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THE FINE STRUCTURE OF LD-EQUIVALENCE
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Abstract. We introduce new algebraic techniques for the study of left self-
distributivity. We establish a self-similarity propriety for the terms ∂kt which are
counterparts to Garside’s fundamental braids ∆k

n, and deduce partial answers to several
long-standing open questions: convergence of the Polish Algorithm, computation of the
normal form, existence of a lattice structure on LD-equivalence classes.
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The left self-distributivity identity

x(yz) = (xy)(xz). LD)

has received some attention in recent years because of its connection with the theory of
braids and knots on the one hand [10], and with axiomatic set theory in the other hand [21],
[24]. Define an LD-system to be a set equipped with a binary operation that satisfies (LD).
The existence of a canonical linear ordering on free LD-systems has led to the construction
of a left invariant linear ordering on Artin’s braid group B∞, and, from there, to a number
of new results about braid groups [12], [23], [1], [18], Artin groups [14], and mapping class
groups [25]. The goal of this paper is to use the notions of injective, steep, and perfect terms
(as introduced in Sections 1 and 2) to get partial results about three of major problems that
are left open in free LD-systems: the convergence of the Polish Algorithm, the computation
of the right normal form, and the Embedding Conjecture. These mutualy independent
applications are tracted in Sections 3, 4, and 5 respectively.

Let us briefly describe the framework, so as to be able to state the results precisely.
Assume that X is a nonempy set. By standard arguments, the free LD-system based

on X is the quotient of the absolutely free system TX consisting of all well formed terms
with variables in X under the least congruence on TX that forces the identity (LD) to hold,
i.e., the congruence =LD generated by all pairs of the form (t1(t2t3), (t1t2)(t1t3)). We say
that two terms t, t′ are LD-equivalent when t =LD t′ holds, i.e., when t can be transformed
to t′ using Identity (LD). LD-equivalence is a very complex relation. The above mentioned
results about braids originate in its properties, which have been investigated in [2], [6],
[7], [21], [22], [23], among other references. Many questions about LD-equivalence remain
open, and, in particular, the structure of the LD-equivalence class of a given term is is not
completely known—in contradistinction to the syntactically close case of the associativity
identity x(yz) = (xy)z, where the equivalence class of a term is the finite set of all possible
bracketings of the corresponding list of variables. Let us say that the term t′ is an LD-
expansion of the term t if t can be transformed into t′ by iteratively replacing subterms
of the form t1(t2t3) with the corresponding term (t1t2)(t1t3). It is known that two terms
are LD-equivalent if and only if they admit a common LD-expansion, a property directly
connected with the fact that the braid ordering of [6] is a linear ordering. The proof relies
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upon the existence, for every term t, of a distinguished LD-expansion ∂t that simultaneously
expands all LD-expansions obtained using (LD) once exactly. Thus ∂t is a sort of lower
common LD-expansion of all basic LD-expansions of t. The role of ∂ for the study of (LD) is
reminiscent of the role of Garside’s fundamental elements ∆n in the study of braids [19]. The
main point here is that the sequence t, ∂t, ∂2t, . . . is cofinal in the LD-equivalence class of t
with respect to the relation of being an LD-expansion, and, to a large extent, understanding
how LD-classes are made means controlling the properties of the terms ∂kt. Let us say that
a term t is injective if no variable occurs twice in t. Our main technical result here is

Proposition A. Assume that t is an injective term. Then, for every k, the term ∂kt is
perfect.

Perfectness is a geometrical property: roughly speaking, a term t is perfect when it satisfies
the self-similarity condition that every geometrical pattern appearing in the associated tree
at some position α then reappears at every position on the right of α. The result of Propo-
sition A (in a different form) has been known in the particular case k = 1 for more than ten
years [2], [3], but, due to the complexity of the terms ∂kt for k ≥ 2, the previous attempts
to prove the general case had failed [7], [11].

We use Proposition A to prove new partial results about three open questions involving
left self-distributivity. In doing so, we prove the conjectures of [3] and [4], and achieve the
program of [7] and [11] in the sense that a completely new approach will presumably be
necessary to solve those questions that remain open.

The first application deals with the Polish Algorithm. The word problem of LD-
equivalence, i.e., the question of recognizing whether two given terms are LD-equivalent
or not, is known to be solvable [6]: when we are given two terms t1, t2 involving only one
variable x, we can decide whether t1 =LD t2 holds by evaluating t1 and t2 in Artin’s braid
group B∞ by mapping x to the unit braid 1 and using on B∞ the braid exponentiation
b1
∧ b2 = b1 sh(b2)σ1 sh(b−1

1 ), where sh is the shift endomorphism that maps σi to σi+1 for
every i; the case of terms with more than one variable can be solved similarly using an
extension of the braid group B∞. Besides such semantical algorithms, there exists a simple,
natural syntactic algorithm, which compares the terms t1 and t2 by looking at their right
Polish expressions. If they are equal, the terms are equal, hence LD-equivalent. Otherwise,
we look at the leftmost clash between the Polish expressions. If the clash involves different
variables, or if one word is a prefix of the other, then t1 and t2 are LD-unequivalent. Other-
wise, there exists a canonical way to solve the clash by expanding one of the terms using left
self-distributivity. The Polish Algorithm consists in iterating the process until the decision
can be made [11]. Despite the efforts of several researchers, the convergence question is still
open: it is not known whether the algorithm always comes to an end in a finite number of
steps. Here we prove the following result:

Proposition B. Assume that t1 and t2 are LD-equivalent to some injective term, or that
t1 and t2 are LD-expansions of a common third term. Then the Polish Algorithm running
on (t1, t2) converges in a finite number of steps.

This implies in particular that the Polish algorithm running on every pair of the form (t, ∂kt)
always converges, as was conjectured in [3].

The next application deals with the computation of the right normal form. The question
is to effectively selct a distinguished element in every LD-equivalence class. R. Laver has
constructed solutions in [21] and [22]. No complexity bound is known for the computation
of these normal forms, sometimes referred to as left normal. Alternatively, right normal
forms have been defined in [7] using the terms ∂kt, and a primitive recursive upper bound
exists for its computation. However, computing the normal form of an arbitrary term is a
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very complicated task, for which presumably no general tractable method exists. However,
the right normal form involves an additional parameter, namely a term t0 that is used as
a fixed reference term (like a basis in the expansion of the integers or of the rationals).
Here we give a renewed approach by introducing the notion of a fractional cut of a term,
which hopefully makes the whole construction more understandable. Then, we introduce
the auxiliary notion of the table associated with a term, and, using Proposition A, we prove:

Proposition C. Assume that t0 is an injective term. Then there exists a tractable algorithm
that computes the table of t0.

We then show how to possibly use the table of t0 to compute the t0-normal form of a term t,
or, more generally, its t′0-normal form for every substitute t′0 of t0 of a convenient type.
The new construction does not work for every term t, but the results could nevertheless be
optimal in some sense, as computing the normal form in the most general case seems to be
intrinsically intractable.

Finally, we consider the Embedding Conjecture. This statement admits several equivalent
forms. One of them asserts that, for every term t, the LD-equivalence class of t equipped with
the LD-expansion relation is an upper semilattice, i.e., every two LD-equivalent terms admit
a lower common LD-expansion. Other forms involve a certain group GLD that describes the
geometry of left self-distributivity [6], [9], and an associated monoid MLD. The connection
between braids and left self-distributivity originates in the group GLD being an extension of
Artin’s braid group B∞, and, in particular, the monoid MLD is an extension of the monoid B+

∞
of positive braids. The Embedding Conjecture claims that the monoid MLD embeds in the
group GLD, and it is a refinement of the well known result by Garside that the monoid B+

∞
of positive braids embeds in the group B∞ [19]. Let us say that the Embedding Conjecture
is true for some element a of MLD if the canonical homomorphism f of MLD into GLD is
injective at a, i.e., if b 6= a implies f(b) 6= f(a). For every term t and every nonnegative
integer k, there exists an element ∆

(k)
t of MLD that describes how ∂kt is obtained from t,

and the elements ∆
(k)
t are exact counterparts for the braids ∆k

n in B+
∞. Here we prove:

Proposition D. The Embedding Conjecture is true for every element of MLD that is a right

divisor of some element of the form ∆
(k)
t .

This result—which, by projection, implies Garside’s embedding result for braids—implies
in particular that, for each term t, and each nonnegative integer k, the subset of the LD-
equivalence class of t consisting of those LD-expansions of t of which ∂kt is an LD-expansion
is a lattice.

The paper is organized as follows. In Section 1, we introduce the vocabulary and recall
earlier results about LD-equivalence. In Section 2, we introduce the notion of a perfect term,
and, building on the results of [7] about the geometry of the terms ∂t and of [6] about orders
in free LD-systems, we investigate the so-called covering relation of the term ∂t, and establish
Proposition A. In Section 3, we apply the results to the Polish Algorithm, and deduce in
particular Proposition B. Section 4 is devoted to normal forms and Proposition C. Finally,
the Embedding Conjecture is discussed in Section 5, where Proposition D and further results
are proved using the notion of a confluent family of terms. There is (almost) no interaction
between the latter three sections.

All notions used in the current paper are defined precisely, and all earlier results needed
in the proofs are mentioned. However, some knowledge of [5], [6], and, mainly, [7] is cer-
tainly helpful for Sections 2 and 4, even if not formally needed. Section 5 uses techniques
developped in [8] and [14].
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1. Preliminaries

We recall in this introductory section definitions and earlier results about left self-
distributivity needed in the sequel, in particular the notion of an LD-expansion of a term,
the operation ∂ on terms, and the notions of a cut and of a descent of a term.

LD-equivalence and LD-expansions

Everwhere in the paper, we use the convention that missing brackets in algebraic expressions
are to be added on the right: abc stands for a(bc).

In the sequel, we fix an infinite sequence of variables x1, x2, . . . , and denote by T∞ the
set of all well formed terms constructed using these variables and a binary operation symbol
(usually skipped here). Thus x1 and x2(x1x3) are typical elements of T∞. We use T1 for the
set of those terms involving the variable x1 only, and write FLD∞ for T∞/=LD, and FLD1 for
T1/=LD. By construction, FLD∞ is the free LD-system based on {x1, x2, . . .}, while FLD1

is the free LD-system based on {x1}. For t a term in T∞, the LD-equivalence class of t is
denoted by t; the size of t is defined to be the number of occurrences of variables in t.

As geometric features are crucial here, it is convenient to associate with every term a
finite binary tree whose leaves are labelled with variables: if t is the variable x, the tree
associated with t consists of a single node labelled x, while, for t = t1t2, the binary tree
associated with t has a root with two immediate successors, namely a left one which is
(the tree associated with) t1, and a right one which is (the tree associated with) t2. For

instance, the tree associated with the term x2(x1x3) is x2 x1 x3
. We use finite sequences

of 0’s and 1’s as addresses for the nodes in such trees, starting with an empty address /o
for the root, and using 0 and 1 for going to the left and to the right respectively. For t a
term, we define the outline of t to be the collection of all addresses of leaves in (the tree
associated with) t, and the skeleton of t to be the collection of the addresses of nodes in t:
thus, for instance, the outline of the term x2(x1x3) is the set {0, 10, 11}, while its skeleton
is {0, 10, 11, 1, /o}, as t comprises three leaves and two internal nodes.

For t a term, and α an address in the skeleton of t, we have the natural notion of the α-th
subterm of t, denoted sub(t, α): this is the term corresponding to the subtree of the tree
associated with t whose root lies at address α. This amounts to defining inductively

sub(t, α) =

 t if t is a variable or α = /o holds,
sub(t0, β) for t = t0t1 and α = 0β,
sub(t1, β) for t = t0t1 and α = 1β.

If the address α belongs to the outline of the term t, the subterm sub(t, α) consists of a
single variable, and we shall denote it by var(t, α).

With addresses at hand, we can introduce a local version of LD-expansion:

Definition. Assume that t is a term, and α is an address such that α10 belongs to the
outline of t. Then we define (t)α to be the LD-expansion of t obtained by replacing the
subterm sub(t, α) with the term (sub(t, α0)sub(t, α10))(sub(t, α0)sub(t, α11)).

Thus (t)α is the term obtained from t by applying left self-distributivity at α in the expand-
ing direction. We say that t′ is a k-LD-expansion of t if there exists a finite sequence of
k addresses α1, . . . , αk satisfying t′ = (· · · ((t)α1)α2) · · ·)αk — also denoted (t)α1 · · ·αk. By
definition, a term t′ is an LD-expansion of the term t if and only if it is a k-LD-expansion
for some k.

Among all possible LD-expansions of a given term t, a distinguished one plays a crucial
role in the sequel, namely the term ∂t, inductively defined as follows: we have ∂t = t for t
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a variable, and ∂t = ∂t1 ∗ ∂t2 for t = t1t2, where ∗ is the operation defined by the inductive
rules t0 ∗ t = t0t for t a variable, and t0 ∗ t = (t0 ∗ t1)(t0 ∗ t2) for t = t1t2.

The following statements gather those basic properties of LD-expansions we need in the
sequel. The first is proved using induction on k, and the only slightly delicate point is to
prove that the operation ∂ is increasing with respect to LD-expansion, i.e., that, if t′ is an
LD-expansion of t, then ∂t′ is an LD-expansion of ∂t. The second result then easily follows.
The last result is proved by a direct, straightforward induction.

Proposition 1.1. [2] If t is a term and t′ is a k-LD-expansion of t, then ∂kt is an LD-
expansion of t. In particular, ∂t is an LD-expansion of all 1-LD-expansion of t.

Proposition 1.2. [2] Two terms are LD-equivalent if and only if they admit a common LD-
expansion. More precisely, t and t′ are LD-equivalent if and only if ∂kt is an LD-expansion
of t′ for k large enough.

Proposition 1.3. [6] Assume that t′ is an LD-expansion of t, and sub(t, 0p) is defined.
Then there exists p′ ≥ p such that sub(t′, 0p

′
) is an LD-expansion of sub(t, 0p).

Order on free LD-systems

The next ingredients are orders.

Definition. Assume that t1, t2 are terms. We say that t2 is a proper iterated subterm
of t1, denoted t1 A t2, if we have t2 = sub(t1, 0p) for some positive p. We say that t1 ALD t2
holds if there exists two terms t′1, t′2 satisfying t′1 =LD t1, t′2 =LD t2 and t′1 A t′2. Finally, we
denote by A the relation induced by ALD on FLD∞.

By definition, sub(t2, 0) is the left subterm of t, and, similarly, sub(t2, 0p) is the p-th iterated
left subterm of t2. So the relation ALD on T∞ is the LD-closure of the relation of being an
iterated left subterm. We have the following deep result about left self-distributivity:

Proposition 1.4. [6] The relation A is a partial ordering on FLD∞ which is compatible
with product on the left; its restriction to FLD1 is a linear ordering.

Thus, the relation @LD is linear on one variable terms in the sense that, for any two terms t1,
t2 in T1, exactly one of t1 @LD t2, t1 =LD t2, t1 ALD t2 holds. For terms with more than
one variable, the result is no longer true. However, using an ordering on variables, we can
define a lexicographical extension of @LD that induces a linear ordering on FLD∞. In order
to make the definitions precise, and for future use in Section 3, we introduce the right Polish
expression of terms.

Definition. For t a term in T∞, the right Polish expression of t is defined to be the word t̃
over the alphabet {x1, x2, . . . , •} inductively defined by the rules: t̃ = t for t a variable,
t̃ = t̃1t̃2• for t = t1t2.

For instance, if t is the term x2(x1x3), t̃ is the length 5 word x2x1x3••.

Definition. Assume that t1, t2 are terms in T∞. We say that t1 À t2 holds if there exist a
word w such that t̃1 begins with wxi1 while t̃2 begins with wxi2 with i1 > i2. We say that
t1 ÀLD t2 if there exist terms t′1, t′2 satisfying t′1 =LD t1, t′2 =LD t2, and t′1 À t′2. Finally, we
say that t1 >LD t2 holds if t1 ALD t2 or t1 ÀLD t2 holds.
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Once Proposition 1.4 is established, it is rather easy to deduce:

Proposition 1.5. [5] (i) The relations ALD andÀLD exclude each other, and the relation >LD
induces a linear order on FLD∞.

(ii) The conjunction of t1 ÀLD t2, t′1 wLD t1 and t′2 wLD t2 implies t′1 ÀLD t′2.

We shall denote by À and > respectively the partial order and the linear order on FLD∞
induced by the relations ÀLD and >LD.

The cuts of a term

Besides the subterms of a term, its cuts play a significant role.

Definition. Assume that t is a term in T∞, and α is an address in the skeleton of t. The
cut of t at α is the term cut(t, α) inductively defined by

cut(t, α) =

 t for α = /o,
cut(t0, β) for t = t0t1 and α = 0β,
t0cut(t1, β) for t = t0t1 and α = 1β.

Addresses are equipped with a natural left-right ordering: we say that the address α lies on
the right of the address β, denoted α >LR β, if there exists an address γ such that γ1 is, as
a word on {0, 1}, a prefix of α and γ0 is a prefix of β. Then, the cut of the term t at α is
the term obtained from t by deleting the part of t that lies on the right of α. For instance,
the term cut(x2(x1x3), 10) is obtained from x2(x1x3) by removing the part that lies on the
right of x1: there remains the term x2x1. Observe that cut(t, α1q) = cut(t, α) always holds
(provided α1q belongs to the skeleton of t). The following computational formula is easy.

Lemma 1.6. [7] For t a term and α an address in the skeleton of t, we have

cut(t, α) = sub(t, α10) · · · sub(t, αp0)sub(t, α), (1.1)
cut(t, α) =LD cut(t, αp0) · · · cut(t, α10)sub(t, α), (1.2)

where α1, . . . , αp are those prefixes of α such that α11, . . . , αp1 are prefixes of α, enumerated
with increasing lengths.

These explicit formulas easily provide us with an isomorphism between the left-right ordering
of addresses and the ALD-ordering of the associated cuts:

Lemma 1.7. [7] Assume that t is a term in T∞, and α, β belong to the outline of t. Then
cut(t, α) A cut(t, β) is equivalent to α >LR β.

Besides the cuts themselves, we shall also use the LD-equivalence classes of cuts, and con-
sider, for every term t, the family of all LD-equivalence classes of cuts of t.

Definition. For a in FLD∞, t in T∞, and α in the outline of t, we say that a appears
in t at α if a is the LD-equivalence class of the term cut(t, α). The content of the term t
is defined to be the set of all elements of FLD∞ appearing in t at some address not of the
form 1p.
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Lemma 1.7 shows that, if a and b appear in t at α and β respectively, then a A b is equivalent
to α >LR β. This implies in particular that every element a of FLD∞ appears at most once
in a given term t of T∞. So there will be no ambiguity in speaking of the address where a
appears in t. We shall say that the element a appears in t below α to mean that a appears
in t at some address that lies below α, i.e., of the form αβ. Also we shall say that a appears
in t at α1∗ to mean that a appears at some address of the form α1p with p ≥ 0.

Cuts behave nicely with respect to LD-expansions. The following result is easy.

Lemma 1.8. [10] Assume that the term t′ is an LD-expansion of the term t. Then every
element appearing in t appears in t′ as well, hence the content of t is included in the content
of t′. More precisely, assume t′ = (t)α. Then the elements appearing in t′ are those elements
that appear in t, completed with the elements ab such that a appears at α101∗ in t and b
appears below α0 in t.

The descents of a term

The last ingredient we shall resort to is the covering relation between addresses, and the
derived notion of a descent, which allows one to describe the geometry of the terms ∂t.

We start with a partition the left-right ordering of addresses into two partial orders.

Definition. Assume that α, β are addresses, and α lies on the right of β. We say that α
covers β if there exists an address γ and an integer p such that α = γ1p holds and β lies
below γ0; we say that α uncovers β if α >LR β holds, but α does not cover β.

The following result is straightforward:

Lemma 1.9. [7] The covering and uncovering relations are partial orders on addresses. For
every address α and every term t such that α lies in the outline of t, there exists a unique
address µt(α) in the outline of t such that, for β on the left of α in the outline of t, β is
covered by α if and only if α >LR β ≥LR µt(α) holds, and β is uncovered by α if and only if
µt(α) >LR β holds.

As the left-right ordering of addresses is a partial ordering and is not well founded, there
exists no address µ(α) such that the addresses uncovered by α are those addresses β that
satisfy µ(α) >LR β, but this becomes true when we restrict to the outline of a term, and the
situation is as illustrated in Figure 1.1.

t

γ
α

↙
µt(α)
↘︸ ︷︷ ︸

uncovered by α
︸ ︷︷ ︸

covered by α

Figure 1.1. The covering relation in t

Definition. Assume that t is a term. A descent in t is defined to be a finite sequence of
addresses (α1, . . . , αp+1) in the outline of t such that αi uncovers αi+1 for each i.
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The interest of considering descents lies in that there exists a bijective correspondence be-
tween the descents of a term t and the outline of the term ∂t. The following result is
instrumental in the construction of the right normal form. Its proof requires a careful, but
natural, inductive argument.

Proposition 1.10. [7] For every term t, there exists a one-to-one correspondence πt be-
tween the descents in t and the addresses in the outline of ∂t, and, for α = πt(α1, . . . , αp+1),
we have

cut(∂t, α) =LD cut(t, α1) · · · cut(t, αp+1). (1.3)

Moreover, πt(α1, . . . , αp+1) covers πt(β1, . . . , βq+1) if and only if we have p ≤ q, α1 = β1,
. . . , αp = βp, and αp+1 > bp+1.

The covering relation of a term

As every element appearing in a term t appears at a well defined address, the covering
relation on addresses induces a covering relation for the elements that appear in t.

Definition. Assume that t is a term in T∞, and a, b are elements of FLD∞. We say that
a covers (resp. uncovers) b in t if a and b appear in t, and the address where a appears in t
covers (resp. uncovers) the address where b appears in t.

Example 1.11. Let t be the term x1(x2(x3x4))x5, i.e., x1

x2
x3 x4

x5
. Four elements

appear in t, namely (the LD-classes of) x1, x1x2, x1(x2x3) and x1(x2(x3x4)). In t, x1x2

uncovers x1, x1(x2x3) uncovers x1 and x1x2, and x1(x2(x3x4)) uncovers x1, but it covers
x1x2 and x1(x2x3).

The following result expresses the geometrical property that expanding a term t at α causes
the cut of t at α10 to cover all cuts of t at addresses below α0. The result easily follows
from the explicit values of Lemma 1.6.

Lemma 1.12. [10] (i) Assume that the term t′ is an LD-expansion of the term t, and that
a covers b in t. Then a covers b in t′.

(ii) More precisely, assume t′ = (t)α, and let a be the element that appears at α101∗ in t.
Then the covering graph of t′ is the covering graph of t, completed with the following pairs:

- all pairs (a, b) with b appearing below α0 in t;
- all pairs (ab, ac) with b, c appearing below α0 in t and b covering c in t;
- all pairs (c, ab) with b appearing below α0 in t and c covering a in t.

By Lemma 1.7, for every term t, the elements that appear in t make a chain with respect
to @, and this chain is isomorphic to the outline of t ordered by the left-right ordering. By
Lemma 1.9, for every address α in the outline of t, the addresses β that are covered by α
are those addresses that satisfy α >LR β ≥LR µt(α). Thus, we deduce:

Lemma 1.13. Assume that t is a term, and a appears at α in t. Then the elements covered
by a in t are those elements b that appear in t and satisfy a A b w a0, where a0 is the element
that appears at µt(α) in t.

Definition. For a, a′ elements of FLD∞, we say that a and a′ are almost equal if they can
be represented by terms that are LD-equivalent up to a possible change of the rightmost
variable.
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As the rightmost variable of a term is preserved under left self-distributivity, the previous
definition is non-ambiguous. Using Formula (1.2), we obtain:

Lemma 1.14. Assume that t is a term, and a appears in t at α. Let a0 be the element that
appears in t at µt(α). Then the successor of a in the content of t is almost equal to aa0.

2. The geometry of ∂kt

We enter now the core of the study. The aim of this section is to prove Proposition A,
which amounts to describing the geometry of the terms ∂kt. The proof uses an inductive
argument, and the main step consists in establishing that two properties of terms called
steepness and fullness are preseved under operation ∂. Steepness is an order property relying
on Proposition 1.5, while fullness involves the content and the covering relation, and the
argument relies on the description of the cuts of ∂t as given in Proposition 1.10.

Steep terms

We start from the notion of an increasing term, and its weakening, the notion of a quasi-
increasing term. We recall that, for t a term, and α an address in the outline of t, var(t, α)
denotes the variable that occurs at α in t. We write var(t, α0∗) for var(t, α0p), where p is
the unique integer such that α0p belongs to the outline of t (which exists if and only if α
belongs to the skeleton of t).

Definition. Assume that t is a term in T∞. We say that t is increasing if the variables of t
enumerated from left to right make a strictly increasing sequence. We say that t is quasi-
increasing if, for every internal address α in the skeleton of t, the inequality var(t, α10∗) >
var(t, α0∗) holds.

By definition, every increasing term is injective, i.e., no variable occurs twice, and it is quasi-
increasing, as α10∗ >LR α0∗ holds. The converse implication is not true. For instance, the
term (x1x2)x2 is not increasing, but it is quasi-increasing: there are two internal addresses,
namely /o and 0, and, in both cases, var(t, α10∗) is x2, while var(t, α0∗) is x1.

The following technical result will be crucial.

Lemma 2.1. Assume that t is a quasi-increasing term, and a covers b in t. Then t À ab
holds, and, therefore, t A ab does not.

Proof. Assume that a appears at α in t, and b appears at β. Let α0 be the least address
covered by α in the outline of t, and α+ be the immediate successor of α in this set. Let a0

denote the LD-class of cut(t, α0), and a+ denote the LD-class of cut(t, α+). By construction,
we have α0 = µt(α), so, by Lemma 1.14, cut(t, α+) is LD-equivalent to the term obtained
from cut(t, α)cut(t, α0) by replacing the right variable var(t, α0) with the variable var(t, α+).
Let γ be the greatest common prefix of the addresses α and α+. Applying the hypothesis
that t is quasi-increasing at γ gives var(t, α+) > var(t, α0), and we deduce a+ À aa0. By
construction, we have t w a+, and b w a0, hence ab w aa0, so Proposition 1.5(ii) implies
tÀ ab.

It is not true that every LD-expansion of a (quasi)increasing term need be (quasi)increasing.
We introduce now a new property, weaker than (quasi)increasingness, but preserved under
LD-equivalence. For a in FLD∞, we denote by a[2] the element aa.

Definition. For a in FLD∞, we say that a is steep if a > b implies a À b[2] for every b.
For t in T∞, we say that t is steep if the LD-class of t is steep.
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As a À b always implies a À b[2], the non-trivial part in the definition involves those
elements b that satisfy a A b. Observe that no element of FLD1 but the generator x1 is
steep. The following criterion characterizes steep terms by a purely local condition, one
that involves t only, and not the LD-expansions of t. It will allow us to construct a number
of steep terms.

Proposition 2.2. (i) Assume that t is a term. Then t is steep if and only if the inequality
tÀ a[2] holds for every element a appearing in t.

(ii) Assume t = t1t2. A sufficient condition for t to be steep is that t1 and t2 are steep,
and t2 ÀLD t1 holds.

Proof. (i) Let us say that t is presteep if it satisfies the condition of (i). By definition, if
a appears in t, then t A a holds, and, therefore, t being steep implies t being presteep. On
the other hand, if t′ is an LD-expansion of t, and t′ is presteep, then t is presteep as well,
since every element appearing in t appears in t′. So, in order to prove that presteepness
coincides with steepness, it suffices to prove that every LD-expansion of a presteep term is
presteep, and, for an induction, it suffices to assume that t is presteep and to consider the
case t′ = (t)α. By Lemma 1.8, the elements that appear in t′ are those elements that appear
in t, completed with new elements of the form ab, where a appears at α101∗ in t, and b
appears below α0 in t. As t′ = t holds, it suffices to verify the steepness condition for the
latter elements. Now, we have in this case

tÀ atÀ ab[2] = (ab)[2].

The first inequality is a consequence of tÀ a[2], as t A a implies at A a[2], and, therefore, by
Proposition 1.5(ii), tÀ a[2] implies tÀ at.

(ii) Assume that t satisfies the conditions and a appears in t. Three cases are possible.
If a appears in t1, then the assumption that t1 is steep gives t1 À a[2], and we deduce
t1t2 À a[2]. If a = t1 holds, then the hypothesis t2 À t1 implies t1t2 À t1t1 = a[2]. Finally,
if a = t1b holds, with b appearing in t2, the assumption that t2 is steep gives t2 À b[2], and
we deduce t1t2 À t1b

[2] = a[2]. By (i), this is enough to conclude that t is steep.

Lemma 2.3. Every quasi-increasing term is steep.

Proof. We use induction on t. If t is a variable, the result is vacuously true. Assume
t = t1t2. By definition, every subterm of a quasi-increasing term is quasi-increasing. Hence,
by induction hypothesis, t1 and t2 are steep. Moreover, the quasi-increasing condition at /o
in t gives var(t, 10∗) > var(t, 0∗). Hence t2 À t1 holds, and Proposition 2.2(ii) applies.

Steep elements enjoy the following order constraints that will be used several times in the
sequel.

Lemma 2.4. Assume that a is steep and the inequalities a > a1, . . . , a > ap hold. Then
a > a1 · · · ap holds , and a A a1 · · · ap is possible only if a A ai A ai+1 · · · ap holds for every i.

Proof. We use induction on p ≥ 1. For p = 1, the result is obvious. Assume p ≥ 2. If aÀ a1

holds, then aÀ a1a2 · · · ap does. Assume now a A a1. The assumption that a is steep gives
aÀ a

[2]
1 . Now, a A a1 implies a1a A a

[2]
1 , and, therefore, aÀ a1a. By induction hypothesis,

we have a > a2 · · · ap, so we deduce a À a1a > a1a2 · · · ap, which implies a > a1a2 · · · ap.
Moreover, if aÀ a2 · · · ap holds, we find aÀ a1aÀ a1a2 · · · ap, hence aÀ a1a2 · · · ap.

Assume now a A a1a2 · · · ap. The previous argument shows that the only possible case
is a A a1 and a A a2 · · · ap. As a1 and a2 · · · ap both are v-smaller than a, they must
be v-comparable. Now, the inequality a2 · · · ap w a1 is impossible, as it would imply a A

a1a2 · · · ap w a
[2]
1 , contradicting the steepness of a. Hence, we have a1 A a2 · · · ap, and,

therefore, a A a2 · · · ap. By induction hypothesis, we deduce ai A ai+1 · · · ap for 2 ≤ i < p.
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Products of cuts

The following question will be crucial: if t is a term, and a, b appear in t, does ab appear in t,
or, more generally, in some LD-expansion of t? The problem is very difficult in general, but
we shall establish a complete answer for a family of particular terms called perfect terms.
We start from the following observation:

Proposition 2.5. Assume that t is a term in T∞, and a is an element of FLD∞. The
following are equivalent:

(i) The inequality t A a holds;
(ii) The element a appears in some term t′ that is LD-equivalent to t.
(iii) The element a appears in some term ∂kt.

Proof. By construction, ∂t is LD-equivalent to t, so (iii) implies (ii), and, as t′ =LD t means
t′ = t, (ii) implies (i). Hence the point is to prove that (i) implies (iii). So, assume that s is
a term, and t ALD s holds. By definition, there exists a term t′ and an integer p′ satisfying
t′ =LD t and s =LD sub(t′, 0p

′
). By the confluence property, there exists k such that ∂kt

is an LD-expansion of t′. Then, by Proposition 1.3, there exists p ≥ p′ satisfying s =LD
sub(∂kt, 0p), which means that the class a of s appears in ∂kt at 0p.

Assume that t is a term and a appears in t. A first, trivial observation is that, for a given a,
the set of those b’s such that ab appears in an LD-expansion of t make an initial segment
with respect to the @-ordering. Indeed, ab appears in some LD-expansion of t if and only if
ab @ t holds, and the latter relation implies ab′ @ t whenever b w b′ holds.

Now, assuming that a and b appear in t, we shall consider three cases according to the
position of b in the order of FLD∞, and prove the following results:

- If b is very small, then ab always appears in some LD-expansion of t, actually in ∂t;
- If b is large, and t is steep, then ab never appears in any LD-expansion of t;
- In the intermediate case, and if t is what we shall call full, then ab appears in some

LD-expansion of t if and only if it appears in t, and there exists an effective algorithm to
determine if this is the case.

The first two cases are easy.

Lemma 2.6. Assume that t is a term, and a uncovers b in t. Then ab does not appear in t,
but it appears in ∂t.

Proof. Assume that a appears at α and b appears at β in t. By hypothesis, (α, β) is a
descent in t. Let γ be the address πt((α, β)). By (1.3), we have

cut(∂t, γ) =LD cut(t, α)cut(t, β),

and ab appears at γ in ∂t. The injectivity of the mapping πt implies that γ cannot be
written as πt((γ0)) for any address γ0 in t. This shows that the LD-class of cut(∂t, γ) does
not appear in t.

Lemma 2.7. Assume that t is a steep term, a, b appear in t, and a ≤ b holds. Then ab
appears in no LD-expansion of t.

Proof. As a and b appear in t, a ≤ b implies b w a, and, therefore, ab w a[2]. As t is steep,
we have tÀ a[2], hence, by Proposition 2.4(ii), tÀ ab, which forbids t A ab.
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Observe that the previous argument works with the weaker hypothesis that a and b appear
in some LD-expansion of t only.

Full terms

We turn to the difficult case, namely when a covers b in t. Examples show that ab may
not appear in t, but appear in some LD-expansion ∂kt with k ≥ 1, and we have no control
of the situation in the most general case. So we shall concentrate on particular terms. A
natural hypothesis for discarding the problems is to require that ab, if it appears in some
LD-expansion of t, already appears in t.

Definition. Assume that t is a term. We say that t is full if ab appears in t whenever a
covers b in t and t A ab holds.

Example 2.8. Let x[m] be the term inductively defined by x[1] = x, x[m] = xx[m−1] for
m ≥ 2. For every m, x[m] is full. Indeed, no non-final address in the outline of x[m]

covers any address, so the fullness condition is vacuously true. Let us consider similarly the
term ∂x[m]. The skeleton of ∂x[m] is a complete binary tree of height m. By Formula (1.3),
those elements that appear in ∂x[m] have the form x[i1] · · ·x[ip+1] with i1 > . . . > ip+1.
Let a, b two elements appearing in ∂x[m], say a = x[i1] · · ·x[ip+1], b = x[j1] · · ·x[jq+1]. By
Proposition 1.10, a covers b in ∂x[m] if and only if we have p ≤ q and i1 = j1, . . . , ip = jp,
ip+1 > jp+1. Then we have ab = x[i1] · · ·x[ip]x[jp+1] · · ·x[jq+1], which appears in ∂x[m].
Hence every term ∂x[m] is full. On the other hand, it follows from the results of [11] that
the term ∂2x[6] is not full.

Lemma 2.9. Every cut of a full term is full.

Proof. Assume that t is full, and t′ is a cut of t. Assume that a covers b in t′ and t′ A ab
holds. By definition of covering, a covers b in t, and t A ab holds by transitivity of A. As t
is full, ab appears in t. Now t′ A ab implies that ab appears in t on the left of t′, hence it
appears in t′ as well.

Let us say that the term t1 is a substitute of the term t if t1 is the image of t under some
endomorphism f of T∞ into itself; in this case, we write t1 = tf . Every such substitution f
of T∞ induces a well defined endomorphism of FLD∞; we use af for the image of a under
this endomorphism.

Lemma 2.10. If a covers b in t, then, for every substitution f , af covers bf in tf .

Proof. Assume that a appears in t at α. Then af appears in tf at α1p, where p is the right
height of the term var(t, α)f . Similarly, if b appears at β in t, then βf appears in tf at
some address of the form β1q. By definition, α covering β implies that α1p covers β1q, and,
therefore, af covers bf in tf .

Proposition 2.11. Assume that some substitute of t is full. Then t is full as well.

Proof. Assume that f is a substitution, and the term tf is full. Assume that a covers b in t,
and t A ab holds. By Proposition 2.5, ab appears in some term ∂kt at some address say α.
Let xi = var(∂kt, α). Then, by construction, afbf occurs in (∂kt)f at α1p, where 1p belongs
to the outline of f(xi).

On the other hand, by Lemma 2.10, af covers bf in tf . Moreover, the hypothesis t A ab
implies tf A afbf , as f is an endomorphism and A is definable from the product and,
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therefore, preserved under f . As the term tf is full, we deduce that afbf appears in tf , at
some address, say βγ, where β belongs to the outline of t. As ∂kt is an LD-expansion of t,
afbf appears in (∂kt)f at the address β′γ, where β′ is the heir of β in ∂kt. Let xj be the
variable that occurs at β in t. The comparison of the above results implies α1p = β′γ, hence
j = i, β′ = α and γ = 1p. We deduce cut(∂kt, α)f =LD cut(t, β)f , hence cut(∂kt, α) =LD
cut(t, β): otherwise, we would have cut(∂kt, α) @LD cut(t, β) or cut(∂kt, α) ALD cut(t, β)
since the cuts of ∂kt are pairwise @LD-comparable, and this would imply cut(∂kt, α)f @LD
cut(t, β)f or cut(∂kt, α)f ALD cut(t, β)f . Now, this means that some cut of t is LD-equivalent
to cut(∂ka, α), i.e., that ab appears in t. Hence t is full.

Perfect terms

We are interested in proving fullness results for large families of terms. As was mentioned
in Example 2.8, the term ∂t need not be full even if t is. A good hypothesis is to require
steepness and fullness simultaneously. In some sense, these hypotheses are complementary:
when t A abc is assumed, steepness implies a A bc, i.e., it says that bc is not too large, while,
by definition, fullness implies (when a covers bc) that abc appears in t, so it says that bc is
not too small.

Definition. Assume that t is a term. We say that t is perfect if it is both steep and full.

Proposition 2.12. Every quasi-increasing term is perfect.

Proof. Assume that t is quasi-increasing. By Lemma 2.3, t is steep. Assume that a covers b
in t. By Lemma 2.1, t A ab does not hold, and the fullness condition is vacuously true
in t.

The following technical result is crucial.

Lemma 2.13. Assume that t is a perfect term, and we have t A a, t A b, t A c, and t A abc.
Assume moreover that ab and bc appear in t. Then ac and abc appear in t as well.

Proof. The term t is steep, hence, by Lemma 2.4, t A abc implies a A bc. As ab appears in t,
a covers b in t (by Lemma 2.6), and, therefore, it covers bc as well, since the latter appears
on the right of b in t. As t is full, we deduce that a(bc) appears in t.

As for ac, we know that b A c holds, since bc appears in t, hence we have t A ab A ac.
Moreover, a covers b in t since ab appears in t, and, similarly, b covers c in t. By transitivity
of covering, a covers c in t. As t is full, this implies that ac appears in t.

We are going to prove now that perfectness is preserved under operation ∂. To this end, we
must be able to determine those elements that appear in ∂t in terms of those elements that
appear in t.

Definition. Assume that t is a term and a appears in ∂t. By Formula (1.3), there exists a
decreasing sequence (a1, . . . , ap+1) such that a = a1 · · · ap+1 holds and ai uncovers ai+1 in t
for every i, and this sequence is unique as the mapping πt is bijective: it will be called the
t-decomposition of a.

Lemma 2.14. Assume that a covers b in ∂t, and (a1, . . . , ap+1) is the t-decomposition of a.
Then the t-decomposition of b has the form (a1, . . . , ap, bp+1, . . . , bq+1) with ap+1 > bp+1.
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Proof. Assume that a appears at α in t, and that b appears at β. Let (α1, . . . , αp+1) and
(β1, . . . , βq+1) be the preimages of α and β under the mapping πt. The last statement
in Proposition 1.10 says that α covers β if and only if p ≤ q holds, the first p terms of
(β1, . . . , βq+1) coincide with the first p terms of (α1, . . . , αp+1), and αp+1 >LR βp+1 holds.
Introducing ai to be the class of cut(t, αi) and bj to be the class of cut(t, βj) gives the
result.

The problem is as follows: We assume that t is a perfect term, and we try to prove that
∂t is perfect as well. So, we assume that a covers b in ∂t, and study whether ab appears
in ∂t. By the previous lemma, we know that the t-decompositions of a and b have the form
(a1, . . . , ap+1) and (a1, . . . , ap, bp+1, . . . , bq+1) with ap+1 > bp+1. Using left self-distributivity,
we find

ab = (a1 · · · apap+1)(a1 . . . apbp+1 · · · bq+1) = a1 · · · apap+1bp+1 · · · bq+1. (2.1)

The sequence involved in the latter expression is almost the t-decomposition of
some element appearing in t: if ap+1 uncovers bp+1 in t, i.e., if the sequence
(α1, . . . , αp, αp+1, βp+1, . . . , βq+1) is a descent in t, then, letting γ be the image of this
descent under πt, we see that ab appears at γ in ∂t. Now, if ap+1 covers bp+1 in t, (2.1)
is no longer the t-decomposition of an element appearing in ∂t. But, in this case, the hy-
pothesis that t is perfect implies that the element ap+1bp+1 appears in t, and we can replace
the sequence of (2.1) with a new sequence. This leads us to the notion of t-reduction of a
sequence.

Definition. Assume that ~a, ~a′ are finite nonempty sequences of elements of FLD∞ appear-
ing in the term t. We say that ~a is t-reducible to ~a′ in one step if ~a and ~a′ either have the
form{

~a = (a1, . . . , ai−1, ai, ai+1, ai+2, . . . , ar+1),
~a′ = (a1, . . . , ai−1, aiai+1, ai, ai+2, . . . , ar+1),

for some i < r, or they have the form{
~a = (a1, . . . , ai−1, ar, ar+1),
~a′ = (a1, . . . , ai−1, arar+1).

We say that ~a is t-reducible to ~a′ in n steps if there exists a length n + 1 sequence from ~a
to ~a′ such that every component is t-reducible to the next one in one step, and that ~a is
t-irreducible if it is t-reducible to no sequence but itself.

The idea of reduction is to use the product of FLD∞ to eliminate the covering patterns, and
to iterate the process until no more covering remains, if this is possible. Several verifications
are needed. For ~a a sequence as above, say ~a = (a1, . . . , ar), we write

∏
~a for a1 · · · ar.

Lemma 2.15. Assume that t is a term with n occurrences of variables.
(i) Assume that ~a is t-reducible to ~a′. Then

∏
~a′ =

∏
~a holds.

(ii) Every sequence of t-reductions starting with a length r sequence converges to a t-
irreducible sequence in (n− 1)r steps at most.

Proof. Point (i) follows from the definition of reduction. For (ii), we observe that, if ~a is
t-reducible to ~a′, then the sequence ~a′ is larger than ~a in the lexicographic extension of @
to sequences from FLD∞, and the length of ~a′ is at most the length of ~a. By definition,
n − 1 elements appear in the term t. So, (n − 1)r different sequences at most appear in a
sequence of t-reductions starting with a length r sequence ~a, and, therefore, any sequence
of t-reductions from ~a results in a t-irreducible sequence after (n− 1)r steps at most.

14



With our definition, t-reduction is not a functional process: a given sequence may be t-
reducible to several distinct sequences. However, in good cases, the choice of the t-reduction
steps does not matter.

Lemma 2.16. Assume that t is a perfect term, and ~a is a sequence of elements appearing
in t and satisfying t A

∏
~a. Then t-reduction from ~a is confluent, i.e., if the sequence ~a

is t-reducible both to ~a1 and ~a2, there exists a sequence ~a′ such that both ~a1 and ~a2 are
t-reducible to ~a′.

Proof. As t-reduction is Noetherian, i.e., it has no infinite descending sequence, it suffices
to prove that it is locally confluent, i.e., to show that, if ~a is t-reducible to ~a0, and ~a0 is
t-reducible in one step to ~a1 and ~a2, then there exists a sequence ~a′ such that both ~a1 and ~a2

are t-reducible to ~a′. Assume ~a0 = (a1, . . . , ar+1), and ~a1 and ~a2 are obtained from ~a using
reduction at positions i and j respectively. For |i − j| ≥ 2, the reductions involve disjoint
fragments of the sequences, and we can define ~a′ to be the sequence obtained from ~a0 by
reducing both at i and at j. The critical case is |i−j| = 1. Assume for instance i+1 = j < r.
Then we have

~a1 = ( . . . , ai−1 , aiai+1 , ai , ai+2 , ai+3 , . . . ),
~a2 = (. . . , ai−1 , ai , ai+1ai+2 , ai+1 , ai+3 , . . .),

By Lemma 2.15, we have
∏

~a0 =
∏

~a, and, therefore, t A
∏

~a0. By Lemma 2.4, we deduce
t A aiai+1ai+2 . . ., and, therefore, t A aiai+1ai+2. Applying Lemma 2.13, we see that aiai+2

and aiai+1ai+2 appear in t as well. This implies that the sequences ~a1 and ~a2 both are
t-reducible to the sequence

~a′ = ( . . . , ai−1 , aiai+1ai+2 , aiai+1 , ai , ai+3 , . . . ).

The case i + 1 = j = r is similar, with the terminal sequence ( . . . , ai−1 , aiai+1ai+2).

Proposition 2.17. Assume that t is a perfect term, and ~a is a sequence of elements
appearing in t and satisfying t A

∏
~a. Then t-reduction from ~a leads to a unique t-irreducible

sequence, which is the t-decomposition of an element of ∂t. In particular,
∏

~a appears in ∂t.

Proof. Consider an arbitrary sequence of t-reductions from ~a. By Lemma 2.15, it must have
a finite length and end with some t-irreducible sequence say ~a′. Assume that ~a is t-reducible
to ~b. By Lemma 2.16, ~a′ and ~b have to be t-reducible to some sequence ~c, and the hypothesis
that ~a′ is t-irreducible implies that ~c coincides with ~a′, i.e., ~b is t-reducible to ~a′. Hence
~a′ is the unique t-irreducible sequence accessible from ~a. Assume ~a′ = (a′1, . . . , a

′
r+1). By

Lemma 2.4, t A
∏

~a′ implies ~a′ being strictly decreasing. Assume that a′i covers a′i+1 for
some i. Then, t A a′1 · · · a′ia′i+1 and t being perfect imply that a′ia

′
i+1 appears in t, which

contradicts the hypothesis of ~a′ being t-irreducible. Hence we conclude that a′i uncovers a′i+1

in t for every i: this means that ~a′ is the t-decomposition of an element of ∂t.

In the above framework, we denote by redt(~a) the unique t-irreducible sequence obtained
from ~a using t-reduction. We can describe the elements ab that appear in ∂t completely.

Lemma 2.18. Assume that t is a perfect term, that a covers b in ∂t, and that
t A ab holds. Then the element ab appears in ∂t, and, letting (a1, . . . , ap+1) and
(b1, . . . , bq+1) be respectively the t-decompositions of a and b, the t-decomposition of ab
is redt(a1, . . . , ap+1, bp+1, . . . , bq+1).
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Proof. By Lemma 2.14, the t-decompositions of a and b have the form (a1, . . . , ap, ap+1)
and (a1, . . . , ap, bp+1, . . . , bq+1) respectively. Let ~c = (a1, . . . , ap+1, bp+1, . . . , bq+1). By con-
struction, the elements of ~c appear in t, and we have t A

∏
~c = ab. By Proposition 2.17,

the sequence redt(~c) is the t-decomposition of an element of ∂t. This means that ab appears
in ∂t, and redt(~c) is its t-decomposition.

Assume that the term t is perfect. Then the term ∂t is steep, as it is LD-equivalent to t,
and Lemma 2.18 tells us that ∂t is full. Thus, we have completed a proof of:

Proposition 2.19. If t is a perfect term, then ∂kt is perfect for every k .

Definition. The term t is said to be quasi-injective if there exists a quasi-increasing term t0
in T∞ and a bijection f of the variables of t0 onto the variables of t satisfying t = tf0 .

Thus a quasi-injective term is a quasi-increasing term up to a permutation of the variables.
In particular, every injective term is quasi-injective. We can state:.

Proposition 2.20. If t is a quasi-injective term, then ∂kt is full for every k.

Proof. Assume t = tf0 , where t0 is quasi-increasing and f is a permutation of variables. By
Lemma 2.3, t0 is steep, and, by Proposition 2.12, it is perfect. By Proposition 2.19, every
term ∂kt0 is perfect, hence full. Finally, fullness involves Identity (LD) only, and, therefore,
it is preserved under renaming the variables: thus ∂kt is full as well.

3. Convergence results for the Polish algorithm

The Polish algorithm is a syntactic method for deciding LD-equivalence of terms. It has
been investigated in [3] and [11], and it was considered independently by several researchers.
The problem of wheher it always converges is open. The aim of this section is to prove
partial convergence results, which go (far) beyond all previously known results.

The Polish Algorithm

In this introductory subsection, we recall the definition of the Polish Algorithm [10]. As our
notation here is different, we shall reprove the few simple results about LD-expansions the
construction relies upon.

We recall that, for t a term, t̃ denotes the right Polish notation of t.

Definition. Assume that t1, t2 are terms in T∞. We say that t1 and t2 admit a hard clash
at position p if either there exist a length p−1 word w such that t̃1 begins with wxi and t̃2
begins with wxj with i 6= j, or t̃1 is a proper prefix of t̃2 and it has length p − 1, or vice
versa; We say that t1 and t2 admit a soft clash at position p if there exist a length p−1
word w such that t̃1 begins with wxi and t̃2 begins with w•, or vice versa.
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For instance, the terms (x1x2)(x1x3x4) and x1((x2x3)(x2x4)) admit a soft clash at position 3,
since their right Polish forms are x1x2•x1x3x4••• and x1x2x3•x2x4••• respectively.

By definition, the terms t1 and t2 have a hard clash if and only if one of t1 ¿ t2, t2 ¿ t1,
t1 @ t2, t2 @ t1 holds, and, in all cases, they are LD-inequivalent by Proposition 2.4. Hence
the only case when we cannot directly decide whether t1 and t2 are LD-equivalent is the case
of a soft clash. Now, in this case, there happens to exist a canonical method for eliminating
the clash.

It follows from the construction of the right Polish form that, for every term t, there
exists a one-to-one correspondence between the letters in the word t̃ and the nodes in the
tree associated with t, the variables corresponding to the leaves of the tree, and the letters •
corresponding to the internal nodes. The inductive definition is straightforward. For each
address α in the skeleton of t, the associated position in the word t̃ will be simply called the
position of α in t̃. For instance, by definition of the right Polish form, the position of the
address /o (the root of the tree) is always the last position in t̃. A significant point is that
the correspondence is compatible with the orderings in the sense that, if the address α lies
on the right of the address β in the outline of the term t, then the position of α is larger
than the position of β. We recall that, for α in the skeleton of t, we use α0∗ for the unique
addresses of the form α0p lying in the outline of t; similarly, we use α1∗ for the address α1q

lying in the outline of t (this convention avoids introducing the exponents p, q explicitly).

Lemma 3.1. Assume that t′ is a proper LD-expansion of t. Then t and t′ have a soft clash.
More precisely, assume that t′ is the basic LD-expansion (t)α. Then t and t′ have a soft
clash at p, where p is the position of α110∗ in t and the position of α0∗ in t′.

Proof. Assume t′ = (t)α. Let s1, s2 and s3 be the subterms of t at α0, α10, and α11
respectively. Then we have explicit decompositions

t̃ = . . . s̃1 s̃2 s̃3 • • . . . , t̃′ = . . . s̃1 s̃2 • s̃1 s̃3 • • . . . ,

so t and t′ have a soft clash at the position which corresponds to the first letter of s̃3 in t̃,
i.e., to the position of α110∗ in t, and to the first letter • after s̃2 in t̃′, i.e., to the position
of α0∗ in t′.

Assume that t1 and t2 have a soft clash at position p, say for instance that • occurs at
position p in t̃1. Expanding t2 using (LD) gives a new term t′2 that haves a soft clash
with t2. The point is that there always exists a way to choose the LD-expansion so that the
clash between t2 and t′2 lies at position p and the possible clash between t1 and t′2 lies at
position p + 1 at least.

Example 3.2. Let t1 and t2 be the terms considered above, namely{
t̃1 = x1x2•x1x3x4•••,
t̃2 = x1x2x3•x2x4•••.

They admit a soft clash at position 3. Let t′2 be the LD-expansion ((t2)/o)0. We have{
t̃1 = x1x2•x1x3x4•••,
t̃′2 = x1x2•x1x3••x1x2x4•••,

and t1 and t′2 have a soft clash at position 6.

In order to describe the construction precisely, we need some notation. For each address α,
we have introduced, for t a term that is large enough, (t)α to be the LD-expansion of t
corresponding to applying left self-distributivity at α in t. For α1· . . . ·αp a finite sequence of
addresses, i.e., a word on the set A of all addresses, we denote similarly by (t)α1· . . . ·αp the
iterated LD-expansion (. . . ((t)α1)α2 . . .)αp. We thus obtain a partial action on the right of
the free monoid A∗ generated by A on the set T∞: this action is partial, as (t)w is defined
only if the skeleton of t is large enough.

17



Definition. For α an address, and k ≥ 0, the word α(k) is defined to be the empty word ε

for k = 0, and to be α·α0· . . . ·α0k−1 otherwise.

For instance, the word /o·0 involved in Example 3.2 above is /o(2).

Lemma 3.3. Assume that t is a term. Then (t)α(k) is defined if and only if the address α10k

belongs to the skeleton of t. In this case, the terms t and (t)α(k) have a soft clash at the

position of α10k−110∗ in t, which is also the position of α0k in (t)α(k).

Proof. Assume t′ = (t)α(k). An induction on k shows that the α10k-subterm of t is defined,
and that, letting s1 denote the α0-subterm of t, s2 denote its α10k-subterm, and, for 2 ≤
j ≤ k + 1, sj denote its α10k−j+21-subterm, we have{ ˜sub(t, α) = s̃1s̃2s̃3• . . . s̃k+1•s̃k+2••,˜sub(t′, α) = s̃1s̃2•s̃1s̃3•• . . . s̃1s̃k+1••s̃1s̃k+2••,

i.e., t′ is obtained from t by distributing s1 to s3, . . . , sk+2 (Figure 3.1). Let w be the prefix
of the word t̃ that ends with s̃1s̃2, and let p−1 be the length of w. Then, in t̃, w is followed
by the leftmost variable xi of s3, while, in t̃′, it is followed by the letter • whose address
is α0k. Hence, by definition, t and t′ have a soft clash at position p. The addresses of p in t
and t′ can be read on Figure 3.1.

t (t)α(k)

α

α0 α1

α10k−1

α10k α10k−11

α11

←sk+2

s1

s2 s3

↗xi

α
α1

α11

α0k−1

α0k+1

α0k−11

α0k−111
• →

s1 s2 s1 s3

s1 ←sk+2

Figure 3.1. Comparing t and (t)α(k)

Lemma 3.4. Assume that the terms t1 and t2 have a soft clash at p, with • at position p
in t̃1. Then the address of p in t2 has the form α10k−110∗, the length p prefixes of the

words t̃1 and ˜(t2)α(k) coincide, and α(k) is the only word of the form β(j) with this property.

Proof. By hypothesis, the words t̃1 and t̃2 have the same length p−1 prefix w, and the p-th
letter in t̃1 is •, while the p-th letter in t̃2 is some variable xi. Let γe be the address of p
in te, for e = 1, 2. Proving that γ2 has the form α10k−110∗ means proving that it contains
at least two 1’s. By construction, the number of 1’s in γ2 is equal to #

x
(wxi)− #•(wxi)− 1,

i.e., to #
x
(w) − #•(w), where #

x
(u) and #•(u) respectively denote the number of variables

and of •’s in u. For the same reason, the number of 1’s in γ1 is #
x
(w•)− #•(w•)− 1, which

is #
x
(w) − #•(w) − 2. By construction of the right Polish form, the latter number must be

nonnegative, and we deduce #
x
(wxi)− #•(wxi)− 1 ≥ 2.

Then Lemma 3.3 shows that (t2)α(k) is defined, that t2 and (t2)α(k) have a soft clash at p,
and that, for β 6= α or j 6= k, the clash between t2 and (t2)β(j) is not at p.
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The natural idea is now to use Lemma 3.4 to push the soft clash to the right, and to iterate
the process until either equal terms are obtained, or until a hard clash appears.

Definition. [10] Assume that the terms t1, t2 have a soft clash at p, and • occurs at
position p in t1. We say that the Polish Algorithm running on (t1, t2) returns (t′1, t

′
2) in one

step, with output (ε, α(k)), if we have t′1 = t1, and t′2 = (t2)α(k), where α10k−110∗ is the
address of p in t2. The definition when • occurs at p in t̃2 is symmetric.

For m ≥ 0, we say that the Polish Algorithm running on (t1, t2) returns (t′1, t
′
2) in m steps,

with output (u1, u2) if there exist two sequences of terms t
(0)
e = t1, t

(1)
e , . . . , t

(m)
e = t′e, e =

1, 2, such that, for every i, the Polish Algorithm running on (t(i)1 , t
(i)
2 ) returns (t(i+1)

1 , t
(i+1)
2 )

in one step, and (u1, u2) is obtained by concatenating the outputs at each step.
Finally, we say that the Polish Algorithm running on (t1, t2) converges to (t′1, t

′
2) in m steps

if it returns (t′1, t
′
2) in m steps and t′1 and t′2 do not have a soft clash.

The following fact results from the definition directly:

Lemma 3.5. Assume that the Polish Algorithm running on the pair (t1, t2) returns the
pair (t′1, t

′
2) with output (u1, u2). Then we have t′1 = (t1)u1 and t′2 = (t2)u2.

The reader can check that the Polish Algorithm running on the pair (t1, t2) of Example 3.2
converges in 4 steps to the pair (t′, t′), with t′ = ((x1x2)(x1x3))((x1x2)(x1x4)). The suc-
cessive outputs are (ε, /o(2)), (1(1), ε), (/o(1), ε), and (ε, 1(1)), hence the global output is the
pair (1(1)·/o(1), /o(2)·/o(1)). According to Lemma 3.5, we thus have found a common LD-
expansion of t1 and t2, here t′ = (t1)1(1)·/o(1) = (t2)/o(2)·/o(1).

When it converges, the Polish Algorithm solves the word problem of (LD) and decides
the canonical ordering in the following strong sense:

Proposition 3.6. Assume that the Polish Algorithm running on the pair (t1, t2) converges
to the pair (t′1, t

′
2). Then

(i) t1 =LD t2 is equivalent to t′1 = t′2;
(ii) t1 ALD t2 is equivalent to t′1 A t′2;
(iii) t1 ÀLD t2 is equivalent to t′1 À t′2.

Proof. By construction, we have t′1 =LD t1 and t′2 =LD t2, so the conditions of the proposition
are sufficient. They are also necessary, for the hypothesis that t′1 and t′2 have no soft clash
implies that exactly one of t′1 = t′2, t′1 @ t′2, t′1 A t′2, t′1 ¿ t′2, t′1 À t′2 holds.

Remark. The Polish algorithm can be extended so as to run on an arbitrary finite sequence
of terms (t1, t2, . . .) instead of a pair: when a soft clash occurs, we expand using Lemma 3.4
all terms where a variable occurs at the considered position. The details are easy.

Progressive words

If t1 and t2 are LD-equivalent terms, then they admit a common LD-expansion. The prin-
ciple of the Polish Algorithm running on (t1, t2) is to try to construct such a common LD-
expansion, i.e., to find words u1, u2 on A — i.e., finite sequences of addresses — such that
(t1)u1 and (t2)u2 coincide. However, the output words provided by the Polish Algorithm
cannot be arbitrary words.

Definition. For u a word on A, we say that u is progressive if it admits a decomposition
u = α1(k1) . . . αm(km) such that αi10ki−11 >LR αi−10ki−1 holds for 1 < i ≤ m. We say that
t′ is a progressive LD-expansion of t if we have t′ = (t)u for some progressive word u.
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Lemma 3.7. The output of the Polish Algorithm consists of progressive words.

Proof. Assume that α(k) and β(j) are successive factors in an output word of the Polish
Algorithm. This means that there exist three terms t, t′, t′′ such that t′ = (t)α(k) and
t′′ = (t′)β(j) hold. By hypothesis, the terms t and t′ have a soft clash at some position p,
and the terms t′ and t′′ have a soft clash at some position q. The hypothesis of β(j) occurring
after α(k) in an output word implies q > p: the clashes always go right, and never back.
By Lemma 3.3, the address of p in the middle term t′ is α0k, while the address of q in t′

is β10j−110∗. The correspondence between addresses and positions is increasing, hence q > p
translates into β10j−110∗ >LR α0k, which is equivalent to β10j−11 >LR α0k.

Proposition 3.8. Assume that t1, t2 are terms. Then the following are equivalent:
(i) The term t2 is a progressive LD-expansion of the term t1;
(ii) The Polish Algorithm running on the pair (t1, t2) converges to (t2, t2).

Proof. We prove using induction on m that, if u is a word in A∗ that admits a progres-
sive decomposition of length m, then the Polish Algorithm running on every pair (t, (t)u)
returns ((t)u, (t)u) with output (ε, u) in m steps. For m = 0, u must be empty, and the
result is true. Assume m > 0. Write t

(i)
e for the term obtained after i steps of the algorithm.

Then the clash between t
(0)
1 , i.e., t1, and t

(m)
1 , i.e., (t1)u, is the clash between t

(0)
1 and t

(1)
1 ,

as the subsequent clashes occur further to the right. Hence the Polish Algorithm gives the
first factor of u at the first step, and the induction is obvious.

If the Polish Algorithm running on (t1, t2) converges to (t, t), then, by Lemma 3.7, t is a
progressive LD-expansion both of t1 and t2. If (ii) holds, we have t = t2, and (i) follows.

The Polish Algorithm below a full term

We show now how to deduce convergence results for the Polish Algorithm from the results
of Section 2. The idea is that, if t0 is a full term and every element of FLD∞ appearing in t1
and t2 also appears in t0, then every element appearing in every term occurring when the
Polish Algorithm is run on the pair (t1, t2) appears in t0 as well.

Definition. Assume that t, t0 are terms. We say that t is included in t0 if if the content
of t is included in the content of t0, i.e., if every element appearing in t also appears in t0,
and t either appears in t0 or it is equal to t0.

Lemma 3.9. Assume that t is included in t0, and that a covers b in t. Then a covers b in t0
as well.

Proof. Let a0 be the least element covered by a in t. Let a+ be the least element that
appears on the right of a in t, or t if a is the largest element appearing in t. By hypothesis,
a0 appears in t0, and a+ appears in t0 or it is t0. By Lemma 1.14, the elements a+ and aa0

are almost equal, i.e., they may differ only by the rightmost variable. In particular, their
projections (a+)† and (aa0)† on FLD1 are equal. Let b0 be least element covered by a in t0,
and b+ be the least element that appears on the right of a in t0, or t0 if a is the largest
element appearing in t0. We have similarly (b+)† = (ab0)†, and, by construction, a+ w b+

holds. Hence, we find,
a†a†0 = (a+)† w (b+)† = a†b†0,

which implies a†0 w b†0, and, therefore, a0 w b0, since, otherwise, we would get b0 A a0 and
b†0 A a†0. Now b satisfies a > b ≥ a0, hence it satisfies a > b ≥ b0 as well, and, therefore, it
is covered by a in t0, since the elements covered by a in t0 make an interval in the content
of t0.

20



Lemma 3.10. Assume that t0 is a full term, t1, t2 are included in t0, and the Polish
Algorithm running on (t1, t2) returns (t′1, t

′
2) in one step. Then t′1 and t′2 are included in t0.

Proof. (Figure 3.2) By hypothesis, t1 and t2 have a soft clash. Let us assume that the
clash occurs at position p, with a variable in t̃1 and a letter • in t̃2. Let γ10k1∗ be the
address of p in t1, and let a1, . . . , ak be the elements that appear in t1 respectively at the
addresses γ10k1∗, γ10k−11∗, . . . , γ101∗. Let a0 be the element that appears at γ10∗, and,
finally, let b1, . . . , b` be the increasing enumeration of those elements that appear in t1
below γ0. By hypothesis, we have t′2 = t2 and t′1 = (t1)γ(k). Hence, the elements appearing
in t′1 are those elements appearing in t1, completed with the elements aibj with 1 ≤ i ≤ k
and 1 ≤ j ≤ `. Our aim is to prove that the latter elements appear in t0.

To this end, we use the covering relations in t0, and the hypothesis that t0 is full. First,
b` covers bj in t1 for j = 1, . . . , `− 1, so, by Lemma 3.9, b` covers bj in t0 as well. Similarly,
for i = 2, . . . , k, ai covers a1 in t1, so ai covers a1 in t0 as well. Now, a1 covers a0 in t1, and,
by hypothesis, the words t̃1 and t̃2 coincide up to position p, and a1 covers more elements
in t2 than in t1. As the immediate predecessor of a0 in t1 and t2 is b`, a1 must cover b` in t2.
This implies that a1 covers b` in t0. As the covering relation is transitive, we deduce that ai
covers bj in t0 for i = 1, . . . , k and j = 1, . . . , `. Now, the elements aibj appear in t′1, which
is an LD-expansion of t1, so we must have t1 A aibj , and, therefore t0 A aibj . Hence aibj
appears in some LD-expansion of t0. Now ai covers bj in t0, and t0 is full, so the hypothesis
that aibj appears in some LD-expansion of t0 implies that aibj already appears in t0.

t1

γ

γ0 γ1

γ10

γ10k
b1 b`

a0 a1 a2

ak

Figure 3.2. Convergence of the Polish Algorithm

We deduce mmediately:

Proposition 3.11. Assume that t0 is a full term, and t1, t2 are included in t0. Then the
Polish Algorithm running on (t1, t2) converges in a finite number of steps bounded by the
size of t0.

Corollary 3.12. Assume that t, t0 are terms and t0 is full. The following are equivalent:
(i) The term t is included in t0;
(ii) Some cut of t0 is an LD-expansion of t;
(iii) Some cut of t0 is a progressive LD-expansion of t.

Proof. For every term t0, (ii) implies (i), and (iii) implies (ii). Now, assume that t0 is full
and t is included in t0. Proposition 3.11 tells us that the Polish Algorithm running on (t, t0)
converges to a pair of the form (t′, t0). The hypothesis that t′ and t0 have no soft clash
together with t v t0 implies t′ v t0, so t′ is a cut of t0.
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The previous results imply the convergence of the Polish Algorithm for every pair of initial
terms (t1, t2) such that t1 and t2 are included in a full term, hence, in particular, if a term
of the form ∂kt0 with t0 a (quasi)-injective term. Actually, we can do better by considering
the following notion of a lifting.

Definition. Assume that (t1, t2, . . .) is a sequence of terms in T∞. We say that the se-
quence (t′1, t

′
2, . . .) is a lifting of (t1, t2, . . .) if there exists a mapping f of {x1, x2, . . .} into

itself such that ti = (t′i)
f holds for each i.

Thus a lifting of a term t is obtained from t by changing the names of the variables with the
only constraint that distinct variables cannot be replaced with the same variable. We do
not require the replacement to be functional: different occurrences of the same variable may
be replaced with different variables. So, for instance, every term is a lifting of a one-variable
term, and every term admits an injective lifting.

Lemma 3.13. Assume that (t′1, t
′
2) is a lifting of (t1, t2).

(i) If the Polish Algorithm running on (t1, t2) converges, then it converges as well when
running on (t′1, t

′
2).

(ii) Conversely, if t′1 and t′2 are vLD-comparable, and the Polish Algorithm running
on (t′1, t

′
2) converges, then it converges as well when running on (t1, t2).

Proof. Let us compare how the Polish Algorithm runs on (t1, t2) and on (t′1, t
′
2). Assume

that the algorithm converges for (t1, t2) in m steps. We claim that it converges for (t′1, t
′
2)

in at most m steps. For an induction, it suffices to consider the first step. Assume that
t1 and t2 have a clash at position p. Then, either t′1 and t′2 have a variable clash at some
position < p, in which case the Polish Algorithm halts immediately, or they coincide at least
until position p − 1. If the clash of t1 and t2 at p is strong, then t′1 and t′2 have a strong
clash of the same type at p: indeed, different variables in t1 and t2 must come from distinct
variables in t′1 and t′2. If the clash of t1 and t2 at p is soft, t′1 and t′2 also have a soft clash
at p. In this case, the pair ((t′1)

(1), (t′2)
(1)) obtained when treating the clash of t′1 and t′2

at p is a lifting of the pair (t(1)
1 , t

(1)
2 ) obtained when treating the clash of t1 and t2, and the

induction goes on. This proves (i).
For (ii), we prove similarly that, if the algorithm converges for (t′1, t

′
2) in m steps, then it

converges for (t′1, t
′
2) in m steps too. The argument is the same as above. The only problem

is that t′1 and t′2 may have a variable clash that t1 and t2 do not have, as the mapping
involved in the lifting need not be injective. Now the hypothesis that t′1 and t′2 are vLD-
comparable discards this possibility.

Proposition 3.14. Assume that (t1, t2) is a pair of terms admitting some lifting (t′1, t
′
2)

such that t0 wLD t′1 and t0 wLD t′2 holds for some quasi-injective term t0. Then the Polish
Algorithm converges when running on (t1, t2).

Proof. For k large enough, the terms t′1 and t′2 are included in ∂kt0, which is full. Hence
the Polish algorithm for (t′1, t

′
2) converges. By Lemma 3.13, this implies that it converges

for (t1, t2) as well.

Example 3.15. Let us consider the case of one variable terms. The previous criterion
applies to all pairs (t1, t2) for which we can find a lifting, i.e., a renaming of the variables,
providing terms that are vLD-comparable to some common quasi-injective term. If only one
term were involved, we could consider an arbitrary injective lifting. The point is that, if
we rename the variables of t1 say x1, x2, . . . , there need not exist a lifting of t2 giving a
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vLD-comparable term. The smallest pair for which the criterion of Proposition 3.14 does not
apply is the pair

t1 = x
x

x x

, t2 =

x x
x x

x x

.

Up to a permutation, the only injective lifting of t1 is t′1 = x1x2x3x4, but there is no
lifting of t2 that makes it vLD-comparable with t′1. The reason is as follows: let t3 be the
LD-expansion (t2)1. Then t3 admits a lifting making it vLD-comparable with t′1, namely

t′3 =

x1 x2

x1
x1 x2 x3 x4

.

But this lifting cannot be carried to t2 because of the clash between the variables x1 and x3

at 100 and 110.

Proposition 3.16. Assume that t1 and t2 are LD-expansions of v-comparable terms. Then
the Polish Algorithm converges when running on (t1, t2).

Proof. Assume te = (se)ue for e = 1, 2, where ue is a word in A∗, and s1 v s2 holds
for instance. Let s′2 be an injective lifting of s2, s′1 be the induced lifting of s1, and t′e
be the term (s′e)ue, which exists as ue is positive. Then (t′1, t

′
2) is a lifting of (t1, t2), and

Proposition 3.14 applies.

The criterion of Proposition 3.16 shows in particular that the Polish Algorithm converges
on every pair (t1, t2) such that t1 and t2 both are LD-expansions of some term t0.

Degree k expansions

Here we consider the particular case of the terms ∂kt.

Proposition 3.17. Let t1, t2 be arbitrary terms. Then, for k large enough, the Polish
Algorithm converges when running on (∂kt1, t2) and on (∂kt1, ∂kt2).

Proof. Let t†1 and t†2 be the projections of t1 and t2 on T1. Choose m such that t†2 vLD
t†1x

[m] holds [6]. For k large enough, some cut of ∂k(t†1x
[m]) is an LD-expansion of t†2. By

Proposition 3.16, the Polish Algorithm converges for (∂k(t†1x
[m]), t†2), hence for (∂kt†1, t

†
2)

since ∂kt1 is a cut of ∂k(t†1x
[m]). By construction, (∂kt1, t2) is a lifting of (∂kt†1, t

†
2), so

Lemma 3.13 implies that the Polish Algorithm converges for (∂kt1, t2) as well.
On the other hand, it is known [7] that some term t† admits two iterated left subterms s1,

s2 that are LD-expansions of t†1 and t†2 respectively. For k large enough, the term ∂kt†e
is an LD-expansion of se, and, by Proposition 3.16 again, the Polish algorithm converges
for (∂kt†1, ∂

kt†2), hence for (∂kt1, ∂kt2).

Observe that the previous result gives an always terminating process for comparing terms
using the Polish Algorithm: it suffices to run the latter on the pairs (t1, t2), (∂t1, ∂t2), . . .
simultaneously—perform m steps of the algorithm on the pairs (t1, t2), . . . , (∂mt1, ∂

mt2) for
m = 0, 1, 2, . . . so as to obtain an effective process.

We also deduce from Proposition 3.17 that, for all LD-equivalent terms t1, t2, the
terms ∂kt1 and ∂kt2 admit a common progressive LD-expansion for k large enough.

Definition. Assume that t and t′ are terms. We say that t′ is a degree k LD-expansion
of t if t′ is an LD-expansion of t and ∂kt is an expansion of t′, but ∂k−1t is not. We write
Expk(t) for the set of all LD-expansions of t with degree at most k, and Expprogk (t) for the
set of all progressive LD-expansions of t with degree at most k.
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We know that, if t′ is an LD-expansion of t, then ∂kt is an LD-expansion of t′ for every k
large enough. So every LD-expansion has a well defined finite degree.

Proposition 3.18. Assume that the term t′ is an LD-expansion of the term t. Then the
following are equivalent:

(i) The term t′ is included in ∂kt;
(ii) The term t′ is an LD-expansion of t of degree at most k, i.e., t′ belongs to Expk(t);
(iii) The term ∂kt is a progressive LD-expansion of t′, i.e., ∂kt belongs to Expprogk (t′).

Proof. Let t′ be an injective lifting of t, say t = (t′)f . Then the term ∂kt′ is full, and
Proposition 3.14 gives the equivalence of (i), (ii), and (iii) for the LD-expansions of t′. Now,
for each LD-expansion t′ of t, there exists a unique LD-expansion t′′ of t′ with the same
outline as t′. Then we have t′ = (t′′)f , and each of (i), (ii), (iii) for t′ is equivalent to its
counterpart for t′′.

Proposition 3.19. For every term t, and every k, Expk(t) is closed under Polish Algorithm
in the sense that, for t1, t2 in Expk(t), the Polish Algorithm running on (t1, t2) returns a
common (progressive) LD-expansion of t1 and t2 that lies in Expk(t).

Proof. As above, we use an injective lifting t′ of t. For (t′1, t
′
2), the result follows from

Proposition 3.11. We then deduce the result for (t1, t2) using a projection.

Proposition 3.20. Assume that t′ is an LD-expansion of t. Then ∂kt′ is a progressive
LD-expansion of ∂kt for k large enough.

Proof. We prove the general result that, for t′ ∈ Expk(t) and n ≥ 1, we have ∂nkt ∈
Expk(∂(n−1)kt′) and ∂nkt′ ∈ Expk(∂nkt). We use induction on n ≥ 1. Assume first n = 1.
The hypothesis is that ∂kt is an LD-expansion of t. By Proposition 3.18, ∂kt is a progressive
LD-expansion of t′. Now, as t′ is an LD-expansion of t, ∂kt′ is an LD-expansion of ∂kt,
hence the LD-class of every cut of ∂kt appears in ∂kt′, i.e., ∂kt is included in ∂kt′. By
Proposition 3.18 again, ∂kt is an LD-expansion of t′ of degree at most k.

Applying the previous argument to the pair (t′, ∂kt) instead of (t, t′) shows that ∂kt′ is a
progressive LD-expansion of ∂kt of degree at most k.

Assume now n ≥ 2. By induction hypothesis, ∂(n−1)kt′ belongs to Expk(∂(n−1)kt). Hence,
by the above argument, the term ∂k(∂(n−1)kt), i.e., ∂nkt, is a progressive LD-expansion
of ∂(n−1)kt′ of degree k at most. Always by the same argument, the term ∂k(∂(n−1)kt′), i.e.,
∂nkt′, is a progressive LD-expansion of ∂nkt of degree k at most.

4. The table of a term

A unique normal form for LD-equivalence has been constructed in [7] : for every fixed term t0,
there exists a family of so-called t0-normal terms such that every term t satisfying t vLD t0
is LD-equivalent to a unique t0-normal term. The computation of the t0-normal form has
a primitive recursive complexity, but, in practice, the method of [7] is intractable beyond
very simple terms. As application for the results for Section 2, we develop now a new,
simpler method for computing the t0-normal form when t0 is a quasi-injective term, or,
more generally, a perfect term.
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The right normal form

Here we recall (without proof) the normal form result of [7]. It is stated here in a new,
hopefully more accessible form, relying on the notion of a fractional cut.

By Proposition 2.5, every term t satisfying t vLD t0 is LD-equivalent to some cut of ∂kt0
for k large enough. Hence, it suffices to construct normal forms for the cuts of ∂kt0. Now,
by Formula (1.3), each cut of ∂kt0 admits, up to LD-equivalence, a unique decomposition
as a decreasing product of cuts of ∂k−1t0. Thus, every cut of ∂kt0 can be specified by a
sequence of cuts of ∂k−1t0, hence a sequence of sequences of cuts of ∂k−2t0, . . . , and, finally,
a tree whose leaves are cuts of t0.

Definition. For 1 ≤ n ≤ ∞, an n-precode is defined to be a term on {1, . . . , n}, i.e., a finite
binary tree with leaves wearing labels in {1, . . . , n}. For t a term in T∞ of size n, and c an n-
precode, the fractional cut cutc(t) is defined inductively by the rules: for c = i ∈ {1, . . . , n},
cutc(t0) is the cut of t0 ending at the i-th variable from the left; for c = c1c2, we have
cutc(t) = cutc1(t0)cutc2(t0).

Thus 2, 3·1, or (3·(2·1))·1 are typical precodes. It is convenient to represent precodes using
rational numbers. For c an n-precode, we define the base n expansion of c as the word
obtained from the right Polish form of c by replacing the operator • with the digit 0,
removing the final 0’s, and adding a dot after the first digit. For instance, the expansion of
the above precodes are 2, 3.1, and 3.21001 respectively, and, for t0 a term of size 3 at least,
say t0 = x1x2x3, we have

cut2(t0) = x1x2, cut3.1(t0) = (x1x2x3)x1, cut3.21001(t0) = ((x1x2x3)(x1x2)x1)x1.

Every rational with a finite base n expansion represents exactly one precode, because the
right Polish form is non-ambiguous. The interest of our denotational convention lies that
the standard ordering of the rationals corresponds to the order needed in the subsequent
construction (simply denoted < in the sequel); in particular, it makes it intuitive that the
fractional cut cut2.1(t0) lies between cut2(t0) and cut3(t0).

By the initial remark, every cut of ∂kt0 is LD-equivalent to some fractional cut of t0, and
it is natural to use precodes to construct a normal form.

Definition. (i) For c a precode, the degree deg(c) is defined inductively by deg(c) = 0 for
c an integer, and deg(c) = sup(deg(c1) + 1,deg(c2)) for c = c1·c2.

(ii) Assume that t0 is a term of size n, and c is an n-precode; the t0-head hdt0(c) of c is
defined inductively by

- hdt0(c) = j if c is the integer i and cutj(t0) is the least cut of t0 covered by cuti(t0), if
any, or j = i otherwise,

- hdt0(c) = c1·hdt0(c2) if c = c1·c2 holds with deg(c2) > deg(c1),
- hdt0(c) = c1·1 if c = c1·c2 holds with deg(c2) ≤ deg(c1).

Thus the degree of c is the maximal number of 0’s in an address in c (viewed as a binary
tree) and the t0-head of c is obtained from c by keeping the complicated left part of c, but
deleting the remaining fragment and replacing it with 1. For instance, the degree of 3.2
is 1, and its x1x2x3x4-head is 3.1, while the degree of 3.210032 is 2, and its x1x2x3x4-head
is 3.21001.

Definition. Assume that t0 is a term of size n. We say that a precode c is a t0-code if c is
an n-precode and, for every internal address α in c, we have

deg(sub(c, α0)) + 1 ≥ deg(sub(c, α1)), and hdt0(sub(c, α0)) > sub(c, α1). (4.1)
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Example 4.1. Let t0 = x[n] (we write x for x1). The t0-codes of degree 0 are the integers 1,
. . . , n. A degree 1 precode is a finite sequence of integers, say (i1, . . . , ir+1). For every i,
we have hdt0(i) = i here, hence Condition (4.1) reduces to ip > ip+1. So the t0-codes of
degree 1 are the decreasing sequences (i1, . . . , ir+1) with n ≥ i1. Thus the first t0-codes of
degree 1 are 2.1, 3.1, 3.21, 4.1, 4.2, 4.21, 4.3, . . .

Things become more complicated for 2-codes. By definition, a t0-code of degree 2 is
a decreasing sequence of t0-codes of degree 1, but the condition is no longer sufficient.
For instance, the precode 3.2031, i.e., (3·2)·(3·1), is not a t0-code. Indeed, the degree
condition holds, but the t0-head of sub(3.2031, 0), i.e., of 3.2, is 3.1, which is not larger than
sub(3.2031, 1), which is 3.1 as well.

In the current framework, the normal form result of [7] can be restated as follows:

Proposition 4.2. Assume that t0 is a term. Then, for every term satisfying t vLD t0,
there exists a unique t0-code c satisfying t =LD cutc(t0). The function that maps t to c lies
in the complexity class DSPACE(exp∗(O(2n))), where exp∗(m) denotes a tower of base 2
exponentials of height m. For t1, t2 vLD t0, t1 @LD t2 is equivalent to c1 < c2, where ce is the
t0-code associated with te as above.

If t′0 A t0 holds, every t0-code is a t′0-code. Using this remark, we can extend the notion of a
t0-code to some infinite terms t0. In this way, we obtain for instance that every term in T1 is
associated with a unique x∞-code, where x∞ represents the limit of x[n] when n goes to ∞.

The table of a term

Assume that t0 is a term in T∞. By the previous results, every element of FLD∞ that appears
in some LD-expansion of t0 is specified by a unique t0-code. The question of describing the
pairs (a, b) of elements appearing in an LD-expansion of t0 such that ab still appears in
an LD-expansion of t0 can be restated as the question of finding, for every pair (c1, c2) of
t0-codes, the unique t0-code c satisfying cutc(t0) =LD cutc1(t0)cutc2(t0), if it exists. This
leads us to the following notion.

Definition. Assume that t0 is a term. The k-table of t0 is defined to be the pair (Ct0
k , ∗t0k ),

where Ct0
k is the set of all t0-codes of degree ≤ k except the last one, and ∗t0k is the partial

binary operation on Ct0
k defined by

c1 ∗t0k c2 =
{

c if cutc1(t0)cutc2(t0) is LD-equivalent to cutc(t0),
⊥ if cutc1(t0)cutc2(t0) appears in no LD-expansion of t0.

The k-table of t0 corresponds to the fragment of the multiplication table of FLD∞ restricted
to the cuts of ∂kt0. By construction, c1 ∗t0k c2 is undefined if cutc1(t0)cutc2(t0) appears in
some LD-expansion of ∂kt0, but not in ∂kt0, i.e., when it is associated with a code of degree
higher than k. On the other hand, ⊥ indicates a permanent obstruction. Observe that every
k-table is a partial left self-distributive table, in the sense that, if the values of a∗ (b∗ c) and
(a ∗ b) ∗ (a ∗ c) both exist, then they are equal.
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The results of Section 2 enable us to describe the table of a quasi-injective term completely.
In the sequel, we do not distinguish between the t0-codes and the associated fractional cuts
of t0. So we can speak of the product of two codes, or of the decomposition of a degree k
code as a sequence of degree k−1 codes. For finite sequences of degree k t0-codes, we define
∗t0k -reduction as in Section 2, but replacing the product of FLD∞ with its counterpart ∗t0k
on Ct0

k .

Proposition 4.3. Assume that t0 is a quasi-injective term of size n.
(i) The set Ct0

0 is {1, . . . , n−1}, and the operation ∗t00 is defined by c1∗t00 c2 = ⊥ for cutc1(t0)
covering cutc2(t0) in t0, and undefined otherwise.
(ii) For k > 0, the k-table of t0 is obtained from the (k−1)-table of t0 as follows:

(ii1) The set Ct0
k is the set of all codes c1 . . . cp+1 such that, for every i, ci belongs to Ct0

k−1

and ci ∗t0k−1 ci+1 is undefined;

(ii2) For c1, c2 in Ct0
k satisfying c1 ≤ c2, we have c1 ∗t0k c2 = ⊥;

(ii3) For c1, c2 in Ct0
k satisfying c1 > c2 and of the form

c1 = c′1 . . . c′pc
′
p+1 and c2 = c′1 . . . c′pc

′′
p+1 . . . c′′q+1

with c′p+1 > c′′p+1, we have c1 ∗t0k c2 = c′′′1 . . . c′′′r , where (c′′′1 , . . . , c′′′r ) is the irreducible

sequence obtained from (c′1, . . . , c
′
p, c
′
p+1, c

′′
p+1, . . . , c

′′
q+1) by using ∗t0k−1-reduction, if this code

belongs to Ct0
k , and we have c1 ∗t0k c2 = ⊥ otherwise;

(ii4) For c1, c2 in Ct0
k satisfying c1 > c2 but not of the form (ii3), we leave c1 ∗t0k c2

undefined.

Proof. Without loss of generality, we may assume that t0 is quasi-increasing. Using induction
on k, we prove the result of the proposition together with the additional facts that c1 ∗t0k c2

is undefined if and only if cutc1(t0) uncovers cutc2(t0) in ∂kt, and c1 ∗t0k c2 = ⊥ holds if and
only if cutc1(t0) covers cutc2(t0) in ∂kt and t0 wLD cutc1(t0)·cutc2(t0) does not hold. For
k = 0, everything is true as no cut of a quasi-increasing term may be LD-equivalent to the
product of two other cuts. Then induction follows from Lemma 2.18, which, in addition to
proving that ∂kt is perfect, also gives the effective computation method by a reduction.

Example 4.4. Let t0 = x1x2x3x4. Then t0 is injective, hence eligible for the previous
result—while its substitute x[4] is not. The 0-table and the 1-table are

∗0t 1 2 3
1 ⊥ ⊥ ⊥
2 . ⊥ ⊥
3 . . ⊥

∗1t 1 2 2.1 3 3.1 3.2 3.21
1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
2 2.1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

2.1 . . ⊥ ⊥ ⊥ ⊥ ⊥
3 3.1 3.2 3.21 ⊥ ⊥ ⊥ ⊥

3.1 . . . . ⊥ ⊥ ⊥
3.2 . . . . 3.21 ⊥ ⊥
3.21 . . . . . . ⊥

(No 0-reduction is possible.) Fourty-one elements appear in ∂2t, and writing the complete
2-table of t0 is tedious. We give below the trace of the 2-table of t0 on Ct0

1 , i.e., we fill the
empty entries of the previous array.

∗t02 (excerpt) 1 2 2.1 3 3.1 3.2 3.21
1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
2 2.1 ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

2.1 2.101 2.102 ⊥ ⊥ ⊥ ⊥ ⊥
3 3.1 3.2 3.21 ⊥ ⊥ ⊥ ⊥

3.1 3.101 3.102 3.1021 3.103 ⊥ ⊥ ⊥
3.2 3.201 3.202 3.2021 3.203 3.21 ⊥ ⊥
3.21 3.2101 3.2102 3.21021 3.2103 3.21031 3.21032 ⊥
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Actually, the part above is the trivial part of the 2-table.More interesting phenomena appear
in the degree 2 part, when ∗t01 -reduction is possible. Let us only consider an example. As
3.2 ∗t01 3 is undefined, 3.203 belongs to Ct0

2 , and so does 3.201 for the same reason. Let us
compute the value of 3.203 ∗t02 3.201. We have 3.203 > 3.201, so we are in case (ii3) or (ii4)
of Proposition 4.3. The 1-decompositions are (3.2, 3) and (3.2, 1) respectively, so we are in
case (ii3), and we have to reduce the sequence (3.2, 3, 1). We see in the table that 3.2 ∗t01 2
is not defined, but we find 3 ∗t01 1 = 3.1. Hence (3.2, 3, 1) reduces to (3.2, 3.1). Now, we
find 3.2 ∗t01 3.1 = 3.21. So (3.2, 3.1) reduces to (3.21). The code 3.21 belongs to Ct0

2 , and
we deduce 3.203 ∗t02 3.201 = 3.21.

We invite the reader to compute other values, for instance 3.203 ∗t02 3.2021 = ⊥.

Computation of the normal form

Computing the t0-code of a term is connected with computing the table of t0. Indeed,
assume t vLD t0. Then the t0-code of t exists. Assume t = t1t2. Then t1 vLD t0 holds by
definition, and, therefore the t0-code of t1 exists. This need not be the case for t2, but, if
t2 vLD t0 happens to hold, then, assuming that we have found the t0-codes say c1 and c2

of t1 and t2, finding the t0-code of t amounts to computing c1 ∗t0 c2, which can be done
using Proposition 4.3 if t0 is quasi-injective. The trivial example t = t0 = x1x2 shows that
the previous approach may fail even for simple terms. However, the following observation
makes it useful.

Lemma 4.5. Assume that t′0 is a lifting of the term t0, say t0 = (t′0)
f .

(i) Assume t vLD t′0. Then tf vLD t0 holds, and the t0-code of tf is the t′0-code of t.
(ii) The table of t′0 is included in the table of t0.

Proof. (i) For each k, we have ∂kt0 = (∂kt′0)
f , and the outlines of the term ∂kt0 and ∂kt′0

coincide, hence ∂kt0 and ∂kt′0 have the same descents. The construction of the t0-code
involves the geometry of the terms ∂kt0 only, whatever the names of the variables are, so an
induction shows that, for every k and every cut t of t′0, the t0-code of a cut tf of ∂kt0 is the
t′0-code of t.

(ii) The relation c1 ∗t′0 c2 = c is equivalent to cutc1(t
′
0)cutc2(t

′
0) =LD cutc(t′0). If this holds,

we have cutc1(t0)cutc2(t0) =LD cutc(t0), which in turn is equivalent to c1 ∗t0 c2 = c.

Definition. Assume that t0 and t are terms. The t0-precode of t is the precode c possibly
defined by the following rule: if t is a cut of t0, say t = cuti(t0), then c = i; otherwise,
if t = t1t2 holds and the t0-precodes c1 and c2 of t1 and t2 respectively exist, we have
c = c1·c2.

The x∞-precode of every one-variable term exists. On the other hand, because of possible
variable clashes, the t0-precode of t need not always exist when t involves more than one
variable.

Assuming that ∗ is a partial binary operation defined on codes, we define the ∗-evaluation
of a code inductively: if c is an integer, then it is its own evaluation; otherwise, for c = c1c2,
the ∗-evalutation of c is c′1 ∗c′2, where c′e is the ∗-evaluation of ce, when it exists. We deduce
from the above result the following practical method for computing the normal form of a
term.

Proposition 4.6. Assume that t0, t are terms, and t vLD t0 holds. Let t′0 be a quasi-injective
lifting of t0. Then the t0-code of t is the evaluation of the t0-precode of t in the table of t′0,
when the latter exists.
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Proof. Assume that the t0-precode c of t exists, and that the evaluation c′ of c in the table
of t′0 exists as well. By definition, we have cutc′(t′0) =LD cutc(t′0), hence, assuming t = (t′0)

f ,
t = cutc(t0) =LD cutc′(t0). Now, by construction, c′ is a t′0-code, hence a t0-code as well by
Lemma 4.5. By uniqueness of the t0-code, we deduce that c′ is the t0-code of t.

Example 4.7. Let t be the term

x
x x

x x
x

x x x
x x

x x

x.

The x[4]-precode of t exists, and it is 3.20303201. We look for the evaluation of this code in
the table of the injective lifting x1x2x3x4 of x[4]. Using the values computed above, we find

((3 ∗ 2) ∗ 3) ∗ ((3 ∗ 2) ∗ 1)) = (3.2 ∗ 3) ∗ (3.2 ∗ 1) = 3.203 ∗ 3.201 = 3.21,

and we deduce that the x[4]-code of t is 3.21.

When it applies, the method of Proposition 4.6 is much more efficient than the one of
Proposition 4.2 as, if we start with a term whose t0-precode has degree k, then the entire
computation remains in the k-table of t′0, for which we have a complete inductive construc-
tion. We cannot hope to extend the method to an arbitrary base term t0. For instance, no
complete description of the 2-table of x[m] is known, and the examples of [11] suggest that
such a description must be very complicated for m ≥ 6.

5. The Embedding Conjecture

In this last section, we come back to the structure of LD-equivalence classes, and, more
precisely, to the question of whether any two LD-equivalent terms admit a least common
LD-expansion. The question is connected with the presentation of a certain monoid G+

LD

that describes the action of left self-distributivity on terms, and the latter monoid is related
with an extension GLD of Artin’s braid group B∞. Here we show how to use the results of
Section 2 to prove the so-called Embedding Conjecture in many cases.

The group of left self-distributivity

Here we recall the definition of the group GLD, and earlier results about this group and an
associated monoid obtained using a combinatorial process called word reversing.

Definition. For every word w over A, we define LDw to be the partial operator on T∞ that
maps every sufficiently large term t to its LD-expansion (t)w. The monoid consisting of all
operators LDw equipped with reverse composition is denoted by G+

LD.

The following equivalence results from the definition directly:

Lemma 5.1. [6] Assume that t, t′ are terms in T∞. Then the following are equivalent:
(i) The term t′ is an LD-expansion of the term t;
(ii) Some element of G+

LD maps t to t′.
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The monoid G+
LD, together with its symmetrized completion considered below, plays a sig-

nificant role as it captures what can be called the intrinsic geometry of Identity (LD).
In addition to the operators LDw, which correspond to expanding terms, we can also

consider the inverse operators LD−1
w which correspond to using (LD) in the direction

(xy)(xz) 7→ x(yz). So, for every address α, we introduce LD−1
α to be the inverse operator

of LDα (which is injective), and we consider the monoid GLD generated by all operators LDα
and LD−1

α using reversed composition. By construction, every element in GLD is a finite
product of operators LDα and LD−1

α . Using A−1 for a disjoint copy of A, where the copy
of α is denoted α−1, we can define LDα−1 to be LD−1

α , and then represent every element
of GLD as LDw, where w is a word over A ∪A−1, i.e., a finite sequence of signed addresses.
We write (A ∪A−1)∗ for the set of all such words, of which /o·11−1·0 is a typical element.
On the shape of Lemma 5.1, we have the following straightforward characterization:

Lemma 5.2. [6] Assume that t, t′ are terms in T∞. Then the following are equivalent:

(i) The terms t and t′ are LD-equivalent;

(ii) Some element of GLD maps t to t′.

The monoid GLD is not a group, because the product of LDα and LD−1
α is the identity mapping

of its domain only, and not of T∞. This problem cannot be solved easily, as the product of
two elements in GLD may be empty: so is for instance the operator LDw for w = /o·1·/o−1.
However, the structure of GLD is fairly well known.

Proposition 5.3. [6] Let ≡+ denote the congruence on A∗ generated by

α · β ≡+ β · α for α ⊥ β (type ⊥)

α0β · α ≡+ α · α10β · α00β (type 0)

α10β · α ≡+ α · α01β (type 10)

α11β · α ≡+ α · α11β (type 11)

α1 · α · α1 · α0 ≡+ α · α1 · α, (type 1)

and ≡ be the congruence on (A ∪ A−1)∗ generated by ≡+ together with α·α−1 ≡ ε and
α−1·α ≡ ε for every α.

(i) Assume that u, u′ are words on A. Then u ≡+ u′ implies LDu = LDu′ .

(ii) Assume that w and w′ are words on A∪A−1 such that the domains of LDw and LDw′

are not disjoint. Then the following are equivalent:

- There exists at least one term t satisfying (t)w = (t)w′;
- For every term t, (t)w and (t)w′ are equal when they exist;

- The relation w ≡ w′ holds.

Proposition 5.3 gives an optimal characterization of GLD, in particular in terms of presenta-
tion. In order to get rid of the limitations due to the operators LDw being not everywhere
defined, we introduce the group for which the above relations yield a presentation.

Definition. We denote by GLD the group (A∪A−1)∗/≡; the class of α in GLD is denoted gα.
We denote by MLD the monoid A∗; the class of α in MLD is denoted g+

α .
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Artin’s braid group B∞ is the quotient of GLD obtained by collapsing all generators gα such
that α contains at least one 0, a property that explains the deep connection between braids
and left self-distributivity.

When we consider LD-expansions only, i.e., operators LDw with w a word on A, the
domain of LDw is never empty, and, if w, w′ are words on A, the domains of LDw and LDw′

are never disjoint [2]. So, we deduce from Proposition 5.3(ii):

Proposition 5.4. [6] For all words u, u′ on A, LDu′ = LDu is equivalent to u′ ≡ u, and,
therefore, the monoid G+

LD is isomorphic to the submonoid G+
LD of GLD generated by the

elements gα.

Now, we observe that the relations involved in the presentation of the group GLD have a
special syntactic form.

Definition. Assume that X is a nonempty set. We say that f is a complement on X if f is a
function of X×X to the free monoid X∗ generated by X satisfying f(x, x) = ε for every x—
where ε denotes the empty word. For f a complement on X, the monoid (resp. the group)
wiith presentation 〈X ; {xf(x, y) = yf(y, x) ; x, y ∈ X}〉 is said to be associated with f .

For f a complement on X, and w, w′ words on X ∪X−1, let us say that w is f -reversible
to w′ if w′ can be obtained from w by repeatedly replacing some subwords of the form x−1·y
with the corresponding word f(x, y)f(y, x)−1. For u, v words on X, we denote by u\v the
(necessarily unique) word v′ on X such that u−1v is f -reversible to u′v′−1 for some word u′

on X, if such a word exists. By construction, we have x\y = f(x, y) for all x, y in X, and
the operation \ can be seen as an extension of f to arbitrary words on X.

Definition. Assume that f is a complement on X. We say that f is convergent if, for all
words u, v on X, the word u\v exists; we say that f is coherent if, for all words u, v, w on X,
we have

(u\v)\(u\w))\((v\u)\(v\w)) = ε.

Proposition 5.5. [8] Assume that f is a convergent and coherent complement; let M and
G be the associated monoid and the associated group, respectively.

(i) The monoid M admits left cancellation.

(ii) Let a, b be arbitrary elements of M , and u, v be words on X representing a and b
respectively. Then a and b admit a right lcm in M , and the latter is represented by u(u\v).

(iii) The monoid M embeds in the group G if and only if M admits right cancellation.

Let us come back to the particular monoid MLD. By definition, MLD is associated with some
complement henceforth denoted f on A.

Lemma 5.6. [6] The complement f is convergent and coherent.

We deduce from Proposition 5.5(i), (ii):

Proposition 5.7. [6] The monoid MLD admits left cancellation, and right lower common
multiples always exist in MLD.
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The right lcm of two elements a, b of MLD will be denoted by a∨b. For u, v arbitrary words
on A, we shall write u∨v for the word u(u\v). This notation is coherent as, by Proposi-
tion 5.5(ii), if u, v represent a, b, then u∨v represents a∨b.

We conclude this introductory section with a last object, namely, for each term t, a
distinguished element denoted ∆t of the monoid MLD that describes the transformation of t
into ∂t.

Definition. (i) For t a term, we let ∆t be the element of MLD inductively defined as follows:
for t a variable, we have ∆t = 1; for t = t1t2, we have ∆t = a sh1(∆s1)sh0(∆s2), where a is
1h−2·1h−3 · · · 1·/o with h the length of the rightmost branch in t (viewed as a binary tree),
s1s2 is (t)a, and shα denotes the endomorphism of MLD that maps g+

γ to g+
αγ for every γ.

(ii) For k ≥ 0, we define inductively ∆
(k)
t by ∆

(0)
t = 1, and ∆

(k)
t = ∆t∆

(k−1)
∂t for k ≥ 1.

Proposition 5.8. [6] For every term t, and every k, we have ∂kt = (t)∆(k)
t .

The element ∆
(k)
t is an exact counterpart of Garside’s braid ∆k

n, with which it shares many al-
gebraic properties. In particular, every element of MLD is a left divisor of some element ∆

(k)
t ,

as every positive braid is a left divisor of some braid ∆k
n. However, braids are symmetric,

and every positive braid is also a right divisor of some ∆k
n, but the counterpart in MLD is

not true: some elements of MLD are not right divisors of any element ∆
(k)
t . We refer to [13]

for various results about the elements ∆
(k)
t , but such results are not needed for our present

purpose.

The Embedding Conjecture

Proposition 5.4 leaves the description of the monoid G+
LD incomplete, since it does not give

an explicit presentation of the submonoid G+
LD of GLD. On the other hand, G+

LD is a quotient
of the monoid MLD by Proposition 5.3(i).

Conjecture 5.9. (Embedding Conjecture) The monoid MLD embeds in the group GLD, i.e.,
for all positive words u, u′ in A∗, u′ ≡ u implies (and, therefore, is equivalent to) u′ ≡+ u.

We shall give several equivalent forms of the latter conjecture.

Proposition 5.10. The following are equivalent:
(i) The Embedding Conjecture is true;
(ii) The monoid MLD admits right cancellation;
(iii) The monoid G+

LD is isomorphic to the monoid MLD, i.e., for all positive words u, u′

in A∗, LDu′ = LDu implies (and, therefore, is equivalent to) u′ ≡+ u.

Proof. That (i) implies (ii) is trivial. The converse implication follows from Proposi-
tion 5.5(iii) together with Lemma 5.6. That (i) implies (iii) directly follows from Propo-
sition 5.4. Conversely, assume (iii). Let u, u′ be words on A satisfying u′ ≡ u. By
Proposition 5.3(i), we have LDu = LDu′ , hence, by (iii), u′ ≡+ u.

In order to study the latter statement more closely, we pose a definition. By Proposi-
tion 5.3(i), there is no ambiguity in defining, for a in MLD, the operator LDa to be value
of LDu where u is an arbitrary word on A representing a.

Definition. Assume that a is an element of MLD. We say that the Embedding Conjecture
is true for a if the canonical projection of MLD onto G+

LD is injective on a, i.e., if b 6= a in MLD

implies LDa 6= LDb.
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Thus Conjecture 5.9 is the statement that the Embedding Conjecture is true for every
element of a of MLD.

Lemma 5.11. Assume that the Embedding Conjecture is true for a.
(i) For all a′, b in MLD, ab = a′b implies a′ = a.
(ii) The Embedding Conjecture is true for every right divisor of a.

Proof. (i) Assume that u represents a, and uv ≡+ u′v holds. We deduce uv ≡ u′v, hence
u ≡ u′, and u ≡+ u′ as the Embedding Conjecture is true for a.

(ii) Assume again that u represents a, and u ≡+ u1u2, and u′2 ≡ u2 hold. Then we have
u1u
′
2 ≡ u1u2, hence u1u

′
2 ≡+ u1u2 as the Embedding Conjecture is true for a, and, finally,

u′2 ≡+ u2 as MLD is left cancellative.

The rest of this section is devoted to proving the Embedding Conjecture for some particular
elements of MLD. Let us first mention without proof that the Embedding Conjecture is
true for every degree 1 element of MLD, the latter being defined as those elements a such
that the associated operator LDa maps at least one term t to a degree 1 LD-expansion of t
(and, in this case, it maps every term t to a degree 1 LD-expansion of that term). Such
degree 1 elements in MLD correspond to classical objects in braid theory, namely the divisors
of Garside’s universal elements ∆n.

Confluent families

We shall now develop a new technique that enables us to deduce partial results on the
Embedding Conjecture from the results of Section 2.

Definition. Assume that F is a family of terms. We say that F is confluent if, for all
words u, v on A, the family F contains the term (t)u∨v whenever it contains t, (t)u and (t)v.
We say that F is locally confluent if, for all addresses α, β, F contains (t)α∨β whenever it
contains t, (t)α and (t)β.

Considering confluent families is relevant for the Embedding Conjecture owing to the fol-
lowing criterion.

Lemma 5.12. Let a be an element of MLD. Then the following are equivalent:
(i) The Embedding Conjecture is true for a;
(ii) For every term t in the domain of LDa, the family of all LD-expansions of t of which

(t)a is an LD-expansion is confluent.
(iii) There exist a term t in the domain of LDa and a confluent family F containing t

and (t)a and such that (t)a is terminal in F , i.e., no proper LD-expansion of (t)a belongs
to F .

Proof. Assume that the Embedding Conjecture is true for a, and that t belongs to the domain
of LDa. Let F be the family of all LD-expansions of t of which (t)a is an LD-expansion. Let
w be a word on A representing a. Assume t′, (t′)u, (t′)v ∈ F . Then, by definition, there
exist words w′, u1, v1 on A satisfying t′ = (t)w′, (t)a = (t′)uv1 = (t′)vu1. Hence we have
LDw = LDw′uv1

= LDw′vu1
, and, therefore, w ≡ w′uv1 ≡ w′vu1. The Embedding Conjecture

for a implies w ≡+ w′uv1 ≡+ w′vu1, hence uv1 ≡+ vu1 since MLD admits left cancellation.
By the properties of the operation \, there exists a positive word w′′ satisfying v1 = (u\v)w′′

and u1 = (v\u)w′′. Hence we have (t)a = ((t′)u∨v)w′′, and, therefore, (t′)u∨v ∈ F . So F is
confluent, and (i) implies (ii).

It is clear that (ii) implies (iii), as, by construction, the term (t)a is terminal in every
family satisfying the conditions of (ii).
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Finally, assume that F is a confluent family, and (t)a is terminal in F . Assume that u
represents a, and u′ ≡ u, hence LDu′ = LDu, holds. By construction, we have (t)u′ = (t)u.
As (t)u is an LD-expansion of (t)u and (t)u′, the definition of a confluent family implies
(t)u∨u′ ∈ F . The hypothesis that (t)u is terminal in F implies (t)u∨u′ = (t)u, and the only
possibility is u\u′ to be the empty word, and so is u′\u by a symmetric argument. By the
properties of \, this implies u′ ≡+ u, and the Embedding Conjecture is true for a.

By Proposition 5.5, lcm’s in the monoid MLD can be determined using the word reversing
iterative technique. This results in a local characterization of confluent families, which
involves letters instead of arbitrary words.

Lemma 5.13. Assume that F is a family of terms. Then F is confluent if and only if it is
locally confluent.

Proof. By definition, (i) implies (ii). So, assume (ii). We establish using induction on m that
F contains (t)u∨v whenever it contains (t)u and (t)v and c(u, v) ≤ m holds, where c(u, v) is
the number of elementary steps needed to reverse the word u−1v. For m = 0, at least one
of u, v is empty, and the result is obvious. Assume now m ≥ 1. Then u and v are not empty.
Let us write u = α·u0, v = β·v0, with α, β ∈ A. There exist positive words u1, v1, . . . , u3,
v3 such that v1·u−1

2 is obtained by word reversing from u−1
0 ·(α\β), v2·u−1

1 is obtained by
word reversing from (β\α)−1·v0, and v3·u−1

3 is obtained by word reversing from u−1
2 ·v2 (see

Figure 5.1). By definition, the term (t)α∨β belongs to F . Now, by construction, we have

c(u, v) = 1 + c(u0, α\β) + c(v0, β\α) + c(u2, v2),

hence each of the numbers c(u0, α\β)), c(v0, β\α), and c(u2, v2) is less than m. Using
the induction hypothesis, we deduce successively that (t) αu0v1, (t)βv0u1, and (t)αu0v1v3

belong to F . The latter term is (t)u∨v.
β v0

α β\α u1
α\β v2

u0 u2 u3
v1 v3

Figure 5.1. Induction for confluence

By gathering the previous results, we deduce the following criterion:

Proposition 5.14. Assume that a is an element of MLD. Then the following are equivalent:
(i) The Embedding Conjecture is true for a;
(ii) There exists a locally confluent family of terms with a terminal term in the image

of LDa.

This characterization establishes a connection between the Embedding Conjecture and the
structure of LD-equivalence classes.

Proposition 5.15. The Embedding Conjecture is equivalent to each of the following state-
ments:

(i) For all terms t, t′, and all addresses α, β, if t′ is an LD-expansion of (t)α and (t)β,
then it is an LD-expansion of (t)α∨β as well.

(ii) For all terms t, t′, and all words u, v on A, if t′ is an LD-expansion of (t)u and (t)v,
then it is an LD-expansion of (t)u∨v as well.
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Proof. Assume that the Embedding Conjecture is true, and assume that t′ is an LD-
expansion of (t)u and (t)v. Then t′ is an LD-expansion of t. By Lemma 5.12, the family F
of all LD-expansions of t of which t′ is an LD-expansion is confluent. By hypothesis, F
contains (t)u and (t)v, hence it contains (t)u∨v, which means that t′ is an LD-expansion
of (t)u∨v. So (ii) holds.

Next, (ii) implies (i) by definition.
Finally, assume (i), and let a be an arbitrary element of MLD. Let t be a term in the domain

of LDa, and F be the family of all LD-expansions of t of which (t)a is an LD-expansion. We
claim that F is locally confluent. Indeed, assume that t′, (t′)α and (t′)β belong to F . By
construction, (t′)α∨β is an LD-expansion of t, and, as (t)a is an LD-expansion both of (t′)α
and (t′)β, then, by hypothesis, it must be an LD-expansion of (t′)α∨β as well. Hence (t′)α∨β
belongs to F , which is locally confluent. We conclude that the Embedding Conjecture is
true for a.

The problem for establishing the conditions of Proposition 5.15 is that no intrinsic charac-
terization for the LD-expansions of a term is known in general. Now, in the case of perfect
terms, such a characterization is given by Corollary 3.12.

Lemma 5.16. Assume that t0 is a perfect term. Then the family consisting of all terms
included in t0 is confluent.

Proof. By Lemma 5.13, it suffices to prove that F is locally confluent. Assume that t, (t)α
and (t)β are included in t0. We consider the various possible cases. If the addresses α and β
are orthogonal, then α∨β is α·β, and the content of (t)α·β is the union of the contents of (t)α
and (t)β, so the result is clear.

Assume now that α and β are prefix-comparable, say α is a prefix of β for instance. The
case β = α is trivial. If α10 or α11 is a prefix of β, the content of (t)α·β is the union of the
contents of (t)α and (t)β, and the result is clear again. There remain the cases β = α1 and
α0 prefix of β. Assume first β = α1. We have α\β = α1·α The content of the term (t)α∨β
is the union of the contents of (t)α, (t)β, and of additional elements of the form abc where
a appears in t at α1101∗, b appears at α101∗, and c appears below α0 (see Figure 5.2).
Consider such an element. By construction, abc appears in an LD-expansion of t, hence we
have abc @ t = t0. Moreover, ab appears in (t)α, bc appears in (t)β, hence both appear in t0,
and Lemma 2.13 implies that abc appears in t0. So the result is true.

The final case is when α0 is a prefix of β, say β = α0γ. Then we have α\β = α10γ·α00γ.
The same argument as above shows that the content of (t)α∨β is the union of the contents
of (t)α, (t)β, and of additional elements of the form abc where a appears in t at α101∗, b
appears at α0γ101∗, and c appears below α0γ0. As in the case β = α1, we have abc @ t0,
ab and bc appear in t, hence in t0, and Lemma 2.13 implies that abc appears in t0.

It follows from the analysis of the operators LDw in [2] that, for every word w such that
the operator LDw is nonempty, there exists a pair of terms (tL(w), tR(w)), which is unique if
we require in addition that the variables appear in increasing order when one looks at their
leftmost occurrences enumerated from left to right, such that LDw is the set of all substitutes
of (tL(w), tR(w)), i.e., the family of all pairs obtained from (tL(w), tR(w)) by replacing the
variables by arbitrary terms. As positively equivalent words give the same operator, we
can use the notation tL(a) and tR(a) for a in MLD without ambiguity. Then we deduce the
following criterion.

Proposition 5.17. Assume that a is an element of MLD. Then the following are equivalent:
(i) The term tR(a) is full (hence perfect);
(ii) The image of the operator LDa contains at least one full term.

If the above conditions are satisfied, then the Embedding Conjecture is true for a.
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LDα LDα·LDα1·LDα0
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c •

b •
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α

•
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•
bc •

a

(t)α1

α

•
c

•
b
•
a
•

ab

(t)α∨α1

α

•
c
•
b
•↖

bc

•
a
•↖

ac

•
ab
•↖

abc

Figure 5.2. Confluent family

Proof. The equivalence of (i) and (ii) follows from Proposition 2.11, as the terms in the image
of LDa are the substitutes of tR(a). Assume that the term tR(a) is full. By construction,
the term tL(a) is increasing, hence steep. Hence tR(a), which is LD-equivalent to tL(a), is
steep as well, and, therefore, it is perfect. By Lemma 5.16, the family of all terms included
in tR(a) is confluent, and, by construction, the term tR(a) is terminal in this family. By
Proposition 5.14, we conclude that the Embedding Conjecture is true for a.

Using the results of Sections 2 and 3, we obtain the Embedding Conjecture for a large family
of elements.

Proposition 5.18. The Embedding Conjecture is true for every element of MLD that is a

right divisor of some element ∆
(k)
t .

Proof. The element ∆
(k)
t depends only on the skeleton of the term t, so we may assume

without loss of generality that t is increasing. Then we have (t)∆(k)
t = ∂kt, a full term by

Proposition 2.20. Hence ∆
(k)
t and, by Lemma 5.11, every right divisor of ∆

(k)
t in MLD, is

eligible for the criterion of Proposition 5.17.

As we observed that some elements of MLD are not right divisors of any element ∆
(k)
t , and,

therefore, Proposition 5.18 is not yet a complete proof of the Embedding Conjecture.
Another application deals with those elements of MLD that admit an expression involving

generators g+
α with α of the form 1i only. Such elements appear in connection with the

natural section s : σi 7→ g+
1i−1 of the canonical projection of MLD onto the positive braid

monoid B+
∞ (this section s is not a homomorphism).

Definition. An element a of MLD is said to be braidlike if it belongs to the submonoid
generated by the elements g+

1i .

Lemma 5.19. Assume that a is a braidlike element of MLD. Then, for every perfect term t
in the domain of LDa, the term (t)a is perfect. So, in particular, the term tR(a) is perfect.

Proof. Assume that t is perfect, and t′ = (t)1i holds. The term t′ is steep since it is LD-
equivalent to t, and the only problem is fullness. We look at those pairs (a′, b′) such that
a′ covers b′ in t′ and t′ A a′b′, i.e., t A a′b′, holds. If a′ and b′ already appear in t, and a′

covers b′ in t, then the hypothesis that t is full implies that a′b′ appears in t, hence in t′.
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Let a be the element that appears at 1i+101∗ in t. By Proposition 1.12, three cases remain
to be considered. The first case is a′ = a and b′ appearing at 1i0β in t. In this case, a′b′

appears in t′ at 1i+10β.
The second case is a′ = ab, b′ = ac with b appearing at 1i0β and c appearing at 1i0γ and

β covering γ. Assume t A a′b′, i.e., t A abc. Then t being steep implies t A bc, and its being
full implies that bc appears in t. If a covers bc in t, then a(bc), which is a′b′, appears in t′

as well, and we are done. Otherwise, bc appears in t below 1i0 at some address say 1i0β′,
and, in this case, a′b′ appears in t′ at 1i+10β′. The study of this case is therefore complete.

The last case is a′ covering a in t. Now, by definition, this case is impossible, as the only
addresses covering an address of the form 1i01∗ are those addresses of the form 1i+j .

Proposition 5.20. The Embedding Conjecture is true for every braidlike element of MLD.

The result follows from Proposition 5.17 directly by using Lemma 5.19.
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Mathématiques, laboratoire SDAD, ESA 6081 CNRS
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