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Abstract. Many natural counting problems arise in connection with the normal
form of braids—and seem to have not been much considered so far. Here we solve
some of them. One of the noteworthy points is that a number of different induction
schemes appear. The key technical ingredient is an analysis of the normality condition
in terms of permutations and their descents, in the vein of the Solomon algebra. As
was perfectly summarized by a referee, the main result asserts that the size of the
automaton involved in the automatic structure of Bn associated with the normal
form can be lowered from n! to p(n), the number of partitions of n.

Ubiquitous and connected with a number of domains, Artin’s braid groups Bn,
n > 3, have received much attention in the recent years. However, not so many works
are devoted to a purely combinatorial study of braids, presumably because counting
arguments did not prove so far to be much helpful for investigating braids. Neverthe-
less, although braid groups are infinite, they admit several filtrations leading to finite
sets and, therefore, to natural enumeration problems.

For each presentation of braid groups, (at least) two natural counting problems
arise, namely, on the one hand, counting how many braids admit an expression of a
given length, in particular evaluating the associated growth rate, and, on the other
hand, counting, for a given braid, how many words represent that specific braid, a
relevant question when the number is finite, typically when we discard the inverses of
the generators and only consider positive expressions, i.e., when we restrict to some
submonoid of Bn.

In the case of the Artin generators σi, both types of questions have been addressed,
and at least partially solved: the first question, actually not for Bn but for the sub-
monoid B+

n of Bn generated by the σi’s, was investigated in [26], and completely solved
in [5]. As for the second question, it is natural in this context to address it for the par-
ticular elements ∆d

n, where ∆n is Garside’s fundamental braid [19]. It was investigated
and solved for n = 3 in [10].

In this paper, we address similar questions for another natural generating set, namely
the so-called simple braids, also called the Garside generators below [19]. These gener-
ators, which are the divisors of ∆n in the monoid B+

n , are in one-to-one correspondence
with permutations of n objects, and they give rise to a remarkable unique decompo-
sition for each braid, usually called its normal form [15, 1, 17, 16]. Because of its
uniqueness and of its many nice properties, expressed in particular in the existence of
a bi-automatic structure, the normal form of braids is the preferred way of specifying
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braids in many recent developments, in particular those of algorithmic or cryptograph-
ical nature [20, 22].

The question we address here is to count the number of braids with a normal form of
a given length. It was addressed by P. Xu in [26], and by R. Charney in [9]: she observed
that, because normal words can be recognized by a finite state automaton, the number
of braids with length d obeys a linear induction rule, and the associated generating
function is rational, and gives explicit values in the case of 3 and 4 strand braids. The
aim of this paper is to go further in the investigation of counting problems connected
with the normal form of braids. We concontrate on the case of the monoid B+

n . Then
studying the number of positive n strand braids with a normal form of length (at
most) d is the counterpart for Garside generators of the problem solved in [5] in the
case of Artin generators. The main difference is that, in the case of Garside generators,
the length is no longer an additive parameter: for instance, multiplying two simple
braids may result in a simple braid, i.e., multiplying two braids of length 1 may result
in a braid of length 1. This makes the current study much more uneasy.

Let bn,d denote the number of positive n strand braids with a normal form of length at
most d, i.e., the number of divisors of ∆d

n in B+
n . We establish various results about the

numbers bn,d, and about the connected numbers bn,d(x) that count, for x a simple braid,
the positive n strand braid with a normal form of length at most d whose dth factor is
precisely x. Two types of results are established, namely results for fixed braid index n,
and results for fixed degree d. When n is fixed and d varies, as was recalled above, the
numbers bn,d and bn,d(x) obey a linear induction rule associated with a certain n!× n!
adjacency matrix Mn. Here we show that Mn can be replaced with a smaller matrix
of size p(n)× p(n), where p(n) is the number of partitions of n—which means that the
size of the automaton involved in the bi-automatic structure of Bn can be lowered to
p(n). The result relies on analysing the descents of the permutations associated with
simple braids, and it is connected with a classical result by Solomon [25]. It is then
easy to deduce the numerical value of bn,d for small n, d, as well as explicit formulas,
at least for n 6 4. We are also led to several conjectures about the eigenvalues of the
matrix Mn that seem to have never been considered so far. The most puzzling one
claims that the characteristic polynomial of Mn−1 divides that of Mn. It holds at least
for n 6 10.

When d is fixed and n varies, quite different induction rules appear. Everything
is trivial for d = 1, and an explicit formula for bn,2 can be deduced from the results
of [6, 7]. It seems difficult to go further in general, but new results (and new induction
schemes) appear when we consider the numbers bn,d(∆n−r) with 1 6 r 6 n, typically
in the (non-trivial) case r = 1, and, more generally, when r is fixed. In particular, we
obtain explicit values for bn,3(∆n−1), bn,3(∆n−2), and bn,4(∆n−1).

The specific questions investigated in this paper, in particular that of the value
of bn,d(∆n−r), arose in [13]. There exists a linear ordering of braids relying on the
notion of a σ-positive braid word [12], and the aim of [13] is to develop a new approach
to that ordering based on the study of its connection with the Garside structure. It
turns out that certain parameters describing the restriction of the ordering to positive
n-braids of degree at most d can be expressed in terms of the numbers bn,d(∆r), an
initial motivation for our current study of these numbers. However, we think that the
formulas and methods developed in the current paper go beyond the above specific
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applications. In particular, the great diversity of the induction schemes appearing in
connection with various specializations of the general problem is remarkable. At the
least, the current study should demonstrate the richness of the combinatorics underlying
the normal form of braids.

Still other presentations of the braid groups are known, in particular the one involv-
ing the so-called dual monoid [2, 4], which gives rise to an alternative Garside structure,
and, therefore, to an alternative normal form analogous to that considered here, where
the role of simple braids is played by elements that are in one-to-one correspondence
with non-crossing partitions. All questions considered in the current paper could be
similarly addressed for the dual structure, and, more generally, for the many presenta-
tions of Bn known to date. Similarly, Artin’s braid groups Bn belong to larger families
of groups, typically Artin-Tits groups of spherical type and, more generally, Garside
groups [14, 11, 23]. Once again, all questions considered here extend to such frameworks
naturally. However, mainly because of the specific applications mentioned above, we
find it interesting to consider here the specific framework of braids and permutations,
and we leave the extensions for further investigation.

The paper is organized as follows. Section 1 sets the framework and the basic def-
initions. In Section 2 we introduce the adjacency matrix Mn that controls the se-
quences bn,d for fixed n and show how to reduce their size from n! to 2n−1. In Section 3,
we show how to further reduce the size to p(n), and solve the induction for small values
of n. Finally, in Section 4, we turn to the cases when the degree is fixed and the braid
index varies.
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1. Background and preliminary results

Our notation is standard, and we refer to textbooks like [3] or [17] for basic results
about braid groups. We recall that the n strand braid group Bn is defined for n > 1
by the presentation

(1.1) Bn =
〈

σ1, . . . , σn−1 ; σiσj = σjσi for |i− j| > 2
σiσjσi = σjσiσj for |i− j| = 1

〉
.

So, B1 is a trivial group {1}, while B2 is the free group generated by σ1. The elements
of Bn are called n strand braids, or simply n-braids. We use B∞ for the group generated
by an infinite sequence of σi’s subject to the relations of (1.1), i.e., the direct limit of
all Bn’s under the inclusion of Bn into Bn+1.

By definition, every n-braid x admits (infinitely many) expressions in terms of the
generators σi, 1 6 i < n. Such a expression is called an n strand braid word. Two braid
words w,w′ representing the same braid are said to be equivalent; the braid represented
by a braid word w is denoted [w].

It is standard to associate with every n strand braid word w an n strand braid dia-
gram by stacking elementary diagrams associated with the successive letters according
to the rules
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σi 7→
1 2 i i+1

. . . . . .

σ−1
i 7→ . . . . . .

Then two braid words are equivalent if and only if the diagrams they encode are the
projections of ambient isotopic figures in R3, i.e., one can deform one diagram into the
other without allowing the strands to cross or moving the endpoints.

1.1. The monoid B+
n and the braids ∆n. Let B+

n be the monoid admitting the
presentation (1.1). The elements of B+

n are called positive n-braids.

Definition 1.1. For x, y in B+
n , we say that x is a left divisor of y, denoted x 4 y,

or, equivalently, that y is a right multiple of x, if y = xz holds for some z in B+
n . We

denote by Div(y) the (finite) set of all left divisors of y in B+
n .

As B+
n is not commutative for n > 3, there are the symmetric notions of a right

divisor and a left multiple—but we shall mostly use left divisors here. Note that x is
a (left) divisor of y in the sense of B+

n if and only if it is a (left) divisor in the sense
of B+

∞, so there is no need to specify the index n.
Wih respect to left divisibility, B+

n has the structure of a lattice [19]: any two
positive n-braids x, y admit a greatest common left divisor, denoted gcd(x, y), and a
least common right multiple. A special role is played by the lcm of the elements σ1,
. . . , σn−1, traditionally denoted ∆n, which is inductively defined by

(1.2) ∆1 = 1, ∆n = σ1σ2 . . . σn−1 ∆n−1.

It is well known that ∆2
n belongs to the centre of Bn (and even generates it for n >

3), and that the inner automorphism φn of Bn corresponding to conjugation by ∆n

exchanges σi and σn−i for 1 6 i 6 n− 1.

1.2. The normal form. In B+
n , the left and the right divisors of ∆n coincide, and

they make a finite sublattice of (B+
n ,4) with n! elements. These braids will be called

simple in the sequel. Geometrically, simple braids are those positive braids that can be
represented by a braid diagram in which any two strands cross at most once.

For each positive n-braid x distinct from 1, the simple braid gcd(x,∆n) is the maxi-
mal simple left divisor of x, and we obtain a distinguished expression x = x1x

′ with x1

simple. By decomposing x′ in the same way and iterating, we obtains the so-called
normal expression [16, 17].

Definition 1.2. A sequence (x1, . . . , xd) of simple n-braids is said to be normal if, for
each k, one has xk = gcd(∆n, xk . . . xd).

Clearly, each positive braid admits a unique normal expression. It will be convenient
here to consider the normal expression as unbounded on the right by completing it with
as many trivial factors 1 as needed. In this way, we can speak of the dth factor (in the
normal form) of x for each positive braid x. We say that a positive braid has degree d if
d is the largest integer such that the dth factor of x is not 1. It is well known that the
positive n-braids of degree at most d coincide with the (left or right) divisors of ∆d

n.
The only properties of the normal form we shall use here are as follows:
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Lemma 1.3. [8] Assume that (x1, . . . , xd) is a sequence of simple n-braids. Then the
following are equivalent:

(i) The sequence (x1, . . . , xd) is normal;
(ii) For 1 6 k < d, the sequence (xk, xk+1) is normal;
(iii) For 1 6 k < d, every σi dividing xk+1 on the left divides xk on the right.

Definition 1.4. For x a simple n-braid, we define DL(x) (resp. DR(x)) to be the set
of all i’s such that σi is a left (resp. right) divisor of x.

The example of σ2 and σ2σ1σ3σ2, for which both DL and DR is {2}, shows that
these sets do not determine a simple braid. However, as far as normal sequences are
concerned, they contain all needed information, as Lemma 1.3 can be restated as:

Lemma 1.5. A sequence of simple n-braids (x1, . . . , xd) is normal if and only if, for
each k < d, we have DR(xk) ⊇ DL(xk+1).

1.3. Connection with permutations. Everywhere in the sequel, we write [[1, n]] for
{1, . . . , n}. By mapping σi to the transposition (i, i + 1), one defines a surjective
homomorphism π of Bn onto the symmetric group Sn. The restriction of π to simple
braids is a bijection: for every permutation f of [[1, n]], there exists exactly one simple
braid x satisfying π(x) = f .

The Exchange Lemma for Coxeter groups connects the sets DL(x) and DR(x) with
the permutation associated with x and their descents. For f a permutation, use `(f)
for the minimal number of factors occurring in a decomposition of f as a product of
transpositions. The precise statement is

Lemma 1.6. Let x be a simple n-braid x. For 1 6 i < n, the following are equivalent:
(i) The braid σi is a left divisor of x in B+

n , i.e., i belongs to DL(x);
(ii) The strands starting at positions i and i + 1 cross in any positive diagram for x;
(iii) We have π(x)−1(i) > π(x)−1(i + 1);
(iv) We have `(π(σix)) < `(π(x)), i.e., i is a descent of π(x)−1.

Symmetrically, the following are equivalent:
(i′) The braid σi is a right divisor of x in B+

n , i.e., i belongs to DR(x);
(ii′) The strands finishing at positions i and i+1 cross in any positive diagram for x;
(iii′) We have π(x)(i) > π(x)(i + 1);
(iv′) We have `(π(xσi)) < `(π(x)), i.e., i is a descent of π(x).

So, for x a simple braid, the indices i such that σi is a right divisor of x are the
descents of the associated permutation π(x), while those such that σi is a left divisor
of x are the descents of π(x)−1.

1.4. The numbers bn,d and bn,d(x). Our aim in this paper is to solve various count-
ing problems involving the normal form of positive braids. The main numbers we
investigate are as follows:

Definition 1.7. For n, d > 1, we denote by bn,d the number of positive n strand braids
of degree at most d, i.e., the number of divisors of ∆d

n in the braid monoid.

By Lemma 1.5, bn,d is the number of normal sequences of length d, i.e., the number of
sequences (x1, . . . , xd) where all xk are simple braids and DL(xk) ⊇ DR(xk+1) holds for
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k < d. By Lemma 1.6, it is also the number of sequences of permutations (f1, . . . , fd)
such that, for each k < d, the descents of f−1

k+1 are included in those of fk.
For d = 1, the bijection between simple n strand braids and permutations of [[1, n]]

immediately gives

(1.3) bn,1 = n!,

which implies for all n, d

(1.4) bn,d 6 (n!)d.

In the sequel, we shall have to count normal sequences satisfying some constraints.
So we introduce one more notation.

Definition 1.8. For n, d > 1 and x a simple n-braid, we denote by bn,d(x) the number
of positive n strand braids of degree at most d with dth factor equal to x.

In other words, bn,d(x) is the number of normal sequences of the form (x1, . . . , xd−1, x).
Some connections are obvious:

Proposition 1.9. For all n, d, we have

(1.5) bn,d =
∑

x simple

bn,d(x) = bn,d+1(1).

Proof. The first equality is obvious. The second one follows from the fact that (x1, . . . , xd)
is normal if and only if (x1, . . . , xd, 1) is: indeed, 1 has no left divisor but itself, so, by
Lemma 1.3, every sequence (x, 1) is normal. �

2. Adjacency matrices

In this section and the next one, we study the numbers bn,d and bn,d(x) when n is
fixed and d varies. By Lemma 1.3, normal sequences of simple braids are characterized
by a purely local criterion that only involves adjacent entries. It follows that the set
of all normal sequences can be recognized by a finite state automaton [17], and, as a
consequence, the associated counting numbers obey a linear induction rule specified by
a certain adjacency matrix [18]. In this section, we define the matrix involved in the
current situation, and show how its size, which is originally n!, can be lowered to 2n−1.

2.1. Enumeration of simple braids. Below we consider matrices whose entries are
indexed by simple braids (or, equivalently, permutations). Fixing an enumeration of
simple braids is not important at a conceptual level, but this is necessary when the
objects are to be specified explicitly. We shall use the restriction of the canonical linear
ordering of braids denoted <φ in [12]—which gives for each n a well-ordering of ordinal
type ωωn−2

on B+
n . The corresponding increasing enumeration of simple n-braids can

be constructed directly using induction on n. We start from the following easy remark:

Lemma 2.1. For 1 6 i 6 n, write σi,n for σiσi+1 . . . σn−1 (so that σn,n is 1). Then
every simple n-braid x admits a unique decomposition x = σi,n y with 1 6 i 6 n and y
a simple (n− 1)-braid.

Proof. (Figure 1) Let i = π(x)(n). Then we can realize x by a diagram in which the
ith strand is first sent to the rightmost position, and it remains a simple (n− 1)-braid.
Conversely, we have i = π(σi,ny)(n), so the decomposition is unique. �
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x
y

i

Figure 1. Proof of Lemma 2.1

Definition 2.2. We inductively define an enumeration Sn of simple n-braids by

(2.1) S1 := (1), Sn := Sn−1
_ σn−1,nSn−1

_ . . . _ σ1,nSn−1,

where _ stands for list concatenation, and xS is the list obtained from S by multipliying
all entries by x on the left. The kth element in

⋃
n Sn is denoted τk.

The first τk’s are, in increasing order,

τ1 = 1 , τ2 = σ1 , τ3 = σ2 , τ4 = σ2σ1 , τ5 = σ1σ2 , τ6 = σ1σ2σ1 , τ7 = σ3, . . .

Lemma 2.1 guarantees that all simple braids occur in the above enumeration. Note
that, for every n, we have ∆n = τn!.

It is easy to check that the ordering of simple braids we use corresponds to a reversed
antilexicographic ordering of the inverses of the associated permutations: x occurs
before y if and only if we have π(x)−1 < π(y)−1, where f < g is said to hold if we have
f(i) > g(i) for the largest i for which f and g do not agree. Also, observe that Sn is
obtained from Sn−1 by using minimal length representatives for the cosets of Sn/Sn−1.

2.2. The matrix Mn. Everywhere in the sequel, we write (M)x,y for the (x, y)-entry
of a matrix M .

Definition 2.3. For n > 1, we define Mn to be the n!× n! matrix satisfying

(Mn)k,` =

{
1 if (τk, τ`) is normal,
0 otherwise.

Instead of referring to integer entries, it will be often convenient to think of the
entries of Mn as directly indexed by simple braids; for x, y simple braids, we simply
write (Mn)x,y for the corresponding entry.

Example 2.4. The first 3 matrices Mn are

M1 = 1, M2 =
(

1 0
1 1

)
, M3 =


1 0 0 0 0 0
1 1 0 0 1 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 1 0 0
1 1 1 1 1 1

 .

The construction of the matrix Mn immediately implies the following results:

Lemma 2.5. (i) The first column and the last row of Mn contain only 1’s; the first row,
its first entry excepted, and the last column, its last entry excepted, contain only 0’s.

(ii) The first (n− 1)! columns of Mn consist of n stacked copies of Mn−1.
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(iii) If DR(τk) = DR(τk′) holds, then the kth and the k′th rows in Mn coincide.
Similarly, if DL(τ`) = DL(τ`′) holds, then the `th and the `′th columns in Mn coincide.

Proof. (i) By construction, we have τ1 = 1 and τn! = ∆n. Now (x, 1) is always normal,
and so is (∆n, x). On the other hand, (1, x) is normal only for x = 1, and (x,∆n) is
normal only for x = ∆n.

(ii) Assume k 6 (n− 1)! and k′ = k + (n− i) · (n− 1)!. Our enumeration of simple
braids implies τk′ = σi,nτk. Then Figure 1 makes the equality DR(τk′) ∩ [[1, n− 1]] =
DR(τk) clear. For every simple (n− 1)-braid y, the set DL(y) is included in [[1, n− 1]],
and it follows that (τk′ , y) is normal if and only if (τk, y) is. In other words, we have
(Mn)k′,` = (Mn)k,` for ` 6 (n− 1)!.

(iii) By Lemma 1.3, the value of (Mn)k,` only depends on DR(τk) and on DL(τ`). �

The connection between the numbers bn,d(x) and the matrix Mn is straightforward:

Lemma 2.6. For every simple y and every d > 1, we have

(2.2) bn,d(y) = ((1, 1, . . . , 1) Mn
d−1)y.

Proof. Induction on d. For d = 1, and for each simple n-braid x, there is exactly one
braid of degree at most 1 whose first factor is y, namely y itself, and we have bn,1(y) = 1.
Assume d > 2. By Lemma 1.3, (x1, . . . , xd−1, y) is normal if and only if (x1, . . . , xd−1)
and (xd−1, y) are normal, so we get

bn,d(y) =
∑

(x,y) normal

bn,d−1(x) =
∑

x

bn,d−1(x) (Mn)x,y,

and (2.2) follows inductively. �

Remark 2.7. As the last row of Mn is (1, . . . , 1), we have (1, . . . , 1) = (0, . . . , 0, 1)Mn,
and we can replace (2.2) with

(2.3) bn,d(y) = ((0, . . . , 0, 1) Mn
d)y.

Example 2.8. Using the value of M2, we immediately find b2,d(1) = d, b2,d(σ1) = 1, as
could be expected: there are d + 1 2-braids of degree at most d, namely the braids σk

1

with k < d, whose dth factor is 1, and σd
1 , whose dth factor is ∆2, i.e., σ1.

The computation for n > 3 is more complicated, and we postpone it. For the
moment, we just point that, as the numbers bn,d(x) obey the linear recurrence (2.2),
standard arguments imply that they can be expressed in terms of the eigenvalues of Mn:

Proposition 2.9. Let ρ1, . . . , ρk be the non-zero eigenvalues of Mn. Then, for each
simple n-braid x, there exist polynomials P1, . . . , Pk with deg(Pi) at most the multiplicity
of ρi for Mn such that, for each d > 0, we have

(2.4) bn,d(x) = P1(d)ρd
1 + · · ·+ Pk(d)ρd

k.

Corollary 2.10. For all n, x, the generating function of the numbers bn,d(x)’s with
respect to d is rational.
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2.3. Reducing the size. The size n! of the adjacency matrix Mn is uselessly large,
and we shall see now how to lower it. This will be done in two steps. The first one
relies on the fact, pointed out in Lemma 2.5(iii), that many columns in Mn are equal.
For subsequent use, it will be useful to introduce a new sequence of numbers:

Definition 2.11. For I, J ⊆ [[1, n− 1]], we denote by an,I,J (resp. ân,I,J) the number
of simple n-braids satisfying DL(x) = I (resp. DL(x) ⊇ I) and DR(x) ⊇ J .

Lemma 2.12. For n > 1, let M ′
n be the 2n−1 × 2n−1 matrix with entries indexed by

subsets of [[1, n− 1]] defined by (M ′
n)I,J = an,I,J . Then the characteristic polynomials

of M ′
n and Mn coincide up to a power of x, and, for every simple y with DL(y) = J

and every d > 1, we have

(2.5) bn,d(y) = ((1, 1, . . . , 1) M ′
n
d−1)J .

Proof. Gathering the columns corresponding to simples with the same DL set and
summing the corresponding lines amounts to replacing Mn with a similar matrix of the

form
(

M ′
n 0

. . . 0

)
, so the result about the characteristic polynomial is clear.

As for the value of bn,d(y), the argument is similar to that for Lemma 2.6. The
induction starts as an,I,[[1,n−1]] = 1 holds for each I. For the general step, we find

bn,d(y) =
∑

(x,y) normal

bn,d−1(x) =
∑

DR(x)⊇J

bn,d−1(x) =
∑

I

∑
DR(x)⊇J
DL(x)=I

bn,d−1(x)

=
∑

I

b′n,d−1(I)an,I,J =
∑

I

((1, . . . , 1)M ′
n

d−2)I(M ′
n)I,J = ((1, . . . , 1)M ′

n
d−1)J ,

where b′n,d(I) denotes the common value of bn,d(x) for x with DL(x) = I. �

For n = 3, and using the enumeration ∅, {1}, {2}, {1, 2} that is induced by our

enumeration of simple braids, we obtain M ′
3 =


1 0 0 0
2 1 1 0
2 1 1 0
1 1 1 1

. Observe that the second

and third columns in M ′
3 coincide, which suggests a further reduction step.

3. Partitions associated with a simple braid

We can indeed reduce the size of the matrices once more: we can replace the adja-
cency matrix M ′

n with a new matrix Mn, whose size is p(n), the number of partitions
of n. Here the result is deduced from elementary remarks about simple braids (or,
equivalently, about permutations); it can also be deduced from classical results about
Solomon’s algebra of descents—and therefore extends to all Artin–Tits groups of spher-
ical type.

3.1. Computation of ân,I,J . We shall start from an explicit determination of the
value of the numbers ân,I,J in terms of the block compositions of I and J . We first
recall the notions of composition and partition.
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Definition 3.1. Assume I ⊆ [[1, n− 1]]. Let p1, . . . , pi be the increasing enumeration
of [[1, n]] \ I, completed with p0 := 0. For 1 6 j 6 k, the interval {pj−1 + 1, ..., pj} is
called the jth n-block of I. The n-composition [I]n of I is defined to be the sequence of
the sizes of the successive n-blocks of I. The n-partition {I}n of I is the non-increasing
rearrangement of [I]n.

Example 3.2. By definition, the n-blocks of I partition [[1, n]]. For instance, consider
I := {1, 2, 4, 5, 6, 9} with n := 10. We find [[1, n]] \ I = {3, 7, 8, 10}, so the successive
10-blocks of I are {1, 2, 3}, {4, 5, 6, 7}, {8}, and {9, 10}. Hence, the 10-composition
of I is (3, 4, 1, 2), while its 10-partition is (4, 3, 2, 1). Note that the n-composition of I
determines I, but its n-partition does not.

The geometric observation is the following one:

Lemma 3.3. Assume J ⊆ [[1, n− 1]], and let (q1, . . . , q`) be the n-composition of J .
For x a simple n-braid, define fx : [[1, n]] → [[1, `]] by fx(i) = j if the ith strand of x
finishes in the jth n-block of J . Then x 7→ fx establishes a bijection between the simple
n-braids x that satisfy DR(x) ⊇ J and the functions from [[1, n]] to [[1, `]] that satisfy
#f−1(i) = qi for each i. Moreover, for DR(x) ⊇ J , we have, for every i,

(3.1) i ∈ DL(x) ⇐⇒ fx(i) > fx(i + 1).

Proof. Assume that x is a simple n-braid satisfying DR(x) ⊇ J , i.e., that is right
divisible by σj for each j in J . By hypothesis, the first n-block of J is {1, . . . q1}. Then
x being right divisible by σ1, . . . , σq1−1 is equivalent to its being right divisible by the
left lcm of these elements, which is ∆q1 . Similarly, the second n-block in J is {q1 + 1,
. . . , q1 + q2}, and being right divisible by σq1+1, ..., σq1+q2−1 amounts to being right
divisible by their left lcm, which is shq1(∆q2), where sh denotes the shift endomorphism
of B∞ that maps each σi to σi+1. Now, by construction, the sets {1, . . . , q1 − 1}
and {q1 + 1 . . . , q1 + q2 − 1} are separated by q1, and, therefore, the corresponding σ’s
commute. In particular, ∆q1 and shq1(∆q2) commute, and their left lcm is their product.
Finally, a simple braid x satisfies DR(x) ⊇ J if and only if it is a right multiple of the
element

∆J = ∆q1 shq1(∆q2) . . . shq1+···+q`−1(∆q`
),

i.e., we have x = x′∆J for some x′.
We claim that fx determines x′, hence x. Indeed, in a simple braid, any two strands

cross at most once. Now, in a ∆-diagram, any two strands cross. So, if the ith and
the i′th strands go to the same block of J , i.e., if we have fx(i) = fx(i′), then these
strands cross in the final ∆-part, and therefore they cannot cross in (any positive
diagram representing) x′. So, when fx is given, there is only one way to construct x′,
namely taking the strands to the entrance of the specified ∆-block in increasing order
(Figure 2).

Consider now i, 1 6 i < n. We wonder whether σi is a left divisor of x, i.e., if the
ith and the i + 1st strands cross in the diagram of x. If we have fx(i) = fx(i + 1), the
ith and i+1st strand go to the same block of J , where they certainly cross. If we have
fx(i) > fx(i + 1), then the ith strand goes to a block of J on the right of the block to
which the i + 1st strand goes, so they must cross in the x′ part. On the contrary, for
fx(i) < fx(i + 1), the strands cannot cross in the x′ part—if they crossed once, they



COMBINATORICS OF NORMAL SEQUENCES OF BRAIDS 11

would have to cross a second time before exiting, and this is forbidden—and they do
not cross in the ∆ part either. So (3.1) holds. �

the x′ part

the ∆ part∆q1 ∆q`

first block of J . . .

. . .

last block of J

Figure 2. A simple braid divisible by all σj ’s with j in J can be represented
by a diagram finishing with ∆’s corresponding to the blocks of J ; the strands
going to the same block cannot cross in the x′ part, as they cross inside the
block; so the strands starting from i and i′ with i < i′ cross if and only if they
go to different blocks and i goes to a block on the right of the block i′ goes to.

We deduce the following characterization of ân,I,J :

Proposition 3.4. Assume that I, J are subsets of [[1, n− 1]] with respective n-composi-
tions (p1, . . . , pk) and (q1, . . . , q`). Then ân,I,J is the number of k×` matrices with non-
negative integer entries such that, for all i, j, the ith row has sum pi and the jth column
has sum qj. In particular, we have

(3.2) ân,I,∅ =
n!

p1! . . . pk!
and ân,∅,J =

n!
q1! . . . q`!

.

Proof. Lemma 3.3 immediately implies

an,I,J = #{f : [[1, n]]→ [[1, `]] ; (∀j)(#f−1(j) = qj) and (i ∈ I ⇔ f(i) > f(i + 1))},
(3.3)

ân,I,J = #{f : [[1, n]]→ [[1, `]] ; (∀j)(#f−1(j) = qj) and (i ∈ I ⇒ f(i) > f(i + 1))}.
(3.4)

Assume that f is a function of [[1, n]] to [[1, `]] satisfying the constraints of (3.4). Let
Af be the k × `-matrix whose (i, j)-entry is the number of k’s in the ith block of I
satisfying f(k) = qj . By construction, the sum of the ith row of Af is the size pi of
the ith block of I, while the sum of the jth column is the number of k’s satisfying
f(k) = j, i.e., it is qj . We claim that Af determines f . Indeed, (3.4) requires that f
be non-increasing on each block of I, so there is only one possibility once the number
of k’s going to the various j is fixed.

The first equality in (3.2) follows: for ` = n, there is exactly one nonzero entry in
each column, so choosing a convenient matrix amounts to choosing among n elements
the q1 columns with a 1 in the first row, the q2 columns with a 1 in the second row,
etc. The second equality is similar with rows and columns exchanged. �
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Corollary 3.5. (i) The number ân,I,J only depends on the partitions {I}n and {J}n.
(ii) For each n and I, the number an,I,J only depends on the partition {J}n.

Proof. Point (i) directly follows from the characterization of Proposition 3.4, as the
latter clearly involves the sizes of the blocks of I and J only. As for (ii), the usual
inclusion-exclusion formula gives

an,I,J =
∑

K∩I=∅

(−1)#K ân,I∪K,J .

By (i), each term in the sum only depends on {J}n, and so does the sum. �

It is easy to check that the value of an,I,J does not only depend on {I}n in general:
when we apply the inclusion-exclusion formula, the sizes of the blocks in I ∪K do not
only depend on the sizes of the block in I.

Remark 3.6. Corollary 3.5 can also be deduced from classical results by Solomon about
the descent algebra—and, therefore, it extends to all Artin–Tits groups of spherical
type. The argument is as follows. For f a permutation, let D(f) denote the sets
of descents of f . In the group algebra Q[Sn], let dI :=

∑
{f ;D(f) = I} and eJ =∑

{f ;D(f)∩J = ∅}. Using w0 for the flip permutation, we have w0eJ =
∑
{f ;D(f) ⊇

J}, and therefore an,I,J = 〈dI , w0eJ〉, where 〈., .〉 is the inner product defined by 〈f, g〉 =
1 for g = f−1, and = 0 otherwise. Using the isometry result of [21], we deduce
an,I,J = 〈θ(dI), θ(w0eJ)〉, where θ(eK) denotes the character of Sn induced by the
trivial character of the standard parabolic subgroup generated by (the transpositions si

with i in) K. By [25], the subspace of Q[Sn] generated by the eK is a subalgebra, and
the kernel of θ is generated by the elements dI − dJ with I, J associated with the same
partition, and it follows from the above expression that an,I,J only depends on the
partition associated with J .

3.2. The matrix Mn. We can now come back to the matrix M ′
n, and replace it for

the computation of the numbers bn,d with a new matrix of smaller size. Indeed, a direct
application of Corollary 3.5 is

Lemma 3.7. Assume that J , J ′ are subsets of [[1, n− 1]] with the same n-partition.
Then the Jth and J ′th columns of M ′

n are equal.

Thus the process used to replace Mn with M ′
n can be applied again, i.e., we form a

new matrix by gathering the equal columns and summing the corresponding rows. The
number p(n) is bounded above by (eπ

√
2/3)

√
n, so the benefit is clear.

Definition 3.8. (i) For λ a partition (or a composition) of n, we denote by λ̃ the
unique subset I of [[1, n− 1]] satisfying [I]n = λ.

(ii) For λ, µ ` n (i.e., partitions of n), we put

aλ,µ =
∑

{I}n=λ

an,I,eµ = #{x ; {DL(x)}n = λ and DR(x) ⊇ µ̃},

and we let Mn be the matrix with rows and columns indexed by partitions of n and
whose (λ, µ)-entry is aλ,µ.
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In this way the size of the matrix has been reduced from n! to p(n), the number
of partitions of n. For instance, enumerating partitions in the order induced by the
previous order on P([[1, n]]), we obtain

M3 =

1 0 0
4 2 0
1 1 1

 , M4 =


1 0 0 0 0
11 4 1 0 0
5 3 2 1 0
6 4 2 2 0
1 1 1 1 1

 , M5 =



1 0 0 0 0 0 0
26 8 0 2 0 0 0
23 12 4 5 0 1 0
43 21 5 10 0 2 0
8 6 4 4 2 2 0
18 12 6 8 2 4 0
1 1 1 1 1 1 1


.

Applying the same argument as for Lemma 2.12, we obtain:

Proposition 3.9. For n > 1, the characteristic polynomials of Mn and Mn coincide
up to a power of x, and, for every simple n-braid x, we have for each d

(3.5) bn,d(x) = ((1, 1, . . . , 1) M
d−1
n )λ,

where λ is the n-partition of DL(x). In particular we have

(3.6) bn,d = ((1, 1, . . . , 1) M
d
n)(1,1,...,1).

Table 1 gives the first few values deduced from the above formulas.

d 1 2 3 4 5 6
b2,d(1) 1 2 3 4 5 6

b3,d(1) 1 6 19 48 109 234
b3,d(∆2) 1 3 7 15 31 63

b4,d(1) 1 24 211 1 380 8 077 45 252
b4,d(∆2) 1 12 83 492 2 765 15 240
b4,d(∆3) 1 4 15 64 309 1 600

b5,d(1) 1 120 3 651 79 140 1 548 701 29 375 460
b5,d(∆2) 1 60 1 501 30 540 585 811 11 044 080
b5,d(∆3) 1 20 311 5 260 94 881 1 755 360
b4,d(∆4) 1 5 31 325 4 931 86 565

b6,d(1) 1 720 90 921 7 952 040 634 472 921 49 477 263 360
b6,d(∆2) 1 360 38 559 3 228 300 254 718 389 19 808 530 620
b6,d(∆3) 1 120 8 727 649 260 49 654 757 3 831 626 580
b6,d(∆4) 1 30 1 075 61 620 4 387 195 332 578 230
b6,d(∆5) 1 6 63 1 955 116 423 8 448 606

Table 1. First values of bn,d(∆r) for 1 6 r < n; the values of bn,d can be
also read, as Proposition 1.9 gives bn,d = bn,d+1(1), so, for instance, we find
b3,3 = 48, and b4,5 = 45 252.
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3.3. Small values of n. For small values of n, it is easy to complete the compu-
tations and to obtain an explicit form for the expansion of bn,d(x) as announced in
Proposition 2.9.

Example 3.10. Assume n = 3. The matrix M3 is invertible with eigenvalues 1 (dou-
ble) and 2. By solving the recurrences, we find

b3,d(x) =


4 · 2d − 3d− 4 for x with partition (1, 1, 1), i.e., x = 1
2d − 1, for x with partition (2, 1), i.e., x = σ1, σ2, σ2σ1, or σ1σ2,
1 for x with partition (3), i.e., x = ∆3,

and we deduce b3,d = 8 · 2d − 3d− 7.

Example 3.11. Assume now n = 4. The matrix M4 admits 4 eigenvalues, namely
those of M3, plus ρ1 = 3+

√
6 and ρ2 = 3−

√
6. Solving the recurrences yields for bn,d(x)

with associated partition as indicated

(1, 1, 1, 1) : 1
20(18 + 7

√
6)ρd

1 + 1
20(18− 7

√
6) ρd

2 − 256
5 · 2d + 6k + 11,

(2, 1, 1) : 1
60(18 + 7

√
6)ρd

1 + 1
60(18− 7

√
6) ρd

2 − 8
5 · 2d + 1,

(2, 2) : 1
12(
√

6) ρd
1 − 1

12(
√

6) ρd
2,

(3, 1) : 1
60(6−

√
6) ρd

1 + 1
60(6 +

√
6) ρd

2 + 4
5 · 2d − 1,

and 1 for associated partition (4), i.e., for x = ∆4. As the characteristic polynomial
of M4 is (x2 − 6x + 3)(x − 2)(x − 1)2, we can equivalently determine b4,d(x) and b4,d

by inductions on d of the form

(3.7) ud = 6ud−1 − 3ud−2 + α2d + βd + γ

where α, β, γ are determined using special values of ud. For instance, b4,d is determined
by (3.7) with α = 32, β = −12, γ = −34 and the values u−1 = 0, u0 = 1. Generating
functions can be deduced easily.

3.4. Eigenvalues of Mn. By Proposition 2.9, the value of bn,d and bn,d(x), and in
particular its asymptotic behaviour when d grows to infinity, are connected with the
non-zero eigenvalues of Mn, which, by Proposition 3.9, coincide with those of Mn. The
characteristic polynomial of Mn—hence of Mn up to an xd factor—for small values
of n is displayed in Table 2.

These values support the following

Conjecture 3.12. For each n, the characteristic polynomial of Mn−1 divides that
of Mn. More precisely, the sprectrum of Mn is the spectrum of Mn−1, plus p(n) −
p(n− 1) simple non-zero eigenvalues.

It is not hard to check the above statement for n 6 10. Specifically, let M̂n be the size
p(n)− 2 matrix obtained from Mn by deleting the first and the last rows and columns.
For each small value of n, one can directly check that M̂n is similar to a matrix of

the form
(

M̂n−1 0
. . . . . .

)
, and deduce the properties asserted in Conjecture 3.12. But no

generic argument is known so far.
The growth rate of the numbers bn,d(x) is connected with the largest eigenvalue

ρmax(Mn) of Mn. For n 6 6, all bn,d(x) except bn,d(∆n), which is 1, and therefore all
bn,d as well, grow like ρmax(Mn)d.
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PM1
(x) = x− 1

PM2
(x) = PM1

(x) · (x− 1)
PM3

(x) = PM2
(x) · (x− 2)

PM4
(x) = PM3

(x) · (x2 − 6x + 3)
PM5

(x) = PM4
(x) · (x2 − 20x + 24)

PM6
(x) = PM5

(x) · (x4 − 82x3 + 359x2 − 260x + 60)
PM7

(x) = PM6
(x) · (x4 − 390x3 + 6024x2 − 13680x + 8640)

PM8
(x) = PM7

(x) · (x7 − 2134x6 + 139976x5 − 1321214x4 + 3780975x3

−3305160x2 + 1341900x− 226800)
n 1 2 3 4 5 6 7 8

ρmax(Mn) 1 1 2 5.449 18.717 77.405 373.990 2066.575
ρmax(Mn)

n · ρmax(Mn−1)
- 0.5 0.667 0.681 0.687 0.689 0.690 0.691

Table 2. Characteristic polynomial of Mn for n 6 8, and the corresponding
largest eigenvalue—which is to be compared with n!, the growth rate for the
number of n-braids of degree at most d if all sequences were normal.

Question 3.13. Do all bn,d(x) except bn,d(∆n) grow like ρmax(Mn)d?

Question 3.14. What is the asymptotic behaviour of ρmax(Mn) with n?

The trivial upper bound of (1.4) suggests to compare ρmax(Mn) with n!, or, rather,
ρmax(Mn) with n ·ρmax(Mn−1). The values listed in Table 2 may suggest that the ratio
have a definite limit.

4. Letting the braid index vary

So far, we kept the braid index n fixed, and studied how the numbers bn,d or bn,d(x)
vary with d, thus letting linear inductions appear. Quite different induction schemes
appear when we fix the degree and let the braid index vary. No systematic method
is known so far, and we only mention a few partial results motivated by the approach
of [13].

4.1. The numbers bn,2. Very little is known about bn,d in general. The case d = 1 is
trivial, as we already observed the equality

bn,1 = n!.

For d = 2, the value can be deduced from earlier results of [6, 7] about permutations.
We shall use the following very general observation about duality in Garside groups:

Lemma 4.1. For x in ∆n, let ∗x and x∗ be defined by ∗xx = xx∗ = ∆n. Then x 7→ ∗x
and x 7→ x∗ are permutations of DL(∆n), and, for each simple x, we have

(4.1) DR(∗x) = [[1, n]] \DL(x) and DL(x∗) = [[1, n]] \DR(x).

Proof. Assume x ∈ DL(∆n). Then, by hypothesis, x is a left and a right divisor of ∆n,
hence ∗x and x∗ are positive braids, and they are divisors of ∆n in B+

n , so they are
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simple. That the mappings x 7→ ∗x and x 7→ x∗ are injective is clear, and the surjectivity
follows from the finiteness of DL(∆n).

Now, σi being a right divisor of ∗x is equivalent to ∗xσi not being simple, hence to the
non-existence of y satisfying ∗xσiy = ∆n, and finally to the non-existence of y satisfying
x = σiy. This implies the first equality in (4.1). The second equality follows from a
symmetric argument. �

Proposition 4.2. The numbers bn,2 are determined by the induction

(4.2) b0,2 = 1, bn,2 =
n−1∑
i=0

(−)n+i+1

(
n

i

)2

bi,2.

Their double exponential generating function is

(4.3)
∞∑

n=0

bn,2
xn

n!2
=

( ∞∑
n=0

(−1)n xn

n!2

)−1

=
1

J0(
√

x)
,

where J0(x) is the Bessel function.

Proof. By definition, bn,2 is the number of pairs of simple n-braids (x1, x2) satisfying
DR(x1) ⊇ DL(x2), i.e., by Lemma 4.1, DR(x1) ∩ DR(∗x2) = ∅. By Lemma 1.6, this
number is also the number of pairs of permutations (f, g) in Sn with no descent in
common, i.e., such that there exists no i satisfying both f(i) > f(i + 1) and g(i) >
g(i + 1). Such pairs of permutations have been counted in [6, 7] (see also [24]), with
the result indicated above. �

4.2. The numbers bn,2(∆n−r). Specific results appear when we consider the num-
bers bn,d(x) with x of the form ∆n−r with 1 6 r 6 n. In particular, we can complete
the computation when r is fixed and d is small. We obviously have bn,1(∆n−r) = 1 for
1 6 r 6 n, so the first case to consider is d = 2. The general principle that makes the
computation of bn,d(∆n−r) relatively easy is the following observation:

Lemma 4.3. For all n, d, r, we have

(4.4) bn,d(∆n−r) =
∑

x right divisible by ∆n−r

bn,d−1(x).

Proof. The argument is similar to that for Proposition 1.9. A sequence (x1, . . . , xd−1,∆n−r)
is normal if and only if both (x1, . . . , xd−1) and (xd−1,∆n−r) are normal. Now (xd−1,∆n−r)
is normal if and only if every σi dividing ∆n−r on the left divides xd−1 on the right.
The σi’s dividing ∆n−r on the left are σ1, . . . , σn−r−1. The simple braids that are right
divisible by σ1, . . . , σn−r−1 are those right divisible by ∆n−r. Then (4.4) follows. �

Proposition 4.4. For 1 6 r 6 n, we have

(4.5) bn,2(∆n−r) =
n!

(n− r)!
.

Proof. By Lemma 4.3, bn,2(∆n−r) is the number of simple n-braids x that are right
divisible by ∆n−r, i.e.., that satisfy DR(x) ⊇ [[1, n− r]]. The n-composition of [[1, n−r]]
in n is (n− r, 1, . . . , 1), so (3.2) directly gives (4.5). �



COMBINATORICS OF NORMAL SEQUENCES OF BRAIDS 17

4.3. The numbers bn,3(∆n−r). Things become more interesting for d = 3.

Proposition 4.5. For 1 6 r 6 n, there exist polynomials P1, . . . , Pn−r with integer
coefficients and Pi of degree at most n− r − i + 1 such that, for every n, we have

bn,3(∆n−r) = (n− r)! (n− r + 1)n +
n−r∑
i=1

Pi(n) ir+i−1.(4.6)

The explicit values for r = 1, 2 are

bn,3(∆n−1) = 2n−1,(4.7)

bn,3(∆n−2) = 2 · 3n − (n + 6) · 2n−1 + 1.(4.8)

Proof. We begin with (4.7). By Lemma 4.3, bn,3(∆n−1) is the sum of all bn,2(x) with x
right divisible by ∆n−1, i.e., it is the number of normal sequences (x1, x2) such that x2

is right divisible by ∆n−1. Let S be the set of all such normal sequences. We partition S
according to the value of DL(x2), i.e., for each subset I of [[1, n− 1]], we count how many
pairs (x1, x2) satisfy DL(x2) = I. So assume that x2 is right divisible by ∆n−1. Two
cases are possible. Either x2 is right divisible by (hence equal to) ∆n, and then we have
DL(x2) = [[1, n− 1]]. Or x2 is not divisible by ∆n−1, and then Lemma 3.3 shows that
x2 must be σi,n∆n−1 for some i with 2 6 i 6 n, so that the n-composition of DL(x2) is
(i− 1, n− i+1). So the possible compositions for the set DL(x2) are (n), and (p, n− p)
with 1 6 p 6 n− 1. Conversely, the previous analysis shows that, for each I of the
previous form, there exists exactly one possible x2. Now, Proposition 3.4 says that
there is one choice for x1 in the case of (n)—namely x1 = ∆n—and

(
n
p

)
choices for x1

in the case of (p, n− p). We deduce

bn,3(∆n−1) = 1 +
n−1∑
p=1

(
n

p

)
= 2n−1.

The method is similar for computing bn,3(∆n−2) in (4.8). Assume that (x1, x2) is a
normal sequence with x2 right divisible by ∆n−2. The hypothesis is DR(x2) ⊇ [[1, n−3]],
so three cases may occur, namely DR(x2) ⊇ [[1, n − 2]], DR(x2) = [[1, n − 3]], and
DR(x2) = [[1, n− 3]] ∪ {n− 1}. The first case was analysed above. In the second case,
DL(x2) has three blocks, and, conversely, each set I with three blocks gives exactly one
eligible x2. In the third case, DL(x2) has either two blocks, or it has three blocks with
the middle one of size at least 2; conversely, each set I of the previous form gives one
eligible x2. Using as above Proposition 3.4 to count the eligible x1’s for each possible I,
we obtain that bn,3(∆n−2) is

(4.9) bn,3(∆n−1) +
∑

p1+p2+p3=n
p1,p2,p3>1

n!
p1!p2!p3!

+
∑

p1+p2=n
p1,p2>1

n!
p1!p2!

+
∑

p1+p2+p3=n
p1,p3>1,p2>2

n!
p1!p2!p3!

.

Using the fact that 3n is the sum of all n!
p1!p2!p3! with p1 +p2 +p3 = n, one deduces (4.8)

by bookkeeping.
Applying the same method in the general case leads to (4.6). Indeed, always by

Lemma 3.3, specifying a simple n-braid x2 satisfying DR(x2) ⊇ [[1, r − 1]] amounts to
choosing a permutation of the n− r last strands and the n− r positions (i1, . . . , in−r)



18 PATRICK DEHORNOY

where these strands start from. In the generic case, the resulting set DL(x2) is {i1 −
1, . . . , in−r − 1}, whose composition consists of n− r blocks. The special cases are
when at least two adjacent strands among the last n− r ones start from adjacent
positions; according to whether these strands cross or not in the final part, one then
obtains either a composition with a block of size 2 at least, or a composition with
less than n− r blocks. Conversely, for every subset I of [[1, n− 1]] with n− r blocks,
there exists in general (n− r)! eligible x2’s, one for each choice of the final permutation
of the last n − r strands. There may be less than (n − r)! choices for x2 when 1
occurs in the composition of I. Also, subsets of [[1, n− 1]] with fewer than n− r blocks
may lead to eligible x2’s. Multiplying by the number of eligibles x1’s for each I and
summing up yields an expression similar to (4.9), involving (n − r)! sums of the form∑

p1+···+pn−r+1=n
n!

p1!...pn−r+1! with possible order constraints on p1, . . . , pn−r+1. Each of
them leads to a factor (n− r+1)n, plus additional factors corresponding to specializing
arguments to 0 or 1 or to grouping them. �

4.4. The numbers bn,4(∆n−1). For d = 4, it seems hopeless to complete the compu-
tation of bn,d(∆n−r). However, this can be done for r = 1. The remarkable point is
that still another induction scheme appears.

Proposition 4.6. For n > 1, we have

(4.10) bn,4(∆n−1) =
n−1∑
i=0

n!
i!

.

Proof. According to Lemma 4.3 again, we have now to count the normal sequences
(x1, x2, x3) with x3 of the form σi,n∆n−1, 2 6 i 6 n. We partition the family according
to the value I of DL(x2), and count how many sequences may correspond to a given I.
Let (p1, . . . , pk) denote the n-composition of I.

Let us first consider the case I = [[1, n− 1]]. Then we must have x2 = ∆n, hence x1 =
∆n as well. There are n possible choices for x3, and the total number of corresponding
sequences (x1, x2, x3) is n.

We assume now I 6= [[1, n− 1]], i.e., k > 2. As for x1, Proposition 3.4 directly
gives the number of choices, namely n!

p1!...pk! . So we are left with counting how many
pairs (x2, x3) are eligible. The case x3 = ∆n is excluded since it implies x2 = ∆n

hence I = [[1, n− 1]]. As in the case of bn,3(∆n−1), the hypothesis that x3 is σi,n∆n−1

for some i with 2 6 i 6 n implies that the n-composition of DL(x3) consists of two
nonempty blocks, and, conversely, each partition of [[1, n]] into two nonempty blocks
gives a unique x3 of the convenient form. So the number of pairs (x2, x3) associated
with I is the number of x2’s satisfying DL(x2) = I and such that DR(x2) has two blocks.

By (3.3), this number is the number of functions f of [[1, n]] to {1, 2} such that
f(i) < f(i + 1) holds exactly for i /∈ I. As only two values are possible, this condition
means that we have f(i) = 1 and f(i + 1) = 2 for i /∈ I, and f(i + 1) 6 f(i) for i ∈ I.
Consider the blocks of I. In each block, except possibly the first and the last ones, the
value of f has to be 2 on the first element, and to be 1 on the last element. Inbetween,
f is non-increasing. So the values consist of a series of 2’s, followed by a series of 1’s.
The only parameter to specify is the position where f switches from 2 to 1, so, for a
block of size p, there are p − 1 possible choices (see Figure 3). The cases of the first
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and the last blocks are special, because there is no constraint on the left for the first
block, and on the right for the last block. So, in these special cases, there are p choices
instead of p − 1. The conclusion is that, for I with n-composition (p1, . . . , pk), there
are p1(p2 − 1) . . . (pk−1 − 1)pk choices for the pairs (x2, x3) associated with I. Merging
the result for x1 and for (x2, x3) and summing up over I gives

(4.11) bn,4(∆n−1) =
∑ n!

p1! . . . pk!
p1(p2 − 1) . . . (pk−1 − 1)pk.

the sum being taken over all n-compositions (p1, . . . , pk): indeed, the value for [[1, n− 1]],
namely n, corresponds to the missing term n!

n!n of the sum.

p1 p2 p3 . . .

Figure 3. Proof of (4.11): the rises are fixed, so it just remains to choose
the position of the fall in each block of I, whence p − 1 choices for a size p
block except the first and the last ones.

We can now simplify the right hand term in (4.11). To this end, we observe that

(4.12)
∑

p1+···+pk=i+1
p1,...,pk>1

p1 − 1
p1!

. . .
pr−1 − 1

pr−1!
pk

pk!
= 1

holds for i > 0. Indeed, let F (i) be the left hand side of (4.12). We prove (4.12) using
induction on i. For i = 0, we get 1 = 1. Assume i > 1 and consider the sequences
(p1, . . . , pk) satisfying p1 + · · · + pk = i + 1. On the one hand, we have (i + 1), whose
contribution to F (i) is 1

i! . On the other hand, we have the sequences of length at
least 2. Now, for each p with 1 6 p 6 i, the contribution of (p, p2, . . . , pk) to F (i) is
p−1
p! times the contribution of (p2, . . . , pk) to F (i− p). Hence the total contribution of

the sequences beginning with p to F (i) is p−1
p! F (i− p), so, by induction hypothesis, it

is (p−1)
p! . We deduce F (i) = 0

1! + 1
2! + · · ·+ i−1

i! + 1
i! , which is clearly 1.

Consider now the right hand side in (4.11). For 0 6 i < n− 1, the contribution of (i+
1, p2, . . . , pk) to the sum is n!

i! times the quantity p1−1
p1!

pk1
−1

pk−1!
pk
pk! involved in (4.12). Using

the latter equality, we deduce that the total contribution of the sequences beginning
with i+1 is n!

i! . As for i = n− 1, the contribution of (n) to the right hand side in (4.11)
is n, which is n!

(n−1)! , so the general formula remains valid. By summing over i, we
obtain (4.10). �

Corollary 4.7. The numbers bn,4(∆n−1) are determined by the induction

u1 = 1, un = nun−1 + 2n− 1.

Another consequence of (4.10) is the equality

bn,4(∆n−1) = bn!ec − 1,

with e = exp(1).
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