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Abstract. It has been conjectured that in a braid group, or more generally

in a Garside group, applying any sequence of monotone equivalences and word

reversings can increase the length of a word by at most a linear factor depending
on the group presentation only. We give a counter-example to this conjecture,

but, on the other hand, we establish length upper bounds for the case when

only right reversing is involved. We also state a new conjecture which would,
like the above one, imply that the space complexity of the handle reduction

algorithm is linear.

This paper was motivated by attempts to estimate the complexity of the handle
reduction algorithm in braid groups [4], via a detailed study of word reversings.

Word reversing is a general combinatorial method for investigating monoids and
groups specified by explicit presentations [3, 6, 8]. In good cases, typically in the case
of braid groups [3] and, more generally, Garside groups [7], it provides algorithmic
solutions to the word problem, as well as an efficient way for proving properties such
as cancellativity or existence of least common multiples in the monoid or quadratic
isoperimetric inequalities in the group.

However, many natural questions about word reversing remain open, even in the
basic case of the standard presentation of Artin’s braid group Bn. There are two
types of word reversing, namely the left and the right one. In the case of Bn and,
more generally, in the case of Artin–Tits groups of finite Coxeter type, Garside’s
theory implies that every sequence of right reversings must terminate, and it gives an
upper bound on the length of the final word thus obtained; however, it says nothing
about the length of the intermediate words and about many related questions. Also,
very little is known about what happens when both the left and the right types are
used in one reversing sequence. In particular, we raised

Question 1. [5] Does there exist a constant Cn such that the length of every freely
reduced braid word obtained from a length ` word by using left and right reversing
plus monotone equivalence—precise definitions are given below—is bounded above
by Cn`?

A positive answer would have implied a linear upper bound on the space com-
plexity of the handle reduction algorithm in braid groups, and indeed a positive
answer was carelessly proposed as a conjecture in [9]. The aim of this paper is, on
the one hand, to answer Question 1 in the negative, by proving
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Proposition 2. Let w be the 4 strand braid word σ−1
2 σ1σ3σ2. Then arbitrarily

long freely reduced words can be obtained from w using left and right reversing and
monotone equivalence.

In fact, the result of Proposition 2 can even be strengthened by requiring that
all involved words contain no commuting pattern like σ1σ3σ−1

1 .
On the other hand, we shall establish some positive results, namely:

Proposition 3. Let w be an n strand braid word of length `.
(i) Every word obtained from w using right reversing has length at most Cn`, with
Cn = 1

23n.
(ii) Every positive–negative word obtained from w using right reversing and mono-
tone equivalence has length at most C ′

n`, with C ′
n = 1

2n(n− 1)− 1.
(iii) Every word obtained from w using right reversing and monotone equivalence
has length at most 2C′′

n`, with C ′′
n = 1

2n(n− 1).

The upper bounds of Proposition 3(i) and 3(iii) are certainly not optimal, but
they seem to be the first ones in this direction. As for Proposition 3(ii), we
notice that C ′

n has to grow at least linearly with n, as right reversing the word
(σ1σ3 . . . σ2`−1)

−1(σ2σ4 . . . σ2`) leads to a positive–negative word of length O(`2).
At the end of the paper we shall propose an alternative conjecture which does ap-

pear to be true, and which would still imply a linear bound on the space complexity
of the handle reduction algorithm.

Before giving the technical definitions, we explain in some more detail the con-
nection of our results with the handle reduction algorithm [4] and σ-definite forms
of braids. It is known that every braid word is equivalent modulo the braid relations
to a σ1-definite word, i.e. a word in which at least one of the letters σ1 , σ−1

1 does
not occur. This fact is one of the two key points in the construction of a canoni-
cal ordering on braids [9]. Handle reduction is a combinatorial method that solves
the isotopy problem of braids and produces σ1-definite forms. Although extremely
efficient in practice, the method remains partly mysterious and its exact complex-
ity is unknown: the only upper bound proved so far is exponential, very far from
statistical evidence.

Even more frustrating is the lack of control on the length of the words appearing
in the process: the only proved result is an exponential upper bound, while all
experiments indicate that their length is bounded by Cn`, where ` is the length of
the input braid word, and Cn in a constant which appears to be growing linearly
with the number of strands n—for four strands, the choice C4 = 2 seems sufficient,
and as the example of the words

σ1σ−2
2 σ2

3σ−2
4 . . . σ2ε

n−3σ
−2ε
n−2σ

2ε
n−1 · σ2ε

n−2σ
−2ε
n−3σ

2ε
n−4 . . . σ−2

3 σ2
2σ−1

1

(with ε = ±1 according to the parity of n) demonstrates, Cn needs to grow at least
linearly with n. Now, handle reduction is a compound of reserving and monotone
equivalence, so an affirmative answer to Question 1 would have given the expected
linear bound for the length of the words appearing in handle reduction. As a
corollary, it would have shown that, for fixed n, every braid word of length ` is
equivalent to a σ1-definite word of length O(`). Let us mention that the latter
statement has been proved recently in [10] using a deep result about train tracks
[13]. The current results leave the questions about handle reduction open. However,
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handle reduction is in fact a compound of a more restricted set of operations, namely
reversings and commutation relations, so we would be satisfied if the length of
words remained bounded under iterated applications of these two operations—this
is exactly the modified conjecture stated at the end of the paper.

1. Word reversing

The standard presentation of Artin’s n strand braid group Bn is
(1.1)
〈σ1 , . . . , σn−1 ; σi σj = σj σi for |i− j| > 2, σi σj σi = σj σi σj for |i− j| = 1〉.

We denote by B+
n the monoid with the above presentation. An n strand braid

word is a word on the 2n− 2 letters σ±1
1 , . . . , σ±1

n−1. We say that a braid word w is
positive (resp. negative) if no letter σ−1

i (resp. σi ) occurs in w. We say that w is
positive–negative if w consists of positive letters followed by negative letters, i.e., if
w can be expressed as uv−1 with u, v positive.

The operations we study here are the following transformations on braid words:

Definition. Let w,w′ be braid words.
(i) We say that w is right reversible to w′, denoted w y w′, if one can transform w

to w′ by (iteratively) replacing some subword σ−1
i σj with σj σ−1

i (case |i− j| > 2),
or with σj σi σ−1

j σ−1
i (case |i− j| = 1), or with ε (the empty word, case i = j).

(ii) Symmetrically, we say that w is left reversible to w′, denoted w xw′, if
w′ is obtained by (iteratively) replacing some subword σi σ−1

j with σ−1
j σi (case

|i− j| > 2), with σ−1
j σ−1

i σj σi (case |i− j| = 1), or with ε (case i = j).
(iii) We say that w and w′ are monotonously equivalent, denoted w ↔ w′, if w′

is obtained from w by (iteratively) replacing some subword (σi σj )±1 with (σj σi )±1

(case |i− j| > 2), or some subword (σi σj σi )±1 with (σj σi σj )±1 (case |i− j| = 1).

It is clear that reversing and monotone equivalence transforms a braid word into
an equivalent word, i.e., one that represents the same element of the braid group.
Observe that the above transformations never introduce trivial pairs of the form
σi σ−1

i or σ−1
i σi . So, typically, for a braid word w to be reversible to the empty

word ε is a priori a stronger condition than just being equivalent to ε, as one is
allowed to introduce no σi σ−1

i or σ−1
i σi in order to transform w into ε.

Clearly, the words that cannot be transformed using right reversing are the
positive–negative words. The key result about braid word reversing is as follows:

Proposition 4. [3] Let w be an n strand braid word of length `. Then there exists
a unique positive–negative word w′ such that w is right reversible to w′. Moreover,
the length of w′ is at most Cn`, with Cn = 1

2n(n− 1)− 1.

We recall that, in the braid monoid B+
n , one says that y is a right multiple

of x, or, equivalently, that x is a left divisor of y, if y = xz holds for some z.
Then one says that z is a least common right multiple for x and y if z is a right
multiple of x and of y, and every common right multiple of x and of y is a right
multiple of z. Proposition 4 is a consequence of Garside’s result that common right
multiples exist in braid monoids [12] and of general properties of word reversing [8]
guaranteeing that, for all positive words u, v, the existence of positive words u1, v1

satisfying u−1v y v1u
−1
1 is equivalent to the existence of a common right multiple
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for the elements represented by u and v. In the current paper, we shall only use
the following result:

Lemma 5. [3] Assume that u, u′ are equivalent positive braid words and, similarly,
that v, v′ are equivalent positive braid words. Let u1, v1, u

′
1, v

′
1 be the positive words

satisfying u−1v y v1u
−1
1 and u′−1v′ y v′1u

′
1
−1. Then u1 and u′1 are equivalent,

and so are v1 and v′1.

Remark. The previous results imply that right reversing solves the word problem
of the braid monoid and of the braid group, in one and two passes respectively.
Indeed Lemma 5 implies that two positive braid words u, v represent the same
element of the braid monoid if and only if u−1v is right reversible to the empty
word, and that an arbitrary braid word w represents 1 in the braid group if and
only if it is right reversible to some positive–negative word vu−1 such that u−1v is
right reversible to the empty word. The last step is equivalent to vu−1 being left
reversible to the empty word. So a braid word w represents 1 if and only if the
empty word can be obtained from w using left and right reversing.

2. Counterexamples

Proposition 4 says nothing about the words one obtains using both left and right
reversing. The trivial example

(2.1) σ−1
1 σ2 y σ2σ1σ−1

2 σ−1
1

xσ2σ−1
2 σ−1

1 σ2σ1σ−1
1

shows that, starting from σ−1
1 σ2 , we can produce words of arbitrary length using left

and right reversing, since the initial word is a proper factor of the final word. Hence,
whenever both left and right reversing are involved, restricting to freely reduced
words, i.e., containing no pattern σi σ−1

i or σ−1
i σi , is a minimal requirement if one

is to expect bounded length.

Definition. We define reduced right reversing, denoted yr, to be the variant of
right reversing in which a free reduction is performed after each reversing step.
Reduced left reverving and monotone equivalence are defined similarly.

Question 1 asks in particular whether the words obtained from a given word using
reduced reversing and monotone equivalence have a bounded length. We now es-
tablish Proposition 2, which provides a negative answer. To improve readability, we
adopt a convention of [11], using a, b, . . . for σ1 , σ2 , . . ., and A, B, . . . for σ−1

1 , σ−1
2 , . . ..

For instance, (2.1) becomes Ab y baBA xbBAbaA.

Proof of Proposition 2. (Figure 1) We find (the underlined subwords are those we
transform):

Bacb yr abABcb yr abAcbC yr abcAbC yr abcbaBAC

↔r acbcaBAC↔r acbacBAC↔r cabacBAC↔r cbabcBAC

xr cbaCbcAC xr cbCabcAC xr BcbabcAC↔r BcabacAC↔r BacbacAC,

and, inductively, Bacb transforms into Bacb(acAC)k for each k as the the words
above never finish with the letter A. �
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Figure 1. Generating arbitrarily long words from σ−1
2 σ1σ3σ2 using

reversing and monotone equivalence; all words are traced on the fragment
of the Cayley graph corresponding to the divisors of ∆4, i.e., on the 4-
permutohedron, which, topologically, is a sphere; the labels of the front
edges are indicated on the first picture; the initial path is pushed around
the sphere so as to make a loop around the grey facet on the rear; each
other facet is crossed once.

Note that in the previous counter-example not only the final words, but even all
intermediate words are freely reduced. Now we see that these words still involve
the commuting pattern acAC, i.e., σ1σ3σ−1

1 σ−1
3 . We shall show now that even such

semi-trivial patterns can be avoided.

Definition. We say that a braid word is strongly reduced if it is freely reduced
and, in addition, contains no subword of the form σe

i σ
d
j σ−e

i with e, d = ±1 and
|i− j| > 2. We define strongly reduced right reversing to be the variant in which a
strong reduction is performed after each reversing step.

In the above definition, strongly reducing a word means iteratively replacing each
subword of the form σe

i σ
d
j σ−e

i with the corresponding letter σd
j . This is easily seen

to lead in finitely many steps to a strongly reduced word. The latter need not be
unique, but the various words so obtained are equivalent via commutation relations.

Proposition 6. Starting from σ−1
1 σ−1

3 σ−1
2 σ1σ2σ3σ2σ−1

3 σ−1
2 σ−1

1 σ2σ−1
3 , one can de-

rive using strongly reduced left and right reversing and monotone equivalence arbi-
trary long (strongly reduced) words.

Proof. Using ys, xs and ↔s for the strongly reduced versions of y, x, and ↔, we
find

ACBabcbCBAbC(BabcBCBcbaBA)k
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ys ACBabcbCaBAC(BabcBCBcbaBA)k

ys ACBabcbaCBAC(BabcBCBcbaBA)k

↔s ACBabcbaCBCA(BabcBCBcbaBA)k

↔s ACBabcbaBCBA(BabcBCBcbaBA)k

↔s ACBacbcaBCBA(BabcBCBcbaBA)k

xs ACBacbcBAbaCBA(BabcBCBcbaBA)k

xs ACBacbcBAbCaBA(BabcBCBcbaBA)k

xs ACBacbcBACBcbaBA(BabcBCBcbaBA)k

↔s ACBcabcBACBcbaBA(BabcBCBcbaBA)k

ys AbCBabcBACBcbaBA(BabcBCBcbaBA)k

ys AbCabAcBACBcbaBA(BabcBCBcbaBA)k

ys AbCabcABACBcbaBA(BabcBCBcbaBA)k

↔s AbCabcBABCBcbaBA(BabcBCBcbaBA)k

xs AbCaCbcABCBcbaBA(BabcBCBcbaBA)k

ys AbCabcBABCBcbaBA(BabcBCBcbaBA)k

xs ACBcbabcBABCBcbaBA(BabcBCBcbaBA)k

↔s ACBcabacBABCBcbaBA(BabcBCBcbaBA)k

↔s CABcabacBABCBcbaBA(BabcBCBcbaBA)k

xs CABcabaBCbcABCBcbaBA(BabcBCBcbaBA)k

↔s CABacbaBCbcABCBcbaBA(BabcBCBcbaBA)k

ys CbABcbaBCbcABCBcbaBA(BabcBCBcbaBA)k

ys CbAcbCaBCbcABCBcbaBA(BabcBCBcbaBA)k

xs CbAcbCBAbaCbcABCBcbaBA(BabcBCBcbaBA)k

xs CABabcbCBAbaCbcABCBcbaBA(BabcBCBcbaBA)k

↔s ACBabcbCBAbaCbcABCBcbaBA(BabcBCBcbaBA)k

xs ACBabcbCBAbCabcABCBcbaBA(BabcBCBcbaBA)k

xs ACBabcbCBAbCabAcBCBcbaBA(BabcBCBcbaBA)k

xs ACBabcbCBAbCBabcBCBcbaBA(BabcBCBcbaBA)k.
The latter word is ACBabcbCBAbC(BabcBCBcbaBA)k+1. �

Remark. As it is possible to perform strong reduction using reversing and mono-
tone equivalence, the counter-example of Proposition 6 can also be used to establish
Proposition 2. We nevertheless mention the simpler counter-example of Proposi-
tion 2 because the latter might be minimal in some sense, as suggests its graphical
interpretation of Figure 1.

3. Length upper bounds for right reversing

Now we turn to positive results, and establish some upper bounds for the length
of the words that can be constructed using reversing and monotone equivalence. In
this section, we consider the case of right reversing alone. Proposition 4 provides
an upper bound on the length of the final, i.e., positive–negative, word that can be
obtained from a word w, but it gives no bound for the intermediate words. This is
what Proposition 3(i) does.

In order to prove the result, we need some auxiliary notions. First, as usual, we
associate with each n strand braid word w the braid diagram obtained by concate-
nating the elementary diagrams for the successive letters of w, and the diagram
for σi is
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1 i i+1 n
σi : . . . . . .

An n strand braid diagram can be seen as the projection on y = 0 of a 3D-figure
consisting of n non-intersecting curves.

Definition. (Figure 2) A braid word w is said to be layered if the associated diagram
can be realized as the projection of a 3D-figure in which each strand lives in some
vertical plane.

y = 3
y = 2

y = 1

y = 0

Figure 2. The braid word σ2σ
−1
1 is layered: the strands of the

associated diagram live in parallel vertical planes

It is well-known that, if u is an n strand positive word, then u is layered if and
only if u is simple, i.e., it represents a divisor of Garside’s fundamental braid ∆n

in the monoid B+
n .

Lemma 7. (i) If u and v are layered positive words, then u−1v is layered.
(ii) If w is a layered word, then every word obtained from w using reversing or

monotone equivalence is still layered.

Proof. (i) If u is a positive layered word, then the diagram of u can be realized so
that the i-th strand, i.e., the strand that starts at position i, lives in the plane y =
n − i. Thus u−1 can be realized so that the strand finishing at position i lives
in y = i, and v can be realized so that the strand starting at position i lives in the
same plane. Hence the two diagrams can be concatenated without contradicting
layeredness.

For (ii), it suffices to check that each elementary transformation introduces no
obstruction to the hypothesis that the strands live in a vertical plane. The case
of commutation relations is trivial. The case of right reversing is illustrated in
Figure 3; the cases of left reversing and monotone equivalence are similar. �

In the braid diagram associated with a layered word w, there is a well-defined
rear strand, i.e., the strand that lives in the plane y = c with minimal c: to avoid
ambiguity, we choose the leftmost strand in that plane if there are several ones—this
makes sense as the strands living in a given plane may not intersect.

Definition. For w a layered braid word, we denote by del(w) the braid word that
encodes the diagram obtained from the diagram of w by deleting the rear strand.

Lemma 8. If w is a layered braid word, then w y w′ implies del(w) y del(w′).
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a b c

a b c

y

Figure 3. Layered words are closed under right reversing: if the pat-
tern σ−1

1 σ2 occurs in a layered word, then, necessarily, the strand c
lies in the front plane, while b lies in the back plane; then the pattern
σ2σ1σ

−1
2 σ−1

1 can be realised in the same planes without level obstruction.
The case of σ−1

2 σ1 is similar.

Proof. Once again, it is sufficient to consider the possible elementary transfor-
mations. Up to a translation of indices, the only non-trivial cases are σ−1

1 σ2 y
σ2σ1σ−1

2 σ−1
1 and σ−1

2 σ1 y σ1σ2σ−1
1 σ−1

2 , which both reduce to σ1 y σ1 when the
rear strand is deleted. �

Observe that the assumption that the removed strand is the rear (or the front)
one is necessary: if we remove the middle strand in σ−1

1 σ2 y σ2σ1σ−1
2 σ−1

1 , we
obtain ε on the left, and σ1σ−1

1 on the right. However, ε y σ1σ−1
1 fails.

Definition. A braid word is said to be elementary if it is a subword of a word
obtained by right reversing from a word of the form u−1v, with u, v layered positive
(or, equivalently, simple) words.

By Lemma 7, every elementary word is layered, but the converse is not true:
σ1σ−1

1 is layered, but not elementary. Indeed, when u−1v is right reversible to v1u
−1
1 ,

then the braids represented by u1 and v1 have no common right divisor in the braid
monoid.

Lemma 9. The length of an n strand elementary braid word is at most 1
23n.

Proof. Assume that w is right reversible to w′ in one step. Then the crossings in
the diagram encoded by w′ are not exactly the same as the crossings in the diagram
encoded by w, but we can define a notion of inheritance: for instance, in Figure 3,
we say that the crossing of the strands a and b in the right figure is the heir of the
crossing of these strands in the left figure. Then it is easy to check that, in each
case, the crossings in w′ are the heirs of the crossings of w, except that two new
crossings may appear (e.g., crossings of b and c in Figure 3), or two crossings may
vanish (when a free reduction is performed).

Let us consider a right reversing sequence w0, . . . , wr, i.e., we assume that wk

is right reversible to wk+1 in one step for each k. We define the total number of
crossings C in this sequence as follows: each crossing in w0 contributes 1 to C,
and so does every new crossing that appears in some wk, even if it subsequently
vanishes; on the other hand, the contribution to C of a crossing that is the heir of
a previously existing crossing is 0. So C is the sum of the number of crossings of
all the terms in the sequence, up to inheritance.

We claim that En = 1
23n − n − 1

2 yields an upper bound for the total number
of crossings in a right reversing sequence starting with a (layered) word of the
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form u−1v with u, v simple n strand braid words. Then, in particular, En is an upper
bound for the length of each braid word occurring in such a reversing sequence, and,
therefore, for the length of every n strand elementary braid word.

For n = 2, the only sequence to consider is (σ−1
1 σ1 , ε), so E2 = 2 is indeed a

valid upper bound.
Assume n > 3, and let w be an n strand elementary word. By hypothesis there

is a finite sequence of words w0 = u−1v, w1, . . . , wr = w such that u, v are positive
layered words and each word wk is right reversible to wk+1 in one step. By Lemma 7,
all the words wk are layered. By Lemma 8, the words del(w0), . . . , del(wr) also form
a right reversing sequence. Moreover, del(w0), i.e., del(u−1v), is a word of the form
u−1
∗ v∗, where u∗, v∗ are layered positive n− 1 strand words. So each word del(wk)

is elementary, and, by induction hypothesis, the total number of crossings (up to
inheritance) in the sequence del(w0), . . . , del(wr) is bounded above by En−1.

Now let us reintroduce the rear strand and count how many crossings it can
create in (the diagrams associated with) the words wk. An obvious general remark
is that reintroducing the rear strand changes nothing to the crossings involving only
the front strands, so the latter remain at most En−1 in number. Looking first at the
initial word w0, we remark that in u and v, which are positive, the rear strand may
cross each other strand at most once, so it creates at most 2(n−1) crossings. Then,
the reversing steps may create new crossings between the front strands and the rear
strand. However, we claim that at most 2En−1 such crossings can be created during
the sequence of right reversings. To see this, we observe that new crossings may be
created only in the case when the reversing involves exactly 3 strands, i.e., in the
case of a reversing starting with a pattern of the form σ−1

i σj with |i− j| = 1. Let
us consider this case. If the rear strand is not one of the involved three strands,
then either all the crossings involved in the reversing and all their heirs live to the
right of the rear strand, or they all live to its left, but no crossing can change sides
in the diagram relative to the rear strand. If, on the other hand, the rear strand
is involved in the reversing, then the rear strand moves behind one crossing of the
front strands, from left to right, and in the process it creates two new crossings
involving the rear strand (Figure 4). Thus the rear strand can move behind a front
crossing only from left to right, and therefore each front crossing is involved at most
once in such a process. As the other reversing schemes, namely the cases |i− j| = 0
and |i − j| > 2, cannot push the rear strand back to the left of a front crossing,
the total number of crossings created in such processes is at most twice the number
of crossings not involving the rear strand, i.e., it is at most 2En−1. This puts the
desired bound on the number of new crossings (created during reversings involving
the rear strand). Now we calculate

3En−1 + 2(n− 1) =
1
2
3n − 3n− 3

2
+ 2n− 2 <

1
2
3n − n− 1

2
.

This completes the proof of the lemma. �

We remark that the proof of lemma 9 would go through even if we allowed not
only right reversings, but also commutation relations like σ1σ3 7→ σ3σ1 or even
σ1σ

−1
3 7→ σ−1

3 σ1.
Now it remains to decompose arbitrary words into products of elementary words.

We recall that a layered positive word is the same as a simple word, in the sense
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y y

Figure 4. When the rear strand is involved in a right reversing step,
it necessarily goes through a crossing of the front strands, from left to

right.

of Garside, namely a positive word representing a divisor of ∆n. From now on,
we shall be dealing with positive words only, and therefore use the word “simple”
rather than “layered”.

Lemma 10. Assume w = wε1
1 . . . wε`

` , where w1, . . . , w` are simple positive braid
words, and ε1, . . . , ε` = ±1. Then every word w′ obtained from w using right re-
versing can be written as the product of at most ` elementary words.

Proof. First we associate with every right reversing sequence w̃0, w̃1, . . . a planar
oriented graph whose edges are labeled by σi ’s. This graph, which will be called
a reversing diagram, is analogous to a van Kampen diagram, and it is constructed
inductively as follows (Figure 5). First we associate with w̃0 a path shaped like
an ascending staircase by reading w̃0 from left to right and iteratively appending
a horizontal right-oriented edge labeled σi for each letter σi , and a vertical down-
oriented edge labeled σi for each letter σ−1

i . Assume that the fragment correspond-
ing to w̃0, . . . , w̃k−1 has been constructed and its right side is a path labeled w̃k−1.
By definition, the word w̃k is obtained from w̃k−1 by replacing some subword σ−1

i σj

with the unique word vu−1 such that σi v = σj u is a relation of (1.1). The involved
subword σ−1

i σj corresponds to some top-left oriented corner in the diagram, and we
complete the diagram and transform this corner into a square by adding horizontal
edges labelled u and vertical edges labelled v, following the scheme:

σi

σj

σi

σj

v

ucompleted into

.

The next step is to observe that each right reversing graph starting with w,
in particular the maximal one, i.e., the one that finishes with a positive–negative
word, admits a rectangular spine, which will be called the right reversing grid of w.
Assume that w contains q positive letters and p negative ones. We first assume
in addition that w is a negative–positive word. We define two sequences of simple
words ui,j , vi,j for 1 6 i 6 p + 1 and 1 6 j 6 q + 1 by setting u0,i to be the
ith letter in the inverse of the negative part of w for i 6 p, and to be the empty
word ε for i = p + 1, and by defining vj,0 to be the jth letter in the positive part
of w for j 6 q, and to be ε for j = q + 1. Then we inductively define ui,j , vi,j by
u−1

i,j−1vi−1,j y vi,ju
−1
i,j . We notice that these words are indeed simple. In this way,

we obtain a grid, which is a fragment of the complete reversing diagram associated
with w (Figure 6). If w is not negative–positive, then the construction is similar,
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σ2 σ1 σ3 σ2 σ2σ1 σ3σ2

σ3

σ2 σ3 σ2 σ3

σ3 σ3

σ1

σ2

σ1

σ1

σ2

σ3

σ1

σ1

σ1 σ1σ2

σ1

σ1σ2σ3

σ1

Figure 5. The reversing diagram (left) and the reversing grid (right)
associated with the sequence σ−1

1 σ2σ
−1
1 σ3 y σ2σ1σ

−1
2 σ−1

1 σ−1
1 σ3 y

σ2σ1σ
−1
2 σ−1

1 σ3σ
−1
1 y σ2σ1σ

−1
2 σ3σ

−1
1 σ−1

1 y σ2σ1σ3σ2σ
−1
3 σ−1

2 σ−1
1 σ−1

1 :
one draws a zigzag path labelled by the initial word, and, then, one
iteratively fills the open top-left corners using the braid relations.

except that the word w need not correspond to a top–left corner, and the top–left
corner of the rectangular grid may be missing (as in Figure 5).

up,0

u1,0 u1,1

up,q

u1,q

vp,1 vp,2 vp,q

v0,1 v0,2 v0,q

v1,1 v1,2 v1,q

w′
1

w′
2 w′

3

w′
−̀1

w′
`

Figure 6. The reversing grid and the decomposition of a word w′ into
a product of elementary words (here delimited by white dots); in the
case of the word σ−1

1 σ2σ
−1
1 σ3 of Figure 5, we have u2,0 = u1,1 = σ1,

v1,1 = σ2, v0,2 = σ3, and, for instance, u2,2 = σ1σ2σ3 and v2,2 = σ3σ2.

The point now is that every word w′ obtained from w using right reversing labels
a path from the bottom-left corner to the top-right corner in the right reversing
diagram of w. As the reversing grid partitions this diagram into squares, each letter
in w′ corresponds to an arrow of the diagram that belongs to one, or possibly two,
well-defined squares; we take the convention that, when a letter σi corresponds
to the vertical common edge between two squares of the grid, it is attached to
the rightmost square, and that, similarly, a horizontal edge belongs, in case of
doubt, to the bottom square For instance, if w is the word σ2σ1σ−1

2 σ3σ−1
1 σ−1

1

(Figure 5), the first two letters (σ1σ2) are attached to the (2, 1)-square, the new
two ones (σ−1

2 σ3) are attached to the (1, 1)-square, the fifth one (σ−1
1 ) is attached

to the(2, 2)-square, and the last one (σ−1
1 ) is attached to the (1, 2)-square. As the

path labelled w contains only right-oriented edges and top-oriented edges—actually
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bottom-oriented edges that are crossed in the wrong direction—the only possibility
after a letter attached to the (i, j)-square is a letter attached to (i + e, j − d) with
e, d = 0 or 1. It follows that the path associated with w′ visits at most ` squares,
and that w′ can be decomposed into a product w′

1 . . . w′
`, where w′

k consists of all
letters attached to the kth visited square.

It remains to see that each word w′
k is elementary. Now an easy induction shows

that, if w∗ is a fragment of w′ lying in the (i, j)-square, then there exist positive
words u∗, v∗ such that u−1

i,j vi,j is right reversible to ue
∗w∗v

d
∗ , where e and d are ±1

according to the sides of the square through which the path enters and exits the
square. As all words ui,j and vi,j are simple, the associated words ue

∗w∗v
d
∗ are

elementary by definition, and, therefore, so are the words w∗. Thus w′ is the
product of ` elementary words. �

We can now conclude as for the length of the words obtained using right reversing.

Proof of Proposition 3(i). Let w be an n strand braid word of length `. We can write
it wε1

1 . . . wε`

` where each wk is a single letter σi and εk is ±1. By Lemma 10, every
word w′ obtained from w by right reversing is a product of at most ` elementary
n strand words. By Lemma 9, each of these words has length 1

23n at most. �

4. Including monotone equivalence

When monotone equivalence enters the picture, the previous argument fails:
simple factors may be changed, and Lemma 10 does not extend. For instance,
the word σ1σ3σ1σ3 is a product of two simple words, namely (σ1σ3)(σ1σ3), but
a monotone equivalence transforms it to σ1σ1σ3σ3 , which cannot be decomposed
better than (σ1)(σ1σ3)(σ3), a product of three simple words. So new arguments
are needed.

By Proposition 4, every braid word w is right reversible to a unique positive–
negative word vu−1. We shall denote v by NR(w) (the right numerator) and u
by DR(w) (the right denominator). So w y NR(w)DR(w)−1 always holds.

We first consider the case of positive–negative words.

Proof of Proposition 3(ii). Let w be an n strand braid word of length `. By Propo-
sition 4, w is right reversible to NR(w)DR(w)−1, and the latter word has length
at most ( 1

2n(n − 1) − 1)`. In order to prove the expected result, it is enough
to prove the following: if w′ is any positive–negative word (i.e., a word satisfy-
ing w′ = NR(w′)DR(w′)−1) which can be obtained from w by right reversing and
monotone equivalence, then NR(w′) is equivalent to NR(w), and DR(w′) is equiva-
lent to DR(w); so, in particular, they have the same length. For an induction, it is
enough to assume that only one monotone equivalence is used in the transformation
of w into w′.

Let us display this monotone equivalence. The hypothesis is that there exist
words w1, w2 and equivalent positive words v0, v

′
0 satisfying w y w1v0w2, and

w1v
′
0w2 y w′—the case when v0 and v′0 are equivalent negative words would be

treated similarly. Proposition 4 states in particular that the order of reversing
steps does not matter for the positive–negative word finally obtained, so w1v0w2 y
NR(w)DR(w)−1 holds. Let us compare the reversing processes from w1v0w2 to
NR(w)DR(w)−1 and that from w1v

′
0w2 to w′.
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v1 v3 v4

w1
u1 u3

u2

u4

w2v0

v2

w

v1 v′3 v′4

w1
u1 u′3

u2

u′4

w2v′0
v2

w

Figure 7. Comparing two reversing processes: when v0 is replaced
with the equivalent word v′0, the sequel of the reversing changes, but the
words are replaced with equivalent words

Let us introduce positive words v1, u1, v2, u2, v3, u3, v4, u4 satisfying w1 y
v1u

−1
1 , w2 y v2u

−1
2 , u−1

1 v0 y v3u
−1
3 , and, finally, u−1

3 v2 y v4u
−1
4 . Then, by

construction, we have NR(w) = v1v3v4 and DR(w) = u2u4 (Figure 7). When we
replace v0 with v′0, we obtain new positive words u′3, v

′
3 satisfying u−1

1 v′0 y v′3u
′
3
−1,

and Lemma 5 guarantees that u′3 is equivalent to u3 and v′3 is equivalent to v3.
Then, we have u′3

−1
v2 y v′4u

′
4
−1 for some u′4, v

′
4, and Lemma 5 guarantees that u′4

is equivalent to u4 and v′4 is equivalent to v4. We conclude that NR(w′), which is
v1v

′
3v

′
4, is equivalent to v1v3v4, i.e., to NR(w), and that DR(w′), which is u2u

′
4, is

equivalent to u2u4, i.e., to DR(w). �

Once again, the previous argument only deals with the final, positive–negative
words obtained using right reversing and monotone equivalence, and it says nothing
about the length of the intermediate words. In order to prove Proposition 3 (iii), we
need a new argument. In the sequel, we use NL(w) and DL(w) for the unique positive
words satisfying w

xDL(w)−1NL(w) (the left numerator and denominator). We
recall that a word is called simple if it is positive and represents a divisor of ∆n.

Lemma 11. Let w be a word containing p negative letters and q positive letters.
Then NR(w) and NL(w) are the products of at most q simple words, and DR(w) and
DL(w) are the products of at most p simple words.

Proof. As in the proof of Lemma 10, consider the right reversing grid of w. It
has height p and width q and all arrows wear simple labels. So do in particular
the bottom and right sides. This means that NR(w) is the product of at most
q simple words, and, similarly, DR(w) is the product of at most p simple words. The
argument is symmetric for left reversing. (The result can also be derived from [3]
by considering right reversing with respect to the extended alphabet consisting of
all simple braids.) �

Proof of Proposition 3(iii). Let w be an arbitrary n strand braid word of length `.
Then w is right reversible to NR(w)DR(w)−1, and, symmetrically, it is left reversible
to DL(w)−1NL(w). For u a braid word, we shall denote by u the braid represented
by u. Now we define Γ(w) to be the restriction of the Cayley graph of Bn to the
divisors of DL(w)NR(w) in B+

n , i.e., Γ(w) is a finite graph, containing precisely those
vertices that lie on some geodesic path from 1 to DL(w)NR(w)—these paths all have
the same length, since they correspond to positive words equivalent to DL(w)NR(w).
By Lemma 11, the word DL(w)NR(w) is the product of at most ` simple words, hence
its length is at most 1

2n(n− 1)`.
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Let β be a vertex of the graph Γ(w). We say that a braid word u is traced
in Γ(w) from β if there exists a path labelled u starting at β in Γ(w), i.e., we can
read all letters of u successively without leaving Γ(w). Then it is proved in [4] that
the word w itself is traced from DL(w) in Γ(w), and that the family of all words
traced from a fixed vertex in Γ(w) is closed under right and left reversing, and under
monotone equivalence. Therefore, every word w′ that can be derived from w using
reversing and monotone equivalence is traced from DL(w) in Γ(w).

Now, we attribute a weight to every edge e in Γ(w), namely the integer Fd, where
d is the distance from the source vertex of e to the final vertex of Γ(w), and Fd is the
dth Fibonacci number: F1 = F2 = 1, and Fk = Fk−1 + Fk−2 for k > 2 (Figure 8).
Finally we define the weight of a path in Γ(w) to be the sum of the weight of its
edges.

Fm . . . . . .Fk Fk−1 Fk−2 F1

1 DL(w)NR(w)

Figure 8. Weights for the edges in the Cayley graph Γ(w)

Then we observe that the weight cannot increase when right reversing or mono-
tone equivalence is performed. Indeed, reversing σ−1

i σj to σj σi σ−1
j σ−1

i (with
|i − j| = 1) replaces two edges contributing say 2Fk to the total weight with
four edges contributing 2Fk−1 + 2Fk−2, i.e., 2Fk again. Similarly, reversing σ−1

i σj

to σj σ−1
i (with |i − j| > 2) diminishes the contribution to the weight from 2Fk

to 2Fk−1, and deleting σ−1
i σi diminishes it by 2Fk. Finally, replacing some positive

(resp. negative) subword with an equivalent positive (resp. negative) word preserves
the weight. As each letter in a braid word contributes at least 1 in the weight, we
deduce that the length of any word obtained from w using right reversing and
monotone equivalence is bounded above by the weight of w.

The latter is the sum of ` Fibonacci numbers between F1 and Fm, where m is
at most 1

2n(n − 1)`. One easily checks that the worst case is when w consists of
`/2 negative letters and `/2 positive letters with weights Fm, Fm−1, . . . , Fm−`/2+1.
Using the very rough estimate Fk 6 2k−2 for k > 2 we obtain an upper bound of

2
m∑

k=1

Fk 6 2(1 +
m−2∑
k=0

2k) = 2m 6 2
1
2 n(n−1)`

on the weight of w. �

5. A new conjecture

The previous results leave open all questions about simultaneous left and right
reversing. We shall conclude with a new conjecture which would still imply a linear
upper bound on the space complexity of the handle reduction algorithm, and which
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does appear to be true. Indeed, computer experiments which were similar to, but far
more extensive than, the ones used for finding the counterexample of Proposition 6
have failed to uncover any reasonable candidate for a counterexample.

Let us say that a braid word w′ is obtained from another braid word w using re-
duced commutation relations if one can go from w to w′ using finitely many transfor-
mations of the form σi σj 7→ σj σi with |i− j| > 2, each followed by free reductions.
So the difference with positive equivalence, and its reduced variant where free re-
duction is added, is that the “Reidemeister III” transformations σi σj σi 7→ σj σi σj

with |i− j| = 1 are forbidden.

Conjecture 12. Let w be an n strand braid word of length `. Let w′ be another
such word which is obtained from w by a sequence of reduced commutation relations
and reduced word reversings. Then w′ is of length at most Cn`, where Cn is a
constant depending only on n.

We have no good guess, however, what the constant Cn should be. We do know
that it is not 1

2n(n − 1), as the 4 strand braid word σ2
3σ−1

2 σ2
1σ−1

2 σ3σ1 of length 8
can be transformed into a word of length 52 (which is larger than 6 · 8 = 48).

We also remark that there is a slightly weaker version of Conjecture 12 where
“reduced” is replaced with “strongly reduced” everywhere.

In order to prove Conjecture 12, it might be useful to consider Bestvina’s product
structure on the flag complex X̂D which is closely related to the Cayley graph of
Bn [1, 2]. Bestvina showed that there is a natural homeomorphism X̂D

∼= XD × R,
where XD is another complex which satisfies a certain weak non-positive curvature
condition, and is conjectured to be CAT (0). We think now of a braid word as a
path in X̂D, and of our transformations of braid words as deformations of the path
that preserve its endpoints. Then banning positive equivalences of Reidemeister III
type amounts to forbidding the most obvious way of deforming a path in the XD-
direction. In other words, applying only commutation relations and word reversings
means deforming the path mainly in the R-direction.
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14032 Caen, France

E-mail address: dehornoy@math.unicaen.fr

IRMAR, UMR 6625 CNRS, Université de Rennes 1, Campus Beaulieu, 35042 Rennes,

France
E-mail address: bertold.wiest@math.univ-rennes1.fr


