to the linear ordering < based on the connection of braids
with homeomorphisms of a punctured disk has been developed recently in [18].
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3.1. Compatibility with exponentiation

As we mentioned, the inequality a < a∧b holds for all special braids a, b. The
extension to arbitrary braids is straightforward.

Proposition 3.3. The inequality a < a∧b holds for all braids a, b.

Proof. Obvious: a−1(a∧b) is equal to sh(b)σ1sh(a−1), an explicitely σ1-positive
braid. ¥

On the other hand, a deep property of the linear ordering on monogenerated free
LD-systems is that the inequality b < a∧b also holds [6] [25]. It follows that, if a, b
are special braids, then b < a∧b holds. This leads us immediately to

Question 3.4. Does the inequality b < a∧b hold for all braids a, b?

It is easy to give a negative answer. For instance, we have 1 > σ−2
1
∧1, and σ2σ1 >

(σ1σ
−2
3 )∧(σ2σ1): in the latter case, the quotient (σ2σ1)−1(σ1σ

−2
3 )∧(σ2σ1) is equal

to σ2σ
−1
3 σ2σ

−1
1 σ−1

2 σ3σ
−1
2 σ2

4 , hence is a σ1-negative braid. The latter example shows
that even the hypothesis that a is σ1-positive is not sufficient to guarantee that the
inequality holds for every b.

We establish positive (partial) answers to Question 3.4. According to the previous
remarks, these results seem to be optimal.

Lemma 3.5. Let b be an arbitrary braid. Then the braid b−1 sh(b)σ1 is σ1-positive.

Proof. Let us denote by [x, y] the commutator of x and y, i.e., xyx−1y−1. Let
c be b−1 sh(b)σ1. We can write c as c′c′′, where c′ is [b−1, σ2. . .σn] and c′′ is
[σ2. . .σn, b

−1]b−1 sh(b) σ1. Now we have

c′ = (b−1 σ2. . .σn b) σ−1
n . . .σ−1

2 .

The first term is a conjugate of the positive braid σ2. . .σn. Hence, by the results
of [27] (or of [3], or of [31]), the inequality b−1 σ2. . .σn b > 1 holds, and, therefore,
the braid b−1 σ2. . .σn b is either σ1-positive, or σ1-neutral. As the braid σ−1

n . . .σ−1
2

is σ1-neutral, we conclude that c′ is either σ1-positive, or σ1-neutral (we do not
claim that c′ ≥ 1 holds).

On the other hand, we find

c′′ = σ2. . .σn b−1 σ−1
n . . .σ−1

2 sh(b)σ1.

Using the handle trick of Figure 2.1, we obtain

c′′ = σ−1
1 sh(b−1) σ1 sh(b) σ1.

Now, the latter expression shows that c′′ is a conjugate of the positive braid σ1,
hence, always by [27], c′′ > 1 holds. We deduce that c′′ is either σ1-positive, or
σ1-neutral, and so is c′c′′, i.e., c.

It remains to show that c cannot be σ1-neutral, which is easy. Indeed, let f be
the permutation of the integers associated with b. Then the origin of the strand
that finishes at position 1 in c is f−1(f(1) + 1), hence it cannot be 1, as it is the
case for every σ1-neutral braid. ¥

14



b−1

b

b−1

b

Figure 2.1: The handle trick again

Proposition 3.6. Assume that the braid a can be expressed as a′a′′sh(a′−1) where
a′′ is a positive braid. Then the inequality b < a∧b holds for every braid b.

Proof. Let d be a′−1
b. Then we have

b−1(a∧b) = d−1 a′′ sh(d) σ1 sh(a−1)

= (d−1 sh(d) σ1) · (σ−1
1 sh(d−1) a′′ sh(d)σ1) · sh(a−1).

By Lemma 3.5, the first braid in the latter decomposition is σ1-positive. The
second one is a conjugate of a positive braid, so σ−1

1 sh(d−1) a′′ sh(d)σ1 > 1 holds,
and, therefore, the braid σ−1

1 sh(d−1) a′′ sh(d)σ1 is either σ1-positive or σ1-neutral.
Finally, the last factor is σ1-neutral. Hence the braid b−1(a∧b) is σ1-positive. ¥

Corollary 3.7. Assume that the braid a is positive or special. Then the inequality
b < a∧b holds for every braid b.

Proof. If a is positive, we apply the previous result with a′ = 1. On the other
hand, an immediate induction shows that, if a is special, it is either 1, and we apply
Lemma 3.5, or it can be expressed as a1

∧. . .∧ap∧1, where a1, . . ., ap are themselves
special. Now, in this case, a is a′τpsh(a′−1) with a′ = a1sh(a2). . .shp−1(ap). ¥

Observe that the previous result gives a new proof that the inequality b < a∧b holds
in every monogenerated LD-system.

3.2. Laver’s conjecture

Neither the linear ordering of B∞ nor its restriction to B+
∞ is a well-ordering, since

the sequence σ1, σ2, . . . is strictly decreasing. On the other hand, Laver has proved
in [27] that the restriction of the linear ordering to B+

n is a well-ordering, and
Burckel has shown in [3] that the ordertype of this restriction is the ordinal ωω

n−2
:

for instance, the order-type of B+
2 is ω, the ordertype of the natural numbers—which

is obvious—while the order-type of B+
3 is ωω.

Definition. For (b1, . . ., bn) a given sequence of braids, D(b1, . . ., bn) is the subset
of Bn consisting of those braids b such that the sequence (b1, . . ., bn) b is defined.

For instance, D(1, . . ., 1) consists of all braids in Bn that admit a special
decomposition—so it contains all positive braids in Bn.
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Question 3.8. Let (b1, . . ., bn) be a finite sequence of braids. Is the set D(b1, . . ., bn)
well-ordered by the linear ordering of braids?

The question is implicit at the end of [27], and Laver conjectures a positive answer.
This question—together with some variants involving free LD-systems on more than
one generator—seems to be one of the major open questions in the area. A positive
solution would imply a number of consequences in the study of free LD-systems.

Restricting to finite sequences is necessary: the set D(1, 1, . . .) (infinite sequence)
includes B+

∞, which is not well-ordered. However, we could easily modify the con-
struction of the linear ordering so that the sequence σ1, σ2, . . . becomes increasing.
In this case we could obtain a well-ordering on B+

∞ (with order type ωω
ω

). But,
even so, D(1, 1, . . .) would not be well-ordered, as it contains all special braids, and
the latter are not well-ordered, as shows the infinite descending sequence

1[1]
∧1[2] > 1[2]

∧1[2] > 1[3]
∧1[2] > . . .

To mention a partial result connected with Laver’s conjecture, let Λk denote the
free LD-system on k generators x1, . . ., xk. So, in particular, Λ1 is isomorphic to
(Bsp
∞ , ∧). It is known that Λk is left cancellative, so it is eligible for braid colorings. In

other words, Formula (2.1) defines for every n and k a partial action of Bn on Λnk .
Then we can consider for every sequence (a1, . . ., an) in Λnk the set D(a1, . . ., an)
consisting of those braids such that (a1, . . ., an) b is defined. Larue has shown in [24]
that the set D(x1, . . ., xk) coincides with B+

n , and, therefore, Laver’s conjecture is
true in this particular case. Let us observe that using the free LD-system Λk is
not really leaving the framework of braids. Indeed, in the same way as Λ1 can
be realized as a subsystem of B∞ equipped with braid exponentiation, Λk can be
realized as a subsystem of CB∞ equipped with braid exponentiation, where CB∞
is the extension of B∞ obtained by adding a sequence of pairwise commuting new
generators ρ1, ρ2, . . . submitted to the relations σiρj = ρjσi for j < i and j > i+1,
and σiρi+1ρi = ρiρi+1σi. The elements of CB∞ can be interpreted as braids where
the strands wear some integer charges [9].

3.3. Decompositions

The fact that the braid ordering is linear together with the characterization of
Proposition 3.1 imply that every braid which does not belong to sh(B∞), i.e., which
is not σ1-neutral, admits an expression where exactly one of σ1, σ−1

1 occurs. More-
over, the results of [24], [10], and [18] give three different proofs of the more precise
result that every braid in Bn admits in Bn a decomposition of the previous type.

Several questions arise about the possible numbers of letters σ1 in a σ1-positive
expression of a given braid. Determining the minimal such number is connected
with the following question.

Question 3.9. Assume that the braid σ1sh(b)σ1 has a σ1-positive decomposition
with only one σ1. Is the same true for b?
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The previous condition is obviously sufficient: if b is sh(b0)σ1sh(b1), then σ1sh(b)σ1

is equal to sh2(b0)σ2σ1σ2sh2(b1). Whether the condition is necessary is open.
As shows the trivial equality σ2σ1 = σk1σ2σ1σ

−k
2 , there is no upper bound in

general on the number of σ1’s in a σ1-positive decomposition of a braid. How-
ever, it would be interesting to obtain upper bounds for the maximal num-
ber of σ1’s when the expression is to be chosen in some fixed set of braid
words. In order to state a precise question, let ∼ denote the least congruence
on braid words that contains all pairs (σiσjσi, σjσiσj), (σ−1

i σ−1
j σ−1

i , σ−1
j σ−1

i σ−1
j ),

(σiσ−1
j , σ−1

j σ−1
i σjσi), (σ−1

i σj , σjσiσ
−1
j σ−1

i ) for |i − j| = 1, and (σiσj , σjσi),
(σ−1
i σ−1

j , σ−1
j σ−1

i ), (σiσ−1
j , σ−1

j σi), (σ−1
i σj , σjσ

−1
i ) for |i − j| ≥ 2. Thus, ∼ is

included in the usual braid word equivalence, but we do not allow the equivalences
σ±1
i σ∓1

i ≡ ε (where ε denotes the empty word) which may create ex nihilo new
factors σ±1

i σ∓1
i .

Question 3.10. Is it true that, for every braid word w, there exists a constant c
depending only on the number of strands in w such that the length of every freely
reduced word that is ∼-equivalent to w is bounded by c times the length of w?

A positive answer to the question would improve dramatically the complexity
bounds of the algorithm described in [10]. The question is most presumably con-
nected with the automatic structure of the braid groups [17] [11].

4. Equivalence Relations and Quotients

New questions arise when we consider equivalence relations. On the one hand,
some quotients of the braid groups are known, and we can investigate the possible
self-distributive operations induced by braid exponentiation on these quotients. We
shall consider here the case of permutations and of Burau matrices.

On the other hand, as special braids make a free monogenerated LD-system,
every monogenerated LD-system is a quotient of (Bsp

∞ , ∧). In other words, for every
monogenerated LD-system Σ, there must exist an equivalence relation ≡Σ on Bsp

∞
that is compatible with exponentiation and such that the quotient-structure Bsp

∞ /≡Σ
is isomorphic to Σ. Looking for a geometric construction of the relation ≡Σ and
for a possible extension of this relation from special braids to arbitrary braids is a
very natural task.

4.1. Exponentiation of permutations

We denote by π the surjective homomorphism of the group B∞ onto the symmetric
group S∞ consisting of those permutations of the positive integers that eventually
coincide with identity. For b a braid and p a positive integer, π(b)(p) is the initial
position of the strand that finishes at position p in b.

Proposition 4.1. Braid exponentiation induces a well-defined left self-distributive
operation on the symmetric group S∞.
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The result is obvious, as braid exponentiation is defined by means of braid product
and shift, and the projection π is a homomorphism with respect to these operations.
Thus, for f , g in S∞, the permutation f∧g is defined by

f∧g = f ◦ sh(g) ◦ s1 ◦ sh(f−1), (4.1)

where sh(h) is defined by sh(h)(1) = 1, sh(h)(p + 1) = h(p) + 1, and si denotes the
transposition that exchanges i and i + 1. Observe that (4.1) also defines a left self-
distributive operation on the full symmetric group consisting of all permutations of
the positive integers.

As in the case of braids, we have the natural notion of a special permutation,
defined as one that can be generated from the identity mapping using exclusively
exponentiation.

Question 4.2. Give a combinatorial characterization of special permutations.

The characterization of special braids given in Section 1 cannot be used. Actually,
it is not clear that the technique of strand colorings can be used in the case of
permutations. Indeed, if we try to let the symmetric group Sn act on sequences
of colors, we must assume that the colors are equipped with a left self-distributive
operation, but the compatibility with the relation s2

i = id requires that the color
exponentiation satisfies the additional relations a∧b = b, in which case coloring gives
nothing more than the considered permutation.

Similarly, special decompositions of permutations exist, but they are trivial. In-
deed, it is obvious that an arbitrary permutation f can be decomposed, in a unique
way, as

f = id[f(1)]
◦ sh(id[f(2)−1]) ◦ sh2(id[f(3)−1]) ◦ . . .

Projecting Lemma 1.9 on S∞ gives some necessary conditions that every special
permutation has to satisfy. Projecting the first relation shows that, for every special
permutation f , the equality

f∧id[m] = id[m+1]

holds for m ≥ ht(f), where ht(f) is defined to be 1 if f is the identity mapping, and
to be the minimal value of sup(ht(f1),ht(f2))+1 where (f1, f2) ranges on the pairs
that satisfy f = f1

∧f2 otherwise. . However, as in the case of braids, this equality
holds more generally for every permutation f such that f(k) = k holds for k > m,
and, actually, it characterizes such permutations.

The second relation in Lemma 1.9 is more interesting. We cannot project it
directly, as the exponent sum of braids does not induce a well-defined mapping on
permutations. However, we can use instead another integer parameter that behaves
similarly.

Definition. For f in S∞, the integer ν(f) is defined by

ν(f) = card{p ; f(p + 1) = p}.

Lemma 4.3. For f , g in S∞, ν(f∧g) is ν(g) + 1.
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Proof. Denote by S(f) the set {p ; f(p + 1) = p}. We claim that the equality

S(f∧g) = {f(1)} ∪ f(S(g)) (4.2)

holds. It clearly implies the desired relation ν(f∧g) = ν(g) + 1. The verification is
an easy computation. For p = f(1), we find f∧g(p + 1) = p, while, for p 6= f(1),
we find f∧g(p + 1) = f(g(f−1(p) + 1)). The latter is equal to p if and only if
g(f−1(p) + 1) is equal to f−1(p), i.e., if and only if f−1(p) belongs to S(g). ¥

Proposition 4.4. Assume that f is a special permutation. Then the equality

f [m−ν(f)] = id[m] = sm−1 ◦ . . . ◦ s2 ◦ s1

holds for m ≥ ht(f).

Proof. Use the same inductive argument as for Lemma 1.9(ii). ¥

The previous condition can be used to prove that a given permutation is not special.
Let us for instance consider the permutation f = s1s2s1. An easy induction gives
f [m] = s1 ◦ id[m+1]. As ν(f) is 0, this is enough to conclude that f is not special.
However the necessary condition of Proposition 4.4 is not sufficient: the permutation
f = s1 ◦ s2 satisfies ν(f) = 0 and f [3] = id[3], but it follows from Proposition 4.9
below that it is not special.

The LD-system (Ssp∞ , ∧) consisting of all special permutations is not free: for
instance, one can check in S∞ the equality

id[3]
∧id[2] = id[3]∧id[2] = s1 ◦ s3,

while, in B∞, we have

1[3]
∧1[2] = σ3

1σ3σ
−2
2 6= 1[3]∧1[2] = σ2

2σ1σ
−1
3 .

Question 4.5. Give a presentation of the free LD-system (Ssp∞ , ∧), i.e., describe all
relations that connect special permutations.

4.2. Linear representations

Braid groups admit several linear representations. Here we consider briefly the case
of the classical Burau representation. We write GL∞(Z[t, t−1]) for the direct limit
of the linear groups GLn(Z[t, t−1]) with respect to the embeddings

in,n+1 : M 7−→


0

M
...
0

0 · · · 0 1

 .
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Then the (unreduced) Burau representation ρ of B∞ in GL∞(Z[t, t−1]) is defined by

the conditions ρ(σ1) =
(

1− t t
1 0

)
and ρ(sh(b)) = sh(ρ(b)), where sh also denotes

the shift endomorphism of GL∞(Z[t, t−1])

M 7−→


1 0 · · · 0
0
... M
0

 .

As in the case of permutations, braid exponentiation induces a well-defined expo-
nentiation on the image of ρ. The latter is a proper subgroup of GL∞(Z[t, t−1]),
but it is obvious to verify that the formula

A∧B = A sh(B) ρ(σ1) sh(A−1)

specifies a well-defined left self-distributive operation on the whole of GL∞(Z[t, t−1]).
It is well-known [29], [28] that the Burau representation is not faithful.

Question 4.6. Is the Burau representation faithful on special braids?

The only partial result about this question is the remark that, if for b a braid
ρ1(b) denotes the first column of the matrix ρ(b), then the mapping ρ1 cannot be
injective on special braids. Indeed, the existence of the special decomposition of
every positive braid as a product of shifted special braids given by Corollary 2.6
implies that, if ρ1 were injective on Bsp

∞ , then ρ would be injective on B+
∞, hence on

the whole of B∞, and this is false. The previous argument leaves open the question
of effectively constructing two special braids b1, b2 such that the first columns of
the Burau images of b1 and b2 coincide. This can be done by starting with explicit
positive braids whose Burau matrices have the same first column and using braid
colorings to obtain special decompositions. In this way, it can be shown that the
first columns (and, therefore, the first rows) of the Burau matrices of the special
braids

(((1[5]∧1[3])∧(1[5]∧1[3])∧1)∧((1[5]∧1[3])∧(1[5]∧1[3])∧1)∧1[5]∧1[3])∧(1[5]∧1[3])∧

(((1[5]∧1[3])∧1)∧((1[5]∧1[3])∧1)∧(((1[3]∧1)∧1[3])∧1[3]∧1)∧(1[3]∧1)∧1[3])∧(1[5]∧1[3])∧1

and

(((1[4]∧1[3])∧(1[4]∧1[3])∧1)∧((1[4]∧1[3])∧(1[4]∧1[3])∧1)∧1[4]∧1[3])∧(1[4]∧1[3])∧

(((1[4]∧1[3])∧1)∧((1[4]∧1[3])∧1)∧(((1[2]∧1)∧1[2])∧1[2]∧1)∧(1[2]∧1)∧1[2])∧(1[4]∧1[3])∧1

coincide—here a∧b∧c stands for a∧(b∧c). However, the rest of the matrices do not
coincide.
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4.3. Monogenerated LD-systems

Instead of considering the already known quotients of the braid groups, we can also
start from free LD-systems. By definition of a free system, every monogenerated
LD-system is a quotient of (Bsp

∞ , ∧). Thus we can consider a given monogenerated
LD-system Σ, and look for a geometrical definition of the congruence on Bsp

∞ that
yields Σ as the associated quotient, or, equivalently, for a geometrical definition of
a homomorphism of (B∞, ∧) onto Σ.

We begin with an easy example. A rather trivial monogenerated LD-system con-
sists of N equipped with the exponentiation

x∧y = y + 1. (4.3)

The corresponding question is to construct on Bsp
∞ , and, possibly, on B∞, a mapping

say ϕ such that ϕ(b1
∧b2) is ϕ(b2) + 1. The question is easy: we have already found

two such mappings, namely the augmentation mapping ε, and the mapping b 7→
ν(π(b)). These mappings take equal values on special braids, but not on arbitrary
braids, which reflects the fact that (B∞, ∧) is not a free monogenerated LD-system.

Much deeper questions appear when we consider finite monogenerated LD-
systems, and, in particular, the so-called systems An.

Proposition 4.7. (Laver [26], Drápal [15]) For every positive integer n, there exists
a unique LD-system An whose domain is the set {1, 2, . . ., 2n} and that satisfies
p∧1 = p + 1 for p < 2n and 2n∧1 = 1.

The LD-systems An play a fundamental role in self-distributive algebra. In [27],
Laver constructs them as natural quotients of a certain LD-system that arises in
set theory from an unprovable large cardinal hypothesis, and he shows under that
hypothesis that the projective limit of the An’s includes a free LD-system—a result
of which no proof in usual logic is known to date, cf. [14]. In [16], Drápal shows
that every finite monogenerated LD-system can be constructed from the An’s using
simple operations. As the LD-system (Bsp

∞ , ∧) is free, there must exist for every n
a congruence relation ≡n on special braids such that the quotient of Bsp

∞ under ≡n
is An.

Question 4.8. Does a geometrical description of ≡n exist? Does ≡n extend to the
whole of B∞ in some way?

These questions are probably very difficult. In the LD-system An, the left
power 1[2n+1] is equal to 1—actually An is the LD-system with presentation
〈x ; x[2n+1] = x〉. Hence, in B∞, we must have 1[m] 6≡n 1 for m ≤ 2n and
1[2n+1] ≡n 1. As the left powers 1[m] in B∞ are complicated objects, the con-
gruence ≡n is likely to be complicated as well. The only result we have now deals
with the case n = 1.

Proposition 4.9. If f is a special permutation, then f−1(1) is 1 or 2. The relation

f−1(1) = f ′−1(1) is a congruence on (Ssp∞ , ∧), and the associated quotient is A1.
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Proof. Developing the definition shows that (f∧g)−1(1) is 2 when f−1(1) is 1, or
when f−1(1) is 2 and g−1(1) is 2, and that (f∧g)−1(1) is 1 when f−1(1) is 2 and
g−1(1) is 1. ¥

Corollary 4.10. If b is a special braid, then π(b)−1(1) is 1 or 2. The relation
π(b)−1(1) = π(b′)−1(1) is a congruence on (Bsp

∞ , ∧), and the associated quotient
is A1.

The argument of Proposition 4.9 extends to the sub-LD-system of (S∞, ∧) consisting
of those permutations f such that f−1(1) is either 1 or 2. But it does not extend to
the whole of the symmetric group S∞ as, in general, the value of (f∧g)−1(1) does
not depend only on the values of f−1(1) and g−1(1). Similarly, it is easy to see that
looking for a possible quotient A2 by considering the values of f−1(1) and f−1(2)
does not work. Actually, nothing is known about the following problem:

Question 4.11. Assume n ≥ 2. Is the finite LD-systems An a quotient of (Ssp∞ , ∧)?

To finish this paragraph with another seemingly difficult problem, let us briefly
mention the index function on free LD-systems. In [6], a normal form is defined on
the free LD-system on one generator: each element of Λ1 is represented by a unique
term involving variables from an infinite sequence x1, x2, . . .. Define the index of a
as the index of the last variable occurring in the normal form of a. For instance,
the index of 1[m] is m, while the index of 1[m] is 1 for m ≥ 3. As special braids
make a copy of Λ1, the index of a special braid is well-defined.

Question 4.12. Does the index of a special braid admit a geometrical definition—
and possibly extend to arbitrary braids?

We conjecture that there exists a connection between the index of a braid and its
colorings using colors from a free LD-system on infinitely many generators. Similar
questions can be raised for the alternative normal forms considered in [25] or [27].
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5. Extended Braids

Further questions about (ordinary) braids arise when we consider the monoid EB∞
of extended braids. The latter is introduced in [12] as a (partial) completion of
the braid group B∞ with respect to the topology associated with the linear order-
ing. The point here is that EB∞ itself is equipped with two left self-distributive
operations, one that extends braid exponentiation and one quite new, which makes
it natural to consider for these operations the counterpart of those questions we
discussed above in the case of B∞.

Several constructions of EB∞ are possible. Here, we define it as a disjoint sum

EB∞ =
∐
p≥0

B∞/Bp,

so that the elements of EB∞ are equivalence classes of pairs (b, q), b in B∞, q a non
negative integer, with respect to the relation ≡ such that (b, q) ≡ (b′, q′) holds if
and only if q and q′ are equal and b−1b′ belongs to Bq. We shall denote by [b, q] the
equivalence class of (b, q). Here B0 and B1 are trivial groups, so, in particular, the
mappings a 7→ [a, 0] and a 7→ [a, 1] define two injections of B∞ into EB∞.

It is shown in [12] that the extended braid [b, q] is the limit of the increasing Cauchy
sequence (bτq,n ; n ≥ 0), where τq,n denotes the braid τq sh(τq). . .shn−1(τq), and
that [b, q] can be thought of as the braid b followed by an infinite series of positive
crossings letting the leftmost q strands vanish at the right end of the diagram.

b

} q strands

Figure 5.1. The extended braid [b, q]

The set EB∞ is equipped with the associative product

[a, p] · [b, q] = [a shp(b), p + q],

and with two left self-distributive operations

[a, p]∧[b, q] = [a shp(b) τp,q shq(a)−1, q],
[a, p] ∗ [b, q] = [a τp sh(a−1 b), q + 1],

The first self-distributive operation is a rather direct extension of braid
exponentiation—observe that the mapping b 7→ [b, 1] defines an embedding
of (B∞, ∧) into (EB∞, ∧). In the sequel, we shall consider the second one exclu-
sively.

As for ordinary braids, our starting point is a result stating that EB∞ includes
copies of the free monogenerated LD-system.
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a

b

a−1

Figure 5.2. The extended braid [a, 2] ∗ [b, 1]

Proposition 5.1. [12] Every extended braid generates under operation ∗ a free
LD-system.

In particular, those extended braids that can be obtained from the unit [1, 0] using
exclusively ∗ form a free LD-system. They will be called naturally special extended
braids.

5.1. Powers

Lemma 5.2. Let [b, q] be an extended braid. Then the equalities

[b, q][m] = [b, q + m− 1], [b, q][m] = [b shq(1[m−1]), q + 1]

hold for every positive m.

Proof. Use induction on m ≥ 1. Everything is obvious for m = 1, so assume m ≥ 2.
For the right power, we find

[b, q][m] = [b, q] ∗ [b, q][m−1] = [b, q] ∗ [b, q + m− 2] = [bτq, q + m− 1].

Now τq belongs to Bq+1, so the class [bτq, q + m− 1] is also [b, q + m− 1].
For the left power, the result holds for m = 2 by the previous computation.

Assume m ≥ 3. By using the induction hypothesis, the equality

shq(c) τq+1 shq+1(c−1) = shq(cσ1sh(c−1)) τq,

and the fact that τq belongs to Bq+1, we find

[b, q][m] = [b, q][m−1] ∗ [b, q]

= [b shq(1[m−2]) τq+1 shq+1(1−1
[m−2]), q + 1]

= [b shq(1[m−2] σ1 sh(1[m−2])−1)) τq, q + 1] = [b shq(1[m−1]), q + 1],

as was claimed. ¥

Proposition 5.3. For every extended braid [b, q] with b in Bn, the equality

[b, q][m−q] = [1, 0][m] (5.1)

holds for m > n.
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Proof. By the previous lemma, [b, q][m−q] is equal to [b, m−1]. For m > n, b belongs
to Bm−1, hence [b, m− 1] is also [1, m− 1], which is [1, 0][m]. ¥

Corollary 5.4. The LD-system (EB∞, ∗) includes no free LD-system on two gen-
erators.

Proof. Assume that [b1, q1] and [b2, q2] are two extended braids. Then, by Proposi-
tion 5.3, there exist two integers m1 and m2 such that the right powers [b1, q1][m1]

and [b2, q2][m2] are equal. Now, it is easily verified that, if Λ2 is a free LD-system
based on {x1, x2}, no power of x1 may be equal to a power of x2. ¥

Another consequence of Lemma 5.2 is that square roots are easily determined
in (EB∞, ∗).

Proposition 5.5. Let [b, q] be an extended braid. Then those extended braid [a, p]
that satisfy [a, p][2] = [b, q] are exactly those of the form [bc, q − 1] with c in Bq.

5.2. Embedding of EB∞ into B∞

By uniqueness of the free monogenerated LD-system, there exists an isomorphism
of the subsystem of (EB∞, ∗) generated by [1, 0] onto the subsystem of (B∞, ∧)
generated by 1, i.e., onto the system of special braids. We prove now that this
isomorphism extends into an embedding of the whole of (EB∞, ∗) into (B∞, ∧).

Definition. For p ≥ 0 and a a braid in B∞, Ip(a) is the braid a τp sh(a−1).

Lemma 5.6. Assume p, p′ ≥ 0 and a, a′ ∈ B∞. Then the following are equivalent:
(i) The braids Ip(a) and Ip′(a′) are equal;
(ii) The integers p and p′ are equal and a−1a′ belongs to Bp.

Proof. As the exponent sum of Ip(a) is p, Ip(a) and Ip′(a′) may be equal only
if p and p′ are equal. Then, letting c be a−1a′, Ip(a) = Ip′(a′) is equivalent to
sh(c) = τ−1

p cτp, hence, by Lemma 1.5, to c belonging to Bp. ¥

Definition. For α an extended braid, say α = [a, p], we let I(α) be the braid Ip(a).

Proposition 5.7. (i) The mapping I is an embedding of (EB∞, ∗) into (B∞, ∧).
(ii) Assume that b belongs to Bn and ε(b) is p. Then b belongs to the image

of I if and only if it belongs to the image of Ip, if and only if the braids bτ−1
n and

σ−1
p+1. . .σ

−1
n are Bn-conjugate.

Proof. (i) First, Lemma 5.6 guarantees that I is a well-defined mapping, and that
it is injective. Then, assume [c, r] = [a, p] ∗ [b, q]. We find

I([a, p])∧I([b, q]) = a τp sh(a−1) sh(b) sh(τq) sh2(b−1) σ1 sh2(a) sh(τ−1
p ) sh(a−1)

= a τp sh(a−1b) τq+1 sh2(b−1a) sh(τ−1
p ) sh(a−1)

= c τr sh(c−1) = I([c, r]),

which shows that I is a homomorphism.
(ii) By construction, Ip(a) is equal to a∧τp−1. We then apply Proposition 1.6. ¥
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Observe that every special braid except 1 belongs to the image of I. Indeed, such a
special braid can always be expressed as b1

∧. . .∧bp∧1 for some special braids b1, . . .,
bp. The explicit value of the latter braid is Ip(b), where b is b1sh(b2). . .shp−1(bp)),
i.e., b is a braid that admits a special decomposition of length p.

We extend now to the whole image of I two properties that we know hold for
special braids.

Proposition 5.8. Assume that b belongs to the image of I. Then the exponent
sum ε(b) and the integer ν(π(b)) are equal.

Proof. Assume that b is Ip(a). Then ε(b) is p. Let f be the permuta-
tion π(a). Then π(b) is f ◦ sp−1 ◦ . . . ◦ s1 ◦ sh(f−1). Let k be a positive inte-
ger. Then π(b)(k + 1) is f(sp−1(. . .(s1(f−1(k) + 1)). . .)). If f−1(k) belongs to
{1, . . ., p}, sp−1(. . .(s1(f−1(k) + 1)). . .) is f−1(k), and π(b)(k + 1) is k. Otherwise,
sp−1(. . .(s1(f−1(k) + 1)). . .) is f−1(k) + 1, and π(b)(k + 1) cannot be k. So there
exist exactly p numbers satisfying π(b)(k + 1) = k. ¥

Proposition 5.9. Assume that b is a braid in Bn that belongs to the image of Ip.
Then b[n−p] is equal to 1[n], i.e., to τn−1.

Proof. Assume that b is Ip(a), i.e., b = a τp sh(a−1). As we assume that b belongs
to Bn, the permutation π(b) moves at most n integers, and, therefore, ν(π(b)),
which is p by the previous result, is at most n − 1. We claim now that a must
belong to Bn−1. Indeed, assume that the least index m such that a belongs to Bm

is at least n. Then a has an expression where exactly one of σm, σ−1
m occurs, and

sh(a−1) has an expression where exactly one of σm+1, σ−1
m+1 occurs. As σ±1

m+1 does
not occur in τp, we conclude that aτpsh(a−1) does not belong to Bm, contradicting
the hypothesis that b belongs to Bn. Now Proposition 5.3 tells us that [a, p][n−p] is
equal to [1, 0][n] in (EB∞, ∗). Applying the homomorphism I, we deduce that b[n−p]

is equal to 1[n] in (B∞, ∧). ¥

Instead of using EB∞ and Proposition 5.3 in the previous proof, we could also resort
to the formula

(a τp sh(a−1))[m] = a τp+m sh(a−1).

Question 5.10. Are the necessary conditions of Propositions 5.8 and 5.9 sufficient
for a braid b to lie in the image of I?

A very weak partial result is as follows.

Proposition 5.11. For a positive braid b, the necessary condition of Proposi-
tion 5.8 is sufficient for b to lie in the image of I.

Proof. For b a positive braid b, the value of ν(π(b)) is equal to its exponent sum if
and only if b admits an expression of the form σi1 . . .σip with i1 > . . . > ip. Now,
the formula

I(τ−1
1,i1−1. . .τ

−1
1,ip−1, p) = σip . . .σi1

can be checked directly in this case. ¥
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5.3. Special extended braids

The action of braids on sequences of elements from a left cancellative LD-
system (Σ, ∧) can be generalized to extended braids. In order to define the action
of [b, q] on a sequence ~a, we refer to the interpretation of [b, q] given in Figure 4.1.
For the braid part, we use the standard rule, and it only remains to specify the rule
for the final pattern where the q first strands vanish at the right end. Owing to the
fact that [1, q] is the limit of the braids τq,n when n goes to infinity, we define

(a1, a2, . . .)[1, q] = (a′q+1, a
′
q+2, . . .),

where a′i is a1
∧. . .∧aq∧ai for i > q—we recall that a∧b∧c stands for a∧(b∧c). The

hypothesis that the operation ∧ is left self-distributive guarantees that the defini-
tion is sound: replacing [1, q] with [b, q] for some b in Bq may change the values
of a1, . . ., aq, but not the value of the expressions a1

∧. . .∧aq∧ai.

Lemma 5.12. Assume that ~a is a sequence of braids eventually equal to 1. Then,
when it is defined, the value of (~a) β determines the extended braid β.

Proof. Assume that (~a) [b, q] and (~a) [b′, q′] coincide. By construction, (~a) b exists
and is some sequence (b1, b2, . . .), and (~a) b′ is some sequence (b′1, b

′
2, . . .). Then,

by definition, the i-th component of (~a) [b, q] is b1
∧. . .∧bq∧bi+q. Now, for n large

enough, b and b′ belong to Bn−1 and the n-th term an of ~a is 1. Hence both bn
and b′n are 1. So the hypothesis (~a) [b, q] = (~a) [b′, q′] together with the previous
computation implie

b1
∧. . .∧bq∧1 = b′1

∧. . .∧b′q′
∧1. (5.2)

The equality of the exponent sums implies q = q′. Then, by left self-distributivity,
(5.2) inductively implies b1

∧. . .∧bq∧a = b′1
∧. . .∧b′q

∧a for every special braid a. By
left cancellation in (B∞, ∧), we deduce in turn that bi+q and b′i+q are equal for
every positive i. Finally, (5.2) means that the braids I(b1sh(b2). . .shq−1(bq), q) and
I(b′1sh(b′2). . .sh

q−1(b′q), q) are equal. By Lemma 5.6, this implies that there exists a
braid c in Bq such that b′1sh(b′2). . .sh

q−1(b′q) is equal to b1sh(b2). . .shq−1(bq) c. Now c
commutes with every element in shq(B∞), so, using Formula (2.3), we conclude that
b′ is bc. Hence the pairs (b, q) and (b′, q′) represent the same extended braid. ¥

We recall that the mapping I of the previous subsection induces an isomorphism of
special extended braids onto special braids which maps [1, 0] to 1. On the shape of
Proposition 2.2, we have the following intrinsic characterization of special extended
braids in terms of colorings by braids.

Proposition 5.13. Let β be an arbitrary extended braid. Then the following are
equivalent:

(i) The extended braid β is special;
(ii) The sequence (1, 1, 1, . . .)β exists and it has the form (b, b, b, . . .) for some

braid b.
If the above conditions hold, the braid b of (ii) is equal to I(β).
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Proof. It is clear that (ii) holds when β is [1, 0]. So, for proving that (i) implies
(ii), it suffices to show that (ii) holds for β when β is β1 ∗ β2 and β1, β2 satisfy (ii).
Assume that βi is the class of (bi, qi). By hypothesis, the sequence (1, 1, . . .)β1 exists
and it is equal to (I(β1), I(β1), . . .). Hence (1, 1, . . .) b1 must exist as well, and it
has the form (a1, . . ., aq, a, a, . . .), where the braid a is satisfies a1

∧. . .∧aq∧a = I(β1).
Hence, we have

(1, 1, . . .) b1 τq1 = (I(β1), a1, . . ., aq, a, a, . . .),

and, therefore,

(1, 1, 1, . . .) β = (I(β1), a1, . . ., aq, a, a, . . .) sh(b−1
1 b2) [1, q2 + 1]

= (I(β1), 1, 1, . . .) sh(β2) [1, 0]
= (I(β1), I(β2), I(β2), . . .) [1, 0]
= (I(β), I(β), I(β), . . .).

Conversely, we observe as in Section 1 that 1 is a special braid, so that, if the
sequence (1, 1, . . .) β exists, it consists of special braids. So (ii) implies that
(1, 1, 1, . . .)β has the form (I(β′), I(β′), . . .) for some special extended braid β′.
Now the latter sequence is the value of (1, 1, 1, . . .)β′ as well, so Lemma 5.12 im-
plies β′ = β. ¥

As an application, we deduce:

Proposition 5.14. The extended braid [b, q] is special if and only if there exist
special braids b1, . . ., bq such that b is equal to b1 sh(b2). . .shq−1(bq).

Proof. Assume that [b, q] is special and b belongs to Bn. We assume n ≥ q. By
Proposition 5.13, the sequence (1, . . ., 1) b (n+1 times 1) exists. Let (b1, . . ., bn, 1) be
its value. Always by Proposition 5.13, we have Iq(b) = b1

∧. . .∧bq∧bi for every i > q.
Hence, in particular, we have Iq(b) = b1

∧. . .∧bq∧1, and, because (B∞, ∧) admits
left cancellation, bi = 1 for i > q. Applying Formula (2.3), we deduce that b
admits the decomposition b1 sh(b2). . .shq−1(bq). Conversely, if b has the previous
form, a direct computation shows that the sequence (1, 1, . . .) [b, q] exists and it the
constant sequence with value b1

∧. . .∧bq∧1. By Proposition 5.13, we conclude that
[b, q] is special—and that the value of I([b, q]) is b1

∧. . .∧bq∧1. ¥

We have seen in Proposition 5.5 that computing square roots in (EB∞, ∗) is easy.
Computing square roots in free LD-systems is a much more difficult task. Let
us for instance consider the equation x[2] = [1, 0][4]. As [1, 0][4] is [1, 3], we know
by Proposition 5.5 that the solutions in EB∞ are all extended braids [b, 2] with b
in B3. Solving the equation in the monogenerated free LD-system amounts to
finding among the previous solutions those that are special. By Proposition 5.14,
this is equivalent to finding the pairs (b1, b2) of special braids such that b1sh(b2)
belongs to B3. It is easy to check that the four pairs (1, 1), (1, σ1), (σ1, σ1) and
(σ2

1σ−1
2 , 1) work, this leading to four distinct solutions of x[2] = [1, 3] in EB∞,

namely [1, 2](= [1, 0][3]), [σ2, 2](= [1, 0][3] ∗ [1, 0][2]), [σ1σ2, 2](= ([1, 0][3] ∗ [1, 0][3])
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and [σ2
1σ−1

2 , 2](= [1, 0][3] ∗ [1, 0][2]). But we have no proof that there are no other
special solution. As we mentioned above, a positive answer to Question 1.12 would
imply that there are at most 2n special braids in Bn and lead to a systematic way
for solving equations like the one considered here.

5.4. Division

By Proposition 1.2, we know that, for [a, p], [c, r] special extended braids, there
exists a special extended braid [b, q] satisfying [a, p] ∗ [b, q] = [c, r] if and only if
[a, p] ∗ [c, r] is equal to [a, p][2] ∗ [c, r]. Let us consider the question of whether this
characterization holds for arbitrary extended braids.

Lemma 5.15. Let [a, p] and [c, r] be arbitrary extended braids. Let d be the braid
τ−1
p a−1c.

(i) There exists an extended braid [b, q] such that [a, p] ∗ [b, q] is equal to [c, r] if
and only if r is at least 1 and the braid d belongs to sh(B∞) ·Br.

(ii) The equality [a, p] ∗ [c, r] = [a, p][2] ∗ [c, r] holds if and only if the braid
sh(d−1)σ1sh(d) belongs to Br+1.

Proof. (i) By definition, the equality [a, p] ∗ [b, q] = [c, r] is equivalent to the con-
junction of q + 1 = r and of c−1 a τp sh(a−1b) ∈ Br. Assume that these conditions
hold. Then sh(b−1 a)d belongs to Br, hence there exists a braid e in Br such that
sh(a)de belongs to sh(B∞). As sh(a) belongs to sh(B∞), this implies that de be-
longs to sh(B∞), and, therefore, that d belongs to sh(B∞) ·Br. Conversely, assume
r ≥ 1 and d = sh(f)e−1 for some e in Br. Define b and q by b = af and q = r − 1.
Then c−1 a τp sh(a−1 b) belongs to Br, and [a, p] ∗ [b, q] = [c, r] holds. Observe that
the previous condition defines a unique extended braid, for replacing the braid e
with another braid e′ in Br amounts to replacing b with b′ such that b−1b′ belongs
to Br−1: this means that the pairs (b, q) and (b′, q) represent the same extended
braid.

(ii) First [a, p][2] is equal to [aτp, p + 1]. So, using the equality τpτp+1sh(τ−1
p ) =

τp+1, we obtain the explicit values

[a, p] ∗ [c, r] = [a τp sh(a−1 c), r + 1]

[a, p][2] ∗ [c, r] = [a τp+1 sh(a−1 c), r + 1].

The previous extended braids are equal if and only if the quotient braid

(a τp sh(a−1 c))−1 (a τp+1 sh(a−1 c)) (5.3)

belongs to Br+1. Using the equality τ−1
p τp+1 = sh(τp)σ1 sh(τ−1

p ), we see that the
braid in (5.3) is equal to sh(d−1) σ1 sh(d), which gives the desired condition. ¥

As is obvious on figure below, if the braid d belongs to sh(B∞) · Br, the braid
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sh(d−1)σ1sh(d) belongs to Br+1.

b−1

b

a−1

a

Question 5.16. Assume that b is a braid in B∞ such that sh(b−1)σ1sh(b) belongs
to Bn+1. Does b belong necessarily to sh(B∞) ·Bn?

A positive answer to the question would give for the LD-system (EB∞, ∗) a complete
description of left division. A (very weak) partial result in this direction is

Proposition 5.17. The answer to Question 5.16 is positive in the case n = 1.

Proof. We assume that the braid b satisfies sh(b−1)σ1sh(b) = σm1 for some integer m,
and we wish to deduce that b belongs to sh(B∞). First we claim that m must be 1.
Indeed, m ≤ 0 is impossible as a σ1-positive braid cannot be σ1-negative. Then, let
f be the standard image of b in the group Aut(F∞), where F∞ is the free group based
on the sequence (x1, x2, . . .). By construction, f(x1) has the form x1wx−1

1 , where
w is a freely reduced word not involving x1. On the other hand, for m ≥ 2, if g is
the image of σm1 in Aut(F∞), g(x1) is x1x2x1. . .x

−1
1 x−1

2 x−1
1 , m + 1 positive letters,

m negative letters. Thus the only possibility is m = 1. Then the result follows from
Lemma 1.3—or from the fact that w above must be x2, which is possible only if
sh(b) has an expression where σ±1

2 does not occur. ¥

The case of right division is easy. Developing the definition gives:

Proposition 5.18. Assume that [b, q] and [c, r] are extended braids. Then there
exists an extended braid [a, p] satisfying [c, r] = [a, p] ∗ [b, q] if and only if r is q + 1
and c sh(b−1) belongs to the image of Ip.

5.5. The order on EB∞

Let < be the relation on EB∞ such that [a, p] < [b, q] holds if and only if the
inequality aτp,n < bτq,n holds in B∞ for n large enough. Then < is a linear ordering
on EB∞ that extends the braid ordering (with respect to the embedding b 7→ [b, 0]
of B∞ into EB∞), and [b, q] is the limit of the increasing sequence (bτq,n;n ≥ 0).

As in the case of braids, we know that the inequalities α < α∗β and β < α∗β hold
when α and β are special extended braids. This leads to the question of whether
these inequalities hold for arbitrary extended braids.

Proposition 5.19. The inequalities α < α ∗ β and β < α ∗ β hold for all extended
braids α, β.
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Proof. The first inequality is obvious, so we consider the second one. Assume that
(a, p) represents α and (b, q) represents β. Developing the expressions and letting c
be a−1b τq,n, we see that β < α ∗ β holds in EB∞ if and only if

1 < c−1 τp sh(c) τ1,n (5.4)

holds in B∞ for n large enough. Now, by Lemma 3.5, we know that c−1 sh(c) σ1 is
σ1-positive. By [27], inserting positive generators in a σ1-positive braids preserves
its σ1-positivity. So it is clear that the braid c−1 τp sh(c) τ1,n is σ1-positive for
every p, and for n ≥ 1. ¥

Finally, let us briefly mention that the alternative operation ∧ on EB∞ does not
behave nicely with respect to the ordering. The main reason is that the embedding
b 7→ [b, 0] of B∞ into EB∞ is increasing, but the embedding b 7→ [b, 1] is not: for
instance, σ1 > σ2 holds in B∞, while [σ1, 1] < [σ2, 1] holds in EB∞. This implies
that even the inequality α < α∧β does not hold in general in EB∞: for instance
[σ1, 1] > [σ1, 1]∧[σ−2

1 , 1] holds in EB∞.
The previous results may suggest that, as far as the self-distributive structure is

concerned, the system (EB∞, ∗) of extended braids behaves better than the larger
system (B∞, ∧) of ordinary braids. In particular, answering the questions of Sec-
tion 4 about possible quotients could turn to be easier in the framework of extended
braids.
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