THE GEOMETRY MONOID OF LEFT SELF-DISTRIBUTIVITY

PATRICK DEHORNOY

Abstract. We develop a counterpart to Garside's analysis of the braid monoid B_n^+ relevant for the monoid M_{LD} that describes the geometry of the left self-distributivity identity. The monoid M_{LD} extends B_{∞}^+ , of which it shares many properties, with the exception that it is not a direct limit of finitely generated monoids. By introducing a convenient local version of the fundamental elements Δ , we prove that right least common multiples exist in M_{LD} , and, more generally, that M_{LD} resembles a generalized Artin monoid.

Key words: self-distributivity, braid groups, exchange lemma, Thompson's group

AMS Subject Classification: 20F36, 20N02.

Applying a given algebraic identity (I) to a formal expression can be seen as defining an action of a certain monoid \mathcal{G}_I associated with (I). In the case of the associativity identity, the involved monoid happens to be a group, namely Thompson's group F of [16], a remarkable group which appears in several independent domains [13]. Here we consider the case of the left self-distributivity identity

$$x(yz) = (xy)(xz). (LD)$$

This identity has been widely investigated in the recent years due to its deep connection with properties of large cardinals in set theory [14] and with Artin's braid groups. In particular, the connection with braids originates in the fact that, in the case of Identity (LD), the monoid \mathcal{G}_{LD} alluded to above turns out to be closely related with some group G_{LD} that is an extension of Artin's braid group B_{∞} . The group G_{LD} , which appears as a natural counterpart to Thompson's group F when left self-distributivity replaces associativity, is an interesting object in itself. It has already been investigated in [2] and [4], leading to new results about Artin's braid groups B_n such as the existence of a left invariant linear ordering and a new efficient solution to the word problem. The aim of the current paper is to continue the study of this group.

Keeping in mind that the braid group B_{∞} is a projection of the group G_{LD} , we show how to develop a counterpart to Garside's analysis of the braid groups for G_{LD} . In particular, starting with a monoid presentation of G_{LD} , we consider the associated monoid M_{LD} and investigate the connection between G_{LD} and fractions from M_{LD} . Technically, things are more complicated than in the case of braids because, in contradistinction to B_{∞} which is the direct limit of the groups B_n , the group G_{LD} has no natural approximations by finite type groups. Thus, we cannot resort to Garside's fundamental elements Δ_n . The aim of this paper is to show how to overcome the problem by considering a sort of local version Δ_t of the elements Δ_n and analysing the simple elements of M_{LD} defined as those elements that divide some Δ_t . In this approach, using the action of G_{LD} via self-distributivity provides one with useful intuitions. In particular, we obtain with the equivalence of two natural notions of simple elements a convenient infinitary version of the well known exchange lemma for Coxeter groups, and we hope that the methods we introduce here can be applied to further infinitary Artin-like groups in the future.

The main results we prove here are that right least common multiples exist in the monoid M_{LD} , and that every element of the group G_{LD} can be expressed as a fraction. We also construct in M_{LD} a unique normal form which is reminiscent of the greedy normal form of braids [1], [10], [11]. It can be noted that, using a projection, we deduce from these results new proofs for their braid counterparts, which can therefore be seen as results about self-distributivity.

It is known that the group G_{LD} faithfully describes the geometry of LD-equivalence in the sense that no other relation than those holding in G_{LD} connects the operators of G_{LD} ; on the other hand, whether M_{LD} faithfully describes the geometry of positive LD-equivalence ('LD-expansions') is not known: this actually is equivalent to M_{LD} embedding in G_{LD} . Should this be true, then some algebraic results about M_{LD} like the existence of common right multiples would directly follow from the known properties of LD-expansions, making some computations of this paper unnecessary. Now, the previous embedding result remains out of reach for the moment, and we rather think that a possible proof will come from a better understanding of M_{LD} .

The organization of the paper is as follows. In order to make it self-contained, we recall in Section 1 those definitions and results of [2] and [4] that are used in the sequel. In Section 2, we establish the confluence property in M_{LD} , i.e., the existence of right common multiples, by syntactically imitating the proof of the confluence property for left self-distributivity [2]. In Section 3, we introduce simple elements of M_{LD} , and prove the equivalence of a syntactic and a dynamic characterization of such elements. Finally, we construct in Section 4 a unique normal form for the elements M_{LD} , and briefly discuss the conjecture that M_{LD} embeds in G_{LD} .

1. The geometry monoid of left self-distributivity

Left self-distributivity operators

We fix an infinite sequence of variables x_1, x_2, \ldots , and let T_{∞} be an absolutely free system based on $\{x_1, x_2, \ldots\}$: we can describe T_{∞} as the set of all well formed abstract terms constructed using the variables x_i and a binary operation symbol \cdot . Thus x_1 and $x_2 \cdot (x_1 \cdot x_3)$ are typical elements of T_{∞} . We use T_1 for the set of those terms involving the variable x_1 only. Then T_1 is an absolutely free system based on x_1 .

Let us say that two terms t, t' in T_{∞} are LD-equivalent, denoted $t =_{LD} t'$, if we can transform t to t' by repeatedly applying Identity (LD). In other words, the relation $=_{LD}$ is the congruence on T_{∞} generated by all pairs of the form

$$(t_1 \cdot (t_2 \cdot t_3), (t_1 \cdot t_2) \cdot (t_1 \cdot t_3)).$$

Then, by standard arguments, the quotient structure $T_{\infty}/=_{LD}$ is a free LD-system based on $\{x_1, x_2, \ldots\}$.

The idea is now to describe the LD-equivalence class of a given term t in T_{∞} as the orbit of t relatively to the action of some monoid associated with Identity (LD). In order to specify this action precisely, it is convenient to associate with every term in T_{∞} a finite binary tree whose leaves are labeled with variables: if t is the variable x, the tree associated with t consists of a single node labeled x, while, for $t = t_1 \cdot t_2$, the binary tree associated with t has a root with two immediate successors, namely a left one which is (the tree associated with) t_1 , and a right one which is (the tree associated with) t_2 . For instance, the tree associated with the term $x_2 \cdot (x_1 \cdot x_3)$ is $x_2 \cdot x_1 \cdot x_3$. We use finite sequences of 0's and 1's as

addresses for the nodes in such trees, starting with an empty address ϕ for the root, and using 0 and 1 for going to the left and to the right respectively. For t a term, we define the outline of t to be the collection of all addresses of leaves in (the tree associated with) t, and the skeleton of t to be the collection of the addresses of nodes in t: thus, for instance, the outline of the term $x_2 \cdot (x_1 \cdot x_3)$ is the set $\{0, 10, 11\}$, while its skeleton is $\{0, 10, 11, 1, \phi\}$, as t comprises three leaves and two inner nodes. For t a term, and α an address in the skeleton of t, we have the natural notion of the α -th subterm of t, denoted sub (t, α) : this is the term corresponding to the subtree of the tree associated with t whose root lies at address α . This amounts to defining inductively

$$\operatorname{sub}(t,\alpha) = \begin{cases} t & \text{if } t \text{ is a variable or } \alpha = \emptyset \text{ holds,} \\ \operatorname{sub}(t_0,\beta) & \text{for } t = t_0 \cdot t_1 \text{ and } \alpha = 0\beta, \\ \operatorname{sub}(t_1,\beta) & \text{for } t = t_0 \cdot t_1 \text{ and } \alpha = 1\beta. \end{cases}$$

Finally, we define the right height $\operatorname{ht}_R(t)$ of a term t to be the length of the rightmost branch in the tree associated with t; equivalently, $\operatorname{ht}_R(t)$ is the integer inductively defined by $\operatorname{ht}_R(t) = 0$ if t is a variable, and $\operatorname{ht}_R(t) = \operatorname{ht}_R(t_1) + 1$ for $t = t_0 \cdot t_1$.

With the previous notations at hand, we can define the notion of a basic LD-expansion of a term precisely.

Definition. Assume that t is a term, and α is an address such that $\alpha 10$ belongs to the skeleton of t. Then we denote by $(t)\alpha$ the term obtained from by replacing the subterm $\mathrm{sub}(t,\alpha)$ with the term $(\mathrm{sub}(t,\alpha 0)\cdot\mathrm{sub}(t,\alpha 10))\cdot(\mathrm{sub}(t,\alpha 0)\cdot\mathrm{sub}(t,\alpha 11))$.

Thus $(t)\alpha$ is the term obtained from t by applying left self-distributivity at α in the direction $x(yz) \mapsto (xy)(xz)$. The reader can check for instance that, if t is the term $x_1 \cdot x_2 \cdot x_3 \cdot x_4$ —here, and everywhere in the sequel, we take the convention that missing parentheses are to be added on the right, so, for instance, the previous expression stands for $x_1 \cdot (x_2 \cdot (x_3 \cdot x_4))$ —then the only addresses α for which $(t)\alpha$ exists are ϕ and 1, and we have

$$(t)\phi = (x_1 \cdot x_2) \cdot (x_1 \cdot x_3 \cdot x_4), \text{ and } (t)1 = x_1 \cdot (x_2 \cdot x_3) \cdot (x_2 \cdot x_4).$$

Definition. We say that the term t' is a basic LD-expansion of the term t if we have $t' = (t)\alpha$ for some α ; we say that t' is an LD-expansion of t if there exists a finite sequence of addresses $\alpha_1, \ldots, \alpha_p$ (possibly p = 0) such that t' is $(\ldots((t)\alpha_1)\alpha_2\ldots)\alpha_p$.

Let A denote the set of all binary addresses, and A^* denote the free monoid of all words on A, *i.e.*, of all finite sequences of addresses. For w in A^* , say $w = \alpha_1 \cdot \ldots \cdot \alpha_p$, and t a term, we write (t)w for the LD-expansion $(\ldots((t)\alpha_1)\alpha_2\ldots)\alpha_p$, when it exists. We thus have obtained a partial action (on the right) of the monoid A^* on the set T_{∞} .

Definition. For every word w in A^* , we define LD_w to be the partial operator on T_∞ that maps every sufficiently large term t to its LD-expansion (t)w. The monoid consisting of all operators LD_w equipped with reverse composition is denoted by \mathcal{G}_{LD}^+ .

The following equivalence follows from the definition directly.

Lemma 1.1. Assume that t, t' are terms in T_{∞} . Then the following are equivalent:

- (i) The term t' is an LD-expansion of the term t;
- (ii) Some element of \mathcal{G}_{LD}^+ maps t to t'.

By construction, if t' is an LD-expansion of t, then t' is LD-equivalent to t. The converse is not true in general, but we can easily describe LD-equivalence by means of an action at the expense of introducing symmetrized operators LD_w^{-1} which correspond to using (LD) in the contracting direction $(xy)(xz) \mapsto x(yz)$. So, for every address α , we introduce LD_α^{-1} to the inverse operator of LD_α (which is injective), and we consider the monoid \mathcal{G}_{LD} generated by all operators LD_α and LD_α^{-1} using reversed composition. By construction, every element in \mathcal{G}_{LD} is a finite product of operators LD_α and LD_α^{-1} . Using A^{-1} for the set consisting of a copy α^{-1} for each address α , and defining $\mathrm{LD}_{\alpha^{-1}}$ to be LD_α^{-1} , we can represent every element of \mathcal{G}_{LD} as LD_w , where w is a word on $A \cup A^{-1}$, i.e., a finite sequence of signed addresses. We write $(A \cup A^{-1})^*$ for the set of all such words, of which $\phi \cdot 11^{-1} \cdot 0$ is a typical element. We have the following straightforward characterization analogous to Lemma 1.1:

Lemma 1.2. Assume that t, t' are terms in T_{∞} . Then the following are equivalent:

- (i) The terms t and t' are LD-equivalent;
- (ii) Some element of \mathcal{G}_{LD} maps t to t'.

The action of the monoid \mathcal{G}_{LD} is a partial action: for w in $(A \cup A^{-1})^*$, the term (t)w need not be defined for every term t, i.e., the domain of the operator LD_w is not the whole of T_∞ . In particular, it should be observed that the operator LD_w may be empty: this happens for instance for $w = \phi \cdot 1 \cdot \phi^{-1}$, as no term in the image of $\mathrm{LD}_{\phi \cdot 1}$ may belong to the image of LD_{ϕ} , i.e., to the domain of LD_{ϕ}^{-1} . However, using the technique of term unification, we can prove the result below. Here, a term is said to be canonical if the list of all variables that occur in t, enumerated from left to right ignoring repetitions, is an initial segment of (x_1, x_2, \ldots) . A substitution is defined to be a mapping of $\{x_1, x_2, \ldots\}$ into T_∞ , and, if h is a subtitution and t is a term in T_∞ , t^h denotes the term obtained from t by replacing each variable x_i with the corresponding term $h(x_i)$. Finally, we say that a term t is injective if every variable occurs at most once in t.

Proposition 1.3. (i) Assume that w is a word in $(A \cup A^{-1})^*$. Then either the operator LD_w is empty, or there exists a unique pair of LD-equivalent canonical terms (t_w^L, t_w^R) such that LD_w maps the term t to the term t' if and only if there exists a substitution h satisfying $t = (t_w^L)^h$ and $t' = (t_w^R)^h$.

(ii) If u is a positive word in A^* , then LD_u is nonempty, and the term t_u^L is injective; in this case, a term t lies in the domain of the operator LD_u if and only if its skeleton includes the skeleton of t_u^L .

We skip the proof here. It builds on the techniques developed in [2] and [3] and on the classical method of term unification.

LD-relations

By definition, the monoid \mathcal{G}_{LD}^+ is generated by the family of all operators LD_{α} , $\alpha \in A$, while the monoid \mathcal{G}_{LD} is generated by the family of all LD_{α} , $\alpha \in A \cup A^{-1}$. These monoids are not free: some relations connect the operators LD_{α} . These relations capture what can be called the geometry of Identity (LD). We say that the address α is a prefix of the address β if β is $\alpha\beta'$ for some β' ; we say that two addresses α , β are orthogonal, denoted $\alpha \perp \beta$, if there exists an address γ such that $\gamma 0$ is a prefix of α and $\gamma 1$ is a prefix of β , or *vice versa*.

Proposition 1.4. [2] For all α , β in A, the following relations hold in the monoid \mathcal{G}_{LD} :

$$LD_{\alpha} \bullet LD_{\beta} = LD_{\beta} \bullet LD_{\alpha} \quad \text{for } \alpha \perp \beta, \quad \text{(type } \perp\text{)}$$

$$LD_{\alpha 0\beta} \bullet LD_{\alpha} = LD_{\alpha} \bullet LD_{\alpha 10\beta} \bullet LD_{\alpha 00\beta}, \qquad (type 0)$$

$$LD_{\alpha 10\beta} \bullet LD_{\alpha} = LD_{\alpha} \bullet LD_{\alpha 01\beta}, \qquad (type 10)$$

$$LD_{\alpha 11\beta} \bullet LD_{\alpha} = LD_{\alpha} \bullet LD_{\alpha 11\beta}, \qquad (type 11)$$

$$LD_{\alpha 1} \bullet LD_{\alpha} \bullet LD_{\alpha 1} \bullet LD_{\alpha 0} = LD_{\alpha} \bullet LD_{\alpha 1} \bullet LD_{\alpha}.$$
 (type 1)

A direct verification of these equalities is easy. It is less easy to prove that, conversely, the above equalities, together with the fact that LD_{α} is an inverse of LD_{α}^{-1} , exhaust the possible relations in \mathcal{G}_{LD} , *i.e.*, they constitute a presentation of this monoid. The result is not readily true, as the product of LD_{α} and LD_{α}^{-1} is only the identity mapping of its domain, and it is not the identity mapping of T_{∞} . This seemingly superficial problem cannot be solved, since, as was said above, the product of two elements in \mathcal{G}_{LD} may be empty. However, we have the following result.

Definition. Define an LD-relation to be a pair of words on A of one of the following types:

- type (\perp): $(\alpha \cdot \beta, \beta \cdot \alpha)$, with $\alpha \perp \beta$;
- type (0): $(\alpha 0\beta \cdot \alpha, \alpha \cdot \alpha 10\beta \cdot \alpha 00\beta)$;
- type (10): $(\alpha 10\beta \cdot \alpha, \alpha \cdot \alpha 01\beta)$,
- type (11): $(\alpha 11\beta \cdot \alpha, \alpha \cdot \alpha 11\beta)$,
- type (1): $(\alpha 1 \cdot \alpha \cdot \alpha 1 \cdot \alpha 0, \alpha \cdot \alpha 1 \cdot \alpha)$.

We define G_{LD} to be the group $(\mathbf{A} \cup \mathbf{A}^{-1})^*/\equiv$, where \equiv is the congruence generated by all LD-relations, together with all pairs $(\alpha \cdot \alpha^{-1}, \varepsilon)$ and $(\alpha^{-1} \cdot \alpha, \varepsilon)$, where ε denotes the empty word. The class of α in G_{LD} is denoted g_{α} .

In other words, G_{LD} is the group with presentation $\langle \{g_{\alpha} ; \alpha \in \mathbf{A}\} ; R_{LD} \rangle$, where R_{LD} denotes the family of all LD-relations.

Proposition 1.5. [4] Assume that w and w' are words on $A \cup A^{-1}$, and the domains of the operators LD_w and $LD_{w'}$ are not disjoint. Then the following are equivalent:

- (i) We have (t)w = (t)w' for at least one term t;
- (ii) We have (t)w = (t)w' for every term t such that (t)w and (t)w' exist;
- (iii) We have $w \equiv w'$.

In the particular case when w and w' are words on A, the domains of LD_w and $LD_{w'}$ are never disjoint, and Conditions (i) and (ii) are equivalent to $LD_w = LD_{w'}$. Hence the monoid \mathcal{G}_{LD}^+ is isomorphic to the submonoid G_{LD}^+ of G_{LD} generated by the elements g_{α} .

Let us recall that Artin's braid group B_{∞} is defined as the group generated by an infinite sequence $\sigma_1, \sigma_2, \ldots$ subject to the so-called braid relations

$$\sigma_i \cdot \sigma_j = \sigma_j \cdot \sigma_i$$
 for $|i - j| \ge 2$, type (i)

$$\sigma_{i+1} \cdot \sigma_i \cdot \sigma_{i+1} = \sigma_i \cdot \sigma_{i+1} \cdot \sigma_i.$$
 type (ii)

The deep relation between left self-distributivity and braids originates in the fact that the group B_{∞} is a projection of the group G_{LD} . Indeed, the mapping

$$\operatorname{pr}: \alpha \mapsto \begin{cases} \sigma_i & \text{for } \alpha = 1^{i-1}, \\ 1 & \text{if } \alpha \text{ contains at least one } 0, \end{cases}$$

induces a surjective homomorphism of G_{LD} onto B_{∞} : braid relations of type (i) are what remains from type 11 relations in G_{LD} , while braid relations of type (ii) are what remains from type 1 relations. The other LD-relations vanish, as the corresponding generators are collapsed.

As B_{∞} is a homomorphic image of G_{LD} , there exists an exact sequence of groups

$$1 \to \operatorname{Ker}(\operatorname{pr}) \to G_{LD} \to B_{\infty} \to 1.$$
 (1.1)

By definition, the kernel of pr is the normal subgroup of G_{LD} generated by the elements of the form g_{α} where α contains at least one 0, which happens to to be also the normal subgroup of G_{LD} generated by the elements of the form $g_{0\alpha}$ [4].

2. The confluence property

We enter the core of our study. We introduce the monoid M_{LD} for which the LD-relations of Section 1 make a presentation, and we try to develop for the pair (G_{LD}, M_{LD}) the same approach as Garside and others developed for the pair $(B_{\infty}, B_{\infty}^+)$, where B_{∞}^+ is the monoid of all positive braids. Here we prove a first significant result about M_{LD} , namely that any two elements admit a common right multiple.

By the results of [2], we know that common right multiples always exist in the monoid \mathcal{G}_{LD}^+ , hence, by Proposition 1.5, in the submonoid G_{LD}^+ of G_{LD} . Should we know that M_{LD} embeds in G_{LD} , i.e., that M_{LD} is isomorphic to G_{LD}^+ , then the existence of common right multiples in M_{LD} would follow. Now, we have no proof of the previous embedding result, so our strategy will consist in using the defining relations of M_{LD} exclusively and constructing a syntactic counterpart to the proof of the confluence property in \mathcal{G}_{LD}^+ as given in [2].

The monoid M_{LD} is not finitely generated, and, in contradistinction to the braid monoid B_{∞}^+ , we cannot express it as the direct limit of a family of finitely generated submonoids. Hence, there exists in M_{LD} no direct counterpart of Garside's fundamental braids Δ_n which are crucial in the study of braids [12], [1], [11], [10], [6]. However, we shall see that some elements Δ_t of M_{LD} associated with the terms ∂t of [2] can be used as local versions of Δ_n .

The monoid M_{LD}

Definition. We denote by \equiv^+ the congruence on the monoid A^* generated by all LD-relations, and by M_{LD} the monoid A^*/\equiv^+ . The class of α in M_{LD} is denoted g_{α}^+ .

Observe that \equiv^+ is included in \equiv , but there is no evidence that \equiv^+ be the trace of \equiv on \mathbf{A}^* : the latter property is equivalent to the embeddability of the monoid M_{LD} in the group G_{LD} , and it will be discussed in Section 4 below. In the sequel, the words in \mathbf{A}^* will be called positive words, as opposed to the general words of $(\mathbf{A} \cup \mathbf{A}^{-1})^*$, which are simply called words.

By Proposition 1.4, $u \equiv^+ u'$ implies $LD_u = LD_{u'}$ for all positive words u, u'. Thus, by definition, the action of A^* on T_{∞} associated with the operators LD_u induces a well defined action of the monoid M_{LD} on T_{∞} . We can therefore use the notation LD_a for $a \in M_{LD}$ to represent the operator LD_u for an arbitrary positive word u representing a.

We begin with an easy observation.

Notation. For γ an address, and w a word on $\mathbf{A} \cup \mathbf{A}^{-1}$, we denote by γw the word obtained by shifting all addresses in w by γ , *i.e.*, for $w = \alpha_1^{\pm 1} \cdot \ldots \cdot \alpha_p^{\pm 1}$, we define $\gamma w = (\gamma \alpha_1)^{\pm 1} \cdot \ldots \cdot (\gamma \alpha_p)^{\pm 1}$ —not to be confused with the length p+1 word $\gamma \cdot \alpha_1^{\pm 1} \cdot \ldots \cdot \alpha_p^{\pm 1}$.

Proposition 2.1. For each address γ , the mapping $w \mapsto \gamma w$ induces an endomorphism $\operatorname{sh}_{\gamma}$ of G_{LD} , and its restriction to positive words induces an injective endomorphism $\operatorname{sh}_{\gamma}^+$ of M_{LD} .

Proof. If (w, w') is an LD-relation, so is $(\gamma w, \gamma w')$. In the case of M_{LD} , we observe in addition that, if (w, w') is an LD-relation and all members of the sequence w begin with γ , so do all generators occurring in w'. Assume that u and u' are positive words and $\gamma u \equiv^+ \gamma u'$ holds. Then, by the previous remark, all intermediate words in a sequence of elementary transformations from γu to $\gamma u'$ are of the form γv , and we obtain a sequence from u to u' by removing the prefix γ everywhere. So $u \equiv^+ u'$ holds, and sh_{γ}^+ is injective.

It can be proved that the endomorphisms $\operatorname{sh}_{\gamma}$ on G_{LD} are injective as well, but the previous simple argument does not work, as, wtarting with $\gamma w \equiv \gamma w'$, we cannot be sure that all intermediate words in a sequence of elementary transformations from γw to $\gamma w'$ are of the form γv because some factors $\alpha \cdot \alpha^{-1} \alpha$ or $\alpha^{-1} \cdot \alpha$ may appear.

Lemma 2.2. Assume that u_1 and u_2 are positive words in A^* , and every address in u_1 is orthogonal to every address in u_2 . Then we have the equivalences

$$u_1 \cdot u_2 \equiv^+ u_2 \cdot u_1 \tag{2.1}$$

$$0u_1 \cdot 0u_2 \cdot \phi \equiv^+ \phi \cdot 00u_1 \cdot 00u_2 \cdot 10u_1 \cdot 10u_2 \tag{2.2}$$

$$10u_1 \cdot 10u_2 \cdot \phi \equiv^+ \phi \cdot 01u_1 \cdot 01u_2 \tag{2.3}$$

$$11u_1 \cdot 11u_2 \cdot \phi \equiv^+ \phi \cdot 11u_1 \cdot 11u_2 \tag{2.4}$$

Proof. Use an induction on the length of u_1 and u_2 . The hypothesis implies that every address in $10u_1$ is orthogonal to every address in $00u_2$, and, therefore, these addresses commute with respect to \equiv^+ .

Inheritance relations

Geometric reasons explain LD-relations of type 0, 10, and 11. For instance, the type 10 relation $LD_{\alpha 10\beta} \cdot LD_{\alpha} = LD_{\alpha} \cdot LD_{\alpha 01\beta}$ expresses that expanding a term at $\alpha 10\beta$, and then at α , is equivalent to expanding it at α first, and then at $\alpha 01\beta$: in both cases, we expand the β -th subterm of the $\alpha 10$ -th subterm of t, but, if we expand at α first, then the $\alpha 10\beta$ -th subterm of t is moved to the address $\alpha 01\beta$ when LD_{α} is performed. Then the above relation expresses a skew commutativity relation where the address $\alpha 10\beta$ is replaced by what will be called its heir under the action of α .

In [2], more general inheritance relations are introduced, and, according to the strategy defined above, our task here will be to verify that these relations hold in M_{LD} . These technical—but easy—results are needed in the subsequent study of the elements Δ_t .

Definition. Assume that B is a set of addresses, and u is a positive word in A^* . Then the set Heir(B, u) of all *heirs* of elements of B under the action of LD_u is defined inductively by the following clauses:

- (i) The set Heir(B, u) exists if and only if $\text{Heir}(\{\beta\}, u)$ exists for every β in B, and, in this case, Heir(B, u) is the union of all sets $\text{Heir}(\{\beta\}, u)$ for β in B;
 - (ii) The set $Heir(B, \varepsilon)$ is B for every B;
- (iii) If u is a single positive address say α , then $\text{Heir}(\{\beta\}, \alpha)$ exists if and only if β is not a prefix of α 1, and we have

$$\operatorname{Heir}(\{\beta\},\alpha) = \begin{cases} \{\beta\} & \text{for } \beta \perp \alpha, \text{ or } \alpha 11 \text{ a prefix of } \beta, \\ \{\alpha 00\gamma, \alpha 10\gamma\} & \text{for } \beta = \alpha 0\gamma, \\ \{\alpha 01\gamma\} & \text{for } \beta = \alpha 10\gamma, \\ \text{undefined} & \text{for } \beta \text{ a prefix of } \alpha 1. \end{cases}$$

(iv) For $u = \alpha \cdot u_0$, α an address, $\operatorname{Heir}(B, u)$ is $\operatorname{Heir}(\operatorname{Heir}(B, \alpha), u_0)$, when it exists.

The easy verification of the following results is left to the reader.

Lemma 2.3. Assume that u is a positive word in A^* , and β is an address.

- (i) The set $\operatorname{Heir}(\{\beta\}, u)$ exists if and only if some address in the outline of the term t_u^L is a prefix of β .
- (ii) If $\operatorname{Heir}(\{\beta\}, u)$ is defined, so is $\operatorname{Heir}(\{\beta\gamma\}, u)$ for every γ , and the latter set is equal to the set of all addresses $\beta'\gamma$ for β' in $\operatorname{Heir}(\{\beta\}, u)$.
 - (iii) The elements of every set of the form $\operatorname{Heir}(\{\beta\}, u)$ are pairwise orthogonal.
- (iv) Assume that LD_u maps the term t to the term t', and β belongs to the skeleton of t. If $Heir(\{\beta\}, u)$ is defined, then $sub(t', \beta') = sub(t, \beta)$ holds for every β' in $Heir(\{\beta\}, u)$.

Observe that Point (iv) always applies when the address β lies in the outline of the term t, *i.e.*, when β is the address of a variable in t; then $\operatorname{Heir}(\{\beta\}, u)$ is the family of those occurrences in the outline of the term t' that come from β in t, in an obvious sense. In particular, if the variable x occurs at β and only there in t, then $\operatorname{Heir}(\{\beta\}, u)$ is exactly the set of those addresses where x occurs in t'.

Example 2.4. Consider the case $u = \phi \cdot 1$. The term $t_{\phi \cdot 1}^{L}$ is the canonical term

$$x_1$$
 x_2
 x_3
 x_4 , which is mapped to x_1x_2
 $x_1x_3x_1x_4$

Heir($\{\beta\}, \phi: 1$) is not defined are ϕ 1 and 11. The reader can check that Heir($\{0\}, \phi: 1$)

Heir($\{\beta\}$, $\phi \cdot 1$) is not defined are ϕ , 1 and 11. The reader can check that Heir($\{0\}$, $\phi \cdot 1$) is $\{00, 100, 110\}$, which corresponds to the fact that the variable x_1 occurring at 0 in the first term has three copies with addresses 00, 100 and 110 in the second one. Similarly Heir($\{10\}$, $\phi \cdot 1$) is $\{01\}$, while Heir($\{110\}$, $\phi \cdot 1$) is $\{101\}$, and Heir($\{111\}$, $\phi \cdot 1$) is $\{111\}$. Lemma 2.3(ii) implies Heir($\{0\gamma\}$, $\phi \cdot 1$) = $\{00\gamma, 100\gamma, 110\gamma\}$ for every address γ .

Using the techniques of [2], one can prove that, if u is a positive word in A^* , β is an address, and $\text{Heir}(\{\beta\}, u)$ is defined, then we have

$$LD_{\beta} \cdot LD_{u} = LD_{u} \cdot \prod_{\beta' \in Heir(\{\beta\}, u)} LD_{\beta'}$$
(2.5)

According to our strategy, we shall establish a syntactic counterpart to (2.5), namely:

Proposition 2.5. Assume that u is a positive word in A^* , β is an address, and that $\text{Heir}(\{\beta\}, u)$ is defined. Then we have the equivalence

$$\beta \cdot u \equiv^+ u \cdot \prod_{\beta' \in \text{Heir}(\{\beta\}, u)} \beta' \tag{2.6}$$

Proof. We use induction on the length of u. The result is trivial when u is empty. If u has length 1, the result corresponds to LD-relations respectively of types (\bot) , (0), (10) and (11). Otherwise, assume $u = \alpha \cdot u_0$, where α is an address. By construction, the hypothesis that the set $\text{Heir}(\{\beta\}, u)$ exists implies that the sets $\text{Heir}(\{\beta\}, \alpha)$ and $\text{Heir}(\text{Heir}(\{\beta\}, \alpha), u_0)$ exist, and that the latter is equal to $\text{Heir}(\{\beta\}, u)$. By induction hypothesis, we have

$$\beta \cdot \alpha \equiv^+ \alpha \cdot \prod_{\beta' \in \operatorname{Heir}(\{\beta\}, \alpha)} \beta',$$

and, therefore,

$$\beta \cdot u \equiv^+ \alpha \cdot \prod_{\beta' \in \operatorname{Heir}(\{\beta\}, \alpha)} \beta' \cdot u_0.$$

Now, by induction hypothesis again, we have, for each address β' in the set $\text{Heir}(\{\beta\}, \alpha)$,

$$\beta' \cdot u_0 \equiv^+ u_0 \cdot \prod_{\beta'' \in \operatorname{Heir}(\{\beta'\}, u_0)} \beta'',$$

and we obtain

$$\beta \cdot u \equiv^+ \alpha \cdot u_0 \cdot \prod_{\beta' \in \operatorname{Heir}(\{\beta\}, \alpha)} \prod_{\beta'' \in \operatorname{Heir}(\{\beta'\}, u_0)} \beta''. \tag{2.7}$$

By Lemma 2.3(iii), the addresses β' in Heir($\{\beta\}, \alpha$) are pairwise orthogonal, so Lemma 2.2 tells us that the involved addresses β'' commute up to \equiv^+ , and the double product in (2.7) is also \equiv^+ -equivalent to the product $\prod_{\beta' \in \text{Heir}(\{\beta\}, u)} \beta'$ of (2.5).

Uniform distribution relations

Another type of geometric relation in the monoid \mathcal{G}_{LD}^+ generalizes the type 1 LD-relations. We first introduce an auxiliary operation on T_{∞} .

Definition. Assume that t_0 is a term. For t in T_{∞} , the term $t_0 * t$ is defined inductively by the clauses: $t_0 * t = t_0 \cdot t$ if t is a variable, $t_0 \cdot t = (t_0 * t_1) \cdot (t_0 * t_2)$ for $t = t_1 \cdot t_2$.

The term $t_0 * t$ is obtained from $t_0 \cdot t$ by distributing t_0 everywhere down to the level of the leaves in the tree associated with t: more formally, $t_0 * t$ is the substitute t^h , where $h(x_i)$ is defined to be $t_0 \cdot x_i$ for every variable x_i . An induction shows that, for all terms t_0 , t, the term $t_0 * t$ is an LD-expansion of the term $t_0 \cdot t$, and it is easy to construct a positive word describing the way this LD-expansion is performed.

Definition. For t a term, the word δ_t is defined inductively by $\delta_t = \varepsilon$ for t a variable, and $\delta_t = \phi \cdot 1\delta_{t_2} \cdot 0\delta_{t_1}$ for $t = t_1 \cdot t_2$.

The inductive definition implies that the word δ_t is obtained by taking the product of all addresses that belong to the skeleton of t but not to the outline of t according to the unique linear ordering of addresses satisfying $\gamma < \gamma 1\alpha < \gamma 0\beta$ for all α , β , γ . An easy verification gives:

Lemma 2.6. For all terms t_0 , t, we have $t_0 * t = (t_0 \cdot t)\delta_t$.

The methods of [2] imply that, if u is a positive word in A^* , and the operator LD_u maps the term t to the term t', then we have

$$LD_{\delta_t} \cdot LD_u = LD_{1u} \cdot LD_{\delta_{t'}} \tag{2.8}$$

Again, the geometric idea is simple. Applying LD_{δ_t} replaces the term $t_0 \cdot t$ with the term t^h where h is the substitution defined by $h(x_i) = t_0 \cdot x_i$. If LD_u maps t to t', then LD_{1u} maps $t_0 \cdot t$ to $t_0 \cdot t'$, and LD_u maps also t^h to t'^h . Now t'^h is the result of replacing every variable in t' by its product with t_0 , *i.e.*, it is the term $t_0 * t'$, hence the result of applying $LD_{\delta_{t'}}$ to $t_0 \cdot t'$.

As above, we establish a syntactic counterpart to (2.8).

Proposition 2.7. Assume that u is a positive word, and LD_u maps t to t'. Then we have

$$\delta_t \cdot u \equiv^+ 1u \cdot \delta_{t'} \tag{2.9}$$

Proof. We use induction on the length of the word u. Assume first that u has length 1, *i.e.*, u is a single address say α . We argue inductively on the length of the address α . Assume first $\alpha = \phi$. So we assume $t' = (t)\phi$, and prove $\delta_t \cdot \phi \equiv^+ 1 \cdot \delta_{t'}$. The hypothesis that $(t)\phi$ is defined implies that t can be decomposed into $t_0 \cdot (t_1 \cdot t_2)$. Now we have

$$\delta_t \cdot \phi = \phi \cdot 1 \cdot 11\delta_{t_2} \cdot 10\delta_{t_1} \cdot 0\delta_{t_0} \cdot \phi$$

$$\equiv^+ \phi \cdot 1 \cdot 11\delta_{t_2} \cdot 10\delta_{t_1} \cdot \phi \cdot 10\delta_{t_0} \cdot 00\delta_{t_0}$$
(0)

$$\equiv^+ \phi \cdot 1 \cdot 11\delta_{t_2} \cdot \phi \cdot 01\delta_{t_1} \cdot 10\delta_{t_0} \cdot 00\delta_{t_0} \tag{10}$$

$$\equiv^+ \phi \cdot 1 \cdot \phi \cdot 11\delta_{t_2} \cdot 01\delta_{t_1} \cdot 10\delta_{t_0} \cdot 00\delta_{t_0} \tag{11}$$

$$\equiv^+ \phi \cdot 1 \cdot \phi \cdot 11\delta_{t_2} \cdot 10\delta_{t_0} \cdot 01\delta_{t_1} \cdot 00\delta_{t_0} \tag{1}$$

$$\equiv^+ 1 \cdot \phi \cdot 1 \cdot 0 \cdot 11\delta_{t_2} \cdot 10\delta_{t_0} \cdot 01\delta_{t_1} \cdot 00\delta_{t_0} \tag{1}$$

$$\equiv^+ 1 \cdot \phi \cdot 1 \cdot 11\delta_{t_2} \cdot 10\delta_{t_0} \cdot 0 \cdot 01\delta_{t_1} \cdot 00\delta_{t_0} = 1 \cdot \delta_{t'}. \tag{\perp}$$

Assume now $\alpha = 0\beta$. Then, writing $t = t_0 \cdot t_1$ and $t' = t'_0 \cdot t_1$, we have $t'_0 = (t_0)\beta$, and the induction hypothesis gives $\delta_{t_0} \cdot \beta \equiv^+ 1\beta \cdot \delta_{t'_0}$. By Lemma 2.1, this implies $0\delta_{t_0} \cdot 0\beta \equiv^+ 01\beta \cdot 0\delta_{t'_0}$, and we deduce

$$\delta_{t} \cdot \alpha = \phi \cdot 1\delta_{t_{1}} \cdot 0\delta_{t_{0}} \cdot 0\beta \equiv^{+} \phi \cdot 0\delta_{t_{0}} \cdot 0\beta \cdot 1\delta_{t_{1}}$$

$$\equiv^{+} \phi \cdot 01\beta \cdot 0\delta_{t'_{0}} \cdot 1\delta_{t_{1}}$$

$$\equiv^{+} 10\beta \cdot \phi \cdot 0\delta_{t'_{0}} \cdot 1\delta_{t_{1}} = 1\alpha \cdot \delta_{t'}.$$

$$(10)$$

The argument is similar for $\alpha = 1\beta$, and the induction on the length of u is easy.

The confluence property

It has been proved in [6] that any two LD-expansions of a given term admit a common LD-expansion. In the current framework, this means that, if t is a term and u, v are two positive words such that both (t)u and (t)v exist, then there exist words u' and v'—possibly depending on t—such that the LD-expansions (t)uv' and (t)vu' exist and are equal. This implies that the operators $LD_{uv'}$ and $LD_{vu'}$ are equal, and, therefore, makes the equivalence $uv' \equiv^+ vu'$ plausible. Here we shall establish a strong form of this result

Our syntactic proof will follow the the proof of [2], which consists in introducing, for every term t, a distinguished term ∂t which is a common LD-expansion of all basic LD-expansions of t.

Definition. [2] For t a term, we define inductively the term ∂t by

$$\partial t = \begin{cases} t & \text{if } t \text{ is a variable,} \\ \partial t_0 * \partial t_1 & \text{for } t = t_0 \cdot t_1. \end{cases}$$

By construction, the term ∂t is an LD-expansion of the term t for every t. The idea is to select a positive word Δ_t such that ∂t is the LD-expansion $(t)\Delta_t$, and then to use Δ_t as a syntactic counterpart of ∂t .

Definition. For $\alpha \in A$, we put $\alpha^{(0)} = \varepsilon$, and $\alpha^{(r)} = \alpha 1^{r-1} \cdot \alpha 1^{r-2} \cdot \ldots \cdot \alpha 1 \cdot \alpha$ for $r \ge 1$.

Example 2.8. By construction, $(t)\phi^{(r)}$ is defined if and only if 1^r0 belongs to the skeleton

of t, i.e., if $\operatorname{ht}_{\mathbb{R}}(t) \geq r+1$. holds. Then t has the form t_0 t_1 ... t_{r-1} , and t_0 t_1 ... t_{r-1} t_r t_{r+1}

Lemma 2.9. Assume $\operatorname{ht}_{\mathbb{R}}(t) = r + 1$. Let $s_0 \cdot s_1 = (t) \phi^{(r)}$. Then we have $\partial t = \partial s_0 \cdot \partial s_1$.

Proof. Assume $t = t_0 \cdot t_1$. We use induction on r. For r = 0, t_1 is a variable, say x, we have $\partial(t_0 \cdot x) = \partial t_0 \cdot x$, and the result is obvious. Otherwise, we have $\operatorname{ht}_R(t_1) = r$. Let $s_{10} \cdot s_{11} = (t_1) \phi^{(r-1)}$. By induction hypothesis, we have $\partial t_1 = \partial s_{10} \cdot \partial s_{11}$, so we deduce

$$\partial t = \partial t_0 * (\partial s_{10} \cdot \partial s_{11}) = (\partial t_0 * \partial s_{10}) \cdot (\partial t_0 * \partial s_{11}) = \partial (t_0 \cdot s_{10}) \cdot \partial (t_0 \cdot s_{11}).$$

Now, by construction, we have $s_e = t_e \cdot s_{1e}$ for e = 0, 1.

Definition. Assume that t is a term. Then the word Δ_t is defined by

$$\boldsymbol{\varDelta}_t = \begin{cases} \varepsilon & \text{if } t \text{ is a variable,} \\ \phi^{(r)} \cdot 1\boldsymbol{\varDelta}_{s_1} \cdot 0\boldsymbol{\varDelta}_{s_0} & \text{otherwise, with } s_0 \cdot s_1 = (t)\phi^{(r)} \text{ and } r+1 = \operatorname{ht}_{\scriptscriptstyle R}(t). \end{cases}$$

Example 2.10. Let
$$t$$
 be the term

in Δ_t will be 2-1=1. The right subterm of the image of t under LD_{ϕ} is the term $s_1=x^{[2]}$, while its left subterm is $s_0 = x^{[4]}$, where $x^{[k]}$ denotes the k-th right power of x inductively defined by $x^{[1]} = x$, and $x^{[k]} = x \cdot x^{[k-1]}$ for $k \geq 2$. Then, we have $\partial s_1 = s_1$, hence $\Delta_{s_1} = \varepsilon$. Now, we have $\operatorname{ht}_R(s_0) = 3$, so the exponent of ϕ in Δ_{s_0} is 3-1=2. The right and left subterms of $(s_0)\phi^{(2)}$ are $s_{10}=s_{00}=x^{[3]}$. We have $\operatorname{ht}_{\mathbb{R}}(s_{00})=2$, so the exponent of ϕ in $\Delta_{s_{00}}$ is 2-1=1. The right and left subterms of the image of s_{00} under LD_{ϕ} are $x^{[2]}$, so we are done. By gathering the elements, we find

$$\boldsymbol{\Delta}_t = \boldsymbol{\phi} \cdot 0 \boldsymbol{\Delta}_{s_0} = \boldsymbol{\phi} \cdot 0^{(2)} \cdot 01 \boldsymbol{\Delta}_{s_{10}} \cdot 00 \boldsymbol{\Delta}_{s_{00}} = \boldsymbol{\phi} \cdot 0^{(2)} \cdot 01 \cdot 00.$$

Applying Lemma 2.9, we obtain the following result immediately.

Proposition 2.11. For every term t is a term, we have $(t)\Delta_t = \partial t$.

We shall establish in the sequel that the words Δ_t share many technical properties with Garside's fundamental braid words Δ_n . We begin with some preliminary results.

Lemma 2.12. Assume $t = t_0 \cdot t_1$. Then we have

$$\Delta_t \equiv^+ 1 \Delta_{t_1} \cdot 0 \Delta_{t_0} \cdot \delta_{\partial t_1}, \tag{2.10}$$

$$\boldsymbol{\Delta}_t \equiv^+ 0 \boldsymbol{\Delta}_{t_0} \cdot \delta_{t_1} \cdot \boldsymbol{\Delta}_{t_1}, \tag{2.11}$$

$$\boldsymbol{\Delta}_{t} \equiv^{+} \delta_{t_{1}} \cdot \prod_{\alpha \in \text{Out}(t_{1})} \alpha 0 \boldsymbol{\Delta}_{t_{0}} \cdot \boldsymbol{\Delta}_{t_{1}}. \tag{2.12}$$

Proof. We prove (2.10) using induction on t_1 . Let $r+1=\operatorname{ht}_R(t)$ and $s_0\cdot s_1=(t)\phi^{(r)}$. If t_1 is a variable, then we have $\partial t_1 = t_1$, r = 0, hence $s_0 = t_0$, $s_1 = t_1$. By definition, we have $\Delta_t = 0 \Delta_{t_0}$, and (2.10) is an equality. Otherwise, assume $t_1 = t_{10} \cdot t_{11}$. We have $\operatorname{ht}_R(t_1) = r$. Let $s_{10} \cdot s_{11} = (t_1) \phi^{(r-1)}$. By construction, we have $s_1 = t_0 \cdot s_{11}$ and $s_0 = t_0 \cdot s_{10}$. The sizes of the right subterms of s_1 and s_0 , namely s_{11} and s_{10} , are strictly smaller than the size of the right subterm of t, namely t_1 , so the induction hypothesis gives

$$\Delta_{s_1} \equiv^+ 1 \Delta_{s_{11}} \cdot 0 \Delta_{t_0} \cdot \delta_{\partial s_{11}}$$
 and $\Delta_{s_0} \equiv^+ 1 D_{s_{10}} \cdot 0 \Delta_{t_0} \cdot \delta_{\partial s_{10}}$

and we deduce

$$\boldsymbol{\Delta}_{t} \equiv^{+} \phi^{(r)} \cdot 11 \boldsymbol{\Delta}_{s_{11}} \cdot 10 \boldsymbol{\Delta}_{t_{0}} \cdot 1\delta_{\partial s_{11}} \cdot 01 \boldsymbol{\Delta}_{s_{10}} \cdot 00 \boldsymbol{\Delta}_{t_{0}} \cdot 0\delta_{\partial s_{10}}.$$

Using type (\bot) relations, this can be rearranged into

$$\boldsymbol{\Delta}_t \equiv^+ \phi^{(r)} \cdot 11 \boldsymbol{\Delta}_{s_{11}} \cdot 01 \boldsymbol{\Delta}_{s_{10}} \cdot 10 \boldsymbol{\Delta}_{t_0} \cdot 00 \boldsymbol{\Delta}_{t_0} \cdot 1\delta_{\partial s_{11}} \cdot 0\delta_{\partial s_{10}}.$$

Now we have $\phi^{(r)} = 1^{(r-1)} \cdot \phi$, and using successively LD-relations of type (11), (10) and (0), we push the factor ϕ to the right, thus obtaining

$$\boldsymbol{\Delta}_t \equiv^+ 1^{(r-1)} \cdot 11 \boldsymbol{\Delta}_{s_{11}} \cdot 10 \boldsymbol{\Delta}_{s_{10}} \cdot 0 \boldsymbol{\Delta}_{t_0} \cdot \phi \cdot 1\delta_{\partial s_{11}} \cdot 0\delta_{\partial s_{10}}.$$

Then we have $1^{(r-1)} \cdot 11\boldsymbol{\Delta}_{s_{11}} \cdot 10\boldsymbol{\Delta}_{s_{10}} = 1\boldsymbol{\Delta}_{s_{10} \cdot s_{11}} = 1\boldsymbol{\Delta}_{t_1}$, and $\phi \cdot 1\delta_{\partial s_{11}} \cdot 0\delta_{\partial s_{10}} = \delta_{\partial t_1}$, and we have obtained (2.10).

The other formulas follow easily. Indeed, we deduce (2.11) from (2.10) by using Proposition 2.7, since, by construction, $LD_{\Delta_{t_1}}$ maps t_1 to ∂t_1 . We deduce (2.12) from (2.11) by using Proposition 2.5, since, by construction again, the set $\text{Heir}(\{0\}, \delta_{t_1})$ exists and is equal to the set of all addresses $\beta 0$ for β in the outline of t_1 .

Remark. Let u be the word involved in the right hand side of (2.10). The diagram

$$\begin{array}{cccc} \operatorname{LD}_{1 \Delta_{t_1}} & \operatorname{LD}_{0 \Delta_{t_0}} & \operatorname{LD}_{\delta_{\partial t_1}} \\ t = t_0 \cdot t_1 & \longmapsto & t_0 \cdot \partial t_1 & \longmapsto & \partial t_0 \cdot \partial t_1 & \longmapsto & \partial t_0 * \partial t_1 = \partial t \end{array}$$

makes it obvious that the operator LD_u maps the term t to the term ∂t , which implies that the operators LD_{Δ_t} and LD_u coincide. However, the equivalence $\Delta_t \equiv^+ u$ is a stronger result.

Now we follow the approach of [2]. The first result is that the term ∂t is an LD-expansion of every basic LD-expansion of t. Its syntactic counterpart is the following result.

Lemma 2.13. Assume that α is an address and the term t belongs to the domain of the operator LD_{α} . Then there exists a positive word u satisfying $\alpha \cdot u \equiv^+ \Delta_t$.

Proof. We use induction on α . For $\alpha = \emptyset$, the result follows from Formula (2.12), which gives a word that explicitly begins with \emptyset provided that the right subterm t_1 of t exists, *i.e.*, t is not a variable, and δ_{t_1} is not empty, *i.e.*, t_1 is not a variable, so for $\operatorname{ht}_R(t) \geq 2$, which is the case if $(t)\emptyset$ exists. Otherwise, assume $\alpha = 0\beta$ and $t = t_0 \cdot t_1$. Formula (2.10) shows that Δ_t is \equiv^+ -equivalent to a word that begins with $0\Delta_{s_0}$. By construction, the term t_0 lies in the domain of the operator $\operatorname{LD}_{\beta}$, so, by induction hypothesis, Δ_{t_0} is \equiv^+ -equivalent to a positive word of the form $\beta \cdot u_0$, and we obtain

$$\boldsymbol{\Delta}_t \equiv^+ \alpha \cdot 0u_0 \cdot 1\boldsymbol{\Delta}_{t_1} \cdot \delta_{\partial t_1}.$$

Assume now $\alpha = 1\beta$. The argument is similar, since, at the expense of using additional type (\perp) relations, we have also $\Delta_t \equiv^+ 1\Delta_{t_1} \cdot 0\Delta_{t_0} \cdot \delta_{\partial t_1}$.

The next step is the counterpart to the fact that the operator ∂ is increasing with respect to LD-expansion: if t' is an LD-expansion of t, then $\partial t'$ is an LD-expansion of ∂t .

Lemma 2.14. Assume that the operator LD_{α} maps t to t'. Then there exists a positive word u satisfying $\alpha \cdot \Delta_{t'} \equiv^+ \Delta_t \cdot u$.

Proof. We begin with the case $\alpha = \phi$. We argue inductively on the size of the 11-subterm of t, which must exist as $(t)\phi$ does. Write $t = t_0 \cdot (t_1 \cdot t_2)$. Assume first that t_2 is a variable. Then we have $\operatorname{ht}_R(t) = 2$, hence

$$\Delta_t = \phi \cdot 1 \Delta_{s_1} \cdot 0 \Delta_{s_0}, \tag{2.13}$$

with $s_0 = t_0 \cdot t_1$ and $s_1 = t_0 \cdot t_2$. But, then, s_0 is the left subterm of t', and s_1 is its right subterm. So, by Formula (2.10), we have

$$\Delta_t \equiv^+ 1 \Delta_{s_1} \cdot 0 \Delta_{s_0} \cdot \delta_{\partial s_1}. \tag{2.14}$$

By comparing (2.13) and (2.14), we obtain $\phi \cdot \Delta_{t'} \equiv^+ \Delta_t \cdot \delta_{\partial s_1}$, which has the expected form. Assume now that t_2 is not a variable. Let $r+1=\operatorname{ht}_{\mathbb{R}}(t)$ and $s_0 \cdot s_1=(t)\phi^{(r)}$, and let similarly $s'_0 \cdot s'_1=(t')\phi^{(r)}$. By definition, and using $\operatorname{ht}_{\mathbb{R}}(t)=\operatorname{ht}_{\mathbb{R}}(t')$, we have

$$\boldsymbol{\Delta}_t = \phi^{(r)} \cdot 1 \boldsymbol{\Delta}_{s_1} \cdot 0 \boldsymbol{\Delta}_{s_0}, \tag{2.15}$$

$$\boldsymbol{\Delta}_{t'} = \phi^{(r)} \cdot 1 \boldsymbol{\Delta}_{s'_1} \cdot 0 \boldsymbol{\Delta}_{s'_0}. \tag{2.16}$$

By construction, we have $s_1' = (s_1)\phi$ and $s_0' = (s_0)\phi$, as is verified by writing $t = t_0 \cdot t_1 \cdot \ldots \cdot t_r \cdot x$, where x is a variable. Moreover, the size of the 11-th subterms of s_1

and s_0 are strictly smaller than the size of the 11-th subterm of t. So, by induction hypothesis, there exist positive words u_1 , u_0 satisfying $\phi \cdot \Delta_{s'_e} \equiv^+ \Delta_{s_e} \cdot u_e$ for e = 1, 0. Then, an induction gives the equivalence

$$\phi \cdot \phi^{(r)} \equiv^+ \phi^{(r)} \cdot 1 \cdot 0$$

for $r \geq 2$: the basic case is r = 2, where it is a type 1 relation. So we obtain

$$\phi \cdot \boldsymbol{\Delta}_{t'} = \phi \cdot \phi^{(r)} \cdot 1 \boldsymbol{\Delta}_{s'_1} \cdot 0 \boldsymbol{\Delta}_{s'_0} \equiv^+ \phi^{(r)} \cdot 1 \cdot 1 \boldsymbol{\Delta}_{s'_1} \cdot 0 \cdot 0 \boldsymbol{\Delta}_{s'_0}
\equiv^+ \phi^{(r)} \cdot 1 \boldsymbol{\Delta}_{s_1} \cdot 1 u_1 \cdot 0 \boldsymbol{\Delta}_{s_0} \cdot 0 u_0
\equiv^+ \phi^{(r)} \cdot 1 \boldsymbol{\Delta}_{s_1} \cdot 0 \boldsymbol{\Delta}_{s_0} \cdot 1 u_1 \cdot 0 u_0 = \boldsymbol{\Delta}_t \cdot 1 u_1 \cdot 0 u_0,$$

and we are done.

Assume now $\alpha = 0\beta$. Write $t = t_0 \cdot t_1$. We have $t' = t'_0 \cdot t_1$ with $t'_0 = (t_0)\beta$. By induction hypothesis, there exists a positive word u_0 satisfying $\beta \cdot \boldsymbol{\Delta}_{t'_0} \equiv^+ \boldsymbol{\Delta}_{t_0} \cdot u_0$. Starting from (2.10), we obtain

$$\alpha \cdot \boldsymbol{\Delta}_{t'} \equiv^{+} \alpha \cdot 0 \boldsymbol{\Delta}_{t'_{0}} \cdot 1 \boldsymbol{\Delta}_{t_{1}} \cdot \delta_{\partial t_{1}} \equiv^{+} 0 \beta \cdot \boldsymbol{\Delta}_{t'_{0}} \cdot 1 \boldsymbol{\Delta}_{t_{1}} \cdot \delta_{\partial t_{1}}$$

$$\equiv^{+} 0 \boldsymbol{\Delta}_{t_{0}} \cdot u_{0} \cdot 1 \boldsymbol{\Delta}_{t_{1}} \cdot \delta_{\partial t_{1}}$$

$$\equiv^{+} 0 \boldsymbol{\Delta}_{t_{0}} \cdot 1 \boldsymbol{\Delta}_{t_{1}} \cdot 0 u_{0} \cdot \delta_{\partial t_{1}}$$

$$\equiv^{+} 0 \boldsymbol{\Delta}_{t_{0}} \cdot 1 \boldsymbol{\Delta}_{t_{1}} \cdot \delta_{\partial t_{1}} \cdot \prod_{\alpha \in \text{Out}(t_{1})} \alpha 0 u_{0} \quad \text{(by Proposition 2.5)}$$

$$\equiv^{+} \boldsymbol{\Delta}_{t} \cdot \prod_{\alpha \in \text{Out}(t_{1})} \alpha 0 u_{0}.$$

Assume finally $\alpha = 1\beta$. We have $t' = t_0 \cdot t'_1$, with $t'_1 = (t_1)\beta$. By induction hypothesis, we have $\beta \cdot \Delta_{t'_1} \equiv^+ \Delta_{t_1} \cdot u_1$ for some positive word u_1 . We deduce

$$\alpha \cdot \boldsymbol{\Delta}_{t'} \equiv^{+} \alpha \cdot 0 \boldsymbol{\Delta}_{t_{0}} \cdot 1 \boldsymbol{\Delta}_{t'_{1}} \cdot \delta_{\partial t_{1}} \equiv^{+} 0 \boldsymbol{\Delta}_{t_{0}} \cdot 1 \beta \cdot \boldsymbol{\Delta}_{t'_{1}} \cdot \delta_{\partial t_{1}}$$

$$\equiv^{+} 0 \boldsymbol{\Delta}_{t_{0}} \cdot 1 \boldsymbol{\Delta}_{t_{1}} \cdot u_{1} \cdot \delta_{\partial t_{1}}$$

$$\equiv^{+} 0 \boldsymbol{\Delta}_{t_{0}} \cdot 1 \boldsymbol{\Delta}_{t_{1}} \cdot 1 u_{1} \cdot \delta_{\partial t_{1}}$$

$$\equiv^{+} 0 \boldsymbol{\Delta}_{t_{0}} \cdot 1 \boldsymbol{\Delta}_{t_{1}} \cdot \delta_{\partial t_{1}} \cdot u_{1} \qquad \text{(by Proposition 2.7)}$$

$$\equiv^{+} \boldsymbol{\Delta}_{t} \cdot u_{1}.$$

Remark. Not only does the previous proof show the existence of a positive word u satisfying $\phi \cdot \Delta_{t'} \equiv^+ \Delta_t \cdot u$, but it also gives an inductive formula for constructing such a word, namely

$$u = \prod_{\alpha \in \text{Out}(t_2)} \alpha \phi \cdot 0 \delta_{\partial t_0}$$

for $t = t_0 \cdot t_1 \cdot t_2$ and $t' = (t)\phi$. This formula is easily understandable: ∂t is obtained from ∂t_2 by substituting every variable x with $\partial t_0 * (\partial t_1 \cdot x)$, i.e., $\partial (t_0 * \partial t_1) \cdot (\partial t_0 \cdot x)$, while $\partial t'$ is obtained from ∂t_2 by substituting every variable x with $(\partial t_0 * \partial t_1) * (\partial t_0 \cdot x)$, i.e., $\partial (t_0 * \partial t_1) * (\partial t_0 \cdot x)$. So $\partial t'$ is obtained from ∂t by applying the operator $\mathrm{LD}_{\phi \cdot 0 \delta_{\partial t_0}}$ at each address in the outline of the term ∂t_{11} .

Lemma 2.15. Assume that u is a positive word in A^* , and LD_u maps the term t to the term t'. Then there exists a positive word u' satisfying

$$u \cdot \boldsymbol{\Delta}_{t'} \equiv^+ \boldsymbol{\Delta}_t \cdot u'. \tag{2.17}$$

Proof. We use induction on the length of u. For u empty, the result is trivial. For u of length 1, the result is Lemma 2.14. Otherwise, assume $u = u_1 \cdot u_2$ where neither u_1 nor u_2 is empty. Let $t_1 = (t)u_1$. By induction hypothesis, there exist words u'_1 , u'_2 satisfying $u_e \cdot \Delta_{t_1} \equiv^+ \Delta_t \cdot u'_e$ for e = 1, 2. We deduce

$$u \cdot \Delta_{t'} \equiv^+ u_1 \cdot \Delta_{t_1} \cdot u_2' \equiv^+ \Delta_t \cdot u_1' \cdot u_2'.$$

We turn now to the most general case, and, to this end, we iterate the construction of the words Δ_t .

Definition. For t a term, we put $\Delta_t^{(0)} = \varepsilon$, and $\Delta_t^{(k)} = \Delta_t \cdot \Delta_{\partial t} \cdot \ldots \cdot \Delta_{\partial^{k-1}t}$ for $k \ge 1$.

Lemma 2.16. Assume that u is a positive word of length at most k and the term t lies in the domain of the operator LD_u . Then there exists a positive word v' satisfying $u \cdot v' \equiv^+ \Delta_t^{(k)}$.

Proof. (Figure 2.1) We use induction on k. The result is trivial for k=0. Otherwise, write $u=u_0\cdot\alpha$, where α is an address. By induction hypothesis, there exists a positive word v_0 satisfying $u_0\cdot v_0\equiv^+\boldsymbol{\Delta}_t^{(k-1)}$. Let t' be the image of t under LD_{u_0} . By hypothesis, t' lies in the domain of LD_{α} , so, by Lemma 2.14, there exists a positive word v satisfying $\alpha\cdot v'\equiv^+\boldsymbol{\Delta}_{t'}$. Applying Lemma 2.15 to the terms t' and $\partial^{k-1}t$, we see that there exists a positive word v'_0 satisfying $v_0\cdot\boldsymbol{\Delta}_{\partial^{k-1}t}\equiv^+\boldsymbol{\Delta}_{t'}\cdot v'_0$. We deduce

$$u \cdot v' \cdot v'_0 = u_0 \cdot \alpha \cdot v' \cdot v'_0 \equiv^+ u_0 \cdot \boldsymbol{\Delta}_{t'} \cdot v'_0 \equiv^+ u_0 \cdot v_0 \cdot \boldsymbol{\Delta}_{\partial^{k-1}t} \equiv^+ \boldsymbol{\Delta}_t^{(k-1)} \cdot \boldsymbol{\Delta}_{\partial^{k-1}t} = \boldsymbol{\Delta}_t^{(k)},$$

hence taking $u' = v' \cdot v'_0$ gives the result.

Figure 2.1: Proof of Lemma 2.16

We are now ready to conclude. We have mentioned above that, for each positive word u, the domain of the operator LD_u consists of all substitutes of some well defined canonical term t_u^L . This result extends to the case of several operators: if u and v are positive words, the intersection of the domains of LD_u and LD_v is the set of all substitutes of some unique canonical term $t_{u,v}^L$. We can now state the following strong form of confluence.

Proposition 2.17. Assume that u, v are positive words of length at most k in A^* . Let $t = t_{u,v}^L$. Then there exist positive words u', v', satisfying

$$u \cdot v' \equiv^+ v \cdot u' \equiv^+ \Delta_t^{(k)}. \tag{2.18}$$

Proof. Applying Lemma 2.16 to $t_{u,v}^L$ gives two positive words u', v' such that both $u \cdot v'$ and $v \cdot u'$ are \equiv^+ -equivalent to $\Delta_t^{(k)}$.

Observe that, in the above situation, the domain of the operators $LD_{u \cdot v'}$ and $LD_{v \cdot u'}$ is the intersection of the domains of LD_u and LD_v , *i.e.*, we have found a common right multiple for u and v such that the associated operator has the largest possible domain.

By projecting the result of Proposition 2.17 to M_{LD} , we obtain:

Proposition 2.18. Any two elements of the monoid M_{LD} admit a common right multiple...

Let us observe that, LD-relations, in contradistinction to braid relations, are not symmetric, so the results involving right multiples do not automatically imply a counterpart for left multiples. A typical example is the property that any two elements of M_{LD} always admit a common right multiple. The symmetric property about left multiples is false. Indeed, let us consider the positive words $u = \phi \cdot 0$ and $v = \phi$. It is easy to check that the domain of the operator $\mathrm{LD}_{\phi \cdot 0 \cdot \phi^{-1}}$ is empty, which implies that no equality $u_1 \cdot \phi \cdot 0 \equiv^+ v_1 \cdot \phi$ may hold in A^* , *i.e.*, the elements $g_{\phi}^+ g_0^+$ and g_{ϕ}^+ admit no common left multiple in the monoid M_{LD} .

3. Simple elements in M_{LD}

The next step in our study of the monoid M_{LD} consists in applying the word reversing method of [6] and [17]. Some results in this direction have already been mentioned in [4], so we shall just briefly recall the principles.

Word reversing

Both the braid relations and the LD-relations have the particular syntactical property that, for each pair of generators x, y, there exists in the considered list of relations exactly one relation of the type $x \cdot \ldots = y \cdot \ldots$, *i.e.*, one relation that prescribes how to complete x and y on the right so as to obtain a common right multiple. With the definitions of [6], this means that these presentations are associated with a complement on the right. Indeed, let us define, for i, j in \mathbb{N} ,

$$f(\sigma_i, \sigma_j) = \begin{cases} \sigma_j & \text{for } |i - j| \ge 2, \\ \sigma_j \cdot \sigma_i & \text{for } |i - j| = 1, \\ \varepsilon & \text{for } i = j, \end{cases}$$

and, for α , β in \boldsymbol{A} (the set of all binary addresses)

$$f(\alpha,\beta) = \begin{cases} \alpha 10\gamma \cdot \alpha 00\gamma & \text{for } \beta = \alpha 0\gamma, \\ \alpha 01\gamma & \text{for } \beta = \alpha 10\gamma, \\ \beta \cdot \alpha & \text{for } \beta = \alpha 1, \\ \varepsilon & \text{for } \alpha = \beta, \\ \beta \cdot \alpha \cdot \beta 0 & \text{for } \alpha = \beta 1, \\ \alpha & \text{in all other cases, } i.e., \text{ if } \alpha \text{ is not a prefix of } \beta 1, \\ & \text{or if } \alpha 11 \text{ is a prefix of } \beta. \end{cases}$$

Then, the positive braid congruence that presents the braid monoid B_{∞}^+ is the congruence on the monoid BW_{∞} of all words on the alphabet $\{\sigma_1, \sigma_2, \ldots\}$ generated by those pairs of the form $(\sigma_i \cdot f(\sigma_i, \sigma_j), \sigma_j \cdot f(\sigma_j, \sigma_i))$, and, similarly, the congruence \equiv^+ that presents the monoid M_{LD} as a quotient of A^* is generated by all pairs of the form $(\alpha \cdot f(\alpha, \beta), \beta \cdot f(\beta, \alpha))$. In the sequel, we shall refer to the previous mappings as the braid complement and the LD complement respectively.

We have observed that the mapping pr that maps α to σ_{i+1} when α is of the form 1^i , and to ε otherwise, induces a surjective homomorphism of the monoid M_{LD} onto the braid monoid B_{∞}^+ . We observe now that the mapping pr preserves the right complements as well.

Lemma 3.1. The projection pr of $(A \cup A^{-1})^*$ onto BW_{∞} preserves the right complements, in the sense that the equality

$$pr(f(\alpha, \beta)) = f(pr(\alpha), pr(\beta))$$
(3.1)

holds for all addresses α , β .

The direct verification is straightforward.

The fact that the presentations of B_{∞}^+ and of M_{LD} are associated with right complements is not powerful in itself, and strong results can be deduced only when the complements satisfy some additional hypotheses called atomicity and coherence [6], [8]. In order to introduce them, we recall some definitions.

Assume that X is an arbitrary set, and f is a mapping on $X \times X$ into the free monoid X^* generated by X such that f(x,x) is the empty word for every x in X. Let $(X \cup X^{-1})^*$ denote the set of all words over the union of X and a disjoint copy X^{-1} of X, $X^{-1} = \{x^{-1} \ ; \ x \in X\}$. For w in $(X \cup X^{-1})^*$, w^{-1} denotes the word obtained by exchanging everywhere the letters x and x^{-1} and reversing the order of the letters. Now, for w, w' in $(X \cup X^{-1})^*$, we say that w' is obtained from w by word reversing with respect to f if one can transform w into w' by repeatedly replacing subwords of the form $x^{-1} \cdot y$ with the corresponding words $f(x,y) \cdot f(y,x)^{-1}$. It is easy [6] to prove that, starting with an arbitrary word w in $(X \cup X^{-1})^*$, word reversing leads to at most one word of the form $u \cdot v^{-1}$ with u, v positive, i.e., involving no letter in X^{-1} , and that such words are terminal with respect to word reversing. When they exist, the words u and v are called the (right) numerator and denominator of w, denoted by N(w) and D(w) respectively. We also define a (possibly partial) binary operation on X^* by $u \setminus v = N(u^{-1} \cdot v)$. Observe that $x \setminus y = f(x,y)$ holds for all x, y in X.

The compatibility between the braid complement and the LD complement extends to the operation \ on words and to the numerators and denominators:

Lemma 3.2. (i) Assume that u, v are positive words in A^* and $u \setminus v$ exists. Then we have

$$pr(u \setminus v) = pr(u) \setminus pr(v). \tag{3.2}$$

(ii) Assume that the word w of $(\mathbf{A} \cup \mathbf{A}^{-1})^*$ is reversible to the word w'. Then the braid word $\operatorname{pr}(w)$ is reversible to the braid word $\operatorname{pr}(w')$. In particular, we have

$$pr(N(w)) = N(pr(w)), \quad and \quad pr(D(w)) = D(pr(w))$$
(3.3)

whenever N(w) and D(w) exist.

Proof. Use an induction on the number of reversing steps.

The previous result will allow us to reprove all properties of the braid complement, and, therefore, a number of classical properties of the braid monoid B_{∞}^+ , from the corresponding properties of the LD complement.

Definition. Assume that f is a complement on X. We say that f is atomic if there exists a mapping ν of X^* into \mathbf{N} such that $\nu(x) > 0$ holds for every x in X, $\nu(xu) > \nu(u)$ holds for every x in X and every u in X^* , and $\nu(uxf(y,x)v) = \nu(u,yf(x,y)v)$ holds for all u, v in X^* and all x, y in X.

Lemma 3.3. (i) The braid complement is atomic.

(ii) The LD complement is atomic.

Proof. In the case of braids, the length mapping satisfies all requirements trivially. In the case of the LD complement, some LD-relations do not preserve the length of the words, and the argument is more delicate. Assume that u is a positive word in A^* . By Proposition 1.3, there exists a unique pair of LD-equivalent canonical terms (t_u^L, t_u^R) such that LD_u maps the term t to the term t' if and only if there exists a substitution h such that t is $(t_u^L)^h$ and t' is $(t_u^R)^h$. Let us define

$$\nu(u) = \operatorname{size}(t_u^R) - \operatorname{size}(t_u^L), \tag{3.4}$$

where, for t a term, size(t) is the number of occurrences of variables in t. By construction, ν takes values in \mathbf{N} , and $\nu(\alpha)=1$ holds for every address α for expanding t_{α}^L to t_{α}^R consists in doubling the variable occurring at $\alpha 0$ in t_{α}^L . If $u'\equiv^+u$ holds, we have $\mathrm{LD}_u=\mathrm{LD}_{u'}$, hence $t_u^L=t_{u'}^L$ and $t_u^R=t_{u'}^R$, and, finally, $\nu(u')=\nu(u)$. Assume now $\alpha\in \mathbf{A}$ and $u\in \mathbf{A}^*$. By definition, we have $t_{\alpha\cdot u}^R=((t_{\alpha\cdot u}^L)\alpha)u$, hence there exists a substitution h satisfying $(t_{\alpha\cdot u}^L)\alpha=(t_u^L)^h$ and $t_{\alpha\cdot u}^R=(t_u^R)^h$. We deduce

$$\begin{split} \nu(\alpha \cdot u) &= \operatorname{size}(t_{\alpha \cdot u}^{R}) - \operatorname{size}(t_{\alpha \cdot u}^{L}) \\ &= \operatorname{size}(t_{\alpha \cdot u}^{R}) - \operatorname{size}((t_{\alpha \cdot u}^{L})\alpha) + \operatorname{size}((t_{\alpha \cdot u}^{L})\alpha) - \operatorname{size}(t_{\alpha \cdot u}^{L}) \\ &= \operatorname{size}((t_{u}^{R})^{h}) - \operatorname{size}((t_{u}^{L})^{h}) + \operatorname{size}((t_{\alpha \cdot u}^{L})\alpha) - \operatorname{size}(t_{\alpha \cdot u}^{L}) \\ &> \operatorname{size}((t_{u}^{R})^{h}) - \operatorname{size}((t_{u}^{L})^{h}) \geq \operatorname{size}(t_{u}^{R}) - \operatorname{size}(t_{u}^{L}) = \nu(u). \end{split}$$

Hence the mapping ν satisfies the requirements.

Definition. Assume that f is a complement on X. We say that f is coherent (on the right) if, for every triple (x, y, z) in X^3 , we have

$$((x\backslash y)\backslash (x\backslash z))\backslash ((y\backslash x)\backslash (y\backslash z)) = \varepsilon.$$

Lemma 3.4. (i) The braid complement is coherent.

(ii) The LD complement is coherent.

Proof. For (i), the verification is essentially Garside's Theorem H of [12]. For (ii), we refer to [5].

It is proved in [6] that: If f is a complement on X that is atomic and coherent, then the monoid $\langle X ; \{xf(y,x)=yf(x,y);x,y\in X\}\rangle$ is left cancellative, and any two elements a, b of this monoid that admit a common right multiple admit a right lcm; in this case, if the words u, v represent a and b, then $u(u \setminus v)$ exists and it represents the right lcm of a and b. Applying this to the current framework, and owing to the fact that right common multiples exist in M_{LD} by Proposition 2.18, we deduce the following results.

Proposition 3.5. (i) The monoid M_{LD} is left cancellative.

(ii) Every pair of elements of M_{LD} admits a right lcm, the operation \ is defined everywhere on A^* , and, if the positive words u, v represent the elements a and b of M_{LD} respectively, then $u(u \setminus v)$ represents the right lcm of a and b.

Simple elements

Let us define a simple braid in B_n to be a positive braid that is a left divisor of Garside's fundamental braid Δ_n . Simple braids play a significant role in the study of braids [12]. In this section, we develop the analogous notion of a simple element in the monoid M_{LD} .

By construction—or using the Coxeter presentation of the symmetric group—there exists a surjective projection of the braid group B_{∞} onto the symmetric group S_{∞} of all permutations of the positive integers that move only finitely many integers. We obtain a section for this projection by introducing, for every permutation f, a positive braid of minimal possible length that projects on f. Let us say that a braid is a permutation braid if it is the image of a permutation under the previous section. A significant result about braids is the fact that a braid is a permutation braid if and only if it is simple. This result leads in particular to the greedy normal form of [1], [11] and [10].

We show now how to obtain a similar equivalence in the case of the monoid M_{LD} . This result involves the notions of a permutation-like element and of a simple element in M_{LD} ,

which extend the notion of a permutation braid and of a simple braid respectively. The first notion will be defined using an explicit, syntactic method, while the second one involves the action of M_{LD} on terms via self-distributivity, and the equivalence result can be seen as a completeness theorem connecting a syntactic and a semantic notion.

We recall that, for $\alpha \in \mathbf{A}$ and $r \geq 0$, $\alpha^{(p)}$ is defined to be $\alpha 1^{r-1} \cdot \alpha 1^{r-2} \cdot \ldots \cdot \alpha 1 \cdot \alpha$ for $r \geq 1$, and to be ε for p = 0. For $\alpha, \beta \in \mathbf{A}$, we define $\alpha \geq \beta$ to mean that α is a prefix of β , or α lies on the right of β : thus, for instance, $\phi \geq 1 \geq 0$ holds.

Definition. We say that the word u of A^* is a permutation-like word if u has the form $\alpha_1^{(r_1)} \dots \alpha_\ell^{(r_\ell)}$ with $\alpha_1 \geq \dots \geq \alpha_\ell$; in this case, for every address α , the exponent $e(\alpha, u)$ of α in u is defined to be the integer r such that $\alpha^{(r)}$ appears in u, if it exists, and to be 0 otherwise. An element of M_{LD} is said to be a permutation-like element if it can be represented by a permutation-like word.

As $\alpha^{(0)}$ has been defined to be the empty word, a permutation-like word can be written as $\prod_{\alpha\in A}^{\geq}\alpha^{(r_{\alpha})}$, where $(r_{\alpha}; \alpha\in A)$ is a sequence of nonnegative integers with finitely many positive entries. Observe that a length 1 word, *i.e.*, a single address, is a permutation-like word. It is easy to check that the projection of a permutation-like element of M_{LD} on B_{∞}^+ is a permutation braid.

Example 3.6. Let $w = 11 \cdot 1 \cdot \phi \cdot 1 \cdot 001 \cdot 00$. Then w is a permutation-like word, since we have $w = (11 \cdot 1 \cdot \phi) \cdot (1) \cdot (001 \cdot 00) = \phi^{(3)} \cdot 1^{(1)} \cdot 00^{(2)}$, and $\phi \ge 1 \ge 00$ holds. We have $e(\phi, w) = 3$, e(0, w) = 0, and e(1, w) = 1.

By definition of the ordering on addresses, a permutation-like word always has the form $\phi^{(r)} \cdot 1u_1 \cdot 0u_0$, where u_1 and u_0 are permutation-like words: this will enable us to develop inductive arguments.

Lemma 3.7. A permutation-like element in M_{LD} admits a unique representation by a permutation-like word. More precisely, if a is a permutation-like element, the unique permutation-like word that represents a depends on the operator LD_a only.

Proof. Assume that u is a permutation-like word. We show that the exponents of u are determined by the operator LD_u using induction on the size of t_u^L . For $\mathrm{size}(t_u^L) = 1$, we have $\mathrm{LD}_u = \mathrm{id}$, hence $u = \varepsilon$, and the result is true. Otherwise, assume $u = \phi^{(r)} \cdot 1u_1 \cdot 0u_0$. Since $(t_u^L)\phi^{(r)}$ exists, we have $\mathrm{ht}_R(t_u^L) \geq r+1$. Let $t_0 \cdot t_1 = (t_u^L)\phi^{(r)}$, and be $x_{f(i)}$ be the rightmost variable of the 1^i 0-th subterm of t_u^L . By construction, the rightmost variable of t_0 is $x_{f(r)}$. Now we have $t_u^R = (t_u^L)u = (t_0)u_0 \cdot (t_1)u_1$, we deduce that $x_{f(r)}$ is the rightmost variable of the 0-th subterm of t_u^R . This shows that t_u^R determines r, and, therefore, so does u. Then, for e = 0 and e = 1, t_e belongs to the domain of LD_{u_e} , it is an injective term, and we have $\mathrm{size}(t_e) < \mathrm{size}(t_u^L)$. As t_e is a substitute of $t_{u_e}^L$, we deduce $\mathrm{size}(t_{u_e}^L) < \mathrm{size}(t_u^L)$, hence, by induction hypothesis, $(t_e)u_e$ determines the exponents in u_e , and so does (t)u, since $(t_e)u_e$ is $\mathrm{sub}((t)u, e)$.

It follows that, for every permutation-like element a and every address α , we can define without ambiguity the exponent of α in a as the exponent of α in the unique permutation-like word that represents a.

We introduce now a second notion of simplicity for positive words by means of their action on injective terms.

Definition. If t is a term, the variable x_i is said to *cover* the variable x_j in t if there exist an address α in the skeleton of t such that x_i occurs in t at an address of the form $\alpha 1^p$, while x_j occurs in t at some address of the form $\alpha 0\beta$. The term t is said to be *semi-injective* if no variable covers itself in t.

For a term t to be semi-injective means that, for every subterm s of t, the rightmost variable of s occurs only once in s. Thus every injective term is semi-injective, but the converse is not true: for instance, the term $(x_1 \cdot x_2) \cdot (x_1 \cdot x_3)$, which is is not injective since x_1 occurs twice, is semi-injective.

Non-semi-injective terms have good closure properties. In the sequel, we write $var_R(t)$ for the rightmost variable of t, *i.e.*, for the unique variable that occurs in t at some address of the form 1^r .

Lemma 3.8. Non-semi-injective terms are closed under substitution and LD-expansion.

Proof. Assume that t is non-semi-injective. Then some variable x_i occurs both at $\alpha 1^r$ and $\alpha 0\beta$ in t. Let h be an arbitrary substitution, and let $x_k = \text{var}_R(h(x_i))$, $q = \text{ht}_R(h(x_i))$. Then x_k occurs at $\alpha 1^{r+q}$ and $\alpha 0\beta 1^q$ in t^h . Hence t^h is not semi-injective. On the other hand, LD-expansions never delete covering: if x_i covers x_j in t, it covers x_j in every LD-expansion of t: it suffices to establish the result for basic LD-expansions by considering the various possible cases. This applies in particular when x_i covers itself.

We introduce now a semantical notion of simplicity that is analogous to the condition that any two strands cross at most once in a braid diagram.

Definition. An element a of M_{LD} is said to be *simple* if the operator LD_a maps at least one term to a semi-injective term. A word on A is said to be simple if its class in M_{LD} is simple.

Lemma 3.9. Assume that a is an element of M_{LD} . Then, the following are equivalent:

- (i) The element a is simple;
- (ii) The term t_a^R is semi-injective;
- (iii) The operator LD_a maps every injective term to a semi-injective term.

Proof. The term t_a^L is injective, and the operator LD_a maps t_a^L to t_a^R , so (iii) implies (ii), and (ii) implies (i). Assume (i). Let t be a term in the domain of LD_a such that (t)a exists and is semi-injective. There exists a substitution h satisfying $t = (t_a^L)^h$ and $(t)a = (t_a^R)^h$. By Lemma 3.8, $(t_a^R)^h$ being semi-injective implies t_a^R being semi-injective as well, so (ii) holds. Assume now (ii), and let t be an injective term in the domain of LD_a . Then there exists a substitution h satisfying $t = (t_a^L)^h$, and t being injective means that we can assume that the image of every variable under t is an injective term, and the images of distinct variables involve distinct variables. Now we have $(t)a = (t_a^R)^h$, and such a term being not semi-injective would imply t_a^R itself being not semi-injective.

Using the closure properties of non semi-injective terms, we obtain the following closure property for simple elements of M_{LD} . Observe that the corresponding result for permutation-like elements is not clear—a situation parallel to the case of simple braids and permutation braids.

Lemma 3.10. Every divisor of a simple element of M_{LD} is simple.

Proof. Assume that a is not simple, and let b, c be arbitrary elements of M_{LD} . The term t_{ba}^R is a substitute of t_a^R , and the term t_{bac}^R is an LD-expansion of the previous term. By hypothesis, t_a^R is not semi-injective, hence, by Lemma 3.8, t_{ba}^R and t_{bac}^R are not semi-injective either. Hence bac is not simple.

We shall prove eventually that permutation-like elements and simple elements in M_{LD} coincide. For the moment, we observe that one direction is easy.

Lemma 3.11. Every permutation-like element of M_{LD} is simple.

Proof. Assume that a is a permutation-like element. We show that a is simple using induction on the size of t_a^L . By construction, a can be expressed (in a unique way) as $\phi^{(r)} \cdot \operatorname{sh}_1(a_1) \cdot \operatorname{sh}_0(a_0)$ where a_0 and a_1 are permutation-like elements. Let $t = t_a^L$. Then $(t)\phi^{(r)}$ exists, and, therefore, we have $\operatorname{ht}_R(t) \geq r+1$, *i.e.*, we can write $t = t_0 \cdot \ldots \cdot t_{r+1}$. We find $(t)\phi^{(r)} = t_0' \cdot t_1'$, with

$$t'_0 = t_0 \cdot \ldots \cdot t_{r-1} \cdot t_r$$
 $t'_1 = t_0 \cdot \ldots \cdot t_{r-1} \cdot t_{r+1}$.

By hypothesis, for $e = 1, 0, t'_e$ is an injective term that lies in the domain of the operator LD_{a_e} , and we have $size(t'_e) < size(t)$, hence $size(t^{L}_{a_e}) < size(t^{L}_{a})$. By induction hypothesis, the LD-expansions $(t'_1)a_1$ and $(t'_0)a_0$ are semi-injective terms. Hence (t)a, which is $(t'_0)a_0 \cdot (t'_1)a_1$, is semi-injective as well, for the rightmost variable of $(t'_1)a_1$, which is $var_R(t'_1)$, occurs neither in t'_0 nor in $(t'_0)a_0$.

Example 3.12. We obtain in this way a criterion for proving that a given element of M_{LD} is not a permutation-like element. For instance, the element $g_{\phi}^{+} \cdot g_{\phi}^{+}$ is not simple, and, therefore, it is not a permutation-like element: indeed $(x_1 \cdot x_2 \cdot x_3)\phi \cdot \phi$ is the term $((x_1 \cdot x_2) \cdot x_1) \cdot ((x_1 \cdot x_2) \cdot x_3))$, which is not semi-injective, since the variable x_1 occurs both at 01 and 000.

Our goal is now to establish the converse of Lemma 3.11. We begin with a series of computational formulas. The point is to determine the permutation-like decomposition of the product $\alpha^{(p)} \cdot \phi^{(q)}$, when it exists. We separate two cases, according to whether α contains at least one 0 or not.

Lemma 3.13. Assume $\alpha = 1^m 0\beta$. Then $\alpha^{(p)} \cdot \phi^{(q)}$ is simple for all p, q, and we have

$$\alpha^{(p)} \cdot \phi^{(q)} \equiv^+ \begin{cases} \phi^{(q)} \cdot \alpha^{(p)} & \text{for } q < m, \\ \phi^{(q)} \cdot (01^m \beta)^{(p)} & \text{for } q = m, \\ \phi^{(q)} \cdot (1\alpha)^{(p)} \cdot (0\alpha)^{(p)} & \text{for } q > m. \end{cases}$$

Proof. Assume p = 1. For $m \ge q + 1$, $1^m 0\beta$ commutes with every factor of the word $\phi^{(q)}$ by type 11 relations, so α commutes with $\phi^{(q)}$. For m = q, using q successive type 10 relations, we obtain

$$\alpha \cdot \phi^{(m)} = 1^m 0\beta \cdot 1^{m-1} \cdot \dots \cdot \phi \equiv^+ 1^{m-1} \cdot 1^{m-1} 01\beta \cdot 1^{m-2} \cdot \dots \cdot \phi$$

$$\vdots$$

$$\equiv^+ 1^{m-1} \cdot \dots \cdot 1 \cdot 101^{m-1} \beta \cdot \phi$$

$$\equiv^+ 1^{m-1} \cdot \dots \cdot 1 \cdot \phi \cdot 01^m \beta = \phi^{(m)} \cdot 01^m \beta.$$

For m < q, we find

$$\alpha \cdot \phi^{(q)} = 1^{m} 0\beta \cdot (1^{m+1})^{(q-m-1)} \cdot 1^{m} \cdot \phi^{(m)}$$

$$\equiv^{+} (1^{m+1})^{(q-m-1)} \cdot 1^{m} 0\beta \cdot 1^{m} \cdot \phi^{(m)} \qquad (\bot)$$

$$\equiv^{+} (1^{m+1})^{(q-m-1)} \cdot 1^{m} \cdot 1^{m} 10\beta \cdot 1^{m} 00\beta \cdot \phi^{(m)} \qquad (0)$$

$$\equiv^{+} (1^{m+1})^{(q-m-1)} \cdot 1^{m} \cdot 1^{m} 10\beta \cdot \phi^{(m)} \cdot 01^{m} 0\beta$$

$$\equiv^{+} (1^{m+1})^{(q-m-1)} \cdot 1^{m} \cdot \phi^{(m)} \cdot 1^{m} 10\beta \cdot 01^{m} 0\beta = \phi^{(q)} \cdot 1\alpha \cdot 0\alpha. \qquad (11)$$

Extending the result to the case p>1 is easy in the first two cases. In the last case, we observe that $1\alpha 1^{p-1} \cdot 0\alpha 1^{p-1} \cdot \dots \cdot 1\alpha \cdot 0\alpha$ is equivalent to $(1\alpha)^{(p)} \cdot (0\alpha)^{(p)}$ using type \bot relations.

Lemma 3.14. Assume $\alpha = 1^m$. Then $\alpha^{(p)} \cdot \phi^{(q)}$ is simple if and only if $m < q \le m + p$ does not hold; in this case, we have

$$\alpha^{(p)} \cdot \phi^{(q)} \equiv^+ \begin{cases} \phi^{(q)} \cdot \alpha^{(p)} & \text{for } q < m, \\ \phi^{(p+q)} & \text{for } q = m, \\ \phi^{(q)} \cdot (1^{m+1})^{(p)} \cdot (01^m)^{(p)} & \text{for } q > m + p. \end{cases}$$

Proof. For q < m, every factor in the word $\phi^{(q)}$ commutes with every factor in the word $\alpha^{(p)}$ by type 11 relations, so $\alpha^{(p)}$ and $\phi^{(q)}$ commute. For q = m, we have $\alpha^{(p)}\phi^{(q)} = \phi^{(p+q)}$. Assume q > m + p; we use induction on p. Assume first p = 1, hence $q \ge m + 2$. We have

$$1^{m} \cdot \phi^{(q)} = 1^{m} \cdot (1^{m+2})^{(q-m-2)} \cdot 1^{m+1} \cdot 1^{m} \cdot \phi^{(m)}
\equiv^{+} (1^{m+2})^{(q-m-2)} \cdot 1^{m} \cdot 1^{m+1} \cdot 1^{m} \cdot \phi^{(m)}
\equiv^{+} (1^{m+2})^{(q-m-2)} \cdot 1^{m+1} \cdot 1^{m} \cdot 1^{m+1} \cdot 1^{m} 0 \cdot \phi^{(m)}
= (1^{m})^{(q-m)} \cdot 1^{m+1} \cdot 1^{m} 0 \cdot \phi^{(m)}
\equiv^{+} (1^{m})^{(q-m)} \cdot 1^{m+1} \cdot \phi^{(m)} \cdot 01^{m}
\equiv^{+} (1^{m})^{(q-m)} \cdot \phi^{(m)} \cdot 1^{m+1} \cdot 01^{m} = \phi^{(q)} \cdot 1^{m+1} \cdot 01^{m}.$$
(Lemma 3.13)
$$\equiv^{+} (1^{m})^{(q-m)} \cdot \phi^{(m)} \cdot 1^{m+1} \cdot 01^{m} = \phi^{(q)} \cdot 1^{m+1} \cdot 01^{m}.$$
(11)

Assume now p > 1. We have

$$(1^{m})^{(p)} \cdot \phi^{(q)} = (1^{m+1})^{(p-1)} \cdot 1^{m} \cdot \phi^{(q)}$$

$$\equiv^{+} (1^{m+1})^{(p-1)} \cdot \phi^{(q)} \cdot 1^{m+1} \cdot 01^{m}$$

$$\equiv^{+} \phi^{(q)} \cdot (1^{m+2})^{(p-1)} \cdot (01^{m+1})^{(p-1)} \cdot 1^{m+1} \cdot 01^{m}$$

$$\equiv^{+} \phi^{(q)} \cdot (1^{m+2})^{(p-1)} \cdot 1^{m+1} \cdot (01^{m+1})^{(p-1)} \cdot 01^{m}$$

$$= \phi^{(q)} \cdot (1^{m+1})^{(p)} \cdot (01^{m})^{(p)} .$$

$$(ind. hyp.)$$

$$(\pm)$$

The above explicit formulas show that, in the three previous cases, $\alpha^{(p)} \cdot \phi^{(q)}$ is a permutation-like element. So it only remains to prove that the product is not simple in the case $m < q \le m + p$. By Lemma 3.11, it suffices to exhibit an injective term whose image under the operator $LD_{\alpha^{(p)},\phi^{(q)}}$ is not semi-injective. Let $t = x_1 \cdot \ldots \cdot x_{m+p+2}$. We find

$$(t)\alpha^{(p)} = x_1 \cdot \ldots \cdot x_m \cdot (x_{m+1} \cdot \ldots \cdot x_{m+p} \cdot x_{m+p+1}) \cdot x_{m+1} \cdot \ldots \cdot x_{m+p} \cdot x_{m+p+2}.$$

Applying the operator $LD_{\phi(q)}$ to this term gives a term whose 01^m -subterm is

$$(x_{m+1}\cdot\ldots\cdot x_{m+p+1})\cdot x_{m+1}\cdot\ldots\cdot x_{q+1},$$

and the rightmost variable of this subterm, namely x_{q+1} , also occurs in its left subterm, so it is not semi-injective—see an example on Figure 3.1.

Figure 3.1: A non-simple case: m = 1, p = 2, q = 3.

We can now determine whether a permutation-like element remains a permutation-like element when an additional factor $\phi^{(q)}$ is appended.

Lemma 3.15. Assume that a is a permutation-like element in M_{LD} , and q is nonnegative. Let $r = q + e(1^q, a)$. Then $a \cdot \phi^{(q)}$ is simple if and only if $m + e(1^m, a) < r$ holds for $0 \le m < q$; in this case, $a \cdot \phi^{(q)}$ is a permutation-like element, and we have $r = e(\phi, a \cdot \phi^{(q)})$.

Proof. In order to simplify notations, for $\gamma \in A$, and $a \in M_{LD}$, we write γa for $\operatorname{sh}_{\gamma}(a)$. Write

$$a = \prod_{m=0}^{\infty} (1^m)^{(r_m)} \cdot \prod_{m=\infty}^{0} 1^m 0 a_m,$$

where all a_m are permutation-like elements. We add the factor $\phi^{(q)}$ on the right, and try to push this factor to the left and integrate it in the decomposition. By Lemma 3.13, we cross the right product: $a \cdot \phi^{(q)}$ is equal to

$$\prod_{m=0}^{\infty} (1^m)^{(r_m)} \cdot \phi^{(q)} \cdot \prod_{m=\infty}^{q+1} 1^m 0 a_m \cdot 01^q a_q \cdot \prod_{m=q-1}^{0} (1^{m+1} 0 a_m \cdot 01^m 0 a_m),$$

hence, using type \perp relations, to

$$\prod_{m=0}^{\infty} (1^m)^{(r_m)} \cdot \phi^{(q)} \cdot \prod_{m=\infty}^{q+1} 1^m 0 a_m \cdot \prod_{m=q-1}^{0} 1^{m+1} 0 a_m \cdot 0 1^q a_q \cdot \prod_{m=q-1}^{0} 0 1^m 0 a_m.$$

It remains to study the expression $\prod_{m=0}^{\infty} (1^m)^{(r_m)} \cdot \phi^{(q)}$. We use now Lemma 3.14 to push $\phi^{(q)}$ to the left. First, we have

$$\prod_{m=q}^{\infty} (1^m)^{(r_m)} \cdot \phi^{(q)} \equiv^+ \phi^{(r)} \cdot \prod_{m=q+1}^{\infty} (1^m)^{(r_m)},$$

with $r=q+r_q$, i.e., $r=q+\mathrm{e}(1^q,a)$, and we are left with $\prod_{m=0}^{q-1}(1^m)^{(r_m)}\cdot\phi^{(r)}$. By Lemma 3.14, two cases are possible. Either the condition $q-1+r_{q-1}\geq r$ holds, and then $(1^{q-1})^{(r_{q-1})}\phi^{(r)}$ is not simple, and, therefore, by Lemma 3.10, $w\cdot\phi^{(q)}$ is not either simple. Or $q-1+r_{q-1}< r$ holds, and $(1^{q-1})^{(r_{q-1})}\cdot\phi^{(r)}$ is a permutation element, and it is equal to $\phi^{(r)}\cdot(1^q)^{(r_{q-1})}\cdot(01^{q-1})^{(r_{q-1})}$. We can continue, and consider the product $(1^{q-2})^{(r_{q-2})}\cdot\phi^{(r)}$. Again two cases are possible: in the one case, $w\cdot\phi^{(q)}$ is not simple, in the other, it is a permutation-like element, we can push the factor $\phi^{(q)}$ to the left, and the process continues. Finally, if the condition $m+r_m< r$ fails for some $m, w\cdot\phi^{(q)}$ is not simple; if the condition holds for every m, the factor $\phi^{(q)}$ migrates to the leftmost position, and we obtain that $a\cdot\phi^{(p)}$ is equal to

$$\phi^{(r)} \cdot \prod_{m=0}^{q-1} (1^{m+1})^{(r_m)} \cdot \prod_{m=0}^{q-1} (01^m)^{(r_m)} \cdot \prod_{m=\infty}^{q+1} 1^m 0 a_m \cdot \prod_{m=q-1}^0 1^{m+1} 0 a_m \cdot 01^q a_q \cdot \prod_{m=q-1}^0 01^m 0 a_m,$$

which can be rearranged using type \perp relations and renumbering into

$$\phi^{(r)} \cdot \prod_{m=1}^{q} (1^m)^{(r_{m-1})} \cdot \prod_{m=\infty}^{q+1} 1^m 0 a_m \cdot \prod_{m=q}^{1} 1^m 0 a_{m-1} \cdot \prod_{m=0}^{q-1} (01^m)^{(r_m)} \cdot 01^q a_q \cdot \prod_{m=q-1}^{0} 01^m 0 a_m,$$

an explicit permutation-like element of M_{LD} .

Proposition 3.16. An element of M_{LD} is permutation-like if and only if it is simple.

Proof. We have already seen that every permutation-like element is simple. We establish now that a being simple implies a being a permutation-like element using induction on size (t_a^L) . For size $(t_a^L) = 1$, we have a = 1, both a permutation-like element and a simple element. Assume now $a \neq 1$. Then a can be decomposed as $b \cdot \alpha^{(q)}$. By Lemma 3.10, b is simple, so, by induction hypothesis, it is a permutation-like element. We show inductively on the length of the address α that $b \cdot \alpha^{(q)}$ is a permutation-like element. For $\alpha = \emptyset$, the previous lemma gives the result. Otherwise, assume $\alpha = e\beta$, with e = 0 or e = 1. There exist an integer r and permutation-like elements a_1 , a_0 such that a is equal to $\phi^{(r)} \cdot \sinh_1(a_1) \cdot \sinh_0(a_0)$. By Lemma 3.10 again, the element $\sinh_e(a_e) \cdot \alpha^{(q)}$ is simple, which implies that $a_e \cdot \beta^{(q)}$ is simple too, since a subterm of a semi-injective term is semi-injective. By induction hypothesis, $a_e \cdot \beta^{(q)}$ is simple, and so are $\sinh_e(a_e) \cdot \alpha^{(q)}$, and $\phi^{(r)} \cdot \sinh_{1-e}(a_{1-e}) \cdot \sinh_e(a_e) \cdot \alpha^{(q)}$. This completes the induction.

Remark. The braid counterpart of the previous result is the equivalence of simple braids and permutation braids, more precisely the fact that every simple braid in B_n is a left divisor of Δ_n . The key point in the latter fact is the exchange lemma for the symmetric group S_n , a special case of the well known exchange lemma for Coxeter groups. The above argument can be seen as a tree version of the exchange lemma.

4. Applications

Once we know that simple elements and permutation-like elements coincide in the monoid M_{LD} , further results can be deduced easily.

Simple LD-expansions

What makes simple braids remarkable is the property that the right lcm of two simple braids in the monoid B_{∞}^+ is still a simple braid. In particular, the braid Δ_n is a maximal simple braid in B_n^+ , and it is the right lcm of all such simple braids. Here we prove similar results in the case of the monoid M_{LD} , the role of the braids Δ_n being played by the elements Δ_t represented by the words Δ_t .

Definition. The term t' is a *simple* LD-expansion of the term t if there exists a simple word u such that LD_u maps t to t'.

By Lemma 3.7, there exists a one-to-one correspondence between the simple LD-expansions of a term t and the permutation-like elements a in M_{LD} such that t belongs to the domain of LD_a .

Proposition 4.1. For every term t, the term ∂t is the maximal simple LD-expansion of t, and Δ_t is the (unique) permutation-like word u such that LD_u maps t to ∂t .

Proof. We already know that LD_{Δ_t} maps t to ∂t . That Δ_t is a permutation-like word follows from its explicit definition. So it remains to prove using induction on the size of t that no LD-expansion of ∂t is a semi-injective term. Assume $t = t_0 \cdot t_1$. We consider first LD-expansion at ϕ . The equality $\partial t = \partial t_0 * \partial t_1$ shows that every variable occurring in t except possibly the rightmost one occurs both in the left and the right subterm of ∂t . So the rightmost variable of $\mathrm{sub}(\partial t, 10)$, $\mathrm{say}\ x_i$, occurs in $\mathrm{sub}(\partial t, 0)$ also, hence, when LD_{ϕ} is applied to ∂t , x_i covers itself in the resulting LD-expansion, which therefore is not semi-injective.

Consider now LD-expansion at α , where α is a nonempty address, say $\alpha = e\beta$ with e = 0 or e = 1. By construction, we have $\text{sub}((\partial t)\alpha, e) = (\partial t_e)\beta$, which, by induction hypothesis, is not a semi-injective term. So $(t)\alpha$ is not either semi-injective.

Corollary 4.2. For every term t, the class Δ_t of Δ_t in M_{LD} is simple, and it is maximal in the sense that $\Delta_t a$ is simple for no element a such that the term $(t)\Delta_t \cdot a$ exists.

Proposition 4.3. For every a of M_{LD} , the following are equivalent:

- (i) The element a is simple;
- (ii) There exists a term t such that a is a left divisor of Δ_t in M_{LD} .
- (iii) For every term t such that (t)a exists, the element a is a left divisor of Δ_t in M_{LD}

Proof. By definition, (iii) implies (ii), and, by the previous corollary, (ii) implies (i). So the point is to prove that (i) implies (iii). We prove using induction on the size of t that, if u is a permutation-like word and (t)u is defined, then there exists a word v satisfying $u \cdot v \equiv^+ \Delta_t$. The result is obvious when t is a variable. Otherwise, let $r+1=\operatorname{ht}_R(t)$. By definition, the term t belongs to the domain of the operator LD_u , the inequality $m+\operatorname{e}(1^m,u) \leq r$ holds for $0 \leq m \leq r$, so there exists a least q satisfying $q+\operatorname{e}(1^q,u)=r$. By Lemma 3.15, we deduce that $u \cdot \phi^{(q)}$ is simple, and that $\operatorname{e}(\phi, u \cdot \phi^{(q)})=r$ holds, which means that there exist simple words u_1, u_0 satisfying

$$u \cdot \phi^{(q)} \equiv^+ \phi^{(r)} \cdot 1u_1 \cdot 0u_0.$$

By construction, $(t)\phi^{(r)}$ is defined. Let $s_0 \cdot s_1 = (t)\phi^{(r)}$. By definition, the term $(s_e)u_e$ is defined for e = 1, 0, and, by construction, we have $\operatorname{size}(s_e) < \operatorname{size}(t)$. Hence, by induction hypothesis, there exists a word v_e satisfying $u_e \cdot v_e \equiv^+ \Delta_{s_e}$. We obtain

$$u \cdot \phi^{(q)} \cdot 1v_1 \cdot 0v_0 \equiv^+ \phi^{(r)} \cdot 1u_1 \cdot 0u_0 \cdot 1v_1 \cdot 0v_0 \equiv^+ \phi^{(r)} \cdot 1\Delta_{s_1} \cdot 0\Delta_{s_0} = \Delta_t.$$

Proposition 4.4. Any two simple elements of M_{LD} admit a simple right lcm.

Proof. Assume that a, b are simple elements of M_{LD} . Let t be a term both in the domain of LD_a and in domain of LD_b . Then Δ_t is a common right multiple of a and b, hence it is a right multiple of the right lcm of a and b. Hence the latter element, which divides an element of the form Δ_t , is simple.

As every (left or right) divisor of a simple element of M_{LD} is still a simple element, we deduce from Proposition 4.4 that, if a and b are simple, so is the (unique) element $a \setminus b$ such that $a(a \setminus b)$ is the right lcm of a and b.

Normal form

We construct now a unique normal from for the elements of M_{LD} . It is an exact counterpart to the right greedy normal form for the braid monoids [1], [10], [11]—on which it projects.

Definition. Assume that a, b are simple elements of M_{LD} . We say that a is orthogonal to b if, for each address α such that g_{α}^{+} is a left divisor of b, $a \cdot g_{\alpha}^{+}$ is not simple.

Proposition 4.5. Every element of M_{LD} admits a unique decomposition of the form $a_1 \cdot \ldots \cdot a_p$, where a_1, \ldots, a_p are simple and, for every $k \geq 2$, a_{k-1} is orthogonal to a_k .

Proof. Let a be an arbitrary element of M_{LD} . We prove the existence of an expression of a satisfying the above conditions using induction on $\nu(a)$, defined as the common value of $\nu(u)$ for u a word on A representing a. For $\nu(a)=0$, we have a=1, and the result is obvious. Assume $a\neq 1$. For a' a simple left divisor of a, we have $\nu(a')\leq\nu(a)$ by construction, so there exists at least one simple left divisor a_1 of a such that $\nu(a_1)$ has the maximal possible value. As a is not 1, there exists at least one address α such that $\mu(a_1)$ has the maximal possible value. As $\mu(a_1)$ is simple, we deduce that $\mu(a_1)$ that $\mu(a_1)$ has the maximal possible value $\mu(a_1)$ by induction hypothesis, $\mu(a_1)$ be a decomposition $\mu(a_1)$ by that satisfies the conditions of the proposition. We deduce $\mu(a_1)$ by that $\mu(a_1)$ is orthogonal to $\mu(a_2)$. Assume that $\mu(a_1)$ is a nontrivial left divisor of $\mu(a_2)$ in $\mu(a_1)$ is a left divisor of $\mu(a_2)$ and $\mu(a_1)$ is a left divisor of $\mu(a_2)$ by $\mu(a_1)$ would contradict the definition of $\mu(a_1)$ by $\mu(a_2)$ by $\mu(a_2)$ would contradict the definition of $\mu(a_2)$.

For uniqueness, it suffices to prove that, if (a_1, \ldots, a_p) is a sequence of simple elements of M_{LD} such that, for $k \geq 2$, a_{k-1} is orthogonal to a_k , then a_1 is determined by the product $a_1 \dots a_p$. Indeed, M_{LD} is left cancellative, and an induction then shows that $a_2, \dots,$ a_p are determined as well. So, assume $a = a_1 \cdot \ldots \cdot a_p$, with (a_1, \ldots, a_p) as above. By construction, a_1 is a simple left divisor of a. Assume that c_1 is a nontrivial element of M_{LD} such that $a_1 \cdot c_1$ is simple. Define inductively $c_k = a_k \setminus c_{k-1}$ for $2 \le k \le p$. The hypothesis that $a_1 \cdot c_1$ is simple implies that c_1 is simple. Then, $a_2 \cdot c_2$ is the right lcm of a_2 and c_1 , hence it is simple as well, and this in turn implies that c_2 is simple. Similarly, we show using induction on k that $a_k \cdot c_k$ and c_k are simple for every k. Now, the hypotheses that c_1 is not 1 and that a_2 is orthogonal to a_1 imply that c_1 is not a left divisor of a_2 , and, therefore, we have $c_2 \neq 1$. Repeating the argument yields $c_k \neq 1$ for every k. In particular, we have $c_p \neq 1$. Now, by construction, we have $c_p = (a_2 \cdot \ldots \cdot a_p) \setminus c_1$, and $c_p \neq 1$ means that c_1 is not a left divisor of $a_2 \cdot \ldots \cdot a_p$, hence that $a_1 \cdot c_1$ is not a left divisor of a. Thus we have proved that a_1 is a simple left divisor of a with maximal value of ν . It remains to observe that such an element is unique. Now, assume that a_1, a'_1 are such elements. Then the right lcm of a_1 and a'_1 is still a left divisor of a, it is simple by Proposition 4.4, and the assumption $\nu(a_1) = \nu(a_1') = \nu(a_1(a_1 \setminus a_1'))$ implies $a_1' = a_1$.

The Embedding Conjecture

In [12], Garside proves that the braid monoid B_{∞}^+ embeds in the braid group B_{∞} , which implies that B_{∞} is the group of fractions of B_{∞}^+ . Here we briefly discuss the similar question for the monoid M_{LD} and the group G_{LD} .

Conjecture 4.6. The monoid M_{LD} embeds in the group G_{LD} , i.e., for all words u, u' on A, $u' \equiv u$ implies (and, therefore, is equivalent to) $u' \equiv^+ u$.

Several equivalent forms can be stated.

Proposition 4.7. Conjecture 4.6 is equivalent to each of the following statements:

- (i) The monoid M_{LD} admits right cancellation;
- (ii) The monoid \mathcal{G}_{LD}^+ is isomorphic to the monoid M_{LD} , i.e., for all words u, u' in \mathbf{A}^* , $LD_{u'} = LD_u$ implies (and, therefore, is equivalent to) $u' \equiv^+ u$.

Proof. The equivalence with (i) follows from the results of [6], as we know that M_{LD} is associated with an atomic, coherent, and convergent complement (the latter meaning that word reversing always terminates, which is a consequence of the existence of common right multiples). The equivalence with (ii) follows from Proposition 1.5, which tell us that $LD_{u'} = LD_u$ is equivalent to $u' \equiv u$.

Definition. Assume that a is an element of M_{LD} . We say that the Embedding Conjecture is true for a if the canonical projection of M_{LD} onto G_{LD}^+ is injective on a, i.e., if $LD_a \neq LD_{a'}$ holds for every $a' \neq a$ in M_{LD} .

Thus Conjecture 4.6 is true if and only if the Embedding Conjecture is true for every element of M_{LD} .

Proposition 4.8. The Embedding Conjecture is true for every simple element of M_{LD} .

Proof. Assume that a is a simple element of M_{LD} , and the operators LD_a and $LD_{a'}$ coincide. Hence, by definition, a' is simple as well, and, by Lemma 3.7, both a and a' are represented by permutation-like word determined by the operator LD_a .

No proof of the Embedding Conjecture is known to date. Let us mention that further partial results can be established using completely different methods. In particular, it is proved in [7] that the Embedding Conjecture is true for every element of M_{LD} that is a right divisor of some element $\Delta_t^{(k)}$, as well as for every element of the submonoid of M_{LD} generated by the elements g_{1i}^+ .

References

- S.I. Addan, Fragments of the word Delta in a braid group, Mat. Zam. Acad. Sci. SSSR 36-1 (1984) 25-34; translated Math. Notes of the Acad. Sci. USSR; 36-1 (1984) 505-510.
- [2] P. Dehornoy, Free distributive groupoids, J. P. Appl. Algebra 61 (1989) 123–146.
- [3] —, Structural monoids associated to equational varieties, Proc. Amer. Math. Soc. 117-2 (1993) 293–304.
- [4] —, Braid groups and left distributive operations, Trans. Amer. Math. Soc. **345-1** (1994) 115–151.
- [5] —, The structure group for the associativity identity, J. Pure Appl. Algebra **111** (1996) 59–82.
- [6] —, Groups with a complemented presentation, J. Pure Appl. Algebra 116 (1997) 115–137.
- [7] —, The fine structure of LD-equivalence, preprint.
- [8] P. Dehornoy & L. Paris, Garside groups, a generalization of Artin groups, Proc. London Math. Soc. **79-3** (1999) 569–604.
- [9] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972) 273–302.
- [10] E. A. ELRIFAI & H. R. MORTON, Algorithms for positive braids, Quart. J. Math. Oxford 45-2 (1994) 479–497.
- [11] D. EPSTEIN & al., Word Processing in Groups, Jones & Barlett Publ. (1992).
- [12] F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford **20** No.78 (1969) 235–254.
- [13] E. Ghys & V. Sergiescu, Sur un groupe remarquable de diffomorphismes du cercle, Comment. Math. Helverici **62** (1987) 185–239.
- [14] R. LAVER, The left distributive law and the freeness of an algebra of elementary embeddings, Advances in Math. **91-2** (1992) 209–231.

- [15] —, On the algebra of elementary embeddings of a rank into itself, Advances in Math. **110** (1995) 334–346.
- [16] R. McKenzie & R.J. Thompson, An elementary construction of unsolvable word problems in group theory, in Word Problems, Boone & al. eds., North Holland, Studies in Logic vol. 71 (1973).
- [17] K. Tatsuoka, An isoperimetric inequality for Artin groups of finite type, Trans. Amer. Math. Soc. **339–2** (1993) 537–551.

Laboratoire SDAD, ESA 6081 CNRS
Mathématiques, BP 5186,
Université Campus II, 14 032 Caen, France
dehornoy@math.unicaen.fr
http://www.math.unicaen.fr/~dehornoy/