
DISKS IN TRIVIAL BRAID DIAGRAMS

PATRICK DEHORNOY

Abstract. We show that every trivial 3-strand braid diagram contains a disk,
defined as a ribbon ending in opposed crossings. Under a convenient algebraic
form, the result extends to every Artin–Tits group of dihedral type, but it fails
to extend to braids with 4 strands and more. The proof uses a partition of the
Cayley graph and a continuity argument.

1. Introduction

Let us say that a braid diagram is trivial if it represents the unit braid, i.e., if it
is isotopic to an unbraided diagram. Consider the following simple trivial diagrams:

We see that these digrams contain a disk, defined as an embedded ribbon ending
in crossings with opposite orientations (the striped areas). Below is another trivial
braid diagram containing a disk: here the shape is more complicated, but we still
have the property that the third strand does not pierce the disk.

Finally, let us display a more intricate example involving a disk: here the third
strand pierces the ribbon, but it does it so as to make a topologically trivial handle
through the disk, so, up to an isotopy, we still have an unpierced disk.

A few tries should convince the reader that most trivial braid diagrams seem
to contain at least one disk in the sense above—a precise definition will be given
below—and make the following question natural:

Question 1.1. Does every trivial braid diagram (with at least one crossing) contain
a disk?

Our aim is to anwser the question by proving
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Proposition 1.2. The answer to Question 1.1 is positive in the case of 3-strand
braids, i.e., every trivial 3-strand braid diagram with at least one crossing contains
a disk. It is negative in the case of 4 strands and more.

As for the negative part, it is sufficient to exhibit a counter-example, what will
be done at the end of Section 2 (see Figure 2).

As for the positive part, the argument consists in going to the Cayley graph of
the braid group and using a continuity result, which itself relies on the properties of
division in the braid monoid B+

n . The argument works in every Artin–Tits group
of spherical type, and we actually prove the counterpart of (the positive part of)
Proposition 1.2 in all Artin–Tits groups of type I2(m).

One should keep in mind that we are interested in braid diagrams, not in braids:
up to an isotopy, all braid diagrams we consider can be unbraided. What makes
the question nontrivial is that isotopy may change the possible disks of a braid
diagram completely, so that it is hopeless to trace the disks along an isotopy. For
instance, the reader can check that applying one type III Reidemeister move in the
braid diagram of Figure 2 suffices to let one disk appear.

2. Disks and removable pairs of letters

Definition. (Figure 1) Assume that D is an n-strand braid diagram, which is
the projection of a 3-dimensional geometric braid β consisting of n disjoint curves
connecting n points P1, . . . Pn in the plane z = 0 to n points P ′

1, . . . , P
′
n in the

plane z = 1. For 1 � i, j < n, we say that D is an (i, j)-disk if D begins with a
crossing of the strands starting at Pi and Pi+1, it finishes with a crossing of opposite
orientation of the strands ending at P ′

j and P ′
j+1, and the figure obtained from β

by connecting Pi to Pi+1 and P ′
j to P ′

j+1 is isotopic to the union of n − 2 curves
and the boundary of a disk disjoint from these curves.

P1

P2

P3

P ′
1

P ′
2

P ′
3

X

X ′

Figure 1. A (2, 1)-disk (left), and a diagram that is not a (2, 1)-disk
(right): the third strand pierces the ribbon made by the first two strands;
it is convenient in the formal definition to appeal to the points Pi and P ′

j ,
but, in essence, the disk is the part lying between the crossings de-
noted X and X ′.

This definition is directly reminiscent of the notion of a life disk in a singular
braid introduced in [15]: another way to state that D is a disk is to say that, when
one makes the initial and the final crossings in D singular—with the convention
that the first crossing is replaced with a “birth” singular crossing, while the last
one, which is supposed to have the opposite orientation, is replaced with a “death”
singular crossing—then the resulting figure is a life disk.

We shall address Question 1.1 using the braid group Bn and the geometry of its
Cayley graph. As is standard, braid diagrams will be encoded by finite words over
the alphabet {σ±1

1 , . . . , σ±1
n−1}, using σi to encode the elementary diagram where the
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(i + 1)th strand crosses over the ith strand. For instance, the first three diagrams
above are coded by σ1σ−1

1 , σ1σ2σ1σ−1
2 σ−1

1 σ−1
2 , and σ1σ2

2σ1σ2
2σ−2

1 σ−1
2 σ−2

1 σ−1
2 , re-

spectively.
We denote by ≡ the equivalence relation on braid words that corresponds to braid

isotopy. As is well known, ≡ is the congruence generated by the pairs (σi σj , σj σi )
with |i − j| � 2 and (σi σj σi , σj σi σj ) with |i − j| = 1, together with (σi σ−1

i , ε)
and (σ−1

i σi , ε), where ε denotes the empty word.

Proposition 2.1. A braid diagram is an (i, j)-disk if and only if it is encoded in
a word of the form σe

i wσ−e
j with e = ±1 and σe

i wσ−e
j ≡ w.

Proof. Assume that D is an (i, j)-disk. By definition, D is encoded in some braid
word of the form σe

i wσ−e
j with e = ±1. Moreover, we can assume that, after an

isotopy, the strands of D starting at positions i and i+1 make an unpierced ribbon.
Then, the initial σe

i crossing may be pushed along that ribbon, so as to eventually
cancel the final σ−e

j crossing. Hence D is isotopic to the diagram obtained by
deleting its first and last crossings,, i.e., we have σe

i wσ−e
j ≡ w.

Conversely, assume that D is encoded in σe
i wσ−e

j and σe
i wσ−e

j ≡ w holds. Then
we have σe

i w ≡ wσe
j . By Theorem 2.2 of [16], this implies that D contains a ribbon

connecting [i, i + 1] × 0 to [j, j + 1] × 1 that is, up to an isotopy, disjoint from the
other strands. Hence, with our current definition, D is an (i, j)-disk.

We thus are led to introduce:

Definition. A braid word of the form σe
i wσ−e

j with e = ±1 is said to be a removable
pair of letters if σe

i wσ−e
j ≡ w holds.

With this notion, Question 1.1 is equivalent to

Question 2.2. Does every nonempty trivial braid word contain a removable pair
of letters?

Speaking of “removable pair” is natural here: indeed, saying that a braid word w′

contains a removable pair σe
i wσ−e

j implies that w′ is equivalent to the word obtained
from w′ by replacing the subword σe

i wσ−e
j with w, i.e., by deleting the end letters σe

i

and σ−e
j . Observe that the notion of a removable pair of letters actually makes sense

for any group presentation: we shall use it in a more general context in Section 5
below.

As there exist efficient algorithms for deciding braid word equivalence, it is easy
to systematically search the possible removable pairs in a braid word, and an ex-
perimental approach of Question 2.2 is possible. Random tries would suggest a
positive answer, but this is misleading: for instance, the 4 strand braid word

σ−1
1 σ−2

2 σ−1
3 σ−1

1 σ−2
2 σ−1

1 σ−1
3 σ−2

2 σ−1
3 σ−3

2 σ−2
1 σ2

3σ3
2σ1σ2

2σ1σ3σ2
2σ3σ1σ2

2σ3

contains no removable pair of letters, and, therefore, the associated braid diagram,
which is diplayed in Figure 2, contains no disk. This establishes the negative part
of Proposition 1.2.

3. The valuation of a pure simple element

The proof of (the positive part of) Proposition 1.2 relies on partitioning the
Cayley graph of B3 using integer parameters connected with division in the braid
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Figure 2. A trivial 4-strand braid diagram containing no disk

monoid B+
3 . The construction is not specific to the braid group B3, nor is it either

specific to braid groups: actually, it is relevant for all spherical type Artin–Tits
groups, and, more generally, for all Garside groups in the sense of [11].

A monoid G+ is said to be a Garside monoid if it is cancellative, 1 is the only
invertible element, any two elements admit a left and a right least common multiple,
and G+ contains a Garside element, defined as an element whose left and right
divisors coincide, they generate the monoid, and they are finite in number. If G+

is a Garside monoid, it embeds in a group of fractions. A group G is said to be a
Garside group if G can be expressed in at least one way as the group of fractions
of a Garside monoid.

Typical examples of Garside monoids are the braid monoids B+
n , and, more

generally, the Artin–Tits monoids A+ of spherical type, i.e., those Artin–Tits mon-
oids such that the associated Coxeter group W is finite. In this case, the image
of the longest element of W under the canonical section of the projection of A+

onto W is a Garside element in A+. In the particular case of B+
n , one obtains the

half-twist braid ∆n. So, the braid groups Bn, and, more generally, the Artin–Tits
groups of sperical type, are Garside groups. Let us mention that a given group
may be the group of fractions of several Garside monoids: for instance, the braid
groups Bn admit a second Garside structure, associated with the Birman–Ko–Lee
monoid of [4]—see [1, 18] for similar results involving other Artin–Tits groups. Still
another Garside structure for B3 involves the submonoid generated by σ1 and σ1σ2 ,
a Garside monoid with presentation 〈a, b; aba = b2〉, hence not of Artin–Tits type.

Assume that G+ is a Garside monoid. Then every element x in G+ admits
finitely many expressions as a product of atoms (indecomposable elements), and
the supremum ‖x‖ of the length of these decompositions, called the norm of x,
satisfies ‖xy‖ � ‖x‖+‖y‖ and ‖x‖ � 1 for x �= 1. Then there exists in G+ a unique
Garside element of minimal norm; this element is traditionally denoted ∆, and its
(left and right) divisors are called the simple elements of G+.

We shall start from two technical results about division in Garside monoids—as
shown in [11], these results also happen to be crucial in the construction of an
automatic structure [14, 6, 7]. For x, y in a Garside monoid G+, we denote by x\y
the unique element z such that xz is the right lcm of x and y, and we write y � z
(resp. z � y) to express that y is a left (resp. right) divisor of z.

Lemma 3.1. Assume that G+ is a Garside monoid, that y, z are elements of G+

and that every simple right divisor of yz is a right divisor of z. Let x be an arbitrary
element of G+, and let y′ = x\y and z′ = (y\x)\z. Then every simple right divisor
of y′z′ is a right divisor of z′.

Proof. Let x′ = y\x and x′′ = z\(y\x). By definition of a right lcm, we have
xy′ = yx′, and x′z′ = zx′′. Moreover 1 is the only common right divisor of y′

and x′. Assume that s is a simple right divisor of y′z′. Then we have xy′z′ � s,
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hence yzx′′ � s. Let s′x′′ be the left lcm of s and x′′. Then yzx′′ � s implies
yzx′′ � s′x′′, hence yz � s′. Moreover, s being simple implies that s′ is simple
as well, as shows an induction on the minimal number p such that x′′ can be
decomposed into the product of p simple elements. Then, the hypothesis of the
lemma implies z � s′, and, therefore, zx′′ � s, i.e., x′z′ � s. It follows that s is a
right divisor of the right lcm of y′z′ and x′z′, which is z′ since 1 is the only common
right divisor of y′ and x′.

Lemma 3.2. Assume that G+ is a Garside monoid, that y, z, x are elements of G+,
and that every simple right divisor of yz is a right divisor of z. Then y �� x implies
yz �� xt for every simple element t of G+.

Proof. We assume yz � xt, and aim at proving y � x. Let y′ = x\y, and z′ =
(y\x)\z. By construction, we have y′z′ = x\(yz), and yz � xt implies y′z′ � t, so,
in particular, y′z′ must be simple. By Lemma 3.1, every simple right divisor of y′z′

is a right divisor of z′, so we deduce z′ � y′z′, which is possible for y′ = 1 only, i.e.,
for y � x.

Now, the idea is to consider, for each element of a Garside group G and each
simple element s of G+, the maximal power of s that divides a given element. We
begin with the monoid.

Definition. Assume that G+ is a Garside monoid. We say that a simple element s
of G+ is pure if s is the maximal simple right divisor of sk, for every k. If s is a
pure simple element of G+, we define the (left) valuation νs(x) of s in x to be the
maximal k satisfying sk � x.

In the braid monoid B+
n , each generator σi , as well as the Garside element ∆n—

and, more generally, each simple braid which is an lcm of generators σi —is a pure
simple element. If G+ is an arbitrary Garside monoid, the Garside element ∆ is
always pure by definition, but the atoms or their lcms need not be pure in general:
for instance, in the monoid 〈a, b ; aba = b2〉+, the atom b is not pure, as b2 is simple.

Lemma 3.3. Assume that G+ is a Garside monoid and that s is a pure simple
element of G+. Then, for every x in G+, we have

νs(x) � νs(xt) � νs(x) + 1(3.1)

whenever t is a simple element of G+; more specifically, for t = ∆, we have

νs(x∆) = νs(x) + 1.(3.2)

Proof. First sk � x implies sk � xt for every t, hence νs(x) � νs(xt). On the other
hand, assume sk+1 �� x. By hypothesis, every right divisor of sk+2 is a right divisor
of s. Applying Lemma 3.2 with y = sk+1 and z = s, we deduce sk+2 �� xt, hence
νs(xt) � νs(x) + 1, and (3.1) follows.

As ∆ is simple, (3.1) implies νs(x∆) � νs(x)+1. On the other hand, let φ be the
automorphism of G+ defined for z a simple element by φ(z) = (z\∆)\∆ (see [11]).
Then z∆ = ∆φ(z) holds for every z. Now assume sk � x. We find

x∆ = skx′∆ = sk∆φ(x′) = sk+1(s\∆)φ(x′),

hence sk+1 � x∆, and, therefore, νs(x∆) > νs(x), hence (3.2).
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We now extend the maps νs from a Garside monoid G+ to its group of frac-
tions G. As ∆ is a common multiple of all atoms in G+, every element of G can be
expressed as x∆k with x ∈ G+ and k ∈ Z. Unless we require that k be maximal,
the decomposition need not be unique. However, we have the following result:

Lemma 3.4. Assume that G+ is a Garside monoid, x, x′ are elements of G+, and
we have x∆k = x′∆k′

in the group of fractions G of G+. Then, for each pure
simple element s of G+, we have νs(x) + k = νs(x′) + k′.

Proof. Assume for instance k � k′, say k′ = k + m. Then we have x∆k = x′∆m∆k

in G, hence x = x′∆m in G+ (we recall that G+ embeds in G). Using Lemma 3.3
m times, we obtain νs(x′∆m) = νs(x′) + m for every s, hence νs(x) = νs(x′) + m,
i.e., νs(x) + k = νs(x′) + k′.

Then the following definition is natural:

Definition. Assume that G+ is a Garside monoid, G is the group of fractions
of G+, and s is a pure simple element of G+. Then, for x in G, the (left) valu-
ation νs(x) of s in x is defined to be νs(z) + k, where x = z∆k is an arbitrary
decomposition of x with z ∈ G+ and k ∈ Z.

Example 3.5. Let G = B3, and x = σ−1
1 σ2 . We can also write x = σ2σ2

1∆−1
3 .

We have νσ1
(σ2σ2

1) = 0 and νσ2
(σ2σ2

1) = 1, so we find νσ1
(x) = 0 − 1 = −1, and

νσ2
(x) = 1 − 1 = 0.

It is now easy to see that the inequalities of Lemma 3.3 remain valid in the group:

Proposition 3.6. Assume that G is the Garside group associated with a Garside
monoid G+, and that s is a pure simple element of G+. Then, for every element x
in G, and every simple element t in G+, we have

νs(x) � νs(xt) � νs(x) + 1;(3.3)

for t = ∆, we have νs(x∆) = νs(x) + 1.

Proof. Assume x = y∆k with y ∈ G+. We have xt = y∆kt = yφ−k(t)∆k. Then
yφ−k(t) belongs to G+, hence we have νs(x) = νs(y)+k, and νs(xt) = νs(yφ−k(t))+
k. As φ−k(t) is a simple element of G+, Lemma 3.3 gives

νs(y) � νs(yφ−k(t)) � νs(y) + 1,

so (3.3) follows. The result for t = ∆ is obvious, since we obtain x∆ = y∆k+1,
hence νs(x∆) = νs(y) + k + 1 = νs(x) + 1 directly.

Inequality (3.3) is the algebraic socle on which we shall build in the sequel.

4. Partitions of the Cayley graph

From now on, we restrict to Artin–Tits groups, i.e., we consider presentations
of the form

〈S ; prod(σ, τ, mσ,τ ) = prod(τ, σ, mσ,τ ) for σ �= τ in S 〉,(4.1)

where prod(σ, τ, m) denotes the alternated product στστ . . . with m factors, and
mσ,τ � 2 holds. Moreover, we restrict to the spherical type, i.e., we assume that
the Coxeter group obtained by adding to (4.1) the relation σ2 = 1 for each σ in S is
finite. Then the monoid A+ defined by (4.1) is a Garside monoid, and the group A
defined by (4.1) is the group of fractions of A+.
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In this case, each generator σ in S is pure, since σ2 is not simple and σ is
the right gcd of σ2 and ∆. Hence, each element x of the group A has a well-
defined valuation νσ(x) for each σ in S, and we can associate to x the valuation
sequence (νσ(x);σ ∈ S).

Example 4.1. Consider the case of B3. There are two atoms, namely σ1 and σ2 .
The valuation sequence associated with σ1 is (1, 0), while the one associated with
σ−1

1 σ2 is (1,−1), as was seen above. Observe that the influence of right multi-
plication on the valuation sequence may be anything that is compatible with the
constraints of (3.3). For instance, σ1 , σ1σ2 , and σ1σ2

2σ1 all admit the valuation
sequence (1, 0), while the valuation sequences of σ1 · σ2 , σ1 · σ1 , σ1σ2 · σ1 , and
σ1σ2

2σ1 · σ2 are (1, 0), (2, 0), (1, 1), and (2, 1), respectively.

Using the valuation sequence, we can partition the group A, hence, equivalently,
its Cayley graph, into disjoint regions according to the values of the valuations. For
our current purpose, we shall consider a coarser partition, namely the one obtained
by taking into account not the values of the valuations, but their relative positions
only. Let us say that two n-tuples of integers (k1, . . . , kn) and (k′

1, . . . , k
′
n) are order-

equivalent if ki = kj and k′
i = k′

j (resp. ki < kj and k′
i < k′

j) hold for the same
pairs (i, j). The equivalence class of a tuple (k1, . . . , kn) will be called its order-type.
For instance, there are 3 order-types of pairs, corresponding to pairs (k1, k2) with
k1 < k2, k1 = k2, and k1 > k2, respectively. Similarly, there are 13 order-types of
triples, and, in the general case of n-tuples, the number of order-types is the nth
ordered Bell number

∑n
p=1 app

n with ap =
∑n−p

q=0 (−1)q
(
p+q

q

)
.

Definition. Assume that A is an Artin–Tits group of spherical type with presen-
tation (4.1). For x in A, the type of x is defined to be the order-type of the sequence
(νσ(x) ; σ ∈ S).

So, there are 3 types of braids in B3, according to whether the value of νσ1 is
smaller than, equal to, or bigger than the value of νσ2 . These types will be denoted
[νσ1 < νσ2 ], [νσ1 = νσ2 ], and [νσ1 > νσ2 ]. Thus, saying that a braid β in B3 is of
type [νσ1 > νσ2 ] means that there are “more σ1 ’s than σ2 ’s at the left of β”. For
instance, the type of σ1 is [νσ1 > νσ2 ], while that of σ2 and of σ−1

1 is [νσ1 < νσ2 ],
and that of 1 or ∆k

3 is [νσ1 = νσ2 ].
Proposition 3.6 immediately leads to constraints on how the type may change

under right multiplication by a simple element:

Proposition 4.2. Assume that A is an Artin–Tits group of spherical type. Say
that two types T, T ′ are neighbours if there exist (k1, . . . , kn) in T and (k′

1, . . . , k
′
n)

in T ′ such that k′
i − ki is either 0 or 1 for every i, or is either 0 or −1 for every i.

Then, for every x in A and every simple element t of A+, the type of xt±1 is a
neighbour of the type of x.

We display in Figures 3 and 4 the graph of the neighbour relation for order-
types of pairs and of triples—as well as examples of 3- and 4-strand braids of the
corresponding types. We see in Figure 3 that the types [νσ1 > νσ2 ] and [νσ1 < νσ2 ]
are not neighbours, since, starting with a pair (k1, k2) with k1 > k2 and adding 1
to k1 or k2, we can obtain (k′

1, k
′
2) with k′

1 � k′
2, but not with k′

1 < k′
2. As

a consequence, we cannot obtain a braid of type [νσ1 < νσ2 ] by multiplying a
braid of type [νσ1 > νσ2 ] by a single simple braid or its inverse: crossing the
intermediate type [νσ1 = νσ2 ] is necessary. Similarly, we can see on Figure 4 that, for
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instance, going from type [νσ1
> νσ2

= νσ3
] to type [νσ1

< νσ2
= νσ3

] necessitates
that one goes through at least one of the intermediate types [νσ1

= νσ2
< νσ3

],
[νσ1

= νσ2
= νσ3

], or [νσ1
= νσ3

< νσ2
].

σ1 σ21
[νσ1 < νσ2 ] [νσ1 = νσ2 ] [νσ1 > νσ2 ]

Figure 3. The 3 types of braids in B3

1

σ1

σ2

σ3 σ−1
1

σ−1
2

σ−1
3

σ1σ−1
2

σ2σ−1
3

σ3σ−1
1

σ−1
1 σ2σ−1

2 σ3

σ−1
3σ1

0, 0]1>3>2

1>2>3

1>2=3 1=2>3 2>1>3

1=3>2 1=2=3 2>1=3

3>1>2 3>1=2 3=2>1 2>3>1

3>2>1

Figure 4. The 13 types of braids in B4—here i stands for νσi

5. Loops in the Cayley graph

We are now ready to establish that every nonempty trivial 3-strand braid word
contains at least one removable pair of letters. The geometric idea of the proof is
as follows: a trivial word corresponds to a loop in the Cayley graph of B3, and we
can choose the origin of that loop so that it contains vertices of types [νσ1 < νσ2 ]
and [νσ1 > νσ2 ]. But then Proposition 4.2 tells us that one cannot jump from the
region [νσ1 < νσ2 ] to the region [νσ1 > νσ2 ] without crossing the separating region,
i.e., [νσ1 = νσ2 ]. This means that some subword of w must represent a power of ∆3,
and it is easy to deduce a removable pair of letters.

Actually, we shall prove a more general statement valid for every Artin–Tits
group with two generators, i.e., for every Artin–Tits group of type I2(m)—the case
of B3 corresponding to m = 3:

Proposition 5.1. Assume that A is an Artin–Tits group of type I2(m), i.e., A
admits the presentation 〈σ1, σ2 ; σ1σ2σ1σ2 · · · = σ2σ1σ2σ1 . . . 〉 where both sides of
the equality have length m. Then every nonempty word on the letters σ±1

1 , σ±1
2

representing 1 in A contains a removable pair of letters.
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We begin with two auxiliary results.

Lemma 5.2. Assume that G is a group generated by a set S, that w is a trivial
word on S∪S−1 (i.e., w represents 1 in G), and some cyclic conjugate of w contains
a removable pair of letters. Then w contains a removable pair of letters.

Proof. Assume that we have w = uv and σew′τ−e is a removable pair of letters
in vu, with σ, τ ∈ S, and e = ±1. Let us write vu = w1σ

ew′τ−ew2. If w1σ
ew′τ−e is

a prefix of v, or if σew′τ−ew2 is a suffix of u, then σew′τ−e is a subword of w, and
the result is obvious. Otherwise, we have w′ = v′u′ with σev′ a suffix of v and u′τ−e

a prefix of u, hence v = w1σ
ev′ and u = u′τ−ew2. By construction, τ−ew2w1σ

e is
a subword of uv, i.e., of w. Let us use ≡ for the congruence that defines G. By
hypothesis, we have uv ≡ ε and σev′u′τ−e ≡ v′u′, hence τeu′−1

v′−1
σ−e ≡ u′−1

v′−1.
We deduce

w2w1 ≡ τeu′−1
uvv′−1

σ−e ≡ τeu′−1
v′−1

σ−e

≡ u′−1
v′−1 ≡ u′−1

uvv′−1 ≡ τ−ew2w1σ
e,

which shows that τ−ew2w1σ
e is a removable pair of letters in w.

Lemma 5.3. Let A be an Artin–Tits group with presentation (4.1). Assume that
σ, τ belong to S, s belongs to S ∪ S−1, and w is a word on S ∪ S−1 such that
τws ≡ prod(σ, τ, mσ,τ )k holds and τw represents an element of the region [νσ < ντ ].
Then either σ−1τws or τws is a removable pair of letters.

Proof. For u a word on S ∪ S−1, let u denote the element of A represented by u.
Let us write m for mσ,τ . By hypothesis, we have νσ(τws) = ντ (τws) = k. Assume
first that mk is even. Then there are two possibilities for s only, namely s = σ, and
s = τ−1. Indeed, τws is prod(σ, τ, m)k, so s = ρ±1 with ρ �= σ, τ would imply

νσ(τw) = νσ(τws) = ντ (τws) = ντ (τw),

while s = σ−1 and s = τ would imply

νσ(τw) � νσ(τws) = ντ (τws) � ντ (τw),

all contradicting the hypothesis νσ(τw) < ντ (τw).
Now, for s = σ, we find

σ−1τwσ ≡ σ−1 prod(σ, τ, m)k ≡ prod(σ, τ, m)k σ−1 ≡ τwσσ−1 ≡ τw,

i.e., σ−1τws is a removable pair. Similarly, for s = τ−1, we find

τwτ−1 ≡ prod(σ, τ, m)k ≡ τ−1prod(σ, τ, m)kτ ≡ τ−1τwτ−1τ ≡ w,

i.e., τws is a removable pair. The argument is similar when mk is odd, the possible
values of s now being σ−1 and τ instead of σ and τ−1.

Proof of Proposition 5.1. (Figure 5) Assume that w is a nonempty word on the
letters σ±1

1 , σ±1
2 representing 1. Necessarily w contains the same number of letters

with exponent +1 and with exponent −1, so it must contain a subword of the
form s−1t or st−1 with s, t ∈ {σ1, σ2}. Assume for instance that w contains a
subword of the form s−1t; the argument in the case of st−1 would be similar. The
case s = t is trivial (then s−1s is a removable pair of letters of w, and we are done),
so, up to a symmetry, we can assume that s−1t is σ−1

1 σ2.
The word w specifies a path γ in the Cayley graph of G, and, by hypothesis,

γ is a loop. Let P be the point of γ corresponding to the middle vertex in the



10 PATRICK DEHORNOY

subword σ−1
1 σ2 considered above. By Lemma 5.2, we can assume that P is the

origin of γ without loss of generality.
Now, let us follow γ starting from P : as the first letter is σ2, the path γ enters

the region [νσ1 < νσ2 ]. At the other end, the last letter of γ is σ−1
1 , which means

that, before ending at P , the path γ comes from the region [νσ1 > νσ2 ]. So γ goes
from the region [νσ1 < νσ2 ] to the region [νσ1 > νσ2 ]. By Proposition 4.2, γ must
cross the separating region [νσ1 = νσ2 ] at least once. This means that there must
exist at least one second point Q in γ with type [νσ1 = νσ2 ]. Now—and this is
where we use the hypothesis that A is of Coxeter type I2(m)—the only elements
of A of this type are the powers of the element ∆, i.e., of prod(σ1, σ2, m). So we
deduce that (a cyclic conjugate of) w must contain a subword σ−1

1 σ2w
′s such that

σ2w
′s is equivalent to a power of prod(σ1, σ2, m) and σ2w

′ represents an element
of the region [νσ1 < νσ2 ]. Then Lemma 5.3 implies that either σ−1

1 σ2w
′s or σ2w

′s
is a removable pair of letters.

γ

w′

∆k

P

Q

σ1

σ2

s

[νσ1 < νσ2 ][νσ1 = νσ2 ]

[νσ1 > νσ2 ]

Figure 5. Proof of Proposition 5.1: a loop must intersect the
diagonal at least twice

Remark 5.4. It is known [3, 2, 8] that the Cayley graph of any Garside group is
traced on some flag complex of the form X×R, where the R-component corresponds
to powers of ∆. In the case of an Artin–Tits group of type I2(m), the space X is
an m-valent tree. A loop γ in the Cayley graph projects onto a loop in the tree, so
the projection necessarily goes twice through the same vertex, which means that
γ contains vertices that are separated by a power of ∆, and we can deduce the
existence of a removable pair of letters as above.

6. Special cases

As the counter-example of Figure 2 shows, a trivial 4-strand braid word need
not contain any removable pair of letters. However, partial positive results exist,
in particular when we consider words of the form u−1v, with u, v positive words
representing a divisor of ∆.

The following result is an easy consequence of the classical Exchange Lemma for
Coxeter groups ([5], Lemma IV.1.4.3) rephrased for Artin–Tits monoids.
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Lemma 6.1. Assume that A+ is an Artin–Tits monoid of spherical type, σ, τ are
atoms of A+, and we have σ �� x and σ � xτ � ∆. Then we have xτ = σx.

Indeed, let π denote the bijection of the divisors of ∆ in A+ to the corre-
sponding Coxeter group W and 
 denote the length in W . Then σ � xτ implies

(π(σxτ)) < 
(π(xτ)). Hence the minimal decomposition of π(σxτ) is obtained
from that of π(xτ) by removing one generator, which cannot come from x for, oth-
erwise, we would obtain 
(π(σx)) < 
(π(x)) by cancelling τ and contradict σ �� x.
So we must have π(σxτ) = π(x), hence π(σx) = π(xτ), in W , and σx = xτ in A+.

Proposition 6.2. Assume that A+ is an Artin–Tits monoid of spherical type, and
w is a nonempty trivial word of the form u−1v with u, v positive simple words. Then
w contains at least one removable pair of letters.

Proof. For w a positive word, let w denote the element of A+ represented by w.
Now, let σ be the first letter in u. By hypothesis, we have σ � v. Let v′τ be the
shortest prefix of v such that σ � v′τ is true. Then, by definition, we have σ �� v′,
and, as v is supposed to be simple, so is v′τ . We can therefore apply Lemma 6.1,
and we obtain σv′ ≡ v′τ , hence σ−1v′τ ≡ v′. Thus σ−1v′τ is a removable pair of
letters in w.

Remark 6.3. In the case of braids, a direct geometric argument also gives Propo-
sition 6.2. Indeed, if u and v are positive braid words representing simple braids,
then the braid diagrams coded by u and v can be realised as the projections of
three-dimensional figures where the i-th strand entirely lives in the plane y = i:
the simplicity hypothesis guarantees that no altitude contradiction can occur, as
any two strands cross at most once [10]. So the same is true for the braid coded
by u−1v, provided we require that the strand living in the plane y = i is the one at
position i after u−1. Now, let i be the least index such that the ith strand is not a
straight line, and let j be the least index such that the jth strand crosses the ith
strand. Then, necessarily, the ith and the jth strands make a disk, as they must
return to their initial position if u−1v represents 1 (Figure 6).

i

j

Figure 6. Disk in a trivial braid diagram coded by u−1v with u, v simple

Proposition 6.2 does not extend to arbitrary trivial negative–positive words, i.e.,
of the form u−1v with u, v positive: the hypothesis that u and v represent a simple
braid is essential.

An easy method for producing equivalent positive braid words is as follows:
starting with a seed consisting of two positive words u, v, we can complete them
into equivalent words—i.e., we can find a common right multiple for u and v—by
using the word reversing technique of [9], which gives two positive words u′, v′ so
that both uv′ and vu′ represent the right lcm of u and v. Then, by construction,
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v′−1
u−1vu′ represents 1. By systematically enumerating all possible seeds (u, v),

we obtain a large number of negative–positive trivial braid words in which possible
removable pair of letters can be investigated.

One obtains in this way very few counter-examples, i.e., trivial braid words with
no removable pair of letters. In the case of B4, there exists no counter-example
with seeds of length at most 4, and there exists only one counter-example among
the 29, 403 pairs of length 5 words, namely the one of Figure 2, which is associated
with the seed (σ2

1σ3
2 , σ2

3σ3
2). The situation is similar with longer seeds, and for Bn

with n � 5. This explains why random tries have little chance to lead to counter-
examples, and raises the question of understanding why there seems to almost
always exist disks in trivial braid diagrams.

Finally, let us mention a connection with the (open) question of unbraiding every
trivial braid diagram in such a way that all intermediate diagrams have at most
as many crossings as the initial diagram—as is well known, there is no solution in
the case of knots when the number of crossings is considered, but there is now a
solution when the complexity is defined in a more subtle way [13]. Assume that a
method for detecting removable pairs of letters has been choosen. Then one obtains
an unbraiding algorithm by starting with an arbitrary braid word and iteratively
removing removable pairs of letters until no one is left. If the answer to Question 1.1
were positive, this algorithm would always succeed, in the sense that it would end
with the empty word if and only if the initial word is trivial. Note that the number
of iteration steps is always bounded by half the length of the initial word. In the
case of 4 strands and more, the answer to Question 1.1 is negative, so the above
algorithm is not correct. In addition, it must be kept in mind that, in any case,
the algorithm requires a subroutine detecting removable pairs: we can appeal to
any solution of the braid word problem, but, then, the algorithm gives no new
solution to that word problem, nor does it either answer the question of length-
decreasing unbraiding as long as there is no length-preserving method for proving
an equivalence of the form σe

i wσ−e
j ≡ w.

As trivial diagrams without disk seem to be rare, it might happen that, in
some sense to be made precise, the above method almost always works. It can be
observed on Figure 7 that the braid diagram of Figure 2, which contains no disk,
contains an actual ribbon, in the sense that no isotopy is needed to let this ribbon
appear. By merging the two strands bordering this ribbon, one obtains a 3-strand
diagram—namely the last example in Section 1—which contains a disk. Improving
the unbraiding method so as to include such a strand merging procedure might
make it work for still more cases.

Figure 7. A ribbon in the counter-example of Figure 2
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