
00.01

THE GEOMETRY MONOID OF LEFT SELF-DISTRIBUTIVITY

Patrick DEHORNOY

Abstract. We develop a counterpart to Garside’s analysis of the braid monoid B+
n

relevant for the monoid MLD that describes the geometry of the left self-distributivity
identity. The monoid MLD extends B+

∞, of which it shares many properties, with the
exception that it is not a direct limit of finitely generated monoids. By introducing
a convenient local version of the fundamental elements ∆, we prove that right least
common multiples exist in MLD, and, more generally, that MLD resembles a generalized
Artin monoid.

Key words: self-distributivity, braid groups, exchange lemma, Thompson’s group

AMS Subject Classification: 20F36, 20N02.

Applying a given algebraic identity (I) to a formal expression can be seen as defining an
action of a certain monoid GI associated with (I). In the case of the associativity identity, the
involved monoid happens to be a group, namely Thompson’s group F of [16], a remarkable
group which appears in several independent domains [13]. Here we consider the case of the
left self-distributivity identity

x(yz) = (xy)(xz). (LD)

This identity has been widely investigated in the recent years due to its deep connection with
properties of large cardinals in set theory [14] and with Artin’s braid groups. In particular,
the connection with braids originates in the fact that, in the case of Identity (LD), the
monoid GLD alluded to above turns out to be closely related with some group GLD that is an
extension of Artin’s braid group B∞. The group GLD, which appears as a natural counterpart
to Thompson’s group F when left self-distributivity replaces associativity, is an interesting
object in itself. It has already been investigated in [2] and [4], leading to new results about
Artin’s braid groups Bn such as the existence of a left invariant linear ordering and a new
efficient solution to the word problem. The aim of the current paper is to continue the study
of this group.

Keeping in mind that the braid group B∞ is a projection of the group GLD, we show how
to develop a counterpart to Garside’s analysis of the braid groups for GLD. In particular,
starting with a monoid presentation of GLD, we consider the associated monoid MLD and
investigate the connection between GLD and fractions from MLD. Technically, things are
more complicated than in the case of braids because, in contradistinction to B∞ which is
the direct limit of the groups Bn, the group GLD has no natural approximations by finite
type groups. Thus, we cannot resort to Garside’s fundamental elements ∆n. The aim of
this paper is to show how to overcome the problem by considering a sort of local version ∆t

of the elements ∆n and analysing the simple elements of MLD defined as those elements that
divide some ∆t. In this approach, using the action of GLD via self-distributivity provides one
with useful intuitions. In particular, we obtain with the equivalence of two natural notions
of simple elements a convenient infinitary version of the well known exchange lemma for
Coxeter groups, and we hope that the methods we introduce here can be applied to further
infinitary Artin-like groups in the future.

1

The main results we prove here are that right least common multiples exist in the
monoid MLD, and that every element of the group GLD can be expressed as a fraction.
We also construct in MLD a unique normal form which is reminiscent of the greedy normal
form of braids [1], [10], [11]. It can be noted that, using a projection, we deduce from these
results new proofs for their braid counterparts, which can therefore be seen as results about
self-distributivity.

It is known that the group GLD faithfully describes the geometry of LD-equivalence in the
sense that no other relation than those holding in GLD connects the operators of GLD; on the
other hand, whether MLD faithfully describes the geometry of positive LD-equivalence (‘LD-
expansions’) is not known: this actually is equivalent to MLD embedding in GLD. Should
this be true, then some algebraic results about MLD like the existence of common right
multiples would directly follow from the known properties of LD-expansions, making some
computations of this paper unnecessary. Now, the previous embedding result remains out
of reach for the moment, and we rather think that a possible proof will come from a better
understanding of MLD.

The organization of the paper is as follows. In order to make it self-contained, we recall in
Section 1 those definitions and results of [2] and [4] that are used in the sequel. In Section 2,
we establish the confluence property in MLD, i.e., the existence of right common multiples, by
syntactically imitating the proof of the confluence property for left self-distributivity [2]. In
Section 3, we introduce simple elements of MLD, and prove the equivalence of a syntactic and
a dynamic characterization of such elements. Finally, we construct in Section 4 a unique
normal form for the elements MLD, and briefly discuss the conjecture that MLD embeds
in GLD.

1. The geometry monoid of left self-distributivity

Left self-distributivity operators

We fix an infinite sequence of variables x1, x2, . . . , and let T∞ be an absolutely free system
based on {x1, x2, . . .}: we can describe T∞ as the set of all well formed abstract terms
constructed using the variables xi and a binary operation symbol · . Thus x1 and x2 · (x1 ·x3)
are typical elements of T∞. We use T1 for the set of those terms involving the variable x1

only. Then T1 is an absolutely free system based on x1.
Let us say that two terms t, t′ in T∞ are LD-equivalent, denoted t =LD t′, if we can

transform t to t′ by repeatedly applying Identity (LD). In other words, the relation =LD is
the congruence on T∞ generated by all pairs of the form

(t1 · (t2 · t3), (t1 · t2) · (t1 · t3)).

Then, by standard arguments, the quotient structure T∞/=LD is a free LD-system based
on {x1, x2, . . .}.

The idea is now to describe the LD-equivalence class of a given term t in T∞ as the orbit
of t relatively to the action of some monoid associated with Identity (LD). In order to specify
this action precisely, it is convenient to associate with every term in T∞ a finite binary tree
whose leaves are labeled with variables: if t is the variable x, the tree associated with t
consists of a single node labeled x, while, for t = t1 · t2, the binary tree associated with t
has a root with two immediate successors, namely a left one which is (the tree associated
with) t1, and a right one which is (the tree associated with) t2. For instance, the tree

associated with the term x2 · (x1 ·x3) is x2 x1 x3
. We use finite sequences of 0’s and 1’s as

2

addresses for the nodes in such trees, starting with an empty address /o for the root, and
using 0 and 1 for going to the left and to the right respectively. For t a term, we define the
outline of t to be the collection of all addresses of leaves in (the tree associated with) t, and
the skeleton of t to be the collection of the addresses of nodes in t: thus, for instance, the
outline of the term x2 · (x1 ·x3) is the set {0, 10, 11}, while its skeleton is {0, 10, 11, 1, /o}, as
t comprises three leaves and two inner nodes. For t a term, and α an address in the skeleton
of t, we have the natural notion of the α-th subterm of t, denoted sub(t, α): this is the term
corresponding to the subtree of the tree associated with t whose root lies at address α. This
amounts to defining inductively

sub(t, α) =

 t if t is a variable or α = /o holds,
sub(t0, β) for t = t0 · t1 and α = 0β,
sub(t1, β) for t = t0 · t1 and α = 1β.

Finally, we define the right height htR(t) of a term t to be the length of the rightmost
branch in the tree associated with t; equivalently, htR(t) is the integer inductively defined
by htR(t) = 0 if t is a variable, and htR(t) = htR(t1) + 1 for t = t0 · t1.

With the previous notations at hand, we can define the notion of a basic LD-expansion
of a term precisely.

Definition. Assume that t is a term, and α is an address such that α10 belongs to the skele-
ton of t. Then we denote by (t)α the term obtained from by replacing the subterm sub(t, α)
with the term (sub(t, α0) · sub(t, α10)) · (sub(t, α0) · sub(t, α11)).

Thus (t)α is the term obtained from t by applying left self-distributivity at α in the direction
x(yz) 7→ (xy)(xz). The reader can check for instance that, if t is the term x1 ·x2 ·x3 ·x4—
here, and everywhere in the sequel, we take the convention that missing parentheses are to be
added on the right, so, for instance, the previous expression stands for x1 · (x2 · (x3 ·x4))—
then the only addresses α for which (t)α exists are /o and 1, and we have

(t)/o = (x1 · x2) · (x1 · x3 · x4), and (t)1 = x1 · (x2 · x3) · (x2 · x4).

Definition. We say that the term t′ is a basic LD-expansion of the term t if we have
t′ = (t)α for some α; we say that t′ is an LD-expansion of t if there exists a finite sequence
of addresses α1, . . . , αp (possibly p = 0) such that t′ is (. . . ((t)α1)α2 . . .)αp.

Let A denote the set of all binary addresses, and A∗ denote the free monoid of all words
on A, i.e., of all finite sequences of addresses. For w in A∗, say w = α1 · . . . ·αp, and t a
term, we write (t)w for the LD-expansion (. . . ((t)α1)α2 . . .)αp, when it exists. We thus have
obtained a partial action (on the right) of the monoid A∗ on the set T∞.

Definition. For every word w in A∗, we define LDw to be the partial operator on T∞ that
maps every sufficiently large term t to its LD-expansion (t)w. The monoid consisting of all
operators LDw equipped with reverse composition is denoted by G+

LD.

The following equivalence follows from the definition directly.

Lemma 1.1. Assume that t, t′ are terms in T∞. Then the following are equivalent:
(i) The term t′ is an LD-expansion of the term t;
(ii) Some element of G+

LD maps t to t′.

3

By construction, if t′ is an LD-expansion of t, then t′ is LD-equivalent to t. The converse
is not true in general, but we can easily describe LD-equivalence by means of an action at
the expense of introducing symmetrized operators LD−1

w which correspond to using (LD) in
the contracting direction (xy)(xz) 7→ x(yz). So, for every address α, we introduce LD−1

α to
the inverse operator of LDα (which is injective), and we consider the monoid GLD generated
by all operators LDα and LD−1

α using reversed composition. By construction, every element
in GLD is a finite product of operators LDα and LD−1

α . Using A−1 for the set consisting of a
copy α−1 for each address α, and defining LDα−1 to be LD−1

α , we can represent every element
of GLD as LDw, where w is a word on A ∪A−1, i.e., a finite sequence of signed addresses.
We write (A ∪A−1)∗ for the set of all such words, of which /o · 11−1 · 0 is a typical element.
We have the following straightforward characterization analogous to Lemma 1.1:

Lemma 1.2. Assume that t, t′ are terms in T∞. Then the following are equivalent:
(i) The terms t and t′ are LD-equivalent;
(ii) Some element of GLD maps t to t′.

The action of the monoid GLD is a partial action: for w in (A ∪A−1)∗, the term (t)w need
not be defined for every term t, i.e., the domain of the operator LDw is not the whole of T∞.
In particular, it should be observed that the operator LDw may be empty: this happens for
instance for w = /o · 1 · /o−1, as no term in the image of LD/o·1 may belong to the image of LD/o,
i.e., to the domain of LD

−1
/o . However, using the technique of term unification, we can prove

the result below. Here, a term is said to be canonical if the list of all variables that occur
in t, enumerated from left to right ignoring repetitions, is an initial segment of (x1, x2, . . .).
A substitution is defined to be a mapping of {x1, x2, . . .} into T∞, and, if h is a subtitution
and t is a term in T∞, th denotes the term obtained from t by replacing each variable xi
with the corresponding term h(xi). Finally, we say that a term t is injective if every variable
occurs at most once in t.

Proposition 1.3. (i) Assume that w is a word in (A∪A−1)∗. Then either the operator LDw

is empty, or there exists a unique pair of LD-equivalent canonical terms (tLw, tRw) such that
LDw maps the term t to the term t′ if and only if there exists a substitution h satisfying
t = (tLw)h and t′ = (tRw)h.

(ii) If u is a positive word in A∗, then LDu is nonempty, and the term tLu is injective; in
this case, a term t lies in the domain of the operator LDu if and only if its skeleton includes
the skeleton of tLu.

We skip the proof here. It builds on the techniques developed in [2] and [3] and on the
classical method of term unification.

LD-relations

By definition, the monoid G+
LD is generated by the family of all operators LDα, α ∈ A, while

the monoid GLD is generated by the family of all LDα, α ∈ A∪A−1. These monoids are not
free: some relations connect the operators LDα. These relations capture what can be called
the geometry of Identity (LD). We say that the address α is a prefix of the address β if β
is αβ′ for some β′; we say that two addresses α, β are orthogonal, denoted α ⊥ β, if there
exists an address γ such that γ0 is a prefix of α and γ1 is a prefix of β, or vice versa.

Proposition 1.4. [2] For all α, β in A, the following relations hold in the monoid GLD:

LDα • LDβ = LDβ • LDα for α ⊥ β, (type ⊥)
LDα0β • LDα = LDα • LDα10β • LDα00β , (type 0)

4

LDα10β • LDα = LDα • LDα01β , (type 10)
LDα11β • LDα = LDα • LDα11β , (type 11)

LDα1 • LDα • LDα1 • LDα0 = LDα • LDα1 • LDα. (type 1)

A direct verification of these equalities is easy. It is less easy to prove that, conversely, the
above equalities, together with the fact that LDα is an inverse of LD−1

α , exhaust the possible
relations in GLD, i.e., they constitute a presentation of this monoid. The result is not readily
true, as the product of LDα and LD−1

α is only the identity mapping of its domain, and it is
not the identity mapping of T∞. This seemingly superficial problem cannot be solved, since,
as was said above, the product of two elements in GLD may be empty. However, we have the
following result.

Definition. Define an LD-relation to be a pair of words on A of one of the following types:
- type (⊥): (α ·β, β ·α), with α ⊥ β;
- type (0): (α0β ·α, α ·α10β ·α00β);
- type (10): (α10β ·α, α ·α01β),
- type (11): (α11β ·α, α ·α11β),
- type (1): (α1 ·α ·α1 ·α0, α ·α1 ·α).

We define GLD to be the group (A ∪A−1)∗/≡, where ≡ is the congruence generated by all
LD-relations, together with all pairs (α ·α−1, ε) and (α−1 ·α, ε), where ε denotes the empty
word. The class of α in GLD is denoted gα.

In other words, GLD is the group with presentation 〈{gα ; α ∈ A} ; RLD〉, where RLD denotes
the family of all LD-relations.

Proposition 1.5. [4] Assume that w and w′ are words on A ∪A−1, and the domains of
the operators LDw and LDw′ are not disjoint. Then the following are equivalent:

(i) We have (t)w = (t)w′ for at least one term t;
(ii) We have (t)w = (t)w′ for every term t such that (t)w and (t)w′ exist;
(iii) We have w ≡ w′.

In the particular case when w and w′ are words onA, the domains of LDw and LDw′ are never
disjoint, and Conditions (i) and (ii) are equivalent to LDw = LDw′ . Hence the monoid G+

LD is
isomorphic to the submonoid G+

LD of GLD generated by the elements gα.

Let us recall that Artin’s braid group B∞ is defined as the group generated by an infinite
sequence σ1, σ2, . . . subject to the so-called braid relations

σi · σj = σj · σi for |i− j| ≥ 2, type (i)
σi+1 · σi · σi+1 = σi · σi+1 · σi. type (ii)

The deep relation between left self-distributivity and braids originates in the fact that the
group B∞ is a projection of the group GLD. Indeed, the mapping

pr : α 7→
{

σi for α = 1i−1,
1 if α contains at least one 0,

induces a surjective homomorphism of GLD onto B∞: braid relations of type (i) are what
remains from type 11 relations in GLD, while braid relations of type (ii) are what remains
from type 1 relations. The other LD-relations vanish, as the corresponding generators are
collapsed.

As B∞ is a homomorphic image of GLD, there exists an exact sequence of groups

1→ Ker(pr)→ GLD → B∞ → 1. (1.1)

By definition, the kernel of pr is the normal subgroup of GLD generated by the elements
of the form gα where α contains at least one 0, which happens to to be also the normal
subgroup of GLD generated by the elements of the form g0α [4].

5

2. The confluence property

We enter the core of our study. We introduce the monoid MLD for which the LD-relations
of Section 1 make a presentation, and we try to develop for the pair (GLD, MLD) the same
approach as Garside and others developed for the pair (B∞, B+

∞), where B+
∞ is the monoid

of all positive braids. Here we prove a first significant result about MLD, namely that any
two elements admit a common right multiple.

By the results of [2], we know that common right multiples always exist in the monoid G+
LD,

hence, by Proposition 1.5, in the submonoid G+
LD of GLD. Should we know that MLD embeds

in GLD, i.e., that MLD is isomorphic to G+
LD, then the existence of common right multiples

in MLD would follow. Now, we have no proof of the previous embedding result, so our
strategy will consist in using the defining relations of MLD exclusively and constructing a
syntactic counterpart to the proof of the confluence property in G+

LD as given in [2].
The monoid MLD is not finitely generated, and, in contradistinction to the braid

monoid B+
∞, we cannot express it as the direct limit of a family of finitely generated

submonoids. Hence, there exists in MLD no direct counterpart of Garside’s fundamental
braids ∆n which are crucial in the study of braids [12], [1], [11], [10], [6]. However, we shall
see that some elements ∆t of MLD associated with the terms ∂t of [2] can be used as local
versions of ∆n.

The monoid MLD

Definition. We denote by ≡+ the congruence on the monoid A∗ generated by all LD-
relations, and by MLD the monoid A∗/≡+. The class of α in MLD is denoted g+

α .

Observe that ≡+ is included in ≡, but there is no evidence that ≡+ be the trace of ≡ on A∗:
the latter property is equivalent to the embeddability of the monoid MLD in the group GLD,
and it will be discussed in Section 4 below. In the sequel, the words in A∗ will be called
positive words, as opposed to the general words of (A ∪ A−1)∗, which are simply called
words.

By Proposition 1.4, u ≡+ u′ implies LDu = LDu′ for all positive words u, u′. Thus, by
definition, the action of A∗ on T∞ associated with the operators LDu induces a well defined
action of the monoid MLD on T∞. We can therefore use the notation LDa for a ∈ MLD to
represent the operator LDu for an arbitrary positive word u representing a.

We begin with an easy observation.

Notation. For γ an address, and w a word on A ∪ A−1, we denote by γw the word
obtained by shifting all addresses in w by γ, i.e., for w = α±1

1 · . . . ·α±1
p , we define γw =

(γα1)±1 · . . . · (γαp)±1 —not to be confused with the length p + 1 word γ ·α±1
1 · . . . ·α±1

p .

Proposition 2.1. For each address γ, the mapping w 7→ γw induces an endomorphism shγ
of GLD, and its restriction to positive words induces an injective endomorphism sh+

γ of MLD.

Proof. If (w, w′) is an LD-relation, so is (γw, γw′). In the case of MLD, we observe in addition
that, if (w, w′) is an LD-relation and all members of the sequence w begin with γ, so do
all generators occurring in w′. Assume that u and u′ are positive words and γu ≡+ γu′

holds. Then, by the previous remark, all intermediate words in a sequence of elementary
transformations from γu to γu′ are of the form γv, and we obtain a sequence from u to u′

by removing the prefix γ everywhere. So u ≡+ u′ holds, and sh+
γ is injective.

6

It can be proved that the endomorphisms shγ on GLD are injective as well, but the previous
simple argument does not work, as, wtarting with γw ≡ γw′, we cannot be sure that all
intermediate words in a sequence of elementary transformations from γw to γw′ are of the
form γv because some factors α ·α−1α or α−1 ·α may appear.

Lemma 2.2. Assume that u1 and u2 are positive words in A∗, and every address in u1 is
orthogonal to every address in u2. Then we have the equivalences

u1 · u2 ≡+ u2 · u1 (2.1)
0u1 · 0u2 · /o ≡+ /o · 00u1 · 00u2 · 10u1 · 10u2 (2.2)

10u1 · 10u2 · /o ≡+ /o · 01u1 · 01u2 (2.3)
11u1 · 11u2 · /o ≡+ /o · 11u1 · 11u2 (2.4)

Proof. Use an induction on the length of u1 and u2. The hypothesis implies that every
address in 10u1 is orthogonal to every address in 00u2, and, therefore, these addresses
commute with respect to ≡+.

Inheritance relations

Geometric reasons explain LD-relations of type 0, 10, and 11. For instance, the type 10
relation LDα10β • LDα = LDα • LDα01β expresses that expanding a term at α10β, and then
at α, is equivalent to expanding it at α first, and then at α01β: in both cases, we expand
the β-th subterm of the α10-th subterm of t, but, if we expand at α first, then the α10β-th
subterm of t is moved to the address α01β when LDα is performed. Then the above relation
expresses a skew commutativity relation where the address α10β is replaced by what will
be called its heir under the action of α.

In [2], more general inheritance relations are introduced, and, according to the strategy
defined above, our task here will be to verify that these relations hold in MLD. These
technical—but easy—results are needed in the subsequent study of the elements ∆t.

Definition. Assume that B is a set of addresses, and u is a positive word in A∗. Then the
set Heir(B, u) of all heirs of elements of B under the action of LDu is defined inductively by
the following clauses:

(i) The set Heir(B, u) exists if and only if Heir({β}, u) exists for every β in B, and, in
this case, Heir(B, u) is the union of all sets Heir({β}, u) for β in B;

(ii) The set Heir(B, ε) is B for every B;
(iii) If u is a single positive address say α, then Heir({β}, α) exists if and only if β is not

a prefix of α1, and we have

Heir({β}, α) =


{β} for β ⊥ α, or α11 a prefix of β,
{α00γ, α10γ} for β = α0γ,
{α01γ} for β = α10γ,
undefined for β a prefix of α1.

(iv) For u = α ·u0, α an address, Heir(B, u) is Heir(Heir(B, α), u0), when it exists.

The easy verification of the following results is left to the reader.

Lemma 2.3. Assume that u is a positive word in A∗, and β is an address.
(i) The set Heir({β}, u) exists if and only if some address in the outline of the term tLu is

a prefix of β.
(ii) If Heir({β}, u) is defined, so is Heir({βγ}, u) for every γ, and the latter set is equal to

the set of all addresses β′γ for β′ in Heir({β}, u).
(iii) The elements of every set of the form Heir({β}, u) are pairwise orthogonal.
(iv) Assume that LDu maps the term t to the term t′, and β belongs to the skeleton of t.

If Heir({β}, u) is defined, then sub(t′, β′) = sub(t, β) holds for every β′ in Heir({β}, u).

7

Observe that Point (iv) always applies when the address β lies in the outline of the term t,
i.e., when β is the address of a variable in t; then Heir({β}, u) is the family of those occur-
rences in the outline of the term t′ that come from β in t, in an obvious sense. In particular,
if the variable x occurs at β and only there in t, then Heir({β}, u) is exactly the set of those
addresses where x occurs in t′.

Example 2.4. Consider the case u = /o · 1. The term tL/o·1 is the canonical term

x1

x2

x3 x4

, which is mapped to x1 x2

x1 x3x1 x4

. Hence, those addresses β for which

Heir({β}, /o · 1) is not defined are /o, 1 and 11. The reader can check that Heir({0}, /o · 1)
is {00, 100, 110}, which corresponds to the fact that the variable x1 occurring at 0 in the
first term has three copies with addresses 00, 100 and 110 in the second one. Similarly
Heir({10}, /o · 1) is {01}, while Heir({110}, /o · 1) is {101}, and Heir({111}, /o · 1) is {111}.
Lemma 2.3(ii) implies Heir({0γ}, /o · 1) = {00γ, 100γ, 110γ} for every address γ.

Using the techniques of [2], one can prove that, if u is a positive word in A∗, β is an address,
and Heir({β}, u) is defined, then we have

LDβ • LDu = LDu •
∏

β′∈Heir({β},u)

LDβ′ (2.5)

According to our strategy, we shall establish a syntactic counterpart to (2.5), namely:

Proposition 2.5. Assume that u is a positive word in A∗, β is an address, and that
Heir({β}, u) is defined. Then we have the equivalence

β · u ≡+ u ·
∏

β′∈Heir({β},u)

β′ (2.6)

Proof. We use induction on the length of u. The result is trivial when u is empty. If u has
length 1, the result corresponds to LD-relations respectively of types (⊥), (0), (10) and (11).
Otherwise, assume u = α ·u0, where α is an address. By construction, the hypothesis that
the set Heir({β}, u) exists implies that the sets Heir({β}, α) and Heir(Heir({β}, α), u0) exist,
and that the latter is equal to Heir({β}, u). By induction hypothesis, we have

β · α ≡+ α ·
∏

β′∈Heir({β},α)

β′,

and, therefore,
β · u ≡+ α ·

∏
β′∈Heir({β},α)

β′ · u0.

Now, by induction hypothesis again, we have, for each address β′ in the set Heir({β}, α),

β′ · u0 ≡+ u0 ·
∏

β′′∈Heir({β′},u0)

β′′,

and we obtain
β · u ≡+ α · u0 ·

∏
β′∈Heir({β},α)

∏
β′′∈Heir({β′},u0)

β′′. (2.7)

By Lemma 2.3(iii), the addresses β′ in Heir({β}, α) are pairwise orthogonal, so Lemma 2.2
tells us that the involved addresses β′′ commute up to ≡+, and the double product in (2.7)
is also ≡+-equivalent to the product

∏
β′∈Heir({β},u) β′ of (2.5).

8

Uniform distribution relations

Another type of geometric relation in the monoid G+
LD generalizes the type 1 LD-relations.

We first introduce an auxiliary operation on T∞.

Definition. Assume that t0 is a term. For t in T∞, the term t0 ∗ t is defined inductively by
the clauses: t0 ∗ t = t0 · t if t is a variable, t0 · t = (t0 ∗ t1) · (t0 ∗ t2) for t = t1 · t2.

The term t0 ∗ t is obtained from t0 · t by distributing t0 everywhere down to the level of the
leaves in the tree associated with t: more formally, t0 ∗ t is the substitute th, where h(xi) is
defined to be t0 ·xi for every variable xi. An induction shows that, for all terms t0, t, the
term t0 ∗ t is an LD-expansion of the term t0 · t, and it is easy to construct a positive word
describing the way this LD-expansion is performed.

Definition. For t a term, the word δt is defined inductively by δt = ε for t a variable, and
δt = /o · 1δt2 · 0δt1 for t = t1 · t2.

The inductive definition implies that the word δt is obtained by taking the product of all
addresses that belong to the skeleton of t but not to the outline of t according to the unique
linear ordering of addresses satisfying γ < γ1α < γ0β for all α, β, γ. An easy verification
gives:

Lemma 2.6. For all terms t0, t, we have t0 ∗ t = (t0 · t)δt.

The methods of [2] imply that, if u is a positive word in A∗, and the operator LDu maps
the term t to the term t′, then we have

LDδt • LDu = LD1u • LDδt′ (2.8)

Again, the geometric idea is simple. Applying LDδt replaces the term t0 · t with the term th

where h is the substitution defined by h(xi) = t0 ·xi. If LDu maps t to t′, then LD1u maps
t0 · t to t0 · t′, and LDu maps also th to t′h. Now t′h is the result of replacing every variable
in t′ by its product with t0, i.e., it is the term t0 ∗ t′, hence the result of applying LDδt′
to t0 · t′.

As above, we establish a syntactic counterpart to (2.8).

Proposition 2.7. Assume that u is a positive word, and LDu maps t to t′. Then we have

δt · u ≡+ 1u · δt′ (2.9)

Proof. We use induction on the length of the word u. Assume first that u has length 1, i.e.,
u is a single address say α. We argue inductively on the length of the address α. Assume
first α = /o. So we assume t′ = (t)/o, and prove δt · /o ≡+ 1 · δt′ . The hypothesis that (t)/o is
defined implies that t can be decomposed into t0 · (t1 · t2). Now we have

δt · /o = /o · 1 · 11δt2 · 10δt1 · 0δt0 · /o
≡+ /o · 1 · 11δt2 · 10δt1 · /o · 10δt0 · 00δt0 (0)
≡+ /o · 1 · 11δt2 · /o · 01δt1 · 10δt0 · 00δt0 (10)
≡+ /o · 1 · /o · 11δt2 · 01δt1 · 10δt0 · 00δt0 (11)
≡+ /o · 1 · /o · 11δt2 · 10δt0 · 01δt1 · 00δt0 (⊥)
≡+ 1 · /o · 1 · 0 · 11δt2 · 10δt0 · 01δt1 · 00δt0 (1)
≡+ 1 · /o · 1 · 11δt2 · 10δt0 · 0 · 01δt1 · 00δt0 = 1 · δt′ . (⊥)

9

Assume now α = 0β. Then, writing t = t0 · t1 and t′ = t′0 · t1, we have t′0 = (t0)β, and
the induction hypothesis gives δt0 ·β ≡+ 1β · δt′0 . By Lemma 2.1, this implies 0δt0 · 0β ≡+

01β · 0δt′0 , and we deduce

δt · α = /o · 1δt1 · 0δt0 · 0β ≡+ /o · 0δt0 · 0β · 1δt1 (⊥)
≡+ /o · 01β · 0δt′0 · 1δt1

≡+ 10β · /o · 0δt′0 · 1δt1 = 1α · δt′ . (10)

The argument is similar for α = 1β, and the induction on the length of u is easy.

The confluence property

It has been proved in [6] that any two LD-expansions of a given term admit a common
LD-expansion. In the current framework, this means that, if t is a term and u, v are two
positive words such that both (t)u and (t)v exist, then there exist words u′ and v′—possibly
depending on t—such that the LD-expansions (t)uv′ and (t)vu′ exist and are equal. This
implies that the operators LDuv′ and LDvu′ are equal, and, therefore, makes the equivalence
uv′ ≡+ vu′ plausible. Here we shall establish a strong form of this result

Our syntactic proof will follow the the proof of [2], which consists in introducing, for every
term t, a distinguished term ∂t which is a common LD-expansion of all basic LD-expansions
of t.

Definition. [2] For t a term, we define inductively the term ∂t by

∂t =
{

t if t is a variable,
∂t0 ∗ ∂t1 for t = t0 · t1.

By construction, the term ∂t is an LD-expansion of the term t for every t. The idea is to
select a positive word ∆t such that ∂t is the LD-expansion (t)∆t, and then to use ∆t as a
syntactic counterpart of ∂t.

Definition. For α ∈ A, we put α(0) = ε, and α(r) = α1r−1 ·α1r−2 · . . . ·α1 ·α for r ≥ 1.

Example 2.8. By construction, (t)/o(r) is defined if and only if 1r0 belongs to the skeleton

of t, i.e., if htR(t) ≥ r + 1. holds. Then t has the form
t0

t1
. . .

tr−1
tr tr+1

, and (t)/o(r) is

t0
t1

. . .
tr−1 tr

t0
t1

. . .
tr−1tr+1

.

Lemma 2.9. Assume htR(t) = r + 1. Let s0 · s1 = (t)/o(r). Then we have ∂t = ∂s0 · ∂s1.

Proof. Assume t = t0 · t1. We use induction on r. For r = 0, t1 is a variable, say x, we
have ∂(t0 ·x) = ∂t0 · x, and the result is obvious. Otherwise, we have htR(t1) = r. Let
s10 · s11 = (t1)/o(r−1). By induction hypothesis, we have ∂t1 = ∂s10 · ∂s11, so we deduce

∂t = ∂t0 ∗ (∂s10 · ∂s11) = (∂t0 ∗ ∂s10) · (∂t0 ∗ ∂s11) = ∂(t0 · s10) · ∂(t0 · s11).

Now, by construction, we have se = te · s1e for e = 0, 1.

10

Definition. Assume that t is a term. Then the word ∆t is defined by

∆t =
{

ε if t is a variable,
/o(r) · 1∆s1 · 0∆s0 otherwise, with s0 · s1 = (t)/o(r) and r + 1 = htR(t).

Example 2.10. Let t be the term
x

x
x x

x. We have htR(t) = 2, so the exponent of /o

in ∆t will be 2−1 = 1. The right subterm of the image of t under LD/o is the term s1 = x[2],
while its left subterm is s0 = x[4], where x[k] denotes the k-th right power of x inductively
defined by x[1] = x, and x[k] = x ·x[k−1] for k ≥ 2. Then, we have ∂s1 = s1, hence ∆s1 = ε.
Now, we have htR(s0) = 3, so the exponent of /o in ∆s0 is 3 − 1 = 2. The right and left
subterms of (s0)/o(2) are s10 = s00 = x[3]. We have htR(s00) = 2, so the exponent of /o in ∆s00

is 2 − 1 = 1. The right and left subterms of the image of s00 under LD/o are x[2], so we are
done. By gathering the elements, we find
∆t = /o · 0∆s0 = /o · 0(2) · 01∆s10 · 00∆s00 = /o · 0(2) · 01 · 00.

Applying Lemma 2.9, we obtain the following result immediately.

Proposition 2.11. For every term t is a term, we have (t)∆t = ∂t.

We shall establish in the sequel that the words ∆t share many technical properties with
Garside’s fundamental braid words ∆n. We begin with some preliminary results.

Lemma 2.12. Assume t = t0 · t1. Then we have

∆t ≡+ 1∆t1 · 0∆t0 · δ∂t1 , (2.10)
∆t ≡+ 0∆t0 · δt1 ·∆t1 , (2.11)

∆t ≡+ δt1 ·
∏

α∈Out(t1)

α0∆t0 ·∆t1 . (2.12)

Proof. We prove (2.10) using induction on t1. Let r + 1 = htR(t) and s0 · s1 = (t)/o(r). If t1
is a variable, then we have ∂t1 = t1, r = 0, hence s0 = t0, s1 = t1. By definition, we have
∆t = 0∆t0 , and (2.10) is an equality. Otherwise, assume t1 = t10 · t11. We have htR(t1) = r.
Let s10 · s11 = (t1)/o(r−1). By construction, we have s1 = t0 · s11 and s0 = t0 · s10. The sizes
of the right subterms of s1 and s0, namely s11 and s10, are strictly smaller than the size of
the right subterm of t, namely t1, so the induction hypothesis gives

∆s1 ≡+ 1∆s11 · 0∆t0 · δ∂s11 and ∆s0 ≡+ 1Ds10 · 0∆t0 · δ∂s10

and we deduce
∆t ≡+ /o(r) · 11∆s11 · 10∆t0 · 1δ∂s11 · 01∆s10 · 00∆t0 · 0δ∂s10 .

Using type (⊥) relations, this can be rearranged into
∆t ≡+ /o(r) · 11∆s11 · 01∆s10 · 10∆t0 · 00∆t0 · 1δ∂s11 · 0δ∂s10 .

Now we have /o(r) = 1(r−1) · /o, and using successively LD-relations of type (11), (10) and (0),
we push the factor /o to the right, thus obtaining

∆t ≡+ 1(r−1) · 11∆s11 · 10∆s10 · 0∆t0 · /o · 1δ∂s11 · 0δ∂s10 .

Then we have 1(r−1) · 11∆s11 · 10∆s10 = 1∆s10·s11 = 1∆t1 , and /o · 1δ∂s11 · 0δ∂s10 = δ∂t1 , and
we have obtained (2.10).

The other formulas follow easily. Indeed, we deduce (2.11) from (2.10) by using Propo-
sition 2.7, since, by construction, LD∆t1

maps t1 to ∂t1. We deduce (2.12) from (2.11) by
using Proposition 2.5, since, by construction again, the set Heir({0}, δt1) exists and is equal
to the set of all addresses β0 for β in the outline of t1.

11

Remark. Let u be the word involved in the right hand side of (2.10). The diagram

t = t0 · t1
LD1∆t1

7−→ t0 · ∂t1

LD0∆t0

7−→ ∂t0 · ∂t1

LDδ∂t1
7−→ ∂t0 ∗ ∂t1 = ∂t

makes it obvious that the operator LDu maps the term t to the term ∂t, which implies that
the operators LD∆t and LDu coincide. However, the equivalence ∆t ≡+ u is a stronger result.

Now we follow the approach of [2]. The first result is that the term ∂t is an LD-expansion
of every basic LD-expansion of t. Its syntactic counterpart is the following result.

Lemma 2.13. Assume that α is an address and the term t belongs to the domain of the
operator LDα. Then there exists a positive word u satisfying α ·u ≡+ ∆t.

Proof. We use induction on α. For α = /o, the result follows from Formula (2.12), which
gives a word that explicitly begins with /o provided that the right subterm t1 of t exists, i.e.,
t is not a variable, and δt1 is not empty, i.e., t1 is not a variable, so for htR(t) ≥ 2, which
is the case if (t)/o exists. Otherwise, assume α = 0β and t = t0 · t1. Formula (2.10) shows
that ∆t is ≡+-equivalent to a word that begins with 0∆s0 . By construction, the term t0 lies
in the domain of the operator LDβ , so, by induction hypothesis, ∆t0 is ≡+-equivalent to a
positive word of the form β ·u0, and we obtain

∆t ≡+ α · 0u0 · 1∆t1 · δ∂t1 .

Assume now α = 1β. The argument is similar, since, at the expense of using additional
type (⊥) relations, we have also ∆t ≡+ 1∆t1 · 0∆t0 · δ∂t1 .

The next step is the counterpart to the fact that the operator ∂ is increasing with respect
to LD-expansion: if t′ is an LD-expansion of t, then ∂t′ is an LD-expansion of ∂t.

Lemma 2.14. Assume that the operator LDα maps t to t′. Then there exists a positive
word u satisfying α ·∆t′ ≡+ ∆t ·u.

Proof. We begin with the case α = /o. We argue inductively on the size of the 11-subterm
of t, which must exist as (t)/o does. Write t = t0 · (t1 · t2). Assume first that t2 is a variable.
Then we have htR(t) = 2, hence

∆t = /o · 1∆s1 · 0∆s0 , (2.13)

with s0 = t0 · t1 and s1 = t0 · t2. But, then, s0 is the left subterm of t′, and s1 is its right
subterm. So, by Formula (2.10), we have

∆t ≡+ 1∆s1 · 0∆s0 · δ∂s1 . (2.14)

By comparing (2.13) and (2.14), we obtain /o ·∆t′ ≡+ ∆t · δ∂s1 , which has the expected form.
Assume now that t2 is not a variable. Let r + 1 = htR(t) and s0 · s1 = (t)/o(r), and let

similarly s′0 · s′1 = (t′)/o(r). By definition, and using htR(t) = htR(t′), we have

∆t = /o(r) · 1∆s1 · 0∆s0 , (2.15)
∆t′ = /o(r) · 1∆s′1 · 0∆s′0 . (2.16)

By construction, we have s′1 = (s1)/o and s′0 = (s0)/o, as is verified by writting t =
t0 · t1 · . . . · tr ·x, where x is a variable. Moreover, the size of the 11-th subterms of s1

12

and s0 are strictly smaller than the size of the 11-th subterm of t. So, by induction hypoth-
esis, there exist positive words u1, u0 satisfying /o ·∆s′e ≡+ ∆se ·ue for e = 1, 0. Then, an
induction gives the equivalence

/o · /o(r) ≡+ /o(r) · 1 · 0
for r ≥ 2: the basic case is r = 2, where it is a type 1 relation. So we obtain

/o ·∆t′ = /o · /o(r) · 1∆s′1 · 0∆s′0 ≡+ /o(r) · 1 · 1∆s′1 · 0 · 0∆s′0

≡+ /o(r) · 1∆s1 · 1u1 · 0∆s0 · 0u0

≡+ /o(r) · 1∆s1 · 0∆s0 · 1u1 · 0u0 = ∆t · 1u1 · 0u0,

and we are done.
Assume now α = 0β. Write t = t0 · t1. We have t′ = t′0 · t1 with t′0 = (t0)β. By

induction hypothesis, there exists a positive word u0 satisfying β ·∆t′0 ≡+ ∆t0 ·u0. Starting
from (2.10), we obtain

α ·∆t′ ≡+ α · 0∆t′0 ·1∆t1 · δ∂t1 ≡+ 0β ·∆t′0 · 1∆t1 · δ∂t1
≡+ 0∆t0 · u0 · 1∆t1 · δ∂t1
≡+ 0∆t0 · 1∆t1 · 0u0 · δ∂t1
≡+ 0∆t0 · 1∆t1 · δ∂t1 ·

∏
α∈Out(t1)

α0u0 (by Proposition 2.5)

≡+ ∆t ·
∏

α∈Out(t1)

α0u0.

Assume finally α = 1β. We have t′ = t0 · t′1, with t′1 = (t1)β. By induction hypothesis, we
have β ·∆t′1 ≡+ ∆t1 ·u1 for some positive word u1. We deduce

α ·∆t′ ≡+ α · 0∆t0 ·1∆t′1 · δ∂t1 ≡+ 0∆t0 · 1β ·∆t′1 · δ∂t1
≡+ 0∆t0 · 1∆t1 · u1 · δ∂t1
≡+ 0∆t0 · 1∆t1 · 1u1 · δ∂t1
≡+ 0∆t0 · 1∆t1 · δ∂t1 · u1 (by Proposition 2.7)
≡+ ∆t · u1.

Remark. Not only does the previous proof show the existence of a positive word u satisfying
/o ·∆t′ ≡+ ∆t ·u, but it also gives an inductive formula for constructing such a word, namely

u =
∏

α∈Out(t2)

α/o · 0δ∂t0

for t = t0 · t1 · t2 and t′ = (t)/o. This formula is easily understandable: ∂t is obtained
from ∂t2 by substituting every variable x with ∂t0 ∗ (∂t1 ·x), i.e., ∂(t0 ∗ ∂t1) · (∂t0 ·x), while
∂t′ is obtained from ∂t2 by substituting every variable x with (∂t0 ∗ ∂t1) ∗ (∂t0 ·x), i.e.,
∂(t0 ∗ ∂t1) ∗ (∂t0 ·x). So ∂t′ is obtained from ∂t by applying the operator LD/o·0δ∂t0 at each
address in the outline of the term ∂t11.

Lemma 2.15. Assume that u is a positive word in A∗, and LDu maps the term t to the
term t′. Then there exists a positive word u′ satisfying

u ·∆t′ ≡+ ∆t · u′. (2.17)

Proof. We use induction on the length of u. For u empty, the result is trivial. For u of
length 1, the result is Lemma 2.14. Otherwise, assume u = u1 ·u2 where neither u1 nor
u2 is empty. Let t1 = (t)u1. By induction hypothesis, there exist words u′1, u′2 satisfying
ue ·∆t1 ≡+ ∆t ·u′e for e = 1, 2. We deduce

u ·∆t′ ≡+ u1 ·∆t1 · u′2 ≡+ ∆t · u′1 · u′2.

13

We turn now to the most general case, and, to this end, we iterate the construction of the
words ∆t.

Definition. For t a term, we put ∆(0)
t = ε, and ∆(k)

t = ∆t ·∆∂t · . . . ·∆∂k−1t for k ≥ 1.

Lemma 2.16. Assume that u is a positive word of length at most k and the term t lies in the

domain of the operator LDu. Then there exists a positive word v′ satisfying u · v′ ≡+ ∆
(k)
t .

Proof. (Figure 2.1) We use induction on k. The result is trivial for k = 0. Otherwise, write
u = u0 ·α, where α is an address. By induction hypothesis, there exists a positive word v0

satisfying u0 · v0 ≡+ ∆
(k−1)
t . Let t′ be the image of t under LDu0 . By hypothesis, t′ lies in the

domain of LDα, so, by Lemma 2.14, there exists a positive word v satisfying α · v′ ≡+ ∆t′ .
Applying Lemma 2.15 to the terms t′ and ∂k−1t, we see that there exists a positive word v′0
satisfying v0 ·∆∂k−1t ≡+ ∆t′ · v′0. We deduce

u · v′ · v′0 = u0 · α · v′ · v′0 ≡+ u0 ·∆t′ · v′0 ≡+ u0 · v0 ·∆∂k−1t ≡+ ∆
(k−1)
t ·∆∂k−1t = ∆

(k)
t ,

hence taking u′ = v′ · v′0 gives the result.

t ∂k−1t ∂kt

t′ ∂t′

u0 v0

v′

v′0

α

∆t′

∆
(k−1)
t ∆∂k−1t

Figure 2.1: Proof of Lemma 2.16

We are now ready to conclude. We have mentioned above that, for each positive word u,
the domain of the operator LDu consists of all substitutes of some well defined canonical
term tLu. This result extends to the case of several operators: if u and v are positive words,
the intersection of the domains of LDu and LDv is the set of all substitutes of some unique
canonical term tLu,v. We can now state the following strong form of confluence.

Proposition 2.17. Assume that u, v are positive words of length at most k in A∗. Let
t = tLu,v. Then there exist positive words u′, v′, satisfying

u · v′ ≡+ v · u′ ≡+ ∆
(k)
t . (2.18)

Proof. Applying Lemma 2.16 to tLu,v gives two positive words u′, v′ such that both u · v′ and

v ·u′ are ≡+-equivalent to ∆(k)
t .

Observe that, in the above situation, the domain of the operators LDu·v′ and LDv·u′ is the
intersection of the domains of LDu and LDv, i.e., we have found a common right multiple
for u and v such that the associated operator has the largest possible domain.

By projecting the result of Proposition 2.17 to MLD, we obtain:

Proposition 2.18. Any two elements of the monoid MLD admit a common right multiple..

14

Let us observe that, LD-relations, in contradistinction to braid relations, are not symmetric,
so the results involving right multiples do not automatically imply a counterpart for left
multiples. A typical example is the property that any two elements of MLD always admit a
common right multiple. The symmetric property about left multiples is false. Indeed, let
us consider the positive words u = /o · 0 and v = /o. It is easy to check that the domain of
the operator LD/o·0·/o−1 is empty, which implies that no equality u1 · /o · 0 ≡+ v1 · /o may hold
in A∗, i.e., the elements g+

/o g+
0 and g+

/o admit no common left multiple in the monoid MLD.

3. Simple elements in MLD

The next step in our study of the monoid MLD consists in applying the word reversing
method of [6] and [17]. Some results in this direction have already been mentioned in [4], so
we shall just briefly recall the principles.

Word reversing

Both the braid relations and the LD-relations have the particular syntactical property that,
for each pair of generators x, y, there exists in the considered list of relations exactly one
relation of the type x · . . . = y · . . ., i.e., one relation that prescribes how to complete x
and y on the right so as to obtain a common right multiple. With the definitions of [6], this
means that these presentations are associated with a complement on the right. Indeed, let
us define, for i, j in N,

f(σi, σj) =

σj for |i− j| ≥ 2,
σj ·σi for |i− j| = 1,
ε for i = j,

and, for α, β in A (the set of all binary addresses),

f(α, β) =



α10γ ·α00γ for β = α0γ,
α01γ for β = α10γ,
β ·α for β = α1,
ε for α = β,
β ·α ·β0 for α = β1,
α in all other cases, i.e., if α is not a prefix of β1,

or if α11 is a prefix of β.

Then, the positive braid congruence that presents the braid monoid B+
∞ is the congruence

on the monoid BW∞ of all words on the alphabet {σ1, σ2, . . .} generated by those pairs of
the form (σi · f(σi, σj), σj · f(σj , σi)), and, similarly, the congruence ≡+ that presents the
monoid MLD as a quotient of A∗ is generated by all pairs of the form (α · f(α, β), β · f(β, α)).
In the sequel, we shall refer to the previous mappings as the braid complement and the LD
complement respectively.

We have observed that the mapping pr that maps α to σi+1 when α is of the form 1i,
and to ε otherwise, induces a surjective homomorphism of the monoid MLD onto the braid
monoid B+

∞. We observe now that the mapping pr preserves the right complements as well.

Lemma 3.1. The projection pr of (A∪A−1)∗ onto BW∞ preserves the right complements,
in the sense that the equality

pr(f(α, β)) = f(pr(α),pr(β)) (3.1)

holds for all addresses α, β.

15

The direct verification is straightforward.
The fact that the presentations of B+

∞ and of MLD are associated with right complements is
not powerful in itself, and strong results can be deduced only when the complements satisfy
some additional hypotheses called atomicity and coherence [6], [8]. In order to introduce
them, we recall some definitions.

Assume that X is an arbitrary set, and f is a mapping on X×X into the free monoid X∗

generated by X such that f(x, x) is the empty word for every x in X. Let (X ∪ X−1)∗

denote the set of all words over the union of X and a disjoint copy X−1 of X, X−1 =
{x−1 ; x ∈ X}. For w in (X ∪ X−1)∗, w−1 denotes the word obtained by exchanging
everywhere the letters x and x−1 and reversing the order of the letters. Now, for w, w′

in (X ∪ X−1)∗, we say that w′ is obtained from w by word reversing with respect to f if
one can transform w into w′ by repeatedly replacing subwords of the form x−1 · y with the
corresponding words f(x, y) · f(y, x)−1. It is easy [6] to prove that, starting with an arbitrary
word w in (X ∪X−1)∗, word reversing leads to at most one word of the form u · v−1 with u,
v positive, i.e., involving no letter in X−1, and that such words are terminal with respect
to word reversing. When they exist, the words u and v are called the (right) numerator
and denominator of w, denoted by N(w) and D(w) respectively. We also define a (possibly
partial) binary operation on X∗ by u\v = N(u−1 · v). Observe that x\y = f(x, y) holds for
all x, y in X.

The compatibility between the braid complement and the LD complement extends to the
operation \ on words and to the numerators and denominators:

Lemma 3.2. (i) Assume that u, v are positive words in A∗ and u\v exists. Then we have

pr(u\v) = pr(u)\pr(v). (3.2)

(ii) Assume that the word w of (A ∪A−1)∗ is reversible to the word w′. Then the braid
word pr(w) is reversible to the braid word pr(w′). In particular, we have

pr(N(w)) = N(pr(w)), and pr(D(w)) = D(pr(w)) (3.3)

whenever N(w) and D(w) exist.

Proof. Use an induction on the number of reversing steps.

The previous result will allow us to reprove all properties of the braid complement, and,
therefore, a number of classical properties of the braid monoid B+

∞, from the corresponding
properties of the LD complement.

Definition. Assume that f is a complement on X. We say that f is atomic if there exists
a mapping ν of X∗ into N such that ν(x) > 0 holds for every x in X, ν(xu) > ν(u) holds
for every x in X and every u in X∗, and ν(uxf(y, x)v) = ν(u, yf(x, y)v) holds for all u, v
in X∗ and all x, y in X.

Lemma 3.3. (i) The braid complement is atomic.
(ii) The LD complement is atomic.

Proof. In the case of braids, the length mapping satisfies all requirements trivially. In the
case of the LD complement, some LD-relations do not preserve the length of the words, and
the argument is more delicate. Assume that u is a positive word in A∗. By Proposition 1.3,
there exists a unique pair of LD-equivalent canonical terms (tLu, t

R
u) such that LDu maps the

term t to the term t′ if and only if there exists a substitution h such that t is (tLu)
h and t′

is (tRu)
h. Let us define

ν(u) = size(tRu)− size(tLu), (3.4)

16

where, for t a term, size(t) is the number of occurrences of variables in t. By construction,
ν takes values in N, and ν(α) = 1 holds for every address α for expanding tLα to tRα consists
in doubling the variable occurring at α0 in tLα. If u′ ≡+ u holds, we have LDu = LDu′ ,
hence tLu = tLu′ and tRu = tRu′ , and, finally, ν(u′) = ν(u). Assume now α ∈ A and u ∈ A∗.
By definition, we have tRα·u = ((tLα·u)α)u, hence there exists a substitution h satisfying
(tLα·u)α = (tLu)

h and tRα·u = (tRu)
h. We deduce

ν(α · u) = size(tRα·u)− size(tLα·u)
= size(tRα·u)− size((tLα·u)α) + size((tLα·u)α)− size(tLα·u)

= size((tRu)
h)− size((tLu)

h) + size((tLα·u)α)− size(tLα·u)

> size((tRu)
h)− size((tLu)

h) ≥ size(tRu)− size(tLu) = ν(u).

Hence the mapping ν satisfies the requirements.

Definition. Assume that f is a complement on X. We say that f is coherent (on the right)
if, for every triple (x, y, z) in X3, we have

((x\y)\(x\z))\((y\x)\(y\z)) = ε.

Lemma 3.4. (i) The braid complement is coherent.
(ii) The LD complement is coherent.

Proof. For (i), the verification is essentially Garside’s Theorem H of [12]. For (ii), we refer
to [5].

It is proved in [6] that: If f is a complement on X that is atomic and coherent, then the
monoid 〈X ; {xf(y, x) = yf(x, y);x, y ∈ X}〉 is left cancellative, and any two elements a,
b of this monoid that admit a common right multiple admit a right lcm; in this case, if the
words u, v represent a and b, then u(u\v) exists and it represents the right lcm of a and b.
Applying this to the current framework, and owing to the fact that right common multiples
exist in MLD by Proposition 2.18, we deduce the following results.

Proposition 3.5. (i) The monoid MLD is left cancellative.
(ii) Every pair of elements of MLD admits a right lcm, the operation \ is defined everywhere

on A∗, and, if the positive words u, v represent the elements a and b of MLD respectively,
then u(u\v) represents the right lcm of a and b.

Simple elements

Let us define a simple braid in Bn to be a positive braid that is a left divisor of Garside’s
fundamental braid ∆n. Simple braids play a significant role in the study of braids [12]. In
this section, we develop the analogous notion of a simple element in the monoid MLD.

By construction—or using the Coxeter presentation of the symmetric group—there exists a
surjective projection of the braid group B∞ onto the symmetric group S∞ of all permutations
of the positive integers that move only finitely many integers. We obtain a section for this
projection by introducing, for every permutation f , a positive braid of minimal possible
length that projects on f . Let us say that a braid is a permutation braid if it is the image
of a permutation under the previous section. A significant result about braids is the fact
that a braid is a permutation braid if and only if it is simple. This result leads in particular
to the greedy normal form of [1], [11] and [10].

We show now how to obtain a similar equivalence in the case of the monoid MLD. This
result involves the notions of a permutation-like element and of a simple element in MLD,

17

which extend the notion of a permutation braid and of a simple braid respectively. The first
notion will be defined using an explicit, syntactic method, while the second one involves the
action of MLD on terms via self-distributivity, and the equivalence result can be seen as a
completeness theorem connecting a syntactic and a semantic notion.

We recall that, for α ∈ A and r ≥ 0, α(p) is defined to be α1r−1 ·α1r−2 · . . . ·α1 ·α for
r ≥ 1, and to be ε for p = 0. For α, β ∈ A, we define α ≥ β to mean that α is a prefix of β,
or α lies on the right of β: thus, for instance, /o ≥ 1 ≥ 0 holds.

Definition. We say that the word u of A∗ is a permutation-like word if u has the form
α1

(r1) . . . α`
(r`) with α1 ≥ . . . ≥ α`; in this case, for every address α, the exponent e(α, u)

of α in u is defined to be the integer r such that α(r) appears in u, if it exists, and to
be 0 otherwise. An element of MLD is said to be a permutation-like element if it can be
represented by a permutation-like word.

As α(0) has been defined to be the empty word, a permutation-like word can be written as∏≥
α∈A α(rα), where (rα ; α ∈ A) is a sequence of nonnegative integers with finitely many

positive entries. Observe that a length 1 word, i.e., a single address, is a permutation-like
word. It is easy to check that the projection of a permutation-like element of MLD on B+

∞ is
a permutation braid.

Example 3.6. Let w = 11 · 1 · /o · 1 · 001 · 00. Then w is a permutation-like word, since
we have w = (11 · 1 · /o) · (1) · (001 · 00) = /o(3) · 1(1) · 00(2), and /o ≥ 1 ≥ 00 holds. We have
e(/o, w) = 3, e(0, w) = 0, and e(1, w) = 1.

By definition of the ordering on addresses, a permutation-like word always has the form
/o(r) · 1u1 · 0u0, where u1 and u0 are permutation-like words: this will enable us to develop
inductive arguments.

Lemma 3.7. A permutation-like element in MLD admits a unique representation by a
permutation-like word. More precisely, if a is a permutation-like element, the unique
permutation-like word that represents a depends on the operator LDa only.

Proof. Assume that u is a permutation-like word. We show that the exponents of u are
determined by the operator LDu using induction on the size of tLu. For size(tLu) = 1, we have
LDu = id, hence u = ε, and the result is true. Otherwise, assume u = /o(r) · 1u1 · 0u0. Since
(tLu)/o

(r) exists, we have htR(tLu) ≥ r + 1. Let t0 · t1 = (tLu)/o
(r), and be xf(i) be the rightmost

variable of the 1i0-th subterm of tLu. By construction, the rightmost variable of t0 is xf(r).
Now we have tRu = (tLu)u = (t0)u0 · (t1)u1, we deduce that xf(r) is the rightmost variable of
the 0-th subterm of tRu. This shows that tRu determines r, and, therefore, so does u. Then,
for e = 0 and e = 1, te belongs to the domain of LDue , it is an injective term, and we have
size(te) < size(tLu). As te is a substitute of tLue , we deduce size(tLue) < size(tLu), hence, by
induction hypothesis, (te)ue determines the exponents in ue, and so does (t)u, since (te)ue
is sub((t)u, e).

It follows that, for every permutation-like element a and every address α, we can define
without ambiguity the exponent of α in a as the exponent of α in the unique permutation-
like word that represents a.

We introduce now a second notion of simplicity for positive words by means of their action
on injective terms.

Definition. If t is a term, the variable xi is said to cover the variable xj in t if there exist
an address α in the skeleton of t such that xi occurs in t at an address of the form α1p,
while xj occurs in t at some address of the form α0β. The term t is said to be semi-injective
if no variable covers itself in t.

18

For a term t to be semi-injective means that, for every subterm s of t, the rightmost variable
of s occurs only once in s. Thus every injective term is semi-injective, but the converse is
not true: for instance, the term (x1 ·x2) · (x1 ·x3), which is is not injective since x1 occurs
twice, is semi-injective.

Non-semi-injective terms have good closure properties. In the sequel, we write varR(t) for
the rightmost variable of t, i.e., for the unique variable that occurs in t at some address of
the form 1r.

Lemma 3.8. Non-semi-injective terms are closed under substitution and LD-expansion.

Proof. Assume that t is non-semi-injective. Then some variable xi occurs both at α1r

and α0β in t. Let h be an arbitrary substitution, and let xk = varR(h(xi)), q = htR(h(xi)).
Then xk occurs at α1r+q and α0β1q in th. Hence th is not semi-injective. On the other hand,
LD-expansions never delete covering: if xi covers xj in t, it covers xj in every LD-expansion
of t: it suffices to establish the result for basic LD-expansions by considering the various
possible cases. This applies in particular when xi covers itself.

We introduce now a semantical notion of simplicity that is analogous to the condition that
any two strands cross at most once in a braid diagram.

Definition. An element a of MLD is said to be simple if the operator LDa maps at least one
term to a semi-injective term. A word on A is said to be simple if its class in MLD is simple.

Lemma 3.9. Assume that a is an element of MLD. Then, the following are equivalent:
(i) The element a is simple;
(ii) The term tRa is semi-injective;
(iii) The operator LDa maps every injective term to a semi-injective term.

Proof. The term tLa is injective, and the operator LDa maps tLa to tRa, so (iii) implies (ii),
and (ii) implies (i). Assume (i). Let t be a term in the domain of LDa such that (t)a exists
and is semi-injective. There exists a substitution h satisfying t = (tLa)

h and (t)a = (tRa)
h.

By Lemma 3.8, (tRa)
h being semi-injective implies tRa being semi-injective as well, so (ii)

holds. Assume now (ii), and let t be an injective term in the domain of LDa. Then there
exists a substitution h satisfying t = (tLa)

h, and t being injective means that we can assume
that the image of every variable under h is an injective term, and the images of distinct
variables involve distinct variables. Now we have (t)a = (tRa)

h, and such a term being not
semi-injective would imply tRa itself being not semi-injective.

Using the closure properties of non semi-injective terms, we obtain the following closure
property for simple elements of MLD. Observe that the corresponding result for permutation-
like elements is not clear—a situation parallel to the case of simple braids and permutation
braids.

Lemma 3.10. Every divisor of a simple element of MLD is simple.

Proof. Assume that a is not simple, and let b, c be arbitrary elements of MLD. The term tRba is
a substitute of tRa, and the term tRbac is an LD-expansion of the previous term. By hypothesis,
tRa is not semi-injective, hence, by Lemma 3.8, tRba and tRbac are not semi-injective either. Hence
bac is not simple.

19

We shall prove eventually that permutation-like elements and simple elements in MLD coin-
cide. For the moment, we observe that one direction is easy.

Lemma 3.11. Every permutation-like element of MLD is simple.

Proof. Assume that a is a permutation-like element. We show that a is simple using
induction on the size of tLa. By construction, a can be expressed (in a unique way) as
/o(r) · sh1(a1) · sh0(a0) where a0 and a1 are permutation-like elements. Let t = tLa. Then
(t)/o(r) exists, and, therefore, we have htR(t) ≥ r + 1, i.e., we can write t = t0 · . . . · tr+1. We
find (t)/o(r) = t′0 · t′1, with

t′0 = t0 · . . . · tr−1 · tr t′1 = t0 · . . . · tr−1 · tr+1.

By hypothesis, for e = 1, 0, t′e is an injective term that lies in the domain of the operator LDae ,
and we have size(t′e) < size(t), hence size(tLae) < size(tLa). By induction hypothesis, the LD-
expansions (t′1)a1 and (t′0)a0 are semi-injective terms. Hence (t)a, which is (t′0)a0 · (t′1)a1, is
semi-injective as well, for the rightmost variable of (t′1)a1, which is varR(t′1), occurs neither
in t′0 nor in (t′0)a0.

Example 3.12. We obtain in this way a criterion for proving that a given element
of MLD is not a permutation-like element. For instance, the element g+

/o · g+
/o is not sim-

ple, and, therefore, it is not a permutation-like element: indeed (x1 ·x2 ·x3)/o · /o is the term
((x1 ·x2) ·x1) · ((x1 ·x2) ·x3)), which is not semi-injective, since the variable x1 occurs both
at 01 and 000.

Our goal is now to establish the converse of Lemma 3.11. We begin with a series of com-
putational formulas. The point is to determine the permutation-like decomposition of the
product α(p) · /o(q), when it exists. We separate two cases, according to whether α contains
at least one 0 or not.

Lemma 3.13. Assume α = 1m0β. Then α(p) · /o(q) is simple for all p, q, and we have

α(p) · /o(q) ≡+

 /o(q) ·α(p) for q < m,
/o(q) · (01mβ)(p) for q = m,
/o(q) · (1α)(p) · (0α)(p) for q > m.

Proof. Assume p = 1. For m ≥ q + 1, 1m0β commutes with every factor of the word /o(q) by
type 11 relations, so α commutes with /o(q). For m = q, using q successive type 10 relations,
we obtain

α · /o(m) = 1m0β · 1m−1 · . . . · /o ≡+ 1m−1 · 1m−101β · 1m−2 · . . . · /o
. . .

≡+ 1m−1 · . . . · 1 · 101m−1β · /o
≡+ 1m−1 · . . . · 1 · /o · 01mβ = /o(m) · 01mβ.

For m < q, we find

α · /o(q) = 1m0β · (1m+1)(q−m−1) · 1m · /o(m)

≡+ (1m+1)(q−m−1) · 1m0β · 1m · /o(m) (⊥)
≡+ (1m+1)(q−m−1) · 1m · 1m10β · 1m00β · /o(m) (0)
≡+ (1m+1)(q−m−1) · 1m · 1m10β · /o(m) · 01m0β

≡+ (1m+1)(q−m−1) · 1m · /o(m) · 1m10β · 01m0β = /o(q) · 1α · 0α. (11)

Extending the result to the case p > 1 is easy in the first two cases. In the last case,
we observe that 1α1p−1 · 0α1p−1 · . . . · 1α · 0α is equivalent to (1α)(p) · (0α)(p) using type ⊥
relations.

20

Lemma 3.14. Assume α = 1m. Then α(p) · /o(q) is simple if and only if m < q ≤ m+ p does
not hold; in this case, we have

α(p) · /o(q) ≡+

 /o(q) ·α(p) for q < m,
/o(p+q) for q = m,
/o(q) · (1m+1)(p) · (01m)(p) for q > m + p.

Proof. For q < m, every factor in the word /o(q) commutes with every factor in the word α(p)

by type 11 relations, so α(p) and /o(q) commute. For q = m, we have α(p)/o(q) = /o(p+q).
Assume q > m + p; we use induction on p. Assume first p = 1, hence q ≥ m + 2. We have

1m · /o(q) = 1m · (1m+2)(q−m−2) · 1m+1 · 1m · /o(m)

≡+ (1m+2)(q−m−2) · 1m · 1m+1 · 1m · /o(m) (11)
≡+ (1m+2)(q−m−2) · 1m+1 · 1m · 1m+1 · 1m0 · /o(m) (1)
= (1m)(q−m) · 1m+1 · 1m0 · /o(m)

≡+ (1m)(q−m) · 1m+1 · /o(m) · 01m (Lemma 3.13)
≡+ (1m)(q−m) · /o(m) · 1m+1 · 01m = /o(q) · 1m+1 · 01m. (11)

Assume now p > 1. We have

(1m)(p) · /o(q) = (1m+1)(p−1) · 1m · /o(q)

≡+ (1m+1)(p−1) · /o(q) · 1m+1 · 01m (ind. hyp.)
≡+ /o(q) · (1m+2)(p−1) · (01m+1)(p−1) · 1m+1 · 01m (ind. hyp.)
≡+ /o(q) · (1m+2)(p−1) · 1m+1 · (01m+1)(p−1) · 01m (⊥)
= /o(q) · (1m+1)(p) · (01m)(p).

The above explicit formulas show that, in the three previous cases, α(p) · /o(q) is a
permutation-like element. So it only remains to prove that the product is not simple in
the case m < q ≤ m + p. By Lemma 3.11, it suffices to exhibit an injective term whose
image under the operator LDα(p)·/o(q) is not semi-injective. Let t = x1 · . . . ·xm+p+2. We find

(t)α(p) = x1 · . . . · xm · (xm+1 · . . . · xm+p · xm+p+1) · xm+1 · . . . · xm+p · xm+p+2.

Applying the operator LD/o(q) to this term gives a term whose 01m-subterm is

(xm+1 · . . . · xm+p+1) · xm+1 · . . . · xq+1,

and the rightmost variable of this subterm, namely xq+1, also occurs in its left subterm, so
it is not semi-injective—see an example on Figure 3.1.

z1

z2

z3

z4 . . .

LD1(2)7−→
z1

z2

z3z4

z2

z3 . . .

LD/o(3)7−→
z1

z2

z3z4

z2z3

z1

z2

z3z4

z2 . . .

Figure 3.1: A non-simple case: m = 1, p = 2, q = 3.

21

We can now determine whether a permutation-like element remains a permutation-like ele-
ment when an additional factor /o(q) is appended.

Lemma 3.15. Assume that a is a permutation-like element in MLD, and q is nonnegative.
Let r = q+e(1q, a). Then a · /o(q) is simple if and only if m+e(1m, a) < r holds for 0 ≤ m < q;
in this case, a · /o(q) is a permutation-like element, and we have r = e(/o, a · /o(q)).

Proof. In order to simplify notations, for γ ∈ A, and a ∈MLD, we write γa for shγ(a). Write

a =
∞∏
m=0

(1m)(rm) ·
0∏

m=∞
1m0am,

where all am are permutation-like elements. We add the factor /o(q) on the right, and try to
push this factor to the left and integrate it in the decomposition. By Lemma 3.13, we cross
the right product: a · /o(q) is equal to

∞∏
m=0

(1m)(rm) · /o(q) ·
q+1∏
m=∞

1m0am · 01qaq ·
0∏

m=q−1

(1m+10am · 01m0am),

hence, using type ⊥ relations, to

∞∏
m=0

(1m)(rm) · /o(q) ·
q+1∏
m=∞

1m0am ·
0∏

m=q−1

1m+10am · 01qaq ·
0∏

m=q−1

01m0am.

It remains to study the expression
∏∞
m=0 (1m)(rm) · /o(q). We use now Lemma 3.14 to push

/o(q) to the left. First, we have

∞∏
m=q

(1m)(rm) · /o(q) ≡+ /o(r) ·
∞∏

m=q+1

(1m)(rm),

with r = q + rq, i.e., r = q + e(1q, a), and we are left with
∏q−1
m=0 (1m)(rm) · /o(r). By

Lemma 3.14, two cases are possible. Either the condition q − 1 + rq−1 ≥ r holds, and then
(1q−1)(rq−1)/o(r) is not simple, and, therefore, by Lemma 3.10, w · /o(q) is not either simple.
Or q− 1+ rq−1 < r holds, and (1q−1)(rq−1) · /o(r) is a permutation element, and it is equal to
/o(r) · (1q)(rq−1) · (01q−1)(rq−1). We can continue, and consider the product (1q−2)(rq−2) · /o(r).
Again two cases are possible: in the one case, w · /o(q) is not simple, in the other, it is a
permutation-like element, we can push the factor /o(q) to the left, and the process continues.
Finally, if the condition m + rm < r fails for some m, w · /o(q) is not simple; if the condition
holds for every m, the factor /o(q) migrates to the leftmost position, and we obtain that
a · /o(p) is equal to

/o(r) ·
q−1∏
m=0

(1m+1)(rm) ·
q−1∏
m=0

(01m)(rm) ·
q+1∏
m=∞

1m0am ·
0∏

m=q−1

1m+10am · 01qaq ·
0∏

m=q−1

01m0am,

which can be rearranged using type ⊥ relations and renumbering into

/o(r) ·
q∏

m=1

(1m)(rm−1) ·
q+1∏
m=∞

1m0am ·
1∏

m=q

1m0am−1 ·
q−1∏
m=0

(01m)(rm) · 01qaq ·
0∏

m=q−1

01m0am,

an explicit permutation-like element of MLD.

22

Proposition 3.16. An element of MLD is permutation-like if and only if it is simple.

Proof. We have already seen that every permutation-like element is simple. We establish now
that a being simple implies a being a permutation-like element using induction on size(tLa).
For size(tLa) = 1, we have a = 1, both a permutation-like element and a simple element.
Assume now a 6= 1. Then a can be decomposed as b ·α(q). By Lemma 3.10, b is simple,
so, by induction hypothesis, it is a permutation-like element. We show inductively on the
length of the address α that b ·α(q) is a permutation-like element. For α = /o, the previous
lemma gives the result. Otherwise, assume α = eβ, with e = 0 or e = 1. There exist an
integer r and permutation-like elements a1, a0 such that a is equal to /o(r) · sh1(a1) · sh0(a0).
By Lemma 3.10 again, the element she(ae) ·α(q) is simple, which implies that ae ·β(q) is
simple too, since a subterm of a semi-injective term is semi-injective. By induction hypoth-
esis, ae ·β(q) is simple, and so are she(ae) ·α(q), and /o(r) · sh1−e(a1−e) · she(ae) ·α(q). This
completes the induction.

Remark. The braid counterpart of the previous result is the equivalence of simple braids
and permutation braids, more precisely the fact that every simple braid in Bn is a left divisor
of ∆n. The key point in the latter fact is the exchange lemma for the symmetric group Sn,
a special case of the well known exchange lemma for Coxeter groups. The above argument
can be seen as a tree version of the exchange lemma.

4. Applications

Once we know that simple elements and permutation-like elements coincide in the
monoid MLD, further results can be deduced easily.

Simple LD-expansions

What makes simple braids remarkable is the property that the right lcm of two simple braids
in the monoid B+

∞ is still a simple braid. In particular, the braid ∆n is a maximal simple
braid in B+

n , and it is the right lcm of all such simple braids. Here we prove similar results
in the case of the monoid MLD, the role of the braids ∆n being played by the elements ∆t

represented by the words ∆t.

Definition. The term t′ is a simple LD-expansion of the term t if there exists a simple
word u such that LDu maps t to t′.

By Lemma 3.7, there exists a one-to-one correspondence between the simple LD-expansions
of a term t and the permutation-like elements a in MLD such that t belongs to the domain
of LDa.

Proposition 4.1. For every term t, the term ∂t is the maximal simple LD-expansion of t,
and ∆t is the (unique) permutation-like word u such that LDu maps t to ∂t.

Proof. We already know that LD∆t maps t to ∂t. That ∆t is a permutation-like word
follows from its explicit definition. So it remains to prove using induction on the size of t
that no LD-expansion of ∂t is a semi-injective term. Assume t = t0 · t1. We consider first
LD-expansion at /o. The equality ∂t = ∂t0 ∗ ∂t1 shows that every variable occurring in t
except possibly the rightmost one occurs both in the left and the right subterm of ∂t. So the
rightmost variable of sub(∂t, 10), say xi, occurs in sub(∂t, 0) also, hence, when LD/o is applied
to ∂t, xi covers itself in the resulting LD-expansion, which therefore is not semi-injective.

23

Consider now LD-expansion at α, where α is a nonempty address, say α = eβ with e = 0
or e = 1. By construction, we have sub((∂t)α, e) = (∂te)β, which, by induction hypothesis,
is not a semi-injective term. So (t)α is not either semi-injective.

Corollary 4.2. For every term t, the class ∆t of ∆t in MLD is simple, and it is maximal in
the sense that ∆ta is simple for no element a such that the term (t)∆t · a exists.

Proposition 4.3. For every a of MLD, the following are equivalent:

(i) The element a is simple;

(ii) There exists a term t such that a is a left divisor of ∆t in MLD.

(iii) For every term t such that (t)a exists, the element a is a left divisor of ∆t in MLD

Proof. By definition, (iii) implies (ii), and, by the previous corollary, (ii) implies (i). So the
point is to prove that (i) implies (iii). We prove using induction on the size of t that, if u is a
permutation-like word and (t)u is defined, then there exists a word v satisfying u · v ≡+ ∆t.
The result is obvious when t is a variable. Otherwise, let r + 1 = htR(t). By definition, the
term t belongs to the domain of the operator LDu, the inequality m + e(1m, u) ≤ r holds for
0 ≤ m ≤ r, so there exists a least q satisfying q + e(1q, u) = r. By Lemma 3.15, we deduce
that u · /o(q) is simple, and that e(/o, u · /o(q)) = r holds, which means that there exist simple
words u1, u0 satisfying

u · /o(q) ≡+ /o(r) · 1u1 · 0u0.

By construction, (t)/o(r) is defined. Let s0 · s1 = (t)/o(r). By definition, the term (se)ue is
defined for e = 1, 0, and, by construction, we have size(se) < size(t). Hence, by induction
hypothesis, there exists a word ve satisfying ue · ve ≡+ ∆se . We obtain

u · /o(q) · 1v1 · 0v0 ≡+ /o(r) · 1u1 · 0u0 · 1v1 · 0v0 ≡+ /o(r) · 1∆s1 · 0∆s0 = ∆t.

Proposition 4.4. Any two simple elements of MLD admit a simple right lcm.

Proof. Assume that a, b are simple elements of MLD. Let t be a term both in the domain
of LDa and in domain of LDb. Then ∆t is a common right multiple of a and b, hence it
is a right multiple of the right lcm of a and b. Hence the latter element, which divides an
element of the form ∆t, is simple.

As every (left or right) divisor of a simple element of MLD is still a simple element, we deduce
from Proposition 4.4 that, if a and b are simple, so is the (unique) element a\b such that
a(a\b) is the right lcm of a and b.

Normal form

We construct now a unique normal from for the elements of MLD. It is an exact counterpart
to the right greedy normal form for the braid monoids [1], [10], [11]—on which it projects.

Definition. Assume that a, b are simple elements of MLD. We say that a is orthogonal to b
if, for each address α such that g+

α is a left divisor of b, a · g+
α is not simple.

Proposition 4.5. Every element of MLD admits a unique decomposition of the form
a1 · . . . · ap, where a1, . . . , ap are simple and, for every k ≥ 2, ak−1 is orthogonal to ak.

24

Proof. Let a be an arbitrary element of MLD. We prove the existence of an expression of a
satisfying the above conditions using induction on ν(a), defined as the common value of ν(u)
for u a word on A representing a. For ν(a) = 0, we have a = 1, and the result is obvious.
Assume a 6= 1. For a′ a simple left divisor of a, we have ν(a′) ≤ ν(a) by construction,
so there exists at least one simple left divisor a1 of a such that ν(a1) has the maximal
possible value. As a is not 1, there exists at least one address α such that g+

α is a left
divisor of a, and, as g+

α is simple, we deduce that a1 cannot be 1. Write a = a1 · b. Then we
have ν(a) > ν(b). By induction hypothesis, b admits a decomposition b = a2 · . . . · ap that
satisfies the conditions of the propostion. We deduce a = a1 · a2 · . . . · ap, and it remains to
prove that a1 is orthogonal to a2. Assume that g+

α is a nontrivial left divisor of a2 in MLD.
Then g+

α is a left divisor of b, and a1 · g+
α is a left divisor of a. This implies that a1 · g+

α is
not simple, for, otherwise, the condition ν(a1 · g+

α) > ν(a1) would contradict the definition
of a1.

For uniqueness, it suffices to prove that, if (a1, . . . , ap) is a sequence of simple elements
of MLD such that, for k ≥ 2, ak−1 is orthogonal to ak, then a1 is determined by the prod-
uct a1 . . . ap. Indeed, MLD is left cancellative, and an induction then shows that a2, . . . ,
ap are determined as well. So, assume a = a1 · . . . · ap, with (a1, . . . , ap) as above. By
construction, a1 is a simple left divisor of a. Assume that c1 is a nontrivial element of MLD

such that a1 · c1 is simple. Define inductively ck = ak\ck−1 for 2 ≤ k ≤ p. The hypothesis
that a1 · c1 is simple implies that c1 is simple. Then, a2 · c2 is the right lcm of a2 and c1,
hence it is simple as well, and this in turn implies that c2 is simple. Similarly, we show
using induction on k that ak · ck and ck are simple for every k. Now, the hypotheses that
c1 is not 1 and that a2 is orthogonal to a1 imply that c1 is not a left divisor of a2, and,
therefore, we have c2 6= 1. Repeating the argument yields ck 6= 1 for every k. In particular,
we have cp 6= 1. Now, by construction, we have cp = (a2 · . . . · ap)\c1, and cp 6= 1 means
that c1 is not a left divisor of a2 · . . . · ap, hence that a1 · c1 is not a left divisor of a. Thus
we have proved that a1 is a simple left divisor of a with maximal value of ν. It remains to
observe that such an element is unique. Now, assume that a1, a′1 are such elements. Then
the right lcm of a1 and a′1 is still a left divisor of a, it is simple by Proposition 4.4, and the
assumption ν(a1) = ν(a′1) = ν(a1(a1\a′1))) implies a′1 = a1.

The Embedding Conjecture

In [12], Garside proves that the braid monoid B+
∞ embeds in the braid group B∞, which

implies that B∞ is the group of fractions of B+
∞. Here we briefly discuss the similar question

for the monoid MLD and the group GLD.

Conjecture 4.6. The monoid MLD embeds in the group GLD, i.e., for all words u, u′ on A,
u′ ≡ u implies (and, therefore, is equivalent to) u′ ≡+ u.

Several equivalent forms can be stated.

Proposition 4.7. Conjecture 4.6 is equivalent to each of the following statements:
(i) The monoid MLD admits right cancellation;
(ii) The monoid G+

LD is isomorphic to the monoid MLD, i.e., for all words u, u′ in A∗,
LDu′ = LDu implies (and, therefore, is equivalent to) u′ ≡+ u.

Proof. The equivalence with (i) follows from the results of [6], as we know that MLD is
associated with an atomic, coherent, and convergent complement (the latter meaning that
word reversing always terminates, which is a consequence of the existence of common right
multiples). The equivalence with (ii) follows from Proposition 1.5, which tell us that LDu′ =
LDu is equivalent to u′ ≡ u.

25

Definition. Assume that a is an element of MLD. We say that the Embedding Conjecture
is true for a if the canonical projection of MLD onto G+

LD is injective on a, i.e., if LDa 6= LDa′

holds for every a′ 6= a in MLD.

Thus Conjecture 4.6 is true if and only if the Embedding Conjecture is true for every element
of MLD.

Proposition 4.8. The Embedding Conjecture is true for every simple element of MLD.

Proof. Assume that a is a simple element of MLD, and the operators LDa and LDa′ coincide.
Hence, by definition, a′ is simple as well, and, by Lemma 3.7, both a and a′ are represented
by permutation-like word determined by the operator LDa.

No proof of the Embedding Conjecture is known to date. Let us mention that further
partial results can be established using completely different methods. In particular, it is
proved in [7] that the Embedding Conjecture is true for every element of MLD that is a right
divisor of some element ∆(k)

t , as well as for every element of the submonoid of MLD generated
by the elements g+

1i
.

References

[1] S.I. Adjan, Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci.
SSSR 36-1 (1984) 25–34; translated Math. Notes of the Acad. Sci. USSR; 36-1 (1984)
505–510.

[2] P. Dehornoy, Free distributive groupoids, J. P. Appl. Algebra 61 (1989) 123–146.
[3] —, Structural monoids associated to equational varieties, Proc. Amer. Math. Soc.

117-2 (1993) 293–304.
[4] —, Braid groups and left distributive operations, Trans. Amer. Math. Soc. 345-1

(1994) 115–151.
[5] —, The structure group for the associativity identity, J. Pure Appl. Algebra 111 (1996)

59–82.
[6] —, Groups with a complemented presentation, J. Pure Appl. Algebra 116 (1997)

115–137.
[7] —, The fine structure of LD-equivalence, preprint.
[8] P. Dehornoy & L. Paris, Garside groups, a generalization of Artin groups, Proc.

London Math. Soc. 79-3 (1999) 569–604.
[9] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17

(1972) 273–302.
[10] E. A. Elrifai & H. R. Morton, Algorithms for positive braids, Quart. J. Math.

Oxford 45-2 (1994) 479–497.
[11] D. Epstein & al., Word Processing in Groups, Jones & Barlett Publ. (1992).
[12] F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford 20 No.78

(1969) 235–254.
[13] E. Ghys & V. Sergiescu, Sur un groupe remarquable de diffomorphismes du cercle,

Comment. Math. Helverici 62 (1987) 185–239.
[14] R. Laver, The left distributive law and the freeness of an algebra of elementary em-

beddings, Advances in Math. 91-2 (1992) 209–231.

26

[15] —, On the algebra of elementary embeddings of a rank into itself, Advances in Math.
110 (1995) 334–346.

[16] R. McKenzie & R.J. Thompson, An elementary construction of unsolvable word
problems in group theory, in Word Problems, Boone & al. eds., North Holland,
Studies in Logic vol. 71 (1973).

[17] K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type, Trans. Amer.
Math. Soc. 339–2 (1993) 537–551.

Laboratoire SDAD, ESA 6081 CNRS
Mathématiques, BP 5186,

Université Campus II, 14 032 Caen, France
dehornoy@math.unicaen.fr

http://www.math.unicaen.fr/∼dehornoy/

27

