
ON COMPLETENESS OF WORD REVERSING

PATRICK DEHORNOY

Abstract. Word reversing is a combinatorial operation on words that detects
pairs of equivalent words in monoids that admit a presentation of a certain
form. Here we give conditions for this method to be complete in the sense
that every pair of equivalent words can be detected by word reversing. In
addition, we obtain explicit upper bounds on the complexity of the process.
As an application, we show that Artin groups of Coxeter type B embed into
Artin groups of type A and are left orderable.

Assume that 〈S;R〉 is a presentation of monoid, i.e., R is a family of equalities
of the form u = v where u, v are words in the free monoid S∗. We say that this
presentation is complemented (on the right) if R contains no equality u = v where
either u or v is empty or u and v begin with the same letter, and, moreover, for
every pair (x, y) in S, there exists at most one relation u = v in R such that
u begins with x and v begins with y. Thus, for instance, 〈a, b ; aba = bb〉 or
〈a, b, c ; a = bbc, a = ca, ba = c〉 are typical complemented presentations. So
are also all presentations considered in [1] and [17]. In this paper, we investigate
in the framework of monoids with a complemented presentation a combinatorial
transformation of words that we call word reversing.

Saying that the presentation 〈S;R〉 is right complemented amounts to saying
that there exists a partial function

f : S × S −→ S∗

such that the domain of f is a symmetric subset of S × S, f(x, x) is the empty
word ε for every x in S and R is the set of all equalities xf(x, y) = yf(y, x) for
(x, y) in the domain of f with x 6= y. Such a function f will be called a complement
on S in the sequel, and it will be the object we start from. If f is a complement
on the set S, we denote by ≡f the congruence relation on S∗ generated by all pairs
{xf(x, y) = yf(y, x)}, and by Rf the list of all relations xf(y, x) = yf(x, y) for
(x, y) in the domain of f .

In order to define word reversing, we first introduce a disjoint copy S−1 of S
consisting of a formal inverse x−1 for every letter x in S, and, for every word w
in (S ∪ S−1)∗, we denote by w−1 the word obtained from w by replacing each
letter x±1 by its inverse x∓1 and reversing the ordering of letters. Now, we say that
the word w is f-reversible in one step to the word w′ if there exist two letters x,
y in S such that w′ is obtained from w by replacing some factor x−1y with the
corresponding word f(y, x)f(x, y)−1. In this case, we write w yf w′. We say
naturally that the word w is f -reversible in p steps to the word w′ if there exists a
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finite sequence of words (w0, . . . , wp) such that w0 is w, wp is w′ and wi−1 yf wi
holds for i ≤ p.

Assume that u, v are two words in S∗. It will be easy to show that, if the
word u−1v is f -reversible to the empty word, then the words u and v are equivalent
with respect to ≡f , i.e., they represent the same element of the monoid 〈S ; Rf〉.
The question we investigate here is whether the previous sufficient condition is
also necessary, in which case we say that word reversing is complete for f . In this
case, we obtain an simple method for studying the monoid 〈S ; Rf〉 concretely, as
implementing word reversing on a computer is straightforward.

A complement f must satisfy additional conditions for word reversing to be
possibly complete for f . We introduce below a property that we call the local
coherence of f . As the name suggests, this property can be checked in a finite
number of steps (provided the set S is finite), and the problem becomes the question
of whether local coherence is sufficient for proving completeness. In this paper, we
prove several such completeness results, in particular (Corollary 2.5):

Proposition. Assume that the complement f is locally coherent, and, moreover,
it is Noetherian—which means that there is no infinite descending sequence for left
division in 〈S ; Rf〉. Then word reversing is complete for f .

Besides this result, we associate with every complement an integer parameter called
its degree, so that, at least when the domain is finite, being locally coherent is
equivalent to having a finite degree. We have also (Proposition 4.1):

Proposition. Assume that the complement f has degree at most 1. Then word
reversing is complete for f .

This result implies in particular that word reversing is always complete in the case
of two generators.

It seems that monoids with a complemented presentation and word reversing
have been considered first in [6], and a number of results have been subsequently
obtained in [8], [18], [13], [10]. In particular, [8] includes a weaker version of the
above mentioned Corollary 2.5. However, the restrictive hypotheses used in [8] are
somehow misleading as they hide the main argument, which is an ordinal induction
made possible by the Noetherianity assumption. Also, the argument given in [8]
is centered on computing lcm’s rather than on proving equivalence. So we think
that the present approach is the “right” one. In particular, it allows us to obtain
explicit complexity bounds, such as (Corollary 3.3.ii):

Proposition. Assume that f is a complement on S with the property that the
words f(x, y) and f(y, x) have the same length when they exist, f has degree k ≥ 1,
and deviation δ—which means that it is locally coherent with some explicit upper
bounds. Assume that u is a word of length ` in S∗, and that v is f -equivalent to u,
i.e., v represents the same element of 〈S ; Rf〉. Then the word u−1v is f -reversible
to the empty word in a number of steps n that satisfies

d ≤ n ≤ `+ δ ·Gk(`) · d
where d is the combinatorial distance of u and v, i.e., the minimal number of
relations in the presentation needed to establish their equivalence, and Gk(x) stands
for (2x−1) k2x−1.
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In contradistinction to the results of earlier papers chiefly dealing with the case
where word reversing always halts in a finite number of steps, the current results
are relevant even in the case when word reversing may not halt, which make them
surprising. Indeed, the existence of small upper bounds for the complexity of word
reversing is natural when the latter process always terminates, but it was unex-
pected in the general case. Roughly speaking, we prove here that word reversing
either never halts, or it halts in a relatively small number of steps, namely at most
a double exponential in the size of the initial data.

The argument used to prove completeness of word reversing also gives a simple
criterion for establishing embedding results for monoids with a complemented pre-
sentation. As an example, we consider Artin’s monoids. We obtain a short proof
of the fact that every Artin monoid of Coxeter type B embeds in an Artin monoid
of type A, i.e., in a braid monoid. From here, we can deduce an analogous embed-
ding result for the corresponding groups, which implies in particular that the Artin
groups of type B are orderable.

The paper comprises five sections. In Section 1, we introduce word reversing,
associate a graph with every reversing process, and show that word reversing is
complete if and only if some property called coherence is true. In Section 2, we
consider the Noetherian case and show that local coherence then implies full co-
herence. In Section 3, we study the combinatorial complexity of word reversing
and establish upper bounds for the reversing of equivalent words. In Section 4, we
consider the special case of complements with degree at most 1, a strengthened co-
herence hypothesis under which Noetherianity is not needed. Finally, in Section 5,
we establish the embedding criterion and mention its application to Artin monoids.

The author wishes to thank Paul-André Melliès: his questions about Example 1.6
below have been the origin of the unexpected Proposition 4.1, and, indirectly, of
the equally unexpected results of Section 3.

1. Reversing graphs

Assume that f is a complement on S, i.e., a mapping of S × S to S∗ with
a symmetric domain and satisfying f(x, x) = ε for every letter x . We define
a f -reversing sequence to be a (finite or infinite) sequence of words (w0, w1, . . . )
in (S ∪ S−1)∗ such that wi−1 is f -reversible in one step to wi for every i. It will
be both natural and useful to associate with every such sequence a labelled graph
embedded in the rational plane Q2. This graph contains three types of edges:
horizontal S-labelled edges going from a vertex (p, q) to a vertex (p′, q) with p′ > p,
vertical S-labelled edges going from a vertex (p, q′) to a vertex (p, q) with q < q′,
and unoriented ε-labelled edges. The construction of the graph is inductive. First,
we associate a graph Γ(w0) with the initial word w0 as follows. If w0 is the empty
word, then Γ(w0) consists of solely one vertex, namely (0, 0). Then, for x in S, the
graph Γ(wx) (resp. Γ(wx−1)) is obtained from Γ(w) by adding one horizontal (resp.
vertical) x-labelled edge starting from (resp. arriving to) the vertex (|w|+, |w|−),
where |w|+ and |w|− denote the number of positive and negative letters in w. Thus,
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for instance, if w0 is the word σ−1
1 σ2σ

−1
2 σ3, the graph Γ(w0) will be as follows:

σ1

σ2
σ2

σ3

By construction, there exists a unique maximal path in the graph Γ(w0), and w0 is
exactly the label of this path, defined as the sequence consisting of the successive
edges in the path, according to the convention that an edge that is labelled x and
is crossed contrary to its orientation contributes x−1.

Assume now that the graph Γ(w0, . . . , wn−1) has been constructed, and wn is
obtained from wn−1 by replacing some factor x−1y with the corresponding fac-
tor f(x, y)f(y, x)−1. By induction hypothesis, we assume that the word wn−1 is
traced in Γ(w0, . . . , wn−1) from the point (0, 0), this meaning that there is a path
from (0, 0) in the graph such that wn−1 is the sequence of the corresponding labels
(with the above sign convention). The factor x−1y involved in the reversing pro-
cess labels some fragment of Γ(w0, . . . , wn−1). Then Γ(w0, . . . , wn) is obtained by
adding to Γ(w0, . . . , wn−1) horizontal edges labelled f(x, y) and vertical edges la-
belled f(y, x) in the neighborhood of the above mentionned fragment labelled x−1y,
according to the generic picture

completed into
x x

y y

ε ε
}
f(y, x)

︸ ︷︷ ︸
f(x, y)

The new horizontal and vertical edges are determined so as to have equal lengths.
If f(x, y) and/or f(y, x) is empty, we use instead an ε-labelled edge.

Example 1.1. Every braid monoid, and, more generally, every Artin monoid,
admits a right complemented presentation. Let S = {σi ; i ∈ I} be a nonempty
set. A Coxeter matrix over S is a symmetric matrix M = (mi,j)i,j∈I such that mi,i

is 1, and mi,j belongs to {2, 3, . . . ,∞} for i 6= j (see for instance [2]). The Artin
monoid associated with M is the monoid that admits the presentation

〈S ; prod(σi, σj,mi,j) = prod(σj, σi,mj,i) for mi,j <∞〉 (1.1)

where prod(x, y,m) stands for the alternating word xyxyxy. . . of length m. This
presentation is associated with the complement f defined by

f(σi, σj)


= prod(σi, σj,mi,j − 1) if mi,j is odd,
= prod(σj, σi,mi,j − 1) if mi,j is even,
undefined if mi,j is ∞.

Let us consider for instance the type A3 Coxeter matrix such that mi,i+1 is 3 and
mi,j is 2 for |i− j| ≥ 2. The associated monoid is the monoid of positive braids on
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4 strands. Then

σ−1
1 σ2σ

−1
2 σ3 yf σ2σ1σ

−1
2 σ−1

1 σ−1
2 σ3 yf σ2σ1σ

−1
2 σ−1

1 σ3σ2σ
−1
3 σ−1

2

yf σ2σ1σ
−1
2 σ3σ

−1
1 σ2σ

−1
3 σ−1

2 yf σ2σ1σ3σ2σ
−1
3 σ−1

2 σ−1
1 σ2σ

−1
3 σ−1

2

yf σ2σ1σ3σ2σ
−1
3 σ−1

2 σ2σ1σ
−1
2 σ−1

1 σ−1
3 σ−1

2

yf σ2σ1σ3σ2σ
−1
3 σ1σ

−1
2 σ−1

1 σ−1
3 σ−1

2 yf σ2σ1σ3σ2σ1σ
−1
3 σ−1

2 σ−1
1 σ−1

3 σ−1
2

is a typical f -reversing sequence. We cannot extend it further, as, in the last word,
every positive letter lies before every negative letter, so there remains no factor x−1y
that could be reversed. The graph associated with the previous f -reversing sequence
is displayed on Figure 1.1.

σ1

σ2

σ1

σ2

σ2

σ3

σ1

σ2

σ1

σ2
σ3

σ3

σ3

σ2 σ3 σ2

σ3 σ2 σ1

σ2 σ1 σ3 σ2 σ1

ε

Figure 1.1. A reversing graph

Reversing graphs are connected with Cayley graphs, but, in general, a reversing
graph is not a fragment of the Cayley graph of the corresponding monoid as we do
not identify those vertices that are connected by an ε-labelled edge. Notice also
that reversing graphs are planar, as the last word currently added always lies on
the right (actually, on the “South-East”) of all previous words.

Considering reversing graphs makes it quite intuitive that, for every initial
word w, there exists a unique maximal reversing graph that begins from w, and that
this graph does not depend on the ordering of the reversing steps used to construct
it. Thus, if one f -reversing sequence goes from some word w in (S ∪S−1)∗ to some
terminal word of the form uv−1 with u, v in S, then every f -reversing sequence
does so. In other words, f -reversing is a confluent transformation. More precisely,
we have:

Lemma 1.2. Assume that f is a complement on S, and that w is a word
in (S∪S−1)∗ that is f -reversible to w′ in p′ steps and f -reversible to w′′ in p′′ steps.
Then there exists an integer p at most equal to p′+p′′ and a word w′′′ such that w′

is f -reversible to w′′′ in p− p′ steps and w′′ is f -reversible to w′′′ in p− p′′ steps.

As the (easy) proof appears in [8, Lemma 1.1], we do not repeat it here.
A key point in the sequel will be to extend the initial complement, which is

defined only on pairs of letters, into a mapping defined on pairs of words. To this
end, we use word reversing again.
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Definition. Assume that f is a complement on the set S. For u, v in S∗, we
denote by u\fv the unique word v′ in S∗ such that u−1v is f -reversible to v′u′−1

for some u′ in S∗, if such words exist. In this case, we write u ∨f v for u(u\fv). The
f-complexity cf (u, v) of the pair {u, v} is the number of steps needed to reverse the
word u−1v to a word of the form v′u′−1, if such a number exists, and ∞ otherwise.

By Lemma 1.2, \f is a well-defined partial mapping of S∗ × S∗ into S∗. We shall
occasionally use the symbol ⊥ to mean “undefined”, and write u\fv = ⊥ when
u\fv does not exist.

By construction, if u−1v is f -reversible to v′u′−1, then v−1u is f -reversible to u′v′−1,
and, therefore, the word u′ is v\fu. In other words, u\fv and v\fu exist if and only
if the f -reversing of the word u−1v comes to an end, and (u\fv)(v\fu)−1 is the
corresponding final word. Observe that the mapping \f extends f : for x, y ∈ S,
x\fy is defined if and only if f(x, y) is defined, and, in this case, these words are
equal.

Lemma 1.3. Assume that f is a complement on the set S. Then the equalities

(uv)\fw = v\f(u\fw), (1.2)

w\f(uv) = (w\fu) ((u\fw)\fv). (1.3)
hold for all u, v, w in S∗—such equalities mean that either both sides are defined
and they are equal, or none of them is defined (so they are true equalities when we
use the symbol ⊥).

Proof. It should be clear from Figure 1.2 that, if the words u\fw and v\f(u\fw)
exist, then so does the word (uv)\fw and (1.2) and (1.3) hold. Assume conversely
that (uv)\fw exists. We have to show that u\fw and v\f(u\fw) exist, whence the
result is clear. We observe that, for each pair of words (u,w), either w\fu exists, or
there exists an infinite f -reversing sequence starting from u−1w. In the latter case,
adding v−1 at the left of every word in this sequence gives an infinite f -reversing
sequence from v−1u−1w, and w\f(uv) cannot exist either.

u v

w u\fw v\f(u\fw)
w\fu (u\fw)\fv

Figure 1.2. Double reversing

Word reversing produces equivalent words. To state a precise result, we first intro-
duce a parameter that counts how many times the basic relations of the presentation
are used.

Definition. Assume that f is a complement on S, and u, v belong to S∗. We say
that u ≡mf v holds if there exists a sequence of words w0 = u, w1, . . . , wm = v such
that, for every i, the word wi is obtained from wi−1 by replacing exactly one factor
xf(x, y), x, y in S, with the corresponding word yf(y, x). The f-distance df (u, v)
of u and v is the minimal number m such that u ≡mf v holds, if such a number
exists, i.e., if u and v are f -equivalent, and ∞ otherwise. We extend the definition
with df (u,⊥) =∞ and df (⊥,⊥) = 0.
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Proposition 1.4. Assume that f is a complement on the set S, and that u, v
are words in S∗ such that u\fv exists. Then the equivalence

u ∨f v ≡f v ∨f u (1.4)

holds, and, more precisely, we have

df (u ∨f v, v ∨f u) ≤ cf (u, v). (1.5)

Proof. We use induction on the integer m = cf (u, v). For m = 0, then u or v must
be empty. In this case, we have u\fv = v, v\fu = u, and the result is true. Assume
now m ≥ 1. Then the words u and v are nonempty. Let us write u = xu0, v = yv0,
with x, y ∈ S. By repeated uses of Lemma 1.3, we see that there exist words u1,
v1, . . . , u3, v3 as represented on Figure 1.3. By construction, we have

cf (u, v) = cf (x, y) + cf (u0, f(x, y)) + cf (f(y, x), v0) + cf (u1, v2). (1.6)

As cf (y, x) is equal to 1, the three remaining f -complexities are strictly less than m,
and the induction hypothesis applies to the corresponding words. In this way, we
find

u(u\fv) = xu0v1v3 ≡cf (u0,f(x,y))
f xf(x, y)u1v3

≡1
f yf(y, x)u1v3

≡cf (u1,v2)
f yf(y, x)v2u3

≡cf (f(y,x),v0)
f yv0u2u3 = v(u\fv),

which, by (1.6), gives the desired result

y v0

x f(y, x) u2
f(x, y) v2

u0 u1 u3
v1 v3

Figure 1.3. Equivalence in reversing

We immediately deduce:

Proposition 1.5. Assume that f is a complement on the set S, and that u, v
are words in S∗ such that u−1v is f -reversible to ε. Then u and v are f -equivalent,
and df (u, v) ≤ cf (u, v) holds.

As was mentioned in the introduction, we wish to study the possible converse
implication.

Definition. Assume that f is a complement on S. We say that word reversing is
complete for f if the word u−1v is f -reversible to ε whenever u and v are f -equivalent
words in S∗.
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We can easily see that word reversing need not be complete for every complement.

Example 1.6. Let M be the monoid with presentation

〈a, b, c ; a = b2a, ac = c, bc = c〉.
The previous presentation is associated with the complement f defined by

f(a, b) = f(a, c) = f(b, c) = ε, f(b, a) = ba, f(c, a) = f(c, b) = c.

Now the words ac and bac both are f -equivalent to c: we have ac ≡1
f c ≡1

f bc ≡1
f bac,

so the f -distance of ac and bac is (at most) 3. On the other hand, the f -reversing
of the word (ac)−1(bac) does not lead to the empty word. Indeed, we find

(ac)−1(bac)yf (bac)−1(ac)yf (ac)−1(bac)yf . . .

and there exists an infinite f -reversing sequence from w—one that is periodic with
period 2. So word reversing is not complete for the current complement f .

So, we have to introduce additional hypotheses. The first step in this direction is
to consider a new property of complement called coherence that we shall prove is
equivalent to completeness, and that will turn to be more easy to work with than
completeness.

Definition. Assume that f is a complement on the set S. We say that f is coherent
if the mapping \f is compatible with the congruence ≡f , i.e., if u′ ≡f u and v′ ≡f v
imply u′\fv′ ≡f u\fv for all u, v, u′, v′ in S∗.

Proposition 1.7. Assume that f is a complement on S. Then the following are
equivalent:

(i) The complement f is coherent;
(ii) Word reversing is complete for f .

Proof. It is obvious that (i) implies (ii). Indeed, assume that u and v are f -
equivalent words. By construction, the word u−1u is f -reversible to the empty word
(in exactly n steps if u has n letters). Thus the word u\fu exists and it is empty.
If f is coherent, the hypothesis that v is f -equivalent to u implies that the words
u\fv and v\fu exist, and that they are f -equivalent to ε. By construction of ≡f ,
this is possible only if these words are the empty word, i.e., if u−1v is f -reversible
to ε.

Let us now assume that word reversing is complete for f . By symmetry and
transitivity, it suffices that we prove the result assuming u′ = u. So, we assume
that u, v, v′ belong to S∗, that u\fv and v\fu exist, and that v′ is f -equivalent
to v. By (1.4), the words u ∨f v and v ∨f u are f -equivalent. Since v′ is f -equivalent
to v, we deduce that u (u\fv) is f -equivalent to v′ (v\fu). By completeness of word
reversing for f , this implies

(u (u\fv))\f(v′ (v\fu)) = ε,

which, by Lemma 1.3, implies a fortiori (u (u\fv))\fv′ = ε. Using Lemma 1.3
again, this evaluates into

(u\fv)\f(u\fv′) = ε.
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This proves that u\fv′, and, therefore, v′\fu, exist, and that there exists a word w,
namely (u\fv′)\f(u\fv), such that u\fv is f -equivalent to (u\fv′)w. A symmet-
ric argument shows that there must exist a word w′ in S∗ such that u\fv′ is f -
equivalent to (u\fv)w′. We deduce that u\fv is f -equivalent to (u\fv)w′ w, which,
by completeness, implies that the word

(u\fv)−1(u\fv)w′ w

is f -reversible to ε. Now, (u\fv)−1(u\fv) is f -reversible to ε, so the word w′w,
which belongs to S∗, is f -reversible to ε: this is possible only if ww′ is the empty
word ε. So we conclude that u\fv′ and u\fv are f -equivalent.

Similar computations show that (v(v′\fu))\fu exists and is empty, which implies
that v′\fu exists and that v\fu ≡f v′\fu w holds for some positive word w. As
above we show that w must be empty, and we conclude that v\fu and v′\fu are
f -equivalent.

2. Noetherian complements

After the previous proposition, we are left with the question of recognizing
whether a given complement is coherent. This property involves arbitrary words,
and, therefore, even if the domain S is finite, there is no systematic way of proving
coherence. Now, we can restrict to some special occurrences of coherence.

Definition. Assume that f is a complement on the set S. We say that f is locally
coherent if, for every triple x, y, z in S, we have z\f(x ∨f y) ≡f z\f(y ∨f x) and
(x ∨f y)\fz ≡f (y ∨f x)\fz.

(Again, the previous equivalences mean either that both words exist and are equiv-
alent, or that none of them exists). Local coherence is a special case of coherence:
indeed, the words x ∨f y and y ∨f x are f -equivalent whenever f(x, y) is defined.
Actually, it involves exactly those minimal cases where a coherence phenomenon
may happen. Observe that, if S is finite and f is a locally coherent complement
on S, then this local coherence can be checked effectively in a finite number of
elementary steps.

Example 2.1. The complement of Example 1.6 is locally coherent. Let us
write C(x, y, z) for the local coherence condition that corresponds to the triple of
letters (x, y, z). It is easily checked that C(x, y, z) holds whenever at least two letters
coincide (cf. Lemma 3.1 below). On the other hand, C(x, y, z) and C(y, x, z) are
equivalent by construction. So, in order to prove that the current complement f is
locally coherent, it suffices that we establish the three conditions C(a, b, c), C(b, c, a)
and C(c, a, b). For instance, establishing C(c, a, b) amounts to comparing the f -
reversing diagrams

a c c

b a c
b bε ε

As bac ≡f c and ε ≡f ε hold, the condition is true.



10 PATRICK DEHORNOY

So we are left with the question of whether local coherence implies full coherence.
We have seen that the complement of Example 1.6 is not coherent, so the answer
cannot be positive in general, and new additional hypotheses are needed. In [8], a
variant of the coherence property is proved under the hypothesis that there exists a
mapping ν of S∗ to the integers that is compatible with ≡f , takes the value 1 on the
elements of S and satisfies ν(uv) ≥ ν(u)+ν(v). These hypotheses are misleading in
at least two points. On the one hand, the hypothesis ν(x) = 1 for x ∈ S dismisses
all presentations that contain a relation of the form x = yz. Such presentations
are natural (consider for instance the presentations of braid monoids in terms of
permutation braids), and there is no reason to discard them here. On the other
hand, considering a function with integer values dismisses lots of monoids that we
shall see are eligible.

As the subsequent proof will show, the point is the existence of a convenient in-
duction parameter guaranteeing that f -reversing processes proceed forwards. This
is a well-foundedness assumption, and, therefore, the natural parameter occurring
in the general case is an ordinal number rather than a natural number.

Definition. Assume that M is a monoid. We say that M is right Noetherian is
the right divisibility relation of M has no infinite descending sequence, i.e., there
exists no infinite sequence . . . a2 |R a1 |R a0 in M , where b |R a means that a is xb
for some x 6= 1.

By standard arguments of elementary set theory (see for instance [16]), a monoid M
is right Noetherian if and only if there exists a mapping ρ of M into the ordinals
such that b |R a implies ρ(b) < ρ(a). In this case, there exists a minimal function ρ
with the previous property, namely the function defined by

ρ(a) =

{
0 if a is 1,
sup{ρ(b) + 1 ; b |R a} otherwise.

This particular function ρ will be called the rank function of M .

Lemma 2.2. Assume that M is a right Noetherian monoid, and ρ is its rank
function. Then the equality

ρ(a) = sup{ρ(an) + . . . + ρ(a1) ; a = a1. . . an} (2.1)

holds for every a 6= 1 in M .

Proof. First we prove the inequality ρ(ac) ≥ ρ(c) + ρ(a) using induction on ρ(c).
The inequality is true when ρ(c) is 0, i.e., when c is 1. Otherwise, we notice that
b |R a implies bc |R ac. Using the induction hypothesis, we find

ρ(ac) ≥ sup{ρ(bc) + 1 ; b |R a}
≥ sup{ρ(c) + ρ(b) + 1 ; b |R a}
= ρ(c) + sup{ρ(b) + 1 ; b |R a} = ρ(c) + ρ(a)

From the previous argument, we deduce that the left hand side of (2.1) is always
at least equal to its right hand side. On the other hand, a = a is one of the finite
decompositions mentioned in the right hand side of (2.1), so ρ(a) is at most equal
to the ordinal occurring there.
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In the particular case of those monoids that admit a complemented presentation, a
mere translation gives the following criterion.

Lemma 2.3. Assume that f is a complement on S. Then the following are
equivalent:

(i) The monoid 〈S ; Rf〉 is right Noetherian;
(ii) There exists a mapping ρ of S∗ into the ordinals such that

- ρ(xf(x, y)) and ρ(yf(y, x)) are equal for all x, y in S
- ρ(u) = ρ(v) implies ρ(xu) = ρ(xv) and ρ(ux) = ρ(vx) for every x in S;
- ρ(xu) > ρ(u) holds for every x in S and every u in S∗.

Definition. Assume that f is a complement on S. We say that f is Noetherian if
it satisfies the previous conditions. In this case, we denote by ρf the function of S∗

into the ordinals that maps every word u to the rank of the class of u in 〈S ; Rf〉.
The height of f is defined to be the supremum of the ordinals ρf (u) for u in S∗.

Notice that, if f is a Noetherian complement, then, by construction and by Lemma 2.2,
the inequalities

ρf (uv) ≥ ρf (u), and ρf (uv) ≥ ρf (v)

hold for all words u, v, and the inequality ρf (uv) > ρf (v) holds whenever u is not
empty. In particular, ρf (u) is not 0 if u is not empty.

Simple examples of Noetherian complements appear when the defining relations
of the monoid preserve the length of the word—as in the case of Artin monoids. In
this case, ρf (u) is merely the length of u, and the height of f is ω, the smallest infi-
nite ordinal. However, a typical case where the monoid 〈S ; Rf〉 is right Noetherian
although there is no rank function with integer values is the monoid 〈a, b ; a = ab〉.
The associated rank function is determined by ρ(uv) = ρ(v) + ρ(u), ρ(a) = ω,
ρ(b) = 1, so, for instance, we have

ρ(ab) = ρ(b) + ρ(a) = 1 + ω = ω = ρ(a), ρ(ba) = ρ(a) + ρ(b) = ω + 1 > ω = ρ(a).

As it stands, the above presentation is not associated with a complement, but
〈a, b, c, d ; a = cb, c = d, a = d〉 is another presentation of the same monoid that is
complemented. The height of the considered complement is the ordinal ω2.

We prove now the rather natural result that Noetherianity is a sufficient addi-
tional condition for deducing full coherence—and, therefore, completeness—from
local coherence. In order to give the proof, we introduce a new ordinal parameter
that measures the distance between words.

Definition. For u, v in S∗, we define the parameter ef (u, v) to be ρf (u∨f v) if v\fu
exists, and ∞ otherwise.

Proposition 2.4. Assume that f is a locally coherent and Noetherian complement
on S. Then f is coherent.
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Proof. We prove inductively on the ordinal α = ef (u, v) that, if u, v are words
in S∗ such that u\fv exists, then, if u′, v′ are f -equivalent respectively to u, v, then
u′\fv′ and v′\fu′ exist and these words are f -equivalent respectively to u\fv and
to v\fu.

For α = 0, the only possibility is u = v = u′ = v′ = ε, and everything is obvious.
Assume now α > 0, and use induction on the parameter m = df (u′, u)+df (v′, v).

For m = 0, we have u′ = u, and v′ = v, so the result is obvious. Let us now
consider the case m = 1. Without loss of generality, we may assume u′ = u and
v′ ≡1

f v. This means that there exist words v0, v1 and letters x, y satisfying
v = v0xf(x, y)v1 and v′ = v0yf(y, x)v1. Consider the word v0\fu, which exists as
v\fu is supposed to exist. If this word is empty, everything is clear, as we have
u′\fv′ = (u\fv0)xf(x, y)v1, and u\fv = (u\fv0)yf(y, x)v1, an f -equivalent word,
and both v′\fu′ and v\fu are empty. So assume v0\fu = zu1, where z belongs
to S—see Figure 2.1. Let u2 and v2 be respectively the words (x ∨f y)\fz and
z\f(x ∨f y), which exist because v\fu exists by hypothesis. Similarly, let u′2 and v′2
be respectively the words (y∨f x)\fz and z\f(y∨f x). The hypothesis that f is locally
coherent implies that the latter words exist and that u′2 ≡f u2 and v′2 ≡f v2 hold.
Introduce now the words u3, v3, u4, v4, and u5, v5 that appear in the f -reversing
of u−1v as shown on Figure 2.1. For instance u3 is v2\fu1, while v3 is u1\fv2. By
construction, we have

ef (u1, v2) = ρf (u1v3) ≤ ρf (u1v3v5) < ρf (zu1v3v5) ≤ ρf (v0zu1v3v5) = ρf (u∨f v) = α.

Hence the induction hypothesis applies to the pairs (u1, v2) and (u1, v
′
2), so we

deduce that the word v′2\fu1, which we shall call u′3, exists and is f -equivalent
to v2\fu1, i.e., to u3. A similar argument shows that the word v′3 = u1\fv′2 exists
and is f -equivalent to v3.

u

v0 x f(x, y) v1

v2 v4

v3 v5

z

u1

u2

u3

u4

u5

v0\fu

u

v0 y f(y, x) v1

v′2 v′4

v′3 v′5

z

u1

u′2

u′3

u′4

u′5

v0\fu

Figure 2.1. Proof of coherence
The same argument again shows that, with obvious notations, the words u′4 and

v′4 exist and are respectively f -equivalent to u4 and v4. Finally, the argument
is the same for u′5 and v′5. So, we conclude that u′\fv′ exists and it is equal
to (u\fv0)v′3v

′
5, hence f -equivalent to u\fv, which is (u\fv0)v3v5, while v′\fu′ is

equal to u′4u
′
5, hence it is f -equivalent to v\fu, which is u4u5.

It remains to consider the case m ≥ 2. In that case, there exists an intermediate
pair of words say (u′′, v′′) satisfying

df (u′′, u) + df (v′′, v) < m and df (u′, u′′) + df (v′, v′′) < m.

Applying the induction hypothesis to (u, v) and (u′′, v′′), we deduce that u′′\fv′′
and v′′\fu′′ exist, and that they are f -equivalent respectively to u\fv and v\fu.
This implies ρf (u′′ ∨f v′′) = ρf (u ∨f v), i.e., ef (u′′, v′′) = α. So, we can in turn apply
the induction hypothesis to the pairs (u′′, v′′) and (u′, v′), and conclude that u′\fv′
and v′\fu′ exist and that they are f -equivalent respectively to u\fv and v\fu.
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Corollary 2.5. Assume that f is a locally coherent and Noetherian complement
on S. Then word reversing is complete for f .

3. Effective bounds

We come back now to the previous results from a combinatorial point of view,
and investigate the complexity of word reversing. In good cases, we obtain effective
upper bounds on the number of reversing steps needed to compare equivalent words.

Our aim is to give an effective version of the coherence property where we measure
the distance of u′\fv′ and u\fv in terms of the distances df (u′, u) and df (v′, v). Our
result will not apply to every locally coherent Noetherian complement f , but only
to those that admit a rank function with finite (= integer) values, i.e., in the case
where the height of f is ω. By the results of [13], this happens if and only if, for
every word u, the lengths of those words that are f -equivalent to u have a finite
upper bound, and, in this case, ρf (u) is equal to the latter upper bound.

Definition. Assume that f is a complement on S. The degree of f is the maximum
of the quantities

df (z\f(x ∨f y), z\f(y ∨f x)) + df ((x ∨f y)\fz, (y ∨f x)\fz) (3.1)

for x, y, z in S. Similarly, the deviation of f is the maximum of the differences

|cf (z, y ∨f x)− cf (z, x ∨f y)|
for x, y, z in S, with the conventions ∞−∞ = 0, and ∞− n = |n −∞| = ∞ for
every integer n.

The complement f is locally coherent if and only if the quantity (3.1) is finite
for every triple (x, y, z). Hence every complement with a finite degree is locally
coherent, and, conversely, if S is a finite set and f is locally coherent, then f has a
finite degree. In the latter case, it has also a finite deviation.

As an example, and for future use, we begin with an easy particular case.

Lemma 3.1. Assume that f is a complement on the set {a, b} such that f(a, b) is
defined. Then f has degree 0, and its deviation is the maximum of lg(f(a, b)) and
lg(f(b, a)).

Proof. Assume S = {a, b}. Due to the symmetries, it suffices that we consider the
triple (a, b, a). As is clear on Figure 3.1, we have

a\f(a ∨f b) = f(a, b) = a\f(b ∨f a), (a ∨f b)\fa = ε = (b ∨f a)\fa,
and

cf (a, a ∨f b) = 1, cf (a, b ∨f a) = 1 + lg(f(b, a)).

a aε
ε
ε
ε

a f(a, b) b f(b, a)

f(b, a)

f(a, b)
Figure 3.1. Local coherence in the case of two generators
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As an additional exemple, let us consider again the complement of Example 1.6.
By Lemma 3.1, those triples (x, y, z) where at least two letters coincide contribute
0 to the degree, and 2 to the deviation. Then considering the three remaining cases
as displayed in Figure 3.2 shows that the degree and the deviation of f both are
equal to 2.

a b a a

ε ε ε ε
c c c c c c

b c c a c c

ε c

c

c a a c
a

a

a

ε

ε
a c b ε b ε

Figure 3.2. Local coherence of Example 1.6

Proposition 3.2. Assume that f is a complement on S with degree k, height ω,
and deviation δ. Let u, v, u′, v′ be words in S∗ such that u\fv exists, u′ is f -
equivalent to u and v′ is f -equivalent to v. Then u′\fv′ exists as well, and we
have

df (u′\fv′, u\fv) + df (v′\fu′, v\fu) ≤ Fk(ef (u, v)) · (df (u′, u) + df (v′, v)), (3.2)

and

cf (u′, v′) ≤ cf (u, v) + δ ·Gk(ef (u, v)) · (df (u′, u) + df (v′, v)), (3.3)

where Fk(x) denotes k2x−1−1 and Gk(x) denotes (2x−1)k2x−1
.

(Formulas (3.2) and (3.3) hold for all words u, v, u′, v′ provided we use ⊥ and ∞
when the words are not equivalent or do not exist.)

Proof. We first prove Formula (3.2) by following step by step the proof of Propo-
sition 2.4. So we argue inductively on r = ef (u, v)—which is here an integer—and,
for a given value of r, we argue inductively on m = df (u′, u) + df (v′, v).

The first case to consider is r > 0, m = 1. We follow the notations of Figure 2.1.
By definition, we have

df (u′2, u2) + df (v′2, v2) ≤ k. (3.4)
Now, ef (u1, v2), which is the f -rank of u1v3, i.e., of u1 ∨f v2, is at most r−1. Thus
the induction hypothesis implies

df (u′3, u3) + df (v′3, v3) ≤ Fk(r − 1) · df (v′2, v2). (3.5)

Similarly, ef (u2, v1), which is the f -rank of u2v4, is at most r − 1. The induction
hypothesis implies

df (u′4, u4) + df (v′4, v4) ≤ Fk(r − 1) · df (u′2, u2). (3.6)

Finally, ef (u3, v4), which is the f -rank of u3v5, is also at most r− 1. The induction
hypothesis implies

df (u′5, u5) + df (v′5, v5) ≤ Fk(r − 1) · (df (u′3, u3) + df (u′4, u4)).

By summing up the above inequalities, we obtain

df (u′\fv′, u\fv) + df (v′\fu′, v\fu) ≤ k · Fk(r − 1)2 = Fk(r).
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For m ≥ 2, we introduce an intermediate pair (u′′, v′′) between (u, v) and (u′, v′),
and apply the induction hypothesis for u, v, u′′, v′′ and u′′, v′′, u′, v′, which makes
sense as, always by induction hypothesis, u′′ ∨f v′′ is f -equivalent to u ∨f v, so it has
the same f -rank.

Formula (3.3) is then proved similarly. Again, it suffices to consider the case
u′ = u, v′ = v0yf(y, x)v1 where v is v0xf(x, y)v1. With the notations of Figure 2.1,
we have

cf (u, v) = cf (u, v0) + cf (z, x ∨f y) + cf (u1, v2) + cf (u2, v1) + cf (u3, v4)

cf (u′, v′) = cf (u, v0) + cf (z, y ∨f x) + cf (u1, v
′
2) + cf (u′2, v1) + cf (u′3, v

′
4)

By definition of deviation, we have

cf (z, y ∨f x) ≤ cf (z, x ∨f y) + δ.

By induction hypothesis, using the fact that the values of ef (u1, v2), ef (u2, v1) and
ef (u3, v4) are at most r − 1, we have

cf (u1, v
′
2) ≤ cf (u1, v2) + δ Gk(r − 1) df (v′2, v2),

cf (u′2, v1) ≤ cf (u2, v1) + δ Gk(r − 1) df (u′2, u2),

cf (u′3, v
′
4) ≤ cf (u3, v4) + δ Gk(r − 1) (df (u′3, u3) + df (v′4, v4)).

By definition, df (u′2, u2) + df (v′2, v2) is bounded above by k. Using Formulas (3.4),
(3.5) and (3.6), we see that the number df (u′3, u3) + df (v′4, v4) is bounded above
by kFk(r − 1). By summing up, we obtain

cf (u′, v′) ≤ cf (u, v) + δ (1 + kGk(r − 1) + kFk(r − 1)Gk(r − 1)),

and the last factor is bounded above by Gk(r). Finally, the induction on m is
straightforward using as above an intermediate pair (u′′, v′′) for m ≥ 2.

Corollary 3.3. (i) Assume that f is a complement on S with degree k at least
equal to 1, height ω, and deviation δ. Assume that u is a word in S∗ with length `
and f -rank r, and that v is f -equivalent to u. Then the word u−1v is f -reversible
to the empty word, and we have

df (u, v) ≤ cf (u, v) ≤ `+ δ ·Gk(r) · df (u, v). (3.7)

(ii) Assume that f is a complement on S with degree k at least equal to 1, and
deviation δ. Assume in addition that f has the property that the words f(y, x) and
f(x, y) have the same length when they exist. Assume that u is a word in S∗ with
length `, and that v is f -equivalent to u. Then the word u−1v is f -reversible to the
empty word, and we have

df (u, v) ≤ cf (u, v) ≤ `+ δ ·Gk(`) · df (u, v). (3.8)

Proof. For (i), by construction, the complexity cf (u, u) is equal to `. We then
apply Formula (3.3). for the upper bound, and Formula (1.5) for the lower bound.
For (ii), the additional hypothesis implies that f is Noetherian and that the f -rank
of a word is its length. We then apply (i).
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(The initial factor ` could disappear provided we modify the definition of complexity
so as to take into account only those reversing steps that involve a factor x−1y
with x 6= y.) If the set S is finite with n elements and f is a Noetherian complement
on S, then every word that is f -equivalent to a word u of f -rank r has length at
most r, so there are at most nr such words, and the f -distance between u and such a
word is bounded above by nr. Hence, in this case, Formula (3.7) gives `+δ Gk(r)nr

as a uniform upper bound for cf (u, v) when v is f -equivalent to u. Observe that
the existence of this bound gives a solution to the word problem of 〈S ; Rf〉 only if
the f -rank function is itself recursive—however, in this case, the word problem can
be solved by using a systematic enumeration.

Remark. Even in particular cases, the formulas we have established above give
no upper bound for the parameter cf (u, v) in terms of the lengths of u and v when
v is not supposed to be f -equivalent to u. Such a bound cannot exist in general,
since we do not assume that the complement is convergent, this meaning that every
word reversing always terminates within a finite number of steps. However, even if
we restrict to convergent complements, no upper bound is known. The Baumslag–
Solitar monoid 〈a, b ; ab = ba2〉 of [15] gives an easy example where cf (u, v) can be
exponential in the lengths if u and v: cf (a, bn) is 2n−1. Let us mention that the
complement involved in [7] is Noetherian, coherent and convergent, and the only
upper bound on cf (u, v) we know is a tower of exponentials with exponential height
in lengths of u and v. This bound is presumably not optimal, but no fixed iterated
exponential seems likely to be an upper bound. Such high bounds about values
of cf (u, v) for arbitrary pairs of words (u, v) are compatible with the current rather
low bounds that we have established here for those pairs (u, v) where v is equivalent
to u: the words v\fu and u\fv may be very long if u and v are not equivalent,.

Let us briefly mention an important special case for which a whole theory can be
developed, namely when the length of all words f(y, x) with x, y in S is bounded
above by 1, i.e., the complement is either empty, or it is a single letter. In this case,
drawing the reversing diagram makes it clear that, for every pair of words (u, v), the
f -complexity cf (u, v) is bounded above by lg(u) lg(v) when it is finite. In particular,
the complement is convergent if and only if f(y, x) exists for every pair (x, y) in S2.
From these remarks, we deduce:

Proposition 3.4. Assume that f is an everywhere defined coherent complement
on S, and there exists a finite set of words S′ that includes S and is closed under \f ,
i.e., u\fv belongs to S′ when u and v do. Then there exists a constant C such that
the inequality

cf (u, v) ≤ C lg(u) lg(v) (3.9)

holds for all words u, v in S∗.

Proof. Assume that u and v are words in S∗ such that u can be decomposed
into the product of p words in S′ and v can be decomposed into the product of
q words in S′. Using Lemma 1.2 and the previous argument, we see that the f -
reversing of a word u−1v can be decomposed into pq elementary reversings of words
of the form u′−1v′ with u′, v′ in S. Then define C to be the supremum of the
integers cf (u′, v′) for u′, v′ in S′.
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Under the previous hypotheses, we deduce from (1.5) the bound

df (u, v) ≤ C lg(u) lg(v) (3.10)

when u and v are f -equivalent, which shows that the monoid 〈S ; Rf〉 satisfies a qua-
dratic isoperimetric inequality. We refer to [13] and [12] for the further study of this
important special case, which includes in particular all Artin monoids associated
with finite Coxeter groups.

Finally, let us mention that, even in the simple case of the braid monoids (which
are associated with a complement of degree 4 and deviation 2), many simple ques-
tions about the complexity of word reversing remain unsolved. For instance, we
have no upper bound on cf (u, v) in terms of the lengths of u and v in the non
finitely generated case of the monoid B+

∞: in this case, there exist sequences of
pairs of words (u`, v`) of length ` such that cf (u`, v`) grows like `3, so (3.9) is false,
and no upper bound is known.

4. Low degrees

Proposition 2.4 applies to every Noetherian complement of degree k ≥ 1, so, in
particular it applies in the case of degree 1, and we can see that Inequalities (3.2)
and (3.3) take in this case a more simple form: F1(x) is 1, and G1(x) is 2x−1.
In particular, the rank no longer occurs in Formula (3.2). This suggests that the
Noetherianity hypothesis is perhaps not needed in this case. This turns out to be
true.

Proposition 4.1. Assume that f is a complement on S with degree at most 1.
Then f is coherent, and word reversing is complete for f .

More precisely, let u, v, u′, v′ be words in S∗ such that u\fv exists, u′ is f -
equivalent to u and v′ is f -equivalent to v. Then u′\fv′ exists as well, and we
have

df (u′\fv′, u\fv) + df (v′\fu′, v\fu) ≤ df (u′, u) + df (v′, v), (4.1)

and

cf (u′, v′) ≤ cf (u, v) + δ · (2cf (u,v)−1) · (df (u′, u) + df (v′, v)) (4.2)

where δ is the deviation of f .

Proof. We go back to the proof of Proposition 2.4, but reverse the order of the
inductions, and use cf (u, v) instead of ef (u, v), which is possible as the successive
new words that appear while reversing u−1v′ remain always at distance at most 1
from the corresponding words that appear while reversing u−1v.

So, the main induction involves m = df (u′, v′) + df (u, v). As always, the case
m = 0 is trivial, so we consider the case m = 1. Everything is obvious for n = 0.
Otherwise, we are again in the situation of Figure 2.1, of which we use the notations
once more. By hypothesis, we have df (u′2, u2) + df (v′2, v2) ≤ 1. So at most one of
u′2 6= u2, v′2 6= v2 may hold. Assume for instance v′2 = v2. Then we have u′3 = u3

and v′3 = v3. By construction, we have df (u′2, u2) ≤ 1, and cf (u2, v1) < n. So, by
induction hypothesis, we deduce

df (u′4, u4) + df (v′4, v4) ≤ 1, and cf (u′2, v1) ≤ cf (u2, v1) + δ · (2n−1−1).

Two cases are possible. Assume first df (u′4, u4) = 1. Then we have v′4 = v4, u′5 = u5,
and v′5 = v5. So u\fv′ and v′\fu exist, df (u\fv′, u\fv) + df (v′\fu, v\fu) is 1, and,
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by summing up the terms, we find

cf (u, v′) ≤ n+ δ + δ · (2n−1−1) ≤ n+ δ · (2n−1).

Assume now df (u′4, u4) = 0, i.e., u′4 = u4. Then we have df (v′4, v4) ≤ 1, and we
are again in the same induction position for the pairs (u3, v4) and (u3, v

′
4). So we

deduce as above

df (u′5, u5) + df (v′5, v5) ≤ 1, and cf (u′3, v4) ≤ cf (u3, v4) + δ · (2n−1−1).

Again, we conclude that u\fv′ and v′\fu exist, we find

df (u\fv′, u\fv) + df (v′\fu, v\fu = 1,

and, by summing up the terms,

cf (u, v′) ≤ n+ δ + δ · (2n−1−1) + δ · (2n−1−1) = n+ δ · (2n−1).

Finally, the induction on m for m ≥ 2 is straightforward.

Corollary 4.2. Assume that f is a complement on S with degree at most 1, and
deviation δ. Assume that u is a word in S∗ with length `, and that v is f -equivalent
to u. Then the word u−1v is f -reversible to the empty word, and we have

df (u, v) ≤ cf (u, v) ≤ `+ δ · (2` − 1) · df (u, v).

The previous results are optimal. Indeed, we have seen that the complement of
Example 1.6 has degree 2, so it is locally coherent, but it is not coherent: indeed,
if we consider

u = abc, v = c, v′ = bc,

we see that v and v’ are f -equivalent words at distance 1, and u\fv exists, while
u\fv′ does not. The failure of coherence for the complement f implies that word
reversing is not complete for f : we have already seen that the words abc and ac
are f -equivalent at distance 3, but the reversing of the word (abc)−1(ac) never
terminates.

In the previous counter-example, the lack of completeness for word reversing
involves a word that is not reversible. One could suspect that the failure of com-
pleteness originates from the lack of convergence, i.e., the existence of words whose
f -reversing never terminates. Actually, this is not the case: we give below the
example of a locally coherent complement of degree 3 that is convergent but not
coherent—let us mention that we could not find any degree 2 example.

Example 4.3. Let M be the monoid with presentation

〈a, b, c ; a = bbc, a = ca, ba = c〉.
This monoid is associated with the complement f defined by

f(a, b) = ε, f(b, a) = bc, f(c, a) = a, f(a, c) = f(c, b) = ε, f(b, c) = a.

Here f is locally coherent of degree 3, and the set S′ = {a, b, c, bc, ε} is closed
under \f . So f -reversing always terminates, and f is convergent. We have c ≡f
baa ≡f bbbc, hence f is not Noetherian. Now, the reader can check that we have

a\fbc = a, bc\fa = ε, and ca\fbc = ε, bc\fca = a2,

so f is not coherent. An example witnessing non-completeness is (bba, caa): these
words are f -equivalent with distance 3, as we have bba ≡1

f bbca ≡1
f aa ≡1

f caa. Now
the word (bba)−1(caa) is f -reversible to aaa, and not to ε.
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We finish this section with the special case of degree 0. By Proposition 4.1, every
degree 0 complement is coherent, and we have upper bounds on the corresponding
equivalences. However, we can still lower the bounds of Proposition 4.1 in this case.

Proposition 4.4. Assume that f is a complement on S with degree 0 and
deviation δ. Let u, v, u′, v′ be words in S∗ such that u\fv exists, u′ is f -equivalent
to u and v′ is f -equivalent to v. Then we have

cf (u′, v′) ≤ cf (u, v) + δ · (df (u′, u) + df (v′, v)).

Proof. We follow the same scheme as in the case of degree 1. Again we use induction
on m = df (u′, u) + df (v′, v). Let us consider the case m = 1, with u′ = u and
df (v′, v) = 1. We use induction on n = cf (u, v). The case n = 0 is trivial, so
we assume n > 0. We follow once more the notations of Figure 2.1. Now, in the
current case, we must have u′2 = u2 and v′2 = v2, and we deduce u\fv′ = u\fv.
Moreover, the only difference between cf (u, v′) and cf (u, v) comes from the initial
reversings of z−1(x ∨f y) and z−1(y ∨f x), so it is bounded above by δ, and we obtain

cf (u′, v′) ≤ n+ δ.

The induction on m is straightforward.

Corollary 4.5. Assume that f is a complement on S with degree 0 and devi-
ation δ. Assume that u is a word in S∗ with length `, and that v is f -equivalent
to u. Then the word u−1v is f -reversible to the empty word, and we have

df (u, v) ≤ cf (u, v) ≤ `+ δ · df (u, v).

By Lemma 3.1, the previous result applies in particular to every complement on a
two elements set. Remember that these results do not require any hypothesis about
the convergence of the complement: for instance, the monoid 〈a, b ; a = bba〉, and,
more generally, all monoids of the form 〈a, b ; au = bbav〉, which are associated
with non-convergent complements, are eligible.

5. Embeddings

We finish the paper with an application of the possible completeness of word
reversing to the existence of embeddings between monoids with a complemented
presentation. The criterion we obtain is very simple to verify in practice, and, in
good cases, it gives us a nice method for proving the existence of such embeddings.

Assume that f1 and f2 are complements on S1 and S2 respectively. Let ϕ be
a mapping of S1 into S∗2 . We denote by ϕ∗ the alphabetical extension of ϕ into a
homomorphism of S∗1 into S∗2 , and wonder whether ϕ∗ induces a homomorphism,
and, possibly, an embedding, of the monoid 〈S1 ; Rf1〉 into the monoid 〈S2 ; Rf2〉.

Definition. Let f1 be a complement on S1, f2 be a complement on S2 and ϕ be
a mapping of S1 into S∗2 . We say that ϕ is a f1-f2-morphism if, for every pair of
letters (x, y) in the domain of f1, the word ϕ(x)\f2ϕ(y) exists, and it is f2-equivalent
to ϕ∗(f1(x, y)).
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As should be clear on Figure 5.1, the previous notion is what is needed for ϕ∗

to define, up to f2-equivalence, a morphism of every f1-reversing graph into a ϕ2-
reversing graph.

7−→
ϕ∗

y

x f1(y, x)

f1(x, y)

ϕ(y)

ϕ(x) ϕ(y)\f2ϕ(x)

ϕ(x)\f2ϕ(y)

Figure 5.1. Morphism of complements

Lemma 5.1. Assume that f1 be a complement on S1, f2 is a complement
on S2 and ϕ is a f1-f2-morphism. Then ϕ∗ induces a homomorphism of the
monoid 〈S1 ; Rf1〉 into the monoid 〈S2 ; Rf2〉.

Proof. By definition, 〈S1 ; Rf1〉 is the quotient of S∗1 under the congruence relation
generated by the pairs (xf1(x, y), yf1(y, x)) with x, y ∈ S1. So, it suffices to show
that the images of such pairs are pairs of f2-equivalent words. By construction, we
have

ϕ∗(xf1(x, y)) = ϕ(x)ϕ∗(f1(x, y)) ≡f2 ϕ(x)(ϕ(x)\f2ϕ(y))

≡f2 ϕ(y)(ϕ(y)\f2ϕ(x)) ≡f2 ϕ(y)ϕ∗(f1(y, x)) = ϕ∗(yf1(y, x)),

which completes the proof.

The point is that a complement gives information not only about the possible
equivalence of two given words, but also about their non-equivalence.

Lemma 5.2. Assume that f1 be a complement on S1, f2 is a coherent complement
on S2 and ϕ is a f1, f2-morphism. Assume that u, v are words on S1 and u\f1v
exists. Then ϕ∗(u)\f2ϕ∗(v) exists, and we have

ϕ∗(u)\f2ϕ∗(v) ≡f2 ϕ
∗(u\f1v). (5.1)

Proof. The result is obvious if u or v is empty. Now we use induction on the
integer n = cf1(u, v). By the previous remark, the result is clear for n = 0 for,
in this case, u or v must be empty. Assume n ≥ 1. We argue inductively on the
integer ` = lg(u) + lg(v). By the previous remark again, the first case to consider
is ` = 2 with u, v ∈ S1, and, then, the result is the hypothesis that ϕ is a morphism
with respect to f1 and f2. Assume now ` ≥ 3. We may assume u = u1u2 with
1 ≤ lg(u1) < lg(u). By Lemma 1.3, we have v\f1u = (v\f1u1)((u1\f1v)\f1u2). By
induction hypothesis, ϕ∗(v)\f2ϕ∗(u1) and ϕ∗(u1)\f2ϕ∗(v) exist, and we have

ϕ∗(v)\f2ϕ∗(u1) ≡f2 ϕ
∗(v\f1u1), (5.2)

ϕ∗(u1)\f2ϕ∗(v) ≡f2 ϕ
∗(u1\f1v). (5.3)

We have cf1(u2, u1\f1v) ≤ n− 1, so, by induction hypothesis, ϕ∗(u1\f1v)\f2ϕ∗(u2)
exists and we have

ϕ∗(u1\f1v)\f2ϕ∗(u2) ≡f2 ϕ
∗((u1\f1v)\f1u2). (5.4)
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Now, f2 is coherent, so we deduce from (5.3) that (ϕ∗(u1)\f2ϕ∗(v))\f2ϕ∗(u2) exists
and that it is f2-equivalent to the second term of (5.4). Using this and (5.2), we
see that ϕ∗(v)\f2ϕ∗(u), i.e., ϕ∗(v)\f2((ϕ∗(u1)ϕ∗(u2)), exists and that we have

ϕ∗(v)\f2ϕ∗(u) ≡f2 ϕ
∗(v\f1u1)ϕ∗((u1\f1v)\f1u2)

= ϕ∗((v\f1u1)((u1\f1v)\f1u2)) = ϕ∗(v\f1(u1u2)) = ϕ∗(v\f1u),
which completes the proof.

Lemma 5.3. Assume that f1 be a complement on S1, f2 is a coherent Noetherian
complement on S2, and ϕ is a f1-f2-morphism such that, for all x, y in S1, ϕ(x) is
nonempty and f1(x, y) exists whenever ϕ(x)\f2ϕ(y) does. Then f1 is Noetherian
as well, and, for all words u, v in S∗1 , we have

ρf1(u) ≤ ρf2(ϕ
∗(u)),

and u\f1v exists whenever ϕ∗(u)\f2ϕ∗(v) does.

Proof. Define a mapping ρ of S∗1 into the ordinals by ρ(u) = ρf2(ϕ
∗(u)). Then ρ

satisfies all requirements of Lemma 2.3(ii), hence f1 is Noetherian, and ρf1(u) ≤
ρ(u) holds for every word u.

As for the existence of u\f1v when ϕ∗(u)\f2ϕ∗(v) exists, the result is obvious if
at least one of the words ϕ∗(u), ϕ∗(v) is empty, i.e., if u or v is empty. Now we
use induction on the ordinal α = ef2(ϕ

∗(u), ϕ∗(v)). For α = 0, we have ϕ∗(u) =
ϕ∗(v) = ε, so u or v is empty, and we are done. Otherwise, we may assume u, v 6= ε.
We use the notations of Figure 1.3. So, we write u = xu0, v = yv0 with x, y in S1.
By construction, we have

ef2(ϕ
∗(u0), ϕ∗(f1(x, y))) < α,

and ϕ∗(u0)\f2(ϕ(x)\f2ϕ(y)) exists. As ϕ(x)\f2ϕ(y) exists, f1(x, y) does, and, since
f2 is coherent, ϕ∗(u0)\f2ϕ∗(f1(x, y)) exists as well. Hence, by induction hypothesis,
u1 = f1(x, y)\f1u0 exists, and, by the previous lemma, its image under ϕ∗ is f2-
equivalent to the word ϕ∗(f1(x, y))\f2ϕ∗(u0). A similar argument shows that the
word v2 = f1(y, x)\f1v0 exists and its image under ϕ∗ is f2-equivalent to the word
ϕ∗(f1(y, x))\f2ϕ∗(v0). Finally, we have also

ef2(ϕ
∗(u1), ϕ∗(v2)) < α,

and ϕ∗(u1)\f2ϕ∗(v2) exists since f2 is coherent. By induction hypothesis, we con-
clude that u1\f1v2 exists as well, and so does u\f1v.

Remark. The hypothesis we use for the converse Lemma 5.3 is stronger than
the one used for Lemma 5.2, as we require Noetherianity. This is because we
only require that the words ϕ∗(f1(x, y)) and ϕ(x)\f2ϕ(y) are f2-equivalent in the
definition of a morphism. Actually, if we required equality instead of f2-equivalence,
we could simply use an induction on cf2(ϕ

∗(u), ϕ∗(v)) in the proof of Lemma 5.3 and
avoid requiring explicit Noetherianity. Observe that there exists a close connection
between the present arguments and the proofs of coherence, which amount to using
the identity mapping as a morphism. Actually, we could define the degree of a
f1-f2-morphism ϕ as the supremum of the quantities

df2(ϕ
∗(f1(x, y)), ϕ(x)\f2ϕ(y)) + df2(ϕ

∗(f1(y, x)), ϕ(y)\f2ϕ(x)),
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and Noetherianity of f2 is then necessary only for a morphism of degree at least 2.
Similarly, we could obtain upper bounds for cf1(u, v) in terms of cf2(ϕ

∗(u), ϕ∗(v))
in the spirit of the formulas of Section 3.

Proposition 5.4. Assume that f1 is a complement on S1, f2 is a Noetherian
coherent complement on S2 and ϕ is a f1-f2-morphism such that, for all x, y
in S1, ϕ(x) is nonempty and f1(x, y) exists whenever ϕ(x)\f2ϕ(y) does. Then ϕ∗

induces an embedding of the monoid 〈S1 ; Rf1〉 into the monoid 〈S2 ; Rf2〉, and f1

is Noetherian and coherent.

Proof. We know that ϕ∗ induces a homomorphism of the monoid 〈S1 ; Rf1〉 into
the monoid 〈S2 ; Rf2〉. So, assume that u, v are words in S∗1 and that ϕ∗(u) and
ϕ∗(v) are f2-equivalent. Since f2 is coherent, word reversing is complete for f2,
and, therefore, the words

ϕ∗(u)\f2ϕ∗(v) and ϕ∗(v)\f2ϕ∗(u)

exist and are empty. By Lemma 5.3, the words u\f1v and v\f1u exist, and, by
Lemma 5.2, we have

ϕ∗(u\f1v) ≡f2 ϕ
∗(u)\f2ϕ∗(v) = ε.

The hypothesis that ϕ(x) is nonempty for every x in S1 implies u\f1v = ε. Similarly,
the word v\f1u is empty, and u and v are f1-equivalent.

By Lemma 5.3, f1 is Noetherian, so it remains to prove coherence. Assume that
u, v are f1-equivalent words in S1. The hypothesis that ϕ is a morphism implies
that ϕ∗(u) and ϕ∗(v) are f2-equivalent, and the previous argument shows that
u\f1v and v\f1u are empty. This means that word reversing is complete for f1,
hence f1 is coherent.

A typical framework where the previous embedding criterion applies is that of Artin
monoids associated with finite Coxeter groups. We have seen above that the stan-
dard presentation of these monoids is a complemented presentation. Noetherianity
is obvious as the defining relations preserve the length, and, therefore, coherence
follows from local coherence, which has been established in [4] and [14]. Here we
mention two easy results.

Proposition 5.5. (i) Let ϕ be the mapping of {σ1, . . . , σn} into {σ1, . . . , σ2n−1}
defined by

ϕ(σi) = σiσ2n−i for i < n, ϕ(σn) = σn.

Then ϕ induces an embedding of the Artin monoid of type Bn into the Artin monoid
of type A2n−1, i.e., into the monoid of 2n strand braids.

(ii) Assume n ≥ 4. Let ϕ be the mapping of {σ1, σ2} into {σ1, . . . , σ2n−5} defined
by

ϕ(σ1) = σ1σ3 · · ·σ2n−5, ϕ(σ2) = σ2σ4 · · ·σ2n−4.

Then ϕ induces an embedding of the Artin monoid of type I2(n) into the Artin
monoid of type A2n−5.
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Proof. It suffices to show that the mappings are morphisms with respect to the
considered complements, an easy verification. For instance, we see on Figure 5.2
that, if f is the complement associated with the Coxeter type A3, then we have

σ1σ3\fσ2 ≡f (σ2)(σ1σ3)(σ2), σ2\fσ1σ3 ≡f (σ1σ3)(σ2)(σ1σ3),

i.e., the braids σ2 and σ1σ3 behave, as far as complement is concerned, as two
generators connected by a weight 4 edge in a Coxeter graph. Thus ϕ(σ1) = σ1σ3,
ϕ(σ2) = σ2 defines an embedding of the monoid of type B2 into the monoid of
type A3.

σ2

σ1 σ3

σ2

σ1 σ1

σ1 σ2 σ3 σ2 σ1

σ3 σ2

σ2

σ1

σ3

σ2

Figure 5.2. Embedding type B2 in type A3

By standard results [4], Artin monoids associated with finite Coxeter groups embed
in their groups of fractions, and it is then obvious to extend the previous embeddings
to the corresponding groups. For instance, we obtain an embedding of the Artin
group of type Bn in the Artin group of type A2n−1—as was already established
in [13] by another method.

Let us conclude with a corollary.

Proposition 5.6. Every Artin group of type B or I2(n) is left orderable, i.e.,
there exists a linear ordering on the group that is compatible with multiplication
on the left.

Proof. By [7] and [9], the braid groups, i.e., Artin groups of type A, are left
orderable. We can then use the previous embeddings to define an order on each
embedded group.

Corollary 5.7. If G is a Artin group of type B or I2(n), the group algebra C[G]
has no zero divisor.

The linear ordering of the braid group constructed in [7] is characterized by the fact
that an element a is bigger than 1 if and only if it admits a decomposition where
σ1 occurs but σ−1

1 does not, or a decomposition where σ2 occurs, but none of σ1,
σ−1

1 , σ−1
2 does, etc. The explicit definition of the embedding shows that the same

characterization holds for the linear orderings on Artin groups of type B or I2(p)
constructed above. Let us mention that nothing seems to be known about the
possible orderings of Artin groups of type D to H.
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