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LEFT-GARSIDE CATEGORIES, SELF-DISTRIBUTIVITY, AND

BRAIDS

PATRICK DEHORNOY

Abstract. In connection with the emerging theory of Garside categories, we
develop the notions of a left-Garside category and of a locally left-Garside
monoid. In this framework, the relationship between the self-distributivity
law LD and braids amounts to the result that a certain category associated
with LD is a left-Garside category, which projects onto the standard Garside
category of braids. This approach leads to a realistic program for establish-
ing the Embedding Conjecture of [Dehornoy, Braids and Self-distributivity,
Birkhaüser (2000), Chap. IX].

The notion of a Garside monoid emerged at the end of the 1990’s [24, 19] as a
development of Garside’s theory of braids [32], and it led to many developments
[2, 3, 5, 6, 7, 8, 13, 14, 15, 31, 33, 34, 42, 43, 46, 47, 48, ...]. More recently, Bessis [4],
Digne–Michel [27], and Krammer [39] introduced the notion of a Garside category
as a further extension, and they used it to capture new nontrivial examples and
improve our understanding of their algebraic structure. The concept of a Garside
category is also used in [36], and it is already implicit in [25] and [35], and maybe
in the many diagrams of [18].

In this paper we describe and investigate a new example of (left)-Garside cat-
egory, namely a certain category LD+ associated with the left self-distributivity
law

(LD) x(yz) = (xy)(xz).

The interest in this law originated in the discovery of several nontrivial structures
that obey it, in set theory [16, 41] and in low-dimensional topology [37, 30, 45].
A rather extensive theory was developed in the decade 1985-95 [18]. Investigating
self-distributivity in the light of Garside categories seems to be a good idea. It
turns out that a large part of the theory developed so far can be summarized into
one single statement, namely

The category LD+ is a left-Garside category,

(this is the first part of Theorem 6.1 below).
The interest of the approach should be at least triple. First, it gives an oppor-

tunity to restate a number of previously unrelated properties in a new language
that should make them more easily understandable. In particular, the connection
between self-distributivity and braids is now expressed in the simple statement:

There exists a right-lcm preserving surjective functor of LD+ to the
Garside category of positive braids,

(second part of Theorem 6.1). This result allows one to recover most of the usual
algebraic properties of braids as a direct application of the properties of LD+:
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roughly speaking, Garside’s theory of braids is the emerged part if an iceberg,
namely the algebraic theory of self-distributivity.

Second, a direct outcome of the current approach is a realistic program for estab-
lishing the Embedding Conjecture. The latter is the most puzzling open question
involving free self-distributive systems. Among others, it says that the equivalence
class of any bracketed expression under self-distributivity is a semilattice, i.e., any
two expressions admit a least upper bound with respect to a certain partial order-
ing. Many equivalent forms of the conjecture are known [18, Chapter IX]. At the
moment, no complete proof is available, but we establish the following new result

Unless the left-Garside category LD+ is not regular, the Embedding
Conjecture is true,

(Theorem 6.2). This result reduces a possible proof of the conjecture to a (long)
sequence of verifications.

Third, the category LD+ seems to be a seminal example of a left-Garside cate-
gory, quite different from all previously known examples of Garside categories. In
particular, being strongly asymmetric, LD+ is not a Garside category. The interest
of investigating such objects per se is not obvious, but the existence of a nontrivial
example such as LD+ seems to be a good reason, and a help for orientating further
research. In particular, our approach emphasizes the role of locally left-Garside
monoids1: this is a monoid M that fails to be Garside because no global element ∆
exists, but nevertheless possesses a family of elements ∆x that locally play the role
of the Garside element and are indexed by a set on which the monoid M partially
acts. Most of the properties of left-Garside monoids extend to locally left-Garside
monoids, in particular the existence of least common multiples and, in good cases,
of the greedy normal form.

Acknowledgement. Our definition of a left-Garside category is borrowed from [27]
(up to a slight change in the formal setting, see Remark 2.6). Several proofs in Sec-
tions 2 and 3 use arguments that are already present, in one form or another,
in [1, 49, 28, 29, 12, 19, 35] and now belong to folklore. Most appear in the unpub-
lished paper [27] by Digne and Michel, and are implicit in Krammer’s paper [39].
Our reasons for including such arguments here is that adapting them to the cur-
rent weak context requires some useful polishing, and is necessary to explain our
two main new notions, namely locally Garside monoids and regular left-Garside
categories.

The paper is organized in two parts. The first one (Sections 1 to 3) contains
those general results about left-Garside categories and locally left-Garside monoids
that will be needed in the sequel, in particular the construction and properties of
the greedy normal form. The second part (Sections 4 to 8) deals with the specific
case of the category LD+ and its connection with braids. Sections 4 and 5 review
basic facts about the self-distributivity law and explain the construction of the
category LD+. Section 6 is devoted to proving that LD+ is a left-Garside category
and to showing how the results of Section 3 might lead to a proof of the Embedding
Conjecture. In Section 7, we show how to recover the classical algebraic properties
of braids from those of LD+. Finally, we explain in Section 8 some alternative

1This is not the notion of a locally Garside monoid in the sense of [27]; we think that the
name “preGarside” is more relevant for that notion, which involves no counterpart of any Garside
element or map, but is only the common substratum of all Garside structures.
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solutions for projecting LD+ to braids. In an appendix, we briefly describe what
happens when the associativity law replaces the self-distributivity law: here also a
left-Garside category appears, but a trivial one.

We use N for the set of all positive integers.

1. Left-Garside categories

We define left-Garside categories and describe a uniform way of constructing
such categories from so-called locally left-Garside monoids, which are monoids with
a convenient partial action.

1.1. Left-Garside monoids. Let us start from the now classical notion of a Gar-
side monoid. Essentially, a Garside monoid is a monoid in which divisibility has
good properties, and, in addition, there exists a distinguished element ∆ whose
divisors encode the whole structure. Slightly different versions have been consid-
ered [24, 19, 26], the one stated below now being the most frequently used. In this
paper, we are interested in one-sided versions involving left-divisibility only, hence
we shall first introduce the notion of a left-Garside monoid.

Throughout the paper, if a, b are elements of a monoid—or, from Section 1.2,
morphisms of a category—we say that a left-divides b, denoted a 4 b, if there
exists c satisfying ac = b. The set of all left-divisors of a is denoted by Div(a). If
ac = b holds with c 6= 1, we say that a is a proper left-divisor of b, denoted a ≺ b.

We shall always consider monoids M where 4 is a partial ordering. If two
elements a, b of M admit a greatest lower bound c with respect to 4, the latter is
called a greatest common left-divisor, or left-gcd, of a and b, denoted c = gcd(a, b).
Similarly, a 4-least upper bound d is called a least common right-multiple, or right-
lcm, of a and b, denoted d = lcm(a, b). We say that M admits local right-lcm’s if
any two elements of M that admit a common right-multiple admit a right-lcm.

Finally, if M is a monoid and S, S′ are subsets of M , we say that S left-
generates S′ if every nontrivial element of S′ admits at least one nontrivial left-
divisor belonging to S.

Definition 1.1. A monoid M is called left-preGarside if

(LG0) for each a in M , every ≺-increasing sequence in Div(a) is finite,
(LG1) M is left-cancellative,
(LG2) M admits local right-lcm’s.

An element ∆ of M is called a left-Garside element if

(LG3) Div(∆) left-generates M , and a 4 ∆ implies ∆ 4 a∆.

A monoid M is called left-Garside if it is left-preGarside and possesses at least one
left-Garside element.

Using “generates” instead of “left-generates” in (LG3) would make no difference,
by the following trivial remark—but the assumption (LG0) is crucial, of course.

Lemma 1.2. Assume that M is a monoid satisfying (LG0). Then every subset S
left-generating M generates M .

Proof. Let a be a nontrivial element of M . By definition there exist a1 6= 1 in S
and a′ satisfying a = a1a

′. If a′ is trivial, we are done. Otherwise, there exist a2 6= 1
in S and a′′ satisfying a′ = a2a

′′, and so on. The sequence 1, a1, a1a2, ... is ≺-
increasing and it lies in Div(a), hence it must be finite, yielding a = a1...ad with
a1, ..., ad in S. �
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Right-divisibility is defined symmetrically: a right-divides b if b = ca holds for
some c. Then the notion of a right-(pre)Garside monoid is defined by replacing left-
divisibility by right-divisibility and left-product by right-product in Definition 1.1.

Definition 1.3. A monoid M is called Garside with Garside element ∆ if M is
both left-Garside with left-Garside element ∆ and right-Garside with right-Garside
element ∆.

The equivalence of the above definition with that of [26] is easily checked. The
seminal example of a Garside monoid is the braid monoid B+

n equipped with Gar-
side’s fundamental braid ∆n, see for instance [32, 29]. Other classical examples are
free abelian monoids and, more generally, all spherical Artin–Tits monoids [10], as
well as the so-called dual Artin–Tits monoids [9, 4]. Every Garside monoid embeds
in a group of fractions, which is then called a Garside group.

Let us mention that, if a monoid M is left-Garside, then mild conditions imply
that it is Garside: essentially, it is sufficient that M is right-cancellative and that
the left- and right-divisors of the left-Garside element ∆ coincide [19].

1.2. Left-Garside categories. Recently, it appeared that a number of results
involving Garside monoids still make sense in a wider context where categories
replace monoids [4, 27, 39]. A category is similar to a monoid, but the product
of two elements is defined only when the target of the first is the source of the
second. In the case of Garside monoids, the main benefit of considering categories
is that it allows for relaxing the existence of the global Garside element ∆ into a
weaker, local version depending on the objects of the category, namely a map from
the objects to the morphisms.

We refer to [44] for some basic vocabulary about categories—we use very little
of it here.

Convention. Throughout the paper, composition of morphisms is denoted by a
multiplication on the right: fg means “f then g”. If f is a morphism, the source
of f is denoted ∂0f , and its target is denoted ∂1f . In all examples, we shall make
the source and target explicit: morphisms are triples (x, f, y) satisfying

∂0(x, f, y) = x, ∂1(x, f, y) = y.

A morphism f is said to be nontrivial if f 6= 1∂0f holds.

We extend to categories the terminology of divisibility. So, we say that a mor-
phism f is a left-divisor of a morphism g, denoted f 4 g, if there exists h satisfying
fh = g. If, in addition, h can be assumed to be nontrivial, we say that f ≺ g
holds. Note that f 4 g implies ∂0f = ∂0g. We denote by Div(f) the collection of
all left-divisors of f .

The following definition is equivalent to Definition 2.10 of [27] by F. Digne and
J.Michel—see Remark 2.6 below.

Definition 1.4. A category C is called left-preGarside if

(LG0) for each f in Hom(C), every ≺-ascending sequence in Div(f) is finite,
(LG1) Hom(C) admits left-cancellation,
(LG2) Hom(C) admits local right-lcm’s.

A map ∆ : Obj(C)→ Hom(C) is called a left-Garside map if, for each object x, we
have ∂0∆(x) = x and
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(LG3) Div(∆(x)) left-generates Hom(x,−), and f 4 ∆(x) implies ∆(x) 4 f∆(∂1f).

A category C is called left-Garside if it is left-preGarside and possesses at least one
left-Garside map.

Example 1.5. Assume that M is a left-Garside monoid with left-Garside ele-
ment ∆. One trivially obtains a left-Garside category C(M) by putting

Obj(C(M)) = {1}, Hom(C(M)) = {1} ×M × {1}, ∆(1) = ∆.

Another left-Garside category ĈM can be attached with M , namely taking

Obj(Ĉ(M)) = M, Hom(Ĉ(M)) = {(a, b, c) | ab = c }, ∆(a) = ∆.

It is natural to call Ĉ(M) the Cayley category of M since its graph is the Cayley
graph of M (defined provided M is also right-cancellative).

The notion of a right-Garside category is defined symmetrically, exchanging left
and right everywhere and exchanging the roles of source and target. In particular,
the map ∆ and Axiom (LG3) is to be replaced by a map ∇ satisfying ∂1∇(x) = x

and, using b <̃ a for “a right-divides b”,

(LG3) ∇(y) right-generates Hom(−, y), and ∇(y) <̃ f implies ∇(∂0y)f <̃ ∇(y).

Then comes the natural two-sided version of a Garside category [4, 27].

Definition 1.6. A category C is called Garside with Garside map ∆ if C is left-
Garside with left-Garside map ∆ and right-Garside with right-Garside map ∇ sat-
isfying ∆(x) = ∇(∂1(∆(x)) and ∇(y) = ∆(∂0(∇(y)) for all objects x, y.

It is easily seen that, if M is a Garside monoid, then the categories C(M)

and Ĉ(M) of Example (1.5) are Garside categories. Insisting that the maps ∆
and ∇ involved in the left- and right-Garside structures are connected as in Defi-
nition 1.6 is crucial: see Appendix for a trivial example where the connection fails.

1.3. Locally left-Garside monoids. We now describe a general method for con-
structing a left-Garside category starting from a monoid equipped with a partial
action on a set. The trivial examples of Example 1.5 enter this family, and so do
the two categories LD+ and B+ investigated in the second part of this paper.

We start with a convenient notion of partial action of a monoid on a set. Several
definitions could be thought of; here we choose the one that is directly adapted to
the subsequent developments.

Definition 1.7. Assume that M is a monoid. A not necessarily everywhere defined
function α : M → (X → X) is called a partial (right) action of M on X if, writing
x • a for α(a)(x),

(i) x • 1 = x holds for each x in X ,
(ii) (x • a) • b = x • ab holds for all x, a, b, this meaning that either both terms

are defined and they are equal, or neither is defined,
(iii) for each finite subset S in M , there exists x in X such that x • a is defined

for each a in S.
In the above context, for each x in X , we put

(1.1) Mx = { a ∈M | x • a is defined }.
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Then Conditions (i), (ii), (iii) of Definition 1.7 imply

1 ∈Mx, ab ∈Mx ⇔ (a ∈Mx & b ∈Mx•a), ∀finiteS ∃x(S ⊆Mx).

A monoid action in the standard sense, i.e., an everywhere defined action,
is a partial action. For a more typical case, consider the n-strand Artin braid
monoid B+

n . We recall that B+

n is defined for n 6∞ by the monoid presentation

(1.2) B+

n =

〈
σ1, ... , σn−1

∣∣∣∣
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

〉+
.

Then we obtain a partial action of B+

∞ on N by putting

(1.3) n • a =

{
n if a belongs to B+

n ,

undefined otherwise.

A natural category can then be associated with every partial action of a monoid.

Definition 1.8. For α a partial action of a monoid M on a set X , the category
associated with α, denoted C(α), or C(M,X) if the action is clear, is defined by

Obj(C(M,X)) = X, Hom(C(M,X)) = {(x, a, x • a) | x ∈ X, a ∈M}.

Example 1.9. We shall denote by B+ the category associated with the action (1.3)
of B+

∞ on N, i.e., we put

Obj(B+) = N, Hom(B+) = {(n, a, n) | n ∈ B+

n}.

Define ∆ : Obj(B+) → Hom(B+) by ∆(n) = (n,∆n, n). Then the well known fact
that B+

n is a Garside monoid for each n [32, 38] easily implies that B+ is a Garside
category, as will be formally proved in Proposition 1.11 below.

The example of B+ shows the benefit of going from a monoid to a category.
The monoid B+

∞ is not a (left)-Garside monoid, because it is of infinite type and
there cannot exist a global Garside element ∆. However, the partial action of (1.3)
enables us to restrict to subsets B+

n (submonoids in the current case) for which Gar-
side elements exist: with the notation of (1.1), B+

n is (B+

∞)n. Thus the categorical
context enables us to capture the fact that B+

∞ is, in some sense, locally Garside.
It is easy to formalize these ideas in a general setting.

Definition 1.10. Let M be a monoid with a partial action α on a set X . A
sequence (∆x)x∈X of elements of M is called a left-Garside sequence for α if, for
each x in X , the element x • ∆x is defined and

(LGℓoc
3 ) Div(∆x) left-generates Mx and a 4 ∆x implies ∆x 4 a∆x•a.

The monoid M is said to be locally left-Garside with respect to α if it is left-
preGarside and there is at least one left-Garside sequence for α.

A typical example of a locally left-Garside monoid is B+

∞ with its action (1.3)
on N. Indeed, the sequence (∆n)n∈N is clearly a left-Garside sequence for (1.3).

The next result should appear quite natural.

Proposition 1.11. Assume that M is a locally left-Garside monoid with left-Gars-
ide sequence (∆x)x∈X . Then C(M,X) is a left-Garside category with left-Garside
map ∆ defined by ∆(x) = (x,∆x, x • ∆x).
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Proof. By definition, (x, a, y) 4 (x′, a′, y′) in C(M,X) implies x′ = x and a 4 a′

in M . So the hypothesis that M satisfies (LG0) implies that C(M,X) does.
Next, (x, a, y)(y, b, z) = (x, a, y)(y, b′, z′) implies ab = ab′ in M , hence b = b′

by (LG1), and, therefore, C(M,X) satisfies (LG1).
Assume (x, a, y)(y, b′, x′) = (x, b, z)(z, a′, x′) in Hom(C(M,X)). Then ab′ = ba′

holds in M . By (LG2), a and b admit a right-lcm c, and we have a 4 c, b 4 c,
and c 4 ab′. By hypothesis, x • ab′ is defined, hence so is x • c, and it is obvious
to check that (x, c, x • c) is a right-lcm of (x, a, y) and (x, b, z) in Hom(C(M,X)).
Hence C(M,X) satisfies (LG2).

Assume that (x, a, y) is a nontrivial morphism of Hom(C(M,X)). This means

that a is nontrivial, so, by (LGℓoc
3 ), some left-divisor a′ of ∆x is a left-divisor of a.

Then (x, a′, x • a′) 4 ∆(x) holds, and ∆(x) left-generates Hom(x,−).
Finally, assume (x, a, y) 4 ∆(x) in Hom(C(M,X)). This implies a 4 ∆x in M .

Then (LGℓoc
3 ) in M implies ∆x 4 a∆y. By hypothesis, y • ∆y is defined, and we

have (x, a, y)∆(y) = (x, a∆y , x • a∆y), of which (x,∆x, x • ∆x) is a left-divisor
in Hom(C(M,X)). So (LG3) is satisfied in C(M,X). �

It is not hard to see that, conversely, if M is a left-preGarside monoid, then
C(M,X) being a left-Garside category implies that M is a locally left-Garside
monoid. We shall not use the result here.

If M has a total action on X , i.e., if x • a is defined for all x and a, the sets Mx

coincide with M , and Condition (LGℓoc
3 ) reduces to (LG3). In this case, each ele-

ment ∆x is a left-Garside element in M , and M is a left-Garside monoid. A similar
result holds for each set Mx that turns out to be a submonoid (if any).

Proposition 1.12. Assume that M is a locally left-Garside monoid with left-Gars-
ide sequence (∆x)x∈X , and x is such that Mx is closed under product and ∆y = ∆x

holds for each y in Mx. Then Mx is a left-Garside submonoid of M .

Proof. By definition of a partial action, x•1 is defined, so Mx contains 1, and it is a
submonoid of M . We show that Mx satisfies (LG0), (LG1), (LG2), and (LG3). First, a
counter-example to (LG0) in Mx would be a counter-example to (LG0) in M , hence
Mx satisfies (LG0). Similarly, an equality ab = ab′ with b 6= b′ in Mx would also
contradict (LG1) in M , so Mx satisfies (LG1). Now, assume that a and b admit
in Mx, hence in M , a common right-multiple c. Then a and b admit a right-lcm c′

in M . By hypothesis, x • c is defined, and c′ 4 c holds. By definition of a partial
action, x • c′ is defined as well, i.e., c′ lies in Mx, and it is a right-lcm of a and b
in Mx. So Mx satisfies (LG2), and it is left-preGarside.

Next, ∆x is a left-Garside element in Mx. Indeed, let a be any nontrivial element
of Mx. By (LGℓoc

3 ), there exists a nontrivial divisor a′ of a satisfying a′ 4 ∆x. By
definition of a partial action, x • a′ is defined, so it belongs to Mx, and ∆x left-
generates Mx. Finally, assume a 4 ∆x. As ∆x belongs to Mx, this implies a ∈Mx,
hence ∆x 4 a∆x•a by (LGℓoc

3 ), i.e., ∆x 4 a∆x since we assumed that the sequence ∆
is constant on Mx. So ∆x is a left-Garside element in Mx. �

2. Simple morphisms

We return to general left-Garside categories and establish a few basic results. As
in the case of Garside monoids, an important role is played by the divisors of ∆, a
local notion here.
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2.1. Simple morphisms and the functor φ. Hereafter, we always use ∆ as the
default notation for the (left)-Garside map with left-Garside map ∆ involved in the
considered structure.

Definition 2.1. Assume that C is a left-Garside category. A morphism f of C
is called simple if it is a left-divisor of ∆(∂0f). In this case, we denote by f∗

the unique simple morphism satisfying f f∗ = ∆(∂0f). The family of all simple
morphisms in C is denoted by Homsp(C).

By definition, every identity morphism 1x is a left-divisor of every morphism
with source x, hence in particular of ∆(x). Therefore 1x is simple.

Definition 2.2. Assume that C is a left-Garside category. We put φ(x) = ∂1(∆(x))
for x in Obj(C), and φ(f) = f∗∗ for f in Homsp(C).

Although straightforward, the following result is fundamental—and it is the main
argument for stating (LG3) in the way we did.

Lemma 2.3. Assume that C is a left-Garside category.
(i) If f is a simple morphism, so are f∗ and φ(f).
(ii) Every right-divisor of a morphism ∆(x) is simple.

Proof. (i) By (LG3), we have ff∗ = ∆(∂0f) 4 f∆(∂1f), hence f∗ 4 ∆(∂1f) by
left-cancelling f . Therefore, f∗ is simple. Applying the result to f∗ shows that
φ(f)—as well as φk(f) for each positive k—is simple.

(ii) Assume that g is a right-divisor of ∆(x). This means that there exists f
satisfying fg = ∆(x), hence g = f∗ by (LG1). Then g is simple by (i). �

Lemma 2.4. Assume that C is a left-Garside category.
(i) The morphisms 1x are the only left- or right-invertible morphisms in C.
(ii) Every morphism of C is a product of simple morphisms.
(iii) There is a unique way to extend φ into a functor of C into itself.
(iv) The map ∆ is a natural transformation of the identity functor into φ, i.e.,

for each morphism f , we have

(2.1) f ∆(∂1f) = ∆(∂0f) φ(f).

Proof. (i) Assume fg = 1x with f 6= 1x and g 6= 1∂1f . Then we have

1x ≺ f ≺ fg ≺ f ≺ fg ≺ ...,

an infinite ≺-increasing sequence in Div(1x) that contradicts (LG0).
(ii) Let f be a morphism of C, and let x = ∂0f . If f is trivial, then it is simple, as

observed above. We wish to prove that simple morphisms generateHom(C). Owing
to Lemma 1.2, it is enough to prove that simple morphisms left-generate Hom(C),
i.e., that every nontrivial morphism with source x is left-divisible by a simple
morphism with source x, in other words by a left-divisor of ∆(x). This is exactly
what the first part of Condition (LG3) claims.

(iii) Up to now, φ has been defined on objects, and on simple morphisms. Note
that, by construction, (2.1) is satisfied for each simple morphism f . Indeed, apply-
ing Definition 2.1 for f and f∗ gives the relations

ff∗ = ∆(∂0f) and f∗f∗∗ = ∆(∂0f
∗) = ∆(∂1f),

whence
f∆(∂1f) = ff∗f∗∗ = ∆(∂0f)f∗∗ = ∆(∂0f)φ(f).
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Applying this to f = 1x gives ∆(x) = ∆(x)φ(1x), hence φ(1x) = 1φ(x) by (LG1).
Let f be an arbitrary morphism of C, and let f1...fp and g1...gq be two decom-

positions of f as a product of simple morphisms, which exist by (ii). Repeatedly
applying (2.1) to fp, ..., f1 and gq, ..., g1 gives

f∆(∂1f) = f1...fp∆(∂1f) = ∆(∂0f)φ(f1)...φ(fp)

= g1...gq∆(∂1f) = ∆(∂0f)φ(g1)...φ(gq).

By (LG1), we deduce φ(f1)...φ(fp) = φ(g1)...φ(gq), and therefore there is no ambi-
guity in defining φ(f) to be the common value. In this way, φ is extended to all
morphisms in such a way that φ is a functor and (2.1) always holds. Conversely,
the above definition is clearly the only one that extends φ into a functor.

(iv) We have seen above that (2.1) holds for every morphism f , so nothing new
is needed here. See Figure 1 for an illustration. �

∆(x) ∆(y)

φ(x) φ(y)
φ(f)

f∗

yx
f

Figure 1. Relation (2.1): the Garside map ∆ viewed as a natural trans-

formation from the identity functor to the functor φ.

Lemma 2.5. Assume that C is a left-Garside category. Then, for each object x
and each simple morphism f , we have

(2.2) φ(∆(x)) = ∆(φ(x)) and φ(f∗) = φ(f)∗.

Proof. By definition, the source of ∆(x) is x and its target is φ(x), hence applying
(2.1) with f = ∆(x) yields ∆(x)∆(φ(x)) = ∆(x)φ(∆(x)), hence ∆(φ(x)) = φ(∆(x))
after left-cancelling ∆(x).

On the other hand, let x = ∂0f . Then we have ff∗ = ∆(x), and ∂0(φ(f)) = φ(x).
Applying φ and the above relation, we find

φ(f)φ(f∗) = φ(∆(x)) = ∆(φ(x)) = ∆(∂0(φ(f))) = φ(f)φ(f)∗.

Left-cancelling φ(f) yields φ(f∗) = φ(f)∗. �

Remark 2.6. We can now see that Definition 1.4 is equivalent to Definition 2.10
of [27]: the only difference is that, in the latter, the functor φ is part of the definition.
Lemma 2.4(iv) shows that a left-Garside category in our sense is a left-Garside
category in the sense of [27]. Conversely, the hypothesis that φ and ∆ satisfy (2.1)
implies that, for f : x→ y, we have ∆(x)φ(y) = f∆(y), whence ∆(x) 4 f∆(y) and
f∗φ(y) = ∆(y), which, by (LG1), implies φ(f) = f∗∗. So every left-Garside category
in the sense of [27] is a left-Garside category in the sense of Definition 1.4.

2.2. The case of a locally left-Garside monoid. We now consider the partic-
ular case of a category C(M,X) associated with a partial action of a monoid M .

Lemma 2.7. Assume that M is a locally left-Garside monoid with left-Garside
sequence (∆x)x∈X . Then ∆x 4 a∆x•a holds whenever x •a is defined, and, defining
φx(a) by ∆xφx(a) = a∆x•a, we have

(2.3) φ(x) = x • ∆x, φ((x, a, y)) = (φ(x), φx(a), φ(y)).
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Proof. Assume that x • a is defined. By Lemma 2.4(ii), the morphism (x, a, x • a)
of C(M,X) can be decomposed into a finite product of simple morphisms (x0, a1, x1),
... , (xd−1, ad, xd). This implies a = a1...ad in M . The hypothesis that each mor-
phism (xi−1, ai, xi) is simple implies ∆xi−1

4 ai∆xi for each i, whence

∆x 4 a1∆x1
4 a1a2∆x2

4 ... 4 a1...ad∆xd
= a∆x•a.

Hence, for each element a in Mx, there exists a unique element a′ satisfying
∆xa

′ = a∆x•a, and this is the element we define to be φx(a). Then, x • a = y
implies

(x, a, y)(y,∆y , φ(y)) = (x,∆x, φ(x))(φ(x), φx(a), φ(y)).

By uniqueness, we deduce φ((x, a, y)) = (φ(x), φx(a), φ(y)). �

2.3. Greatest common divisors. We observe—or rather recall—that left-gcd’s
always exist in a left-preGarside category. We begin with a standard consequence
of the noetherianity assumption (LG0).

Lemma 2.8. Assume that C is a left-preGarside category and S is a subset of
Hom(C) that contains the identity-morphisms and is closed under right-lcm. Then
every morphism has a unique maximal left-divisor that lies in S.

Proof. Let f be an arbitrary morphism. Starting from f0 = 1∂0f , which belongs
to S by hypothesis, we construct a ≺-increasing sequence f0, f1, ... in S ∩ Div(f).
As long as fi is not 4-maximal in S ∩ Div(f), we can find fi+1 in S satisfying
fi ≺ fi+1 4 f . Condition (LG0) implies that the construction stops after a finite
number d of steps. Then fd is a maximal left-divisor of f lying in S.

As for uniqueness, assume that g′ and g′′ are maximal left-divisors of f that lie
in S. By construction, g′ and g′′ admit a common right-multiple, namely f , hence,
by (LG2), they admit a right-lcm g. By construction, g is a left-divisor of f , and it
belongs to S since g′ and g′′ do. The maximality of g and g′ implies g′ = g = g′′. �

Proposition 2.9. Assume that C is a left-preGarside category. Then any two
morphisms of C sharing a common source admit a unique left-gcd.

Proof. Let S be the family of all common left-divisors of f and g. It contains 1∂0f ,
and it is closed under lcm. A left-gcd of f and g is a maximal left-divisor of f lying
in S. Lemma 2.8 gives the result. �

2.4. Least common multiples. As for right-lcm, the axioms of left-Garside cat-
egories only demand that a right-lcm exists when a common right-multiple does. A
necessary condition for such a common right-multiple to exist is to share a common
source. This condition is also sufficient. Again we begin with an auxiliary result.

Lemma 2.10. Assume that C is a left-Garside category. Then, for f = f1...fd

with f1, ..., fd simple and x = ∂0f , we have

(2.4) f 4 ∆(x)∆(φ(x)) ...∆(φd−1(x)).

Proof. We use induction on d. For d = 1, this is the definition of simplicity. Assume
d > 2. Put y = ∂1f1. Applying the induction hypothesis to f2...fd, we find

f = f1(f2...fd) 4 f1 ∆(y)∆(φ(y)) ...∆(φd−2(y))

= ∆(x)∆(φ(x)) ...∆(φd−2(x))φd−1(f1)

4 ∆(x)∆(φ(x)) ...∆(φd−2(x))∆(φd−1(x)).
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The second equality comes from applying (2.1) d − 1 times, and the last relation
comes from the fact that φd−1(f1) is simple with source φd−1(x). �

Proposition 2.11. Assume that C is a left-Garside category. Then any two mor-
phisms of C sharing a common source admit a unique right-lcm.

Proof. Let f, g be any two morphisms with source x. By Lemma 2.4, there exists d
such that f and g can be expressed as the product of at most d simple morphisms.
Then, by Lemma 2.10, ∆(x)∆(φ(x)) ...∆(φd−1(x)) is a common right-multiple of f
and g. Finally, (LG2) implies that f and g admit a right-lcm. The uniqueness of
the latter is guaranteed by Lemma 2.4(i). �

In a general context of categories, right-lcm’s are usually called push-outs (wher-
eas left-lcm’s are called pull-backs). So Proposition 2.11 states that every left-
Garside category admits push-outs.

Applying the previous results to the special case of categories associated with a
partial action gives analogous results for all locally left-Garside monoids.

Corollary 2.12. Assume that M is a locally left-Garside monoid with respect to
some partial action of M on X.

(i) Any two elements of M admit a unique left-gcd and a unique right-lcm.
(ii) For each x in X, the subset Mx of M is closed under right-lcm.

Proof. (i) As for left-gcd’s, the result directly follows from Proposition 2.9 since,
by definition, M is left-preGarside.

As for right-lcm’s, assume that M is locally left-Garside with left-Garside se-
quence (∆x)x∈X . Let a, b be two elements of M . By definition of a partial action,
there exists x in X such that both x • a and x • b are defined. By Proposition 2.11,
(x, a, x • a) and (x, b, x • b) admit a right-lcm (x, c, z) in the category C(M,X). By
construction, c is a common right-multiple of a and b in M . As M is assumed to
satisfy (LG2), a and b admit a right-lcm in M .

(ii) Fix now x in X , and let a, b belong to Mx, i.e., assume that x • a and x • b
are defined. Then (x, a, x • a) and (x, b, x • b) are morphisms of C(M,X). As above,
they admit a right-lcm, which must be (x, c, x • c) where c is the right-lcm of a
and b. Hence c belongs to Mx. �

3. Regular left-Garside categories

The main interest of Garside structures is the existence of a canonical normal
form, the so-called greedy normal form [29]. In this section, we adapt the construc-
tion of the normal form to the context of left-Garside categories—this was done
in [27] already—and of locally left-Garside monoids. The point here is that study-
ing the computation of the normal form naturally leads to introducing the notion
of a regular left-Garside category, crucial in Section 6.

3.1. The head of a morphism. By Lemma 2.4(ii), every morphism in a left-
Garside category is a product of simple morphisms. The decomposition need not
be unique in general, and the first step for constructing a normal form consists in
isolating a particular simple morphism that left-divides the considered morphism.
It will be useful to develop the construction in a general framework where the
distinguished morphisms need not necessarily be the simple ones.
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Notation. We recall that, for f, g inHom(C), where C is a left-preGarside category,
lcm(f, g) is the right-lcm of f and g, when it exists. In this case, we denote by f\g
the unique morphism that satisfies

(3.1) f · f\g = lcm(f, g).

We use a similar notation in the case of a (locally) left-Garside monoid.

Definition 3.1. Assume that C is a left-preGarside category and S is included
in Hom(C). We say that S is a seed for C if

(i) S left-generates Hom(C),
(ii) S is closed under the operations lcm and \,
(iii) S is closed under left-divisor.

In other words, S is a seed for C if (i) every nontrivial morphism of C is left-
divisible by a nontrivial element of S, (ii) for all f, g in S, the morphisms lcm(f, g)
and f\g belong to S whenever they exist, and (iii) for each f in S, the relation
h 4 f implies h ∈ S.

Lemma 3.2. If C is a left-Garside category, then Homsp(C) is a seed for C.

Proof. First, Homsp(C) left-generates Hom(C) by Condition (LG3).
Next, assume that f, g are simple morphisms sharing the same source x. By

Proposition 2.11, the morphisms lcm(f, g) and f\g exist. By definition, we have
f 4 ∆(x) and g 4 ∆(x), hence lcm(f, g) 4 ∆x. Hence lcm(f, g) is simple. Let
h satisfy lcm(f, g)h = ∆(x). This is also f (f\g)h = ∆(x). By Lemma 2.3(ii),
(f\g)h, which is a right-divisor of ∆(x), is simple, and, therefore, f\g, which is a
left-divisor of (f\g)h, is simple as well by transitivity of 4.

Finally, Homsp(C) is closed under left-divisor by definition. �

Lemma 2.8 guarantees that, if S is a seed for C, then every morphism f of C
has a unique maximal left-divisor g lying in S, and Condition (i) of Definition 3.1
implies that g is nontrivial whenever f is.

Definition 3.3. In the context above, the morphism g is called the S-head of f ,
denoted HS(f).

In the case of Homsp(C), it is easy to check, for each f in Hom(C), the equality

(3.2) HHomsp(C)(f) = gcd(f,∆(∂0f));

in this case, we shall simply write H(f) for HHomsp(C)(f).

3.2. Normal form. The following result is an adaptation of a result that is clas-
sical in the framework of Garside monoids.

Proposition 3.4. Assume that C is a left-preGarside category and S is a seed
for C. Then every nontrivial morphism f of C admits a unique decomposition

(3.3) f = f1...fd,

where f1, ..., fd lie in S, fd is nontrivial, and fi is the S-head of fi...fd for each i.

Proof. Let f be a nontrivial morphism of C, and let f1 be the S-head of f . Then
f1 belongs to S, it is nontrivial, and we have f = f1f

′ for some unique f ′. If f ′

is trivial, we are done, otherwise we repeat the argument with f ′. In this way we
obtain a ≺-increasing sequence 1∂0f ≺ f1 ≺ f1f2 ≺ ... . Condition (LG0) implies
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that the construction stops after a finite number of steps, yielding a decomposition
of the form (3.3).

As for uniqueness, assume that (f1, ..., fd) and (g1, ..., ge) are decompositions of f
that satisfy the conditions of the statement. We prove (f1, ..., fd) = (g1, ..., ge) using
induction on min(d, e). First, d = 0 implies e = 0 by Lemma 2.4(i). Otherwise, the
hypotheses imply f1 = HS(f) = g1. Left-cancelling f1 gives two decompositions
(f2, ..., fd) and (g2, ..., ge) of f2...fd, and we apply the induction hypothesis. �

Definition 3.5. In the context above, the sequence (f1, ..., fd) is called the S-
normal form of f .

When S turns out to be the family Homsp(C), the S-normal form will be simply
called the normal form. The interest of the S-normal form lies in that it is easily
characterized and easily computed. First, one has the following local characteriza-
tion of normal sequences.

Proposition 3.6. Assume that C is a left-preGarside category and S is a seed
for C. Then a sequence of morphisms (f1, ..., fd) is S-normal if and only if each
length two subsequence (fi, fi+1) is S-normal.

This follows from an auxiliary lemma.

Lemma 3.7. Assume that (f1, f2) is S-normal and g belongs to S. Then g 4 ff1f2
implies g 4 ff1.

Proof. The hypothesis implies that f and g have the same source. Put g′ = f\g.
The hypothesis that S is closed under \ and an easy induction on the length of
the S-normal form of f show that g′ belongs to S. By hypothesis, we have both
g 4 ff1f2 and f 4 ff1f2, hence lcm(f, g) = fg′ 4 ff1f2 whence g′ 4 f1f2 by
left-cancelling f . As g belongs to S and (f1, f2) is normal, this implies g′ 4 f1, and
finally g 4 fg′ 4 ff1. �

Proof of Proposition 3.6. It is enough to consider the case d = 2, from which an
easy induction on d gives the general case. So we assume that (f1, f2) and (f2, f3)
are S-normal, and aim at proving that (f1, f2, f3) is S-normal. The point is to prove
that, if g belongs to S, then g 4 f1f2f3 implies g 4 f1. So assume g 4 f1f2f3.
As (f2, f3) is S-normal, Lemma 3.7 implies g 4 f1f2. As (f1, f2) is S-normal, this
implies g 4 f1. �

3.3. A computation rule. We establish now a recipe for inductively computing
the S-normal form, namely determining the S-normal form of gf when that of f is
known and g belongs to S.

Proposition 3.8. Assume that C is a left-preGarside category, S is a seed for C,
and (f1, ..., fd) is the S-normal form of f . Then, for each g in S, the S-normal form
of gf is (f ′

1, ..., f
′
d, gd), where g0 = g and (f ′

i , gi) is the S-normal form of gi−1fi

for i increasing from 1 to d—see Figure 2.

Proof. For an induction, it is enough to consider the case d = 2, hence to prove

Claim. Assume that the diagram

f1 f2

f ′
1 f ′

2

g0 g1 g2 is commutative and (f1, f2)

and (f ′
1, g1) are S-normal. Then (f ′

1, f
′
2) is S-normal.
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f1 f2

f ′
1 f ′

2

g0 g1 g2
...

...

gd−1 gd

fd

f ′
d

Figure 2. Adding one S-factor g0 on the left of an S-normal sequence

(f1, ..., fd): compute the S-normal form (f ′

1, g1) of g0f1, then the S-

normal form (f ′

2, g2) of g1f2, and so on from left to right; the sequence

(f ′

1, ..., f
′

d, gd) is S-normal.

So assume that h belongs to S and satisfies h 4 f ′
1f

′
2. Then, a fortiori, we have

h 4 f ′
1f

′
2g2 = g0f1f2, hence h 4 g0f1 by Lemma 3.7 since (f1, f2) is S-normal.

Therefore we have h 4 f ′
1g1, hence h 4 f ′

1 since (f ′
1, g1) is S-normal. �

The results of Proposition 3.6 and 3.8 apply in particular when C is left-Garside
and S is the family of all simple morphisms, in which case they involve the standard
normal form.

In the case of lcm’s, Corollary 2.12 shows how a result established for general
left-Garside categories induces a similar result for locally left-Garside monoids. The
situation is similar with the normal form, provided some additional assumption is
satisfied.

Definition 3.9. A left-Garside sequence (∆x)x∈X witnessing that a certain monoid
is locally left-Garside is said to be coherent if a 4 ∆x implies a 4 ∆y for each y
such that a • y is defined.

For instance, the family (∆n)n∈N witnessing for the locally left-Garside structure
of the monoid B+

∞ is coherent. Indeed, a positive n-strand braid a is a left-divisor
of ∆n if and only if it is a left-divisor of ∆n′ for every n′ > n. The reason is that
being simple is an intrinsic property of positive braids: a positive braid is simple
if and only if it can be represented by a braid diagram in which any two strands
cross at most once [28].

Proposition 3.10. Assume that M is a locally left-Garside monoid associated with
a coherent left-Garside sequence (∆x)x∈X. Let Σ = {a ∈ M | ∃x ∈ X(a 4 ∆x)}.
Then Σ is a seed for M , every element of M admits a unique Σ-normal form, and
the counterpart of Propositions 3.6 and 3.8 hold for the Σ-normal form in M .

Proof. Axiom (LGℓoc
3 ) guarantees that every nontrivial element of M is left-divisible

by some nontrivial element of Σ. Then, by hypothesis, 1x 4 ∆x holds for each
object x. Then, assume a, b ∈ Σ. There exists x such that x • a and x • b are
defined. By definition of Σ, there exists x′ satisfying a 4 ∆x′ , hence, by definition
of coherence, we have a 4 ∆x. A similar argument gives b 4 ∆x, whence lcm(a, b) 4

∆x, and lcm(a, b) ∈ Σ. So there exists c satisfying a (a\b) c = ∆x. By (LGℓoc
3 ), we

deduce (a\b) c 4 ∆x•a, whence a\b 4 ∆x•a, and we conclude that a\b belongs to Σ.
Finally, it directly results from its definition that Σ is closed under left-divisor.
Hence Σ is a seed for M in the sense of Definition 3.1.

As, by definition, M is a left-preGarside monoid, Proposition 3.4 applies, guar-
anteeing the existence and uniqueness of the Σ-normal form on M , and so do
Propositions 3.6 and 3.8. �
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Thus, the good properties of the greedy normal form are preserved when the
assumption that a global Garside element ∆ exists is replaced by the weaker as-
sumption that local Garside elements ∆x exist, provided they make a coherent
sequence.

3.4. Regular left-Garside categories. It is natural to look for a counterpart of
Proposition 3.8 involving right-multiplication by an element of the seed instead of
left-multiplication. Such a counterpart exists but, interestingly, the situation is not
symmetric, and we need a new argument. The latter demands that the considered
category satisfies an additional condition, which is automatically satisfied in a two-
sided Garside category, but not in a left-Garside category.

In this section, we only consider the case of a left-Garside category and its simple
morphisms, and not the case of a general left-preGarside category with an arbitrary
seed—see Remark 3.14. So, we only refer to the standard normal form.

Definition 3.11. We say that a left-Garside category C is regular if the functor φ
preserves normality of length two sequences: for f1, f2 simple with ∂1f1 = ∂0f2,

(3.4) (f1, f2) normal implies (φ(f1), φ(f2)) normal.

Proposition 3.12. Assume that C is a regular left-Garside category, that (f1, ..., fd)
is the normal form of a morphism f , and that g is simple. Then the normal form
of fg is (g0, f

′
1, ..., f

′
d), where gd = g and (gi−1, f

′
i) is the normal form of figi for i

decreasing from d to 1—see Figure 3.

f ′
1

f1

g0 g1
...

...

gd−2 gd−1 gd

f ′
d−1

fd−1

f ′
d

fd

Figure 3. Adding one simple factor gd on the right of a simple sequence

(f1, ..., fd): compute the normal form (gd−1f
′

d) of fdgd, then the normal

form (gd−2f
′

d−2) of fd−1gd−1, and so on from right to left; the sequence

(g0, f
′

1, ..., f
′

d) is normal.

We begin with an auxiliary observation.

Lemma 3.13. Assume that C is a left-Garside category and f1, f2 are simple mor-
phisms satisfying ∂1f1 = ∂0f2. Then (f1, f2) is normal if and only if f∗

1 and f2 are
left-coprime, i.e., gcd(f∗

1 , f2) is trivial.

Proof. The following equalities always hold:

H(f1f2) = gcd(f1f2,∆(∂0f1)) = gcd(f1f2, f1f
∗
1 ) = f1 gcd(f2, f

∗
1 ).

Hence (f1, f2) is normal, i.e., f1 = H(f1f2) holds, if and only if f1 = f1 gcd(f2, f
∗
1 )

does, which is gcd(f2, f
∗
1 ) = 1∂1f1

as left-cancelling f1 is allowed. �

Proof of Proposition 3.12. As in the case of Proposition 3.8 it is enough to consider
the case d = 2, and therefore it is enough to prove
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Claim. Assume that the diagram

f ′
1 f ′

2

f1 f2

g0 g1 g2 is commutative and (f1, f2)

and (g1, f
′
2) are normal. Then (f ′

1, f
′
2) is normal.

To prove the claim, we introduce the morphisms g∗0 , g
∗
1 , g

∗
2 defined by gig

∗
i = ∆(∂0gi)

(Definition 2.1). Then the diagram
f ′
1 f ′

2

f1 f2

g0 g1 g2

g∗0 g∗1 g∗2

φ(f1) φ(f2)

is commutative. Indeed,

applying (2.1), we find

g0f
′
1g

∗
1 = f1g1g

∗
1 = f1∆(∂0g0) = f1∆(∂1f1)

= ∆(∂0f1)φ(f1) = ∆(∂0g0)φ(f1) = g0g
∗
0φ(f1),

hence f ′
1g

∗
1 = g∗0φ(f1) by left-cancelling g0. A similar argument gives f ′

2g
∗
2 = g∗1φ(f2).

Assume that h is simple and satisfies h 4 f ′
1f

′
2. We deduce

h 4 f ′
1f

′
2g

∗
2 = g∗0φ(f1)φ(f2).

By hypothesis, (f1, f2) is normal. Hence the hypothesis that C is regular implies
that (φ(f1), φ(f2)) is normal as well. By Lemma 3.7, h 4 g∗0φ(f1)φ(f2) implies
h 4 g∗0φ(f1) = f ′

1g
∗
1 . We deduce h 4 gcd(f ′

1f
′
2, f

′
1g

∗
1) = f ′

1 gcd(f ′
2, g

∗
1). By

Lemma 3.13, the hypothesis that (g1, f
′
2) is normal implies gcd(g∗1 , f

′
2) = 1, and,

finally, we deduce h 4 f ′
1, i.e., (f ′

1, f
′
2) is normal. �

Remark 3.14. It might be tempting to mimick the arguments of this section in
the general framework of a left-preGarside category C and a seed S, provided some
additional conditions are satisfied. However, it is unclear that the extension can
be a genuine one. For instance, if we require that, for each f in S, there exists f∗

in S such that ff∗ exists and depends on ∂0f only, then the map ∂0f 7→ ff∗ is a
left-Garside map and we are back to left-Garside categories.

3.5. Regularity criteria. We conclude with some sufficient conditions implying
regularity. In particular, we observe that, in the two-sided case, regularity is auto-
matically satisfied.

Lemma 3.15. Assume that C is a left-Garside category. Then a sufficient condition
for C to be regular is that the functor φ be bijective on Hom(C).

Proof. Assume that C is a left-Garside category and φ is bijective onHom(C). First
we claim that φ(f) 4 φ(g) implies f 4 g in C. Indeed, assume φ(g) = φ(f)h. As φ
is surjective, we have φ(g) = φ(f)φ(h′) for some h′, hence φ(g) = φ(fh′) since φ is
a functor, hence g = fh′ since φ is injective.

Next, we claim that φ(f) is simple if and only if f is simple. That the condition
is sufficient directly follows from Definition 2.1. Conversely, assume that φ(f) is
simple. This means that there exists g satisfying φ(f)g = ∆(∂0φ(f)). As φ is
surjective, there exists g′ satisfying g = φ(g′). Applying (2.2), we obtain φ(fg′) =
∆(∂0φ(f)) = φ(∆(∂0f), hence fg′ = ∆(∂0f) by injectivity of φ.
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Finally, assume that (f1, f2) is normal, and g is a simple morphism left-dividing
φ(f1)φ(f2), hence satisfying gh = φ(f1)φ(f2) for some h. As φ is surjective, we
have g = φ(g′) and h = φ(h′) for some g′, h′. Moreover, by the claim above,
the hypothesis that g is simple implies that g′ is simple as well. Then we have
φ(g′)φ(h′) = φ(f1)φ(f2), hence g′h′ = f1f2 since φ is a functor and it is injective.
The hypothesis that (f1, f2) is normal implies g′ 4 f1, hence g = φ(g′) 4 φ(f1). So
(φ(f1), φ(f2)) is normal, and C is regular. �

Proposition 3.16. Every Garside category is regular.

Proof. Assume that C is a left-Garside with respect to ∆ and right-Garside with
respect to ∇ satisfying ∆(x) = ∇(x′) for x′ = ∂1∆(x). Put ψ(x′) = ∂0∇(x′) for
x′ in Obj(C) and, for g simple in Hom(C), hence a right-divisor of ∇(∂1g), denote
by ∗g the unique simple morphism satisfying ∗gg = ∇(∂0g), and put ψ(g) = ∗∗g.
Then arguments similar to those of Lemma 2.4 give the equality

(3.5) ∇(∂0g) g = ψ(g)∇(∂1g)

which is an exact counterpart of (2.1). Let f : x → y be any morphism in C. Put
x′ = φ(x) and y′ = φ(y). By construction, we also have x = ψ(x′) and y = ψ(y′).
Applying (2.1) to f : x→ y, we obtain ∆(x)φ(f) = f ∆(y), which is also

(3.6) ∇(x′)φ(f) = f ∇(y′).

On the other hand, applying (3.5) to φ(f) : x′ → y′ yields

(3.7) ∇(x′)φ(f) = ψ(φ(f))∇(y′).

Comparing (3.6) and (3.7) and right-cancelling ∇(y′), we deduce ψ(φ(f)) = f . A
symmetric argument gives φ(ψ(g)) = g for each g, and we conclude that ψ is the
inverse of φ, which is therefore bijective. Then we apply Lemma 3.15. �

Remark. The above proof shows that, if C is a left-Garside category that is Gar-
side, then the associated functor φ is bijective both on Obj(C) and on Hom(C). Let
us mention without proof that this necessary condition is actually also sufficient.

Apart from the previous very special case, we can state several weaker regularity
criteria that are close to the definition and will be useful in Section 6. We recall
that H(f) denotes the maximal simple morphism left-dividing f .

Proposition 3.17. A left-Garside category C is regular if and only if φ preserves
the head function on product of two simples: for f1, f2 simple with ∂1f1 = ∂0f2,

(3.8) H(φ(f1f2)) = φ(H(f1f2));

Proof. Assume that C is regular, and that f1, f2 satisfy ∂1f1 = ∂0f2. Let (f ′
1, f

′
2)

be the formal form of f1f2—which has length 2 at most by Proposition 3.8. Then,
(φ(f ′

1), φ(f ′
2)) is normal and satisfies φ(f ′

1)φ(f ′
2) = φ(f1f2), so (φ(f ′

1), φ(f ′
2)) is the

normal form of f(f1f2). Hence we have H(f1f2) = f ′
1 and H(φ(f1f2)) = φ(f ′

1),
which is (3.8).

Conversely, assume (3.8) and let (f1, f2) be normal. By construction, we have
f1 = H(f1f2), hence φ(f1) = H(φ(f1f2)) by hypothesis. This means that the
normal form of φ(f1f2) is (φ(f1), g) for some g satisfying φ(f1f2) = φ(f1)g. Now
φ(f2) is such a morphism g, and, by (LG1), it is the only one. So the normal form
of φ(f1f2) is (φ(f1), φ(f2)), and C is regular. �



18 PATRICK DEHORNOY

Proposition 3.18. Assume that C is a left-Garside category C. Then two sufficient
conditions for C to be regular are

(i) The functor φ preserves left-coprimeness of simple morphisms: for f, g simple
with ∂0f = ∂0g,

(3.9) gcd(f, g) = 1 implies gcd(φ(f), φ(g)) = 1.

(ii) The functor φ preserves the gcd operation on simple morphisms: for f, g
simple with ∂0f = ∂0g,

(3.10) gcd(φ(f), φ(g)) = φ(gcd(f, g)),

and, moreover, φ(f) is nontrivial whenever f is nontrivial.

Proof. Assume (i). Let (f, g) be normal. By Lemma 3.13, we have gcd(f∗, g) = 1.
By (3.9), we deduce gcd(φ(f∗), φ(g)) = 1. By Lemma 2.5, this equality is also
gcd(φ(f)∗, φ(g)) = 1, which, by Lemma 3.13 again, means that (φ(f), φ(g)) is
normal. Hence C is regular.

On the other hand, it is clear that (ii) implies (i). �

4. Self-distributivity

We quit general left-Garside categories, and turn to one particular example,
namely a certain category (two categories actually) associated with the left self-
distributive law. The latter is the algebraic law

(LD) x(yz) = (xy)(xz)

extensively investigated in [18].
We first review some basic results about this law and the associated free LD-

systems, i.e., the binary systems that obey the LD-law. The key notion is the
notion of an LD-expansion, with two derived categories LD+

0 and LD+ that will be
our main subject of investigation from now on.

4.1. Free LD-systems. For each algebraic law (or family of algebraic laws), there
exist universal objects in the category of structures that satisfy this law, namely the
free systems. Such structures can be uniformly described as quotients of absolutely
free structures under convenient congruences.

Definition 4.1. We let Tn be the set of all bracketed expressions involving vari-
ables x1, ..., xn, i.e., the closure of {x1, ..., xn} under t1 ⋆ t2 = (t1)(t2). We use T
for the union of all sets Tn. Elements of T are called terms.

Typical terms are x1, x2 ⋆x1, x3 ⋆(x3 ⋆x1), etc. It is convenient to think of terms
as rooted binary trees with leaves indexed by the variables: the trees associated

with the previous terms are •

x1
,
x2x1

, and x3
x3x1

, respectively. The system (Tn, ⋆)

is the absolutely free system (or algebra) generated by x1, ..., xn, and every binary
system generated by n elements is a quotient of this system. So is in particular the
free LD-system of rank n.

Definition 4.2. We denote by =LD the least congruence (i.e., equivalence relation
compatible with the product) on (Tn, ⋆) that contains all pairs of the form

(t1 ⋆ (t2 ⋆ t3), (t1 ⋆ t2) ⋆ (t1 ⋆ t3)).



LEFT-GARSIDE CATEGORIES, SELF-DISTRIBUTIVITY, AND BRAIDS 19

Two terms t, t′ satisfying t =LD t
′ are called LD-equivalent.

The following result is then standard.

Proposition 4.3. For each n 6 ∞, the binary system (Tn/=LD, ⋆) is a free LD-
system based on {x1, ..., xn}.

4.2. LD-expansions. The relation =LD is a complicated object, about which many
questions remain open. In order to investigate it, it proved useful to introduce
the subrelation of =LD that corresponds to applying the LD-law in the expanding
direction only.

Definition 4.4. Let t, t′ be terms. We say that t′ is an atomic LD-expansion of t,
denoted t →1

LD
t′, if t′ is obtained from t by replacing some subterm of the form

t1 ⋆ (t2 ⋆ t3) with the corresponding term (t1 ⋆ t2) ⋆ (t1 ⋆ t3). We say that t′ is
an LD-expansion of t, denoted t →LD t′, if there exists a finite sequence of terms
t0, ..., tp satisfying t0 = t, tp = t′, and ti−1 →

1
LD
ti for 1 6 i 6 p.

By definition, being an LD-expansion implies being LD-equivalent, but the con-
verse is not true. For instance, the term (x⋆x)⋆(x⋆x) is an (atomic) LD-expansion
of x⋆(x⋆x), but the latter is not an LD-expansion of the former. However, it should
be clear that =LD is generated by →LD, so that two terms t, t′ are LD-equivalent if
and only if there exists a finite zigzag t0, t1, ..., t2p satisfying t0 = t, t2p = t′, and
ti−1 →LD ti LD← ti+1 for each odd i.

The first nontrivial result about LD-equivalence is that the above zigzags may
always be assumed to have length two.

Proposition 4.5. [17] Two terms are LD-equivalent if and only if they admit a
common LD-expansion.

This result is similar to the property that, if a monoid M satisfies Ore’s condi-
tions—as the braid monoid B+

n does for instance—then every element in the uni-
versal group of M can be expressed as a fraction of the form ab−1 with a, b in M .
Proposition 4.5 plays a fundamental role in the sequel, and we need to recall some
elements of its proof.

Definition 4.6. [17] A binary operation ⊙⋆ on terms is recursively defined by

(4.1) t⊙⋆ xi = t ⋆ xi, t⊙⋆ (t0 ⋆ t1) = (t⊙⋆ t0) ⋆ (t⊙⋆ t1).

Next, for each term t, the term φ(t) is recursively defined by2

(4.2) φ(xi) = xi φ(t0 ⋆ t1) = φ(t0)⊙⋆ φ(t1).

The idea is that t⊙⋆ t′ is obtained by distributing t everywhere in t′ once. Then
φ(t) is the image of t when ⋆ is replaced with ⊙⋆ everywhere in the unique expression
of t in terms of variables. Examples are given in Figure 4. A straightforward
induction shows that t⊙⋆ t′ is always an LD-expansion of t ⋆ t′ and, therefore, that
φ(t) is an LD-expansion of t.

The main step for establishing Proposition 4.5 consists in proving that φ(t)
plays with respect to atomic LD-expansions a role similar to Garside’s fundamental
braid ∆n with respect to Artin’s generators σi—which makes it natural to call φ(t)
the fundamental LD-expansion of t.

2In [17] and [18], ∂ is used instead of φ, an inappropriate notation in the current context.
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φ

( )
=

t0 t1
φ(t0) φ(t0) φ(t0) φ(t0)

φ(t1)

Figure 4. The fundamental LD-expansion φ(t) of a term t, recursive

definition: φ(t0 ⋆ t1) is obtained by distributing φ(t0) everywhere in φ(t1).

φ

( )
=

x1

x2

x3 x4 x1x2 x1x3 x1x2 x1x4

Figure 5. The fundamental LD-expansion φ(t) of a term t, a concrete

example: t = x1 ⋆ (x2 ⋆ (x3 ⋆ x4)) gives φ(t) = x1 ⊙⋆ (x2 ⊙⋆ (x3 ⊙⋆ x4)).

Lemma 4.7. [17] [18, Lemmas V.3.11 and V.3.12] (i) The term φ(t) is an LD-
expansion of each atomic LD-expansion of t.

(ii) If t′ is an LD-expansion of t, then φ(t′) is an LD-expansion of φ(t).

Sketch of proof. One uses induction on the size of the involved terms. Once Lemma 4.7
is established, an easy induction on d shows that, if there exists a length d sequence
of atomic LD-expansions connecting t to t′, then φd(t) is an LD-expansion of t′.
Then a final induction on the length of a zigzag connecting t to t′ shows that, if t
and t′ are LD-equivalent, then φd(t) is an LD-expansion of t′ for sufficiently large d
(namely for d at least the number of “zag”s in the zigzag). �

4.3. The category LD+

0 . A category (and a quiver) is naturally associated with
every graph, and the previous results invite to introduce the category associated
with the LD-expansion relation →LD.

Definition 4.8. We denote by LD+

0 the category whose objects are terms, and
whose morphisms are all pairs of terms (t, t′) satisfying t→LD t

′.

By construction, the category LD+

0 is left- and right-cancellative, and Proposi-
ion 4.5 means that any two morphisms of LD+

0 with the same source admit a
common right-multiple. Moreover, a natural candidate for being a left-Garside
map is obtained by defining ∆(t) = (t, φ(t)) for each term t.

Question 4.9. Is LD+

0 a left-Garside category?

Question 4.9 is currently open. We shall see in Section 6.3 that it is one of the
many forms of the so-called Embedding Conjecture. The missing part is that we
do not know that least common multiples exist in LD+

0 , the problem being that we
have no method for proving that a common LD-expansion of two terms is possibly
a least common LD-expansion.

5. The monoid LD+ and the category LD+

The solution for overcoming the above difficulty consists in developing a more
precise study of LD-expansions that takes into account the position where the LD-
law is applied. This leads to introducing a certain monoid LD+ whose elements
provide natural labels for LD-expansions, and, from there, a new category LD+, of
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t

Dα

t •Dα

α α

t/α0 t/α10t/α11
t/α0t/α10

t/α0 t/α11
↑↑

Figure 6. Action of Dα to a term t: the LD-law is applied to expand t

at position α, i.e., to replace the subterm t/α, which is t/α0 ⋆ (t/α10 ⋆ t/α11),
with (t/α0 ⋆ t/α10) ⋆ (t/α0 ⋆ t/α11); in other words, the light grey subtree is

duplicated and distributed to the left of the dark grey and black subtrees.

which LD+

0 is a projection. This category LD+ is the one on which a left-Garside
structure will be proved to exist.

5.1. Labelling LD-expansions. By definition, applying the LD-law to a term t
means selecting some subterm of t and replacing it with a new LD-equivalent term.
When terms are viewed as binary rooted trees, the position of a subterm can be
specified by describing the path that connects the root of the tree to the root of
the considered subtree, hence typically by a binary address, i.e., a finite sequence
of 0’s and 1’s, according to the convention that 0 means “forking to the left” and 1
means “forking to the right”. Hereafter, we use A for the set of all such addresses,
and ǫ for the empty address, which corresponds to the position of the root in a tree.

Notation. For t a term and α an address, we denote by t/α the subterm of t whose
root (when viewed as a subtree) has address α, if it exists, i.e., if α is short enough.

So, for instance, if t is the term x1 ⋆(x2 ⋆x3), we have t/0 = x1, t/10 = x2, whereas
t/00 is not defined, and t/ǫ = t holds, as it holds for every term.

Definition 5.1. (See Figure 6.) We say that t′ is a Dα-expansion of t, denoted
t′ = t • Dα, if t′ is the atomic LD-expansion of t obtained by applying LD at the
position α, i.e., replacing the subterm t/α, which is t/α0 ⋆ (t/α10 ⋆ t/α11), with the
term (t/α0 ⋆ t/α10) ⋆ (t/α0 ⋆ t/α11).

By construction, every atomic LD-expansion is a Dα-expansion for a unique α.
The idea is to use the letters Dα as labels for LD-expansions. As arbitrary LD-
expansions are compositions of finitely many atomic LD-expansions, hence of Dα-
expansions, it is natural to use finite sequences of Dα to label LD-expansions. In
other words, we extend the (partial) action of Dα on terms into a (partial) action
of finite sequences of Dα’s. Thus, for instance, we write

t′ = t •DαDβDγ

to indicate that t′ is the LD-expansion of t obtained by successively applying the
LD-law (in the expanding direction) at the positions α, then β, then γ.

If S is a nonempty set, we denote by S∗ the free monoid generated by S, i.e., the
family of all words on the alphabet S (finite sequences of elements of S) equiped
with concatenation.

Lemma 5.2. In the sense of Definition 1.7, Definition 5.1 gives a partial action
of the free monoid {Dα | α ∈ A}∗ on T (the set of terms).
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D1

Dǫ D1

Dǫ

Dǫ D1 D0

Figure 7. Relations between Dα-expansions: the critical case. We read

that the action of DǫD1Dǫ and D1DǫD1D0 coincide.

Proof. Conditions (i) and (ii) of Definition 1.7 follow from the construction. The
point is to prove (iii), i.e., to prove that, if w1, ..., wn are arbitrary finite sequences
of letters Dα, then there exists at least one term t such that t • wi is defined for
each i. This is what [18, Proposition VII.1.21] states. �

5.2. The monoid LD+. There exist clear connections between the action of var-
ious Dα’s: different sequences may lead to the same transformation of terms. We
shall now identify a natural family of such relations and introduce the monoid
presented by these relations.

Lemma 5.3. For all α, β, γ, the following pairs have the same action on terms:
(i) Dα0βDα1γ and Dα1γDα0β; (“parallel case”)
(ii) Dα0βDα and DαDα00βDα10β; (“nested case 1”)
(iii) Dα10βDα and DαDα01β; (“nested case 2”)
(iv) Dα11βDα and DαDα11β; (“nested case 3”)
(v) DαDα1Dα and Dα1DαDα1Dα0. (“critical case”)

Sketch of proof. The commutation relation of the parallel case is clear, as the trans-
formations involve disjoint subterms. The nested cases are commutation relations
as well, but, because one of the involved subterms is nested in the other, it may
be moved, and even possibly duplicated, when the main expansion is performed,
so that the nested expansion(s) have different names before and after the main
expansion. Finally, the critical case is specific to the LD-law, and there is no way
to predict it except a direct verification, as shown in Figure 7. �

Definition 5.4. Let RLD be the family of all relations of Lemma 5.3. We define
LD+ to be the monoid 〈{Dα | α ∈ A} | RLD〉

+.

Lemma 5.3 immediately implies

Proposition 5.5. The partial action of the free monoid {Dα | α ∈ A}∗ on terms
induces a well defined partial action of the monoid LD+.

For t a term and a in LD+, we shall naturally denote by t • a the common value
of t • w for all sequences w of letters Dα that represent a.

Remark. In this way, each LD-expansion receives a label that is an element of LD+,
thus becoming a labelled LD-expansion. However, we do not claim that a labelled
LD-expansion is the same as an LD-expansion. Indeed, we do not claim that the
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relations of Lemma 5.3 exhaust all possible relations between the action of the Dα’s
on terms. A priori, it might be that different elements of LD+ induce the same action
on terms, so that one pair (t, t′) might correspond to several labelled expansions
with different labels. As we shall see below, the uniqueness of the labelling is
another form of the above mentioned Embedding Conjecture.

5.3. The category LD+. We are now ready to introduce our main subject of
interest, namely the category LD+ of labelled LD-expansions. The starting point is
the same as for LD+

0 , but the difference is that, now, we explicitly take into account
the way the source is expanded into the target.

Definition 5.6. We denote by LD+ the category whose objects are terms, and
whose morphisms are triples (t, a, t′) with a in LD+ and t • a = t′.

In other words, LD+ is the category associated with the partial action of LD+

on terms, in the sense of Section 1.8. We recall our convention that, when the
morphisms of a category are triples, the source is the first entry, and the target is
the last entry. So, for instance, a typical morphism in LD+ is the triple

(
, DǫD1 ,

)
,,

whose source is the term x ⋆ (x ⋆ (x ⋆ x)) (we adopt the default convention that
specifying no variable means using some fixed variable x), and whose target is the
term (x ⋆ x) ⋆ ((x ⋆ x) ⋆ (x ⋆ x)).

5.4. The element ∆t. We aim at proving that the category LD+ is a left-Garside
category. To this end, we need to define the ∆-morphisms. As planned in Sec-
tion 4.3, the latter will be constructed using the LD-expansions (t, φ(t)). Defining
a labelled version of this expansion means fixing some canonical way of expanding
a term t into the corresponding term φ(t). A natural solution then exists, namely
following the recursive definition of the operations ⊙⋆ and φ.

For w a word in the letters Dα, we denote by sh0(w) the word obtained by
replacing each letter Dα of w with the corresponding letter D0α, i.e., by shifting all
indices by 0. Similarly, we denote by shγ(w) the word obtained by appending γ on
the left of each address in w. The LD-relations of Lemma 5.3 are invariant under
shifting: if w and w′ represent the same element a of LD+, then, for each γ, the
words shγ(w) and shγ(w′) represent the same element, naturally denoted shγ(a),
of LD+. For each a in LD+, the action of shγ(a) on a term t corresponds to
the action of a to the γ-subterm of t: so, for instance, if t′ = t • a holds, then
t′ ⋆ t1 = (t ⋆ t1) • sh0(a) holds as well, since the 0-subterm of t ⋆ t1 is t, whereas that
of t′ ⋆ t1 is t′.

Definition 5.7. For each term t, the elements δt and ∆t of LD+ are defined by
the recursive rules

δt =

{
1 for t of size 0, i.e., when t is a variable xi,

Dǫ · sh0(δt0) · sh1(δt1) for t = t0 ⋆ t1.
(5.1)

∆t =

{
1 for t of size 0,

sh0(∆t0) · sh1(∆t1) · δφ(t1) for t = t0 ⋆ t1.
(5.2)
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Example 5.8. Let t be x⋆(x⋆(x⋆x)). Then t/0 is x, and, therefore, ∆t/0 is 1. Next,

t/1 is x⋆ (x⋆x), so (5.2) reads ∆t = sh1(∆t/1) · δφ(t/1). Then φ(t/1) is (x⋆x) ⋆ (x⋆x).

Applying (5.1), we obtain

δφ(t/1) = Dǫ · sh0(δx⋆x) · sh1(δx⋆x) = DǫD0D1.

On the other hand, using (5.2) again, we find

∆t/1 = sh0(∆x) · sh1(∆x⋆x) · δx⋆x = 1 · 1 ·Dǫ = Dǫ,

and, finally, we obtain ∆t = D1DǫD0D1. According to the defining relations of
the monoid LD+, this element is also DǫD1Dǫ. Note the compatibility of the result
with the examples of Figures 5 and 7.

Lemma 5.9. For all terms t0, t, we have

(t0 ⋆ t) • δt = t0 ⊙⋆ t,(5.3)

t • ∆t = φ(t).(5.4)

The proof is an easy inductive verification.

5.5. Connection with braids. Before investigating the category LD+ more pre-
cisely, we describe the simple connection existing between LD+ and the positive
braid category B+ of Example 1.9.

Lemma 5.10. Define π : {Dα | α ∈ A} → {σi | i > 1} ∪ {1} by

(5.5) π(Dα) =

{
σi+1 if α is the address 1i, i.e., 11...1, i times 1,

1 otherwise.

Then π induces a surjective monoid homomorphism of LD+ onto B+

∞.

Proof. The point is that each LD-relation of Lemma 5.3 projects under π onto a
braid relation. All relations involving addresses that contain at least one 0 collapse
to mere equalities. The remaining relations are

D1iD1j = D1jD1i with j > i+ 2,

which projects to the valid braid relation σi−1σj−1 = σj−1σi−1, and

D1iD1jD1i = D1jD1iD1jD1i0, with j = i+ 1,

which projects to the not less valid braid relation σi−1σj−1σi−1 = σj−1σi−1σj−1. �

We introduced a category C(M,X) for each monoid M partially acting on X
in Definition 1.8. The braid category B+ and our current category LD+ are of
these type. For such categories, natural functors arise from morphisms between the
involved monoids, and we fix the following notation.

Definition 5.11. Assume that M,M ′ are monoids acting on sets X and X ′, re-
spectively. A morphism ϕ:M→M ′ and a map ψ:X→X ′ are called compatible if

(5.6) ψ(x • a) = ψ(x) • ϕ(a)

holds whenever x • a is defined. Then, we denote by [ϕ, ψ] the functor of C(M,X)
to C(M ′, X ′) that coincides with ψ on objects and maps (x, a, y) to (ψ(x), ϕ(a), ψ(y)).

Proposition 5.12. Define the right-height ht(t) of a term t by ht(xi) = 0 and
ht(t0 ⋆ t1) = ht(t1) + 1. Then the morphism π of (5.5) is compatible with ht, and
[π, ht] is a surjective functor of LD+ onto B+.
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The parameter ht(t) is the length of the rightmost branch in t viewed as a tree
or, equivalently, the number of final )’s in t viewed as a bracketed expression.

Proof. Assume that (t, a, t′) belongs to Hom(LD+). Put n = ht(t). The LD-law
preserves the right-height of terms, so we have ht(t′) = n as well. The hypothesis
that t • a exists implies that the factors D1i that occur in some (hence in every)
expression of a satisfy i < n − 1. Hence π(a) is a braid of B+

n , and n • π(a) is
defined. Then the compatibility condition (5.6) is clear, and [π, ht] is a functor
of LD+ to B+.

Surjectivity is clear, as each braid σi belongs to the image of π. �

Moreover, a simple relation connects the elements ∆t of LD+ and the braids ∆n.

Proposition 5.13. We have π(∆t) = ∆n whenever t has right-height n > 1.

Proof. We first prove that ht(t) = n implies

(5.7) π(δt) = σ1σ2...σn

using induction on the size of t. If t is a variable, we have ht(t) = 0 and δt = 1, so
the equality is clear. Otherwise, write t = t0 ⋆ t1. By definition, we have

δt = Dǫ · sh0(δt0) · sh1(δt1).

Let sh denote the endomorphism of B+

∞ that maps σi to σi+1 for each i. Then π
collapses every term in the image of sh0, and π(sh1(a)) = sh(π(a)) holds for each a
in LD+. So, using the induction hypothesis π(δt1) = σ1...σn−1, we deduce

π(δt) = σ1 · 1 · sh(σ1...σn−1) = σ1...σn,

which is (5.7). Put ∆0 = 1 (= ∆1). We prove that ht(t) = n implies π(∆t) = ∆n

for n > 0, using induction on the size of t again. If t is a variable, we have n = 0
and ∆t = 1, as expected. Otherwise, write t = t0 ⋆ t1. The definition gives

∆t = sh0(∆t0) · sh1(∆t1) · δφ(t1).

As above, π collapses the term in the image of sh0, and it transforms sh1 into sh.
Hence, using the induction hypothesis π(∆t1) = ∆n−1 and (5.7) for φ(t1), whose
right-height is that of t1, we obtain

π(∆t) = 1 · sh(∆n−1) · σ1σ2 ... σn−1 = ∆n. �

6. Main results

We can now state the two main results of this paper.

Theorem 6.1. For each term t, put ∆(t) = (t,∆t, φ(t)). Then LD+ is a left-
Garside category with left-Garside map ∆, and [π, ht] is a surjective right-lcm pre-
serving functor of LD+ onto the positive braid category B+.

Theorem 6.2. Unless the category LD+ is not regular, the Embedding Conjecture
of [18, Chapter IX] is true.
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6.1. Recognizing left-preGarside monoids. Owing to Proposition 1.11 and to
the construction of LD+ from the partial action of the monoid LD+ on terms, the
first part of Theorem 6.1 is a direct consequence of

Proposition 6.3. The monoid LD+ equipped with its partial action on terms via
self-distributivity is a locally left-Garside monoid with associated left-Garside se-
quence (∆t)t∈T .

This is the result we shall prove now. The first step is to prove that LD+ is left-
preGarside. To do it, we appeal to general tools that we now describe. As for (LG0),
we have an easy sufficient condition when the action turns out to be monotonous
in the following sense.

Proposition 6.4. Assume that M has a partial action on X and there exists a
map µ : X → N such that a 6= 1 implies µ(x • a) > µ(x). Then M satisfies (LG0).

Proof. Assume that (a1, ..., aℓ) is a ≺-increasing sequence in Div(a). By definition
of a partial action, there exists x in X such that x • a is defined, and this implies
that x •ai is defined for each i. Next, the hypothesis that (a1, ..., aℓ) is ≺-increasing
implies that there exist b2, ..., bℓ 6= 1 satisfying ai = ai−1bi for each i. We find

µ(x • ai) = µ((x • ai−1) • bi) > µ(x • ai−1),

and the sequence (µ(x • a1), ..., µ(x • aℓ)) is increasing. As µ(x • a1) > µ(x) holds,
we deduce ℓ 6 µ(x • a)− µ(x) + 1 and, therefore, M satisfies (LG0). �

As for conditions (LG1) and (LG2), we appeal to the subword reversing method
of [21]. We recall that S∗ denotes the free monoid generated by S. We use ǫ for
the empty word.

Definition 6.5. Let S be any set. A map C : S × S → S∗ is called a complement
on S. Then, we denote by RC the family of all relations aC(a, b) = bC(b, a) with

a 6= b in S, and by Ĉ the unique (possibly partial) map of S∗ × S∗ to S∗ that
extends C and obeys the recursive rules

(6.1) Ĉ(u, v1v2) = Ĉ(u, v1)Ĉ(Ĉ(v1, u), v2), Ĉ(v1v2, u) = Ĉ(v2, Ĉ(u, v1)).

Proposition 6.6 ([21] or [18, Prop. II.2.5.]). Assume that M is a monoid satisfy-
ing (LG0) and admitting the presentation 〈S,RC〉

+, where C is a complement on S.
Then the following are equivalent:

(i) The monoid M is left-preGarside;
(ii) For all a, b, c in S, we have

(6.2) Ĉ(Ĉ(Ĉ(a, b), Ĉ(a, c)), Ĉ(Ĉ(b, a), Ĉ(b, c))) = ǫ.

6.2. Proof of Therem 6.1. We shall now prove that the monoid LD+ equipped
with its partial action on terms via left self-distributivity satisfies the criteria of
Section 6.1. Here, and in most subsequent developments, we heavily appeal to the
results of [18], some of which have quite intricate proofs.

Proof of Theorem 6.1. First, each term t has a natural size µ(t), namely the number
of inner nodes in the associated binary tree. Then the hypothesis of Proposition 6.4
clearly holds: if t′ is a nontrivial LD-expansion of t, then the size of t′ is larger than
that of t. Then, by Proposition 6.4, LD+ satisfies (LG0).

Next, we observe that the presentation of LD+ in Definition 5.4 is associated with
a complement on the set {Dα | α ∈ A}. Indeed, for each pair of addresses α, β, there
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exists in the list RLD exactly one relation of the type Dα... = Dβ .... Hence, in view
of Proposition 6.6, and because we know that LD+ satisfies (LG0), it suffices to check
that (6.2) holds in LD+ for each triple Dα, Dβ, Dγ . This is Proposition VIII.1.9
of [18]. Hence LD+ satisfies (LG1) and (LG2), and it is a left-preGarside monoid.

Let us now consider the elements ∆t of Definition 5.7. First, by Lemma 5.9,
t • ∆t is defined for each term t, and it is equal to φ(t). Next, assume that t •Dα is
defined. Then Lemma VII.3.16 of [18] states that Dα is a left-divisor of ∆t in LD+,
whereas Lemma VII.3.17 of [18] states that ∆t is a left-divisor of Dα∆t•Dα . Hence

Condition (LGℓoc
3 ) of Definition 1.10 is satisfied, and the sequence (∆t)t∈T is a

left-Garside sequence in LD+. Thus LD+ is a locally left-Garside monoid, which
completes the proof of Proposition 6.3.

By Proposition 1.11, we deduce that LD+, which is C(LD+, T ) by definition, is
a left-Garside category with left-Garside map ∆ as defined in Theorem 6.1.

As for the connection with the braid category B+, we saw in Proposition 5.12
that [π, ht] is a surjective functor of LD+ onto B+, and it just remains to prove
that it preserves right-lcm’s. This follows from the fact that the homomorphism π
of LD+ to B+

∞ preserves right-lcm’s, which in turn follows from the fact that LD+

and B+

∞ are associated with complements C and C satisfying, for each pair of
addresses α, β,

(6.3) π(C(Dα, Dβ)) = C(π(Dα), π(Dβ)).

Indeed, let a, b be any two elements of LD+. Let u, v be words on the alphabet
{Dα | α ∈ A} that represent a and b, respectively. By Proposition II.2.16 of [18], the

word Ĉ(u, v) exists, and uĈ(u, v) represents lcm(a, b). Then π(uĈ(u, v)) represents
a common right-multiple of the braids π(a) and π(b), and, by (6.3), we have

π(uĈ(u, v)) = π(u)Ĉ(π(u), π(v)).

This shows that the braid represented by π(uĈ(u, v)), which is π(lcm(a, b)) by
definition, is the right-lcm of the braids π(a) and π(b). So the morphism π preserves
right-lcm’s, and the proof of Theorem 6.1 is complete. �

6.3. The Embedding Conjecture. From the viewpoint of self-distributive alge-
bra, the main benefit of the current approach might be that it leads to a natural
program for possibly establishing the so-called Embedding Conjecture. This con-
jecture, at the moment the most puzzling open question involving free LD-systems,
can be stated in several equivalent forms.

Proposition 6.7. [18, Section IX.6] The following are equivalent:
(i) The monoid LD+ embeds in a group;
(ii) The monoid LD+ admits right-cancellation;
(iii) The categories LD+

0 and LD+ are isomorphic;
(iv) The functor φ associated with the category LD+ is injective;
(v) For each term t, the LD-expansions of t make an upper-semilattice;
(vi) The relations of Lemma 5.3 generate all relations that connect the action
of Dα’s by self-distributivity.

Each of the above properties is conjectured to be true: this is the Embedding
Conjecture.

We turn to the proof of Theorem 6.2. So our aim is to show that the Embedding
Conjecture is true whenever the category LD+ is regular. To this end, we shall use
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some technical results from [18], plus the following criterion, which enables one to
prove right-cancellability by only using simple morphisms.

Proposition 6.8. Assume that C is a left-Garside category and the associated
functor φ is injective on Obj(C). Then the following are equivalent:

(i) Hom(C) admits right-cancellation;
(ii) The functor φ is injective on Hom(C).

Moreover, if C is regular, (i) and (ii) are equivalent to
(iii) The functor φ is injective on simple morphisms of C.

Proof. Assume that f, g are morphisms of C that satisfy φ(f) = φ(g). As φ is a
functor, we first deduce

φ(∂0f) = ∂0(φ(f)) = ∂0(φ(g)) = φ(∂0g),

hence ∂0f = ∂0g as φ is injective on objects. A similar argument gives ∂1f = ∂1g.
Then, (2.1) gives

f∆(∂1f) = ∆(∂0f)φ(f) = ∆(∂0g)φ(g) = g∆(∂1g) = g∆(∂1f).

If we can cancel ∆(∂1f) on the right, we deduce f = g and, therefore, (i) implies (ii).
Conversely, assume that h is simple and fh = gh holds. By multiplying by h∗,

we deduce fhh∗ = ghh∗, i.e., f∆(∂0h) = g∆(∂0h). As we have ∂1f = ∂0h = ∂1g
by hypothesis, applying (2.1) gives

∆(∂0f)φ(f) = f∆(∂1f) = g∆(∂1g) = ∆(∂0g)φ(g) = ∆(∂0f)φ(g),

hence φ(f) = φ(g) by left-cancelling ∆(∂0f). If (ii) holds, we deduce f = g, i.e., h
is right-cancellable. As simple morphisms generate Hom(C), we deduce that every
morphism is right-cancellable and, therefore, (ii) implies (i).

It is clear that (ii) implies (iii). So assume that C is regular and (iii) holds.
Let f, g satisfy φ(f) = φ(g). Let (f1, ..., fd) and (g1, ..., ge) be the normal forms
of f and g, respectively. The regularity assumption implies that every length
two subsequence of (φ(f1), ..., φ(fd)) and (φ(g1), ..., φ(ge)) is normal. Moreover,
(iii) guarantees that φ(fi) and φ(gj) are nontrivial. Hence (φ(f1), ..., φ(fd)) and
(φ(g1), ..., φ(ge)) are normal. As φ is a functor, we have φ(f1)...φ(fd) = φ(f) =
φ(g) = φ(g1)...φ(ge), and the uniqueness of the normal form implies d = e, and
φ(fi) = φ(gi) for each i. Then (iii) implies fi = gi for each i, hence f = g. �

So, in order to prove Theorem 6.2, it suffices to show that the category LD+

satisfies the hypotheses of Proposition 6.8, and this is what we do now.

Lemma 6.9. The functor φ of LD+ is injective on objects, i.e., on terms.

Proof. We show using induction on the size of t that φ(t) determines t. The result
is obvious if t has size 0, i.e., when t is a single variable xi. Assume t = t0 ⋆ t1. By
construction, the term φ(t) is obtained by substituting every variable xi occurring
in the term φ(t1) with the term φ(t0) ⋆ xi. Hence φ(t0) is the 1n−10-subterm
of φ(t), where n is the common right-height of t and φ(t). From there, φ(t1) can
be recovered by replacing the subterms φ(t0) ⋆ xi of φ(t) by xi. Then, by induction
hypothesis, t0 and t1, hence t, can be recovered from φ(t1) and φ(t0). �

Lemma 6.10. The functor φ of LD+ is injective on simple morphisms.
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Proof. Assume that f, f ′ are morphisms of LD+ satisfying φ(f) = φ(f ′), say f =
(t, a, s) and f ′ = (t′, a′, s′). The explicit description of Lemma 2.7 implies φ(t) =
φ(t′), hence t = t′ by Lemma 6.9. Similarly, we have φ(s) = φ(s′), hence s′ = s.
Therefore, we have t •a = t •a′ = s. By Proposition VII.126 of [18], we deduce that
t • a = t • a′ holds for every term t for which both t • a and t • a′ are defined. Then
Proposition IX.6.6 of [18] implies a = a′ provided a or a′ is simple. �

We can now complete the argument.

Proof of Theorem 6.2. The category LD+ is left-Garside, with an associated func-
tor φ that is injective both on objects and on simple morphisms. By Proposition 6.8,
if LD+ is regular, then Hom(LD+) admits right-cancellation, which is one of the
forms of the Embedding Conjecture, namely (ii) in Proposition 6.7. �

6.4. A program for proving the regularity of LD+. At this point, we are left
with the question of proving (or disproving)

Conjecture 6.11. The left-Garside category LD+ is regular.

The regularity criteria of Section 3.5 lead to a natural program for possibly
proving Conjecture 6.11 and, therefore, the Embedding Conjecture.

We begin with a preliminary observation.

Lemma 6.12. The left-Garside sequence (∆t)t∈T on LD+ is coherent (in the sense
of Definition 3.9).

Proof. The question is to prove that, if t is a term and t • a is defined and a 4 ∆t′

holds for some t′, then we necessarily have a 4 ∆t. This is a direct consequence
of Proposition VIII.5.1 of [18]. Indeed, the latter states that an element a is a
left-divisor of some element ∆t if and only if a can be represented by a word in
the letters Dα that has a certain special form. This property does not involve the
term t, and it implies that, if a left-divides ∆t, then it automatically left-divides
every element ∆t′ such that t′ • a is defined. �

So, according to Proposition 3.10, we obtain a well defined notion of a simple
element in LD+: an element a of LD+ is called simple if it left-divides at least one
element of the form ∆t. Then simple elements form a seed in LD+, and are eligible
for a normal form satisfying the general properties described in Section 3. In this
context, applying Proposition 3.18(ii) leads to the following criterion.

Proposition 6.13. Assume that, for each term t and for all simple elements a, b
of LD+ such that t • a and t • b are defined, we have

(6.4) gcd(φt(a), φt(b)) = φt(gcd(a, b)).

Then Conjecture 6.11 is true.

Proof. Let f, g be two simple morphisms in LD+ that satisfy ∂0f = ∂0g = t. By
definition, f has the form (t, a, t • a) for some a satisfying a 4 ∆t, hence simple
in LD+. Similarly, f has the form (t, b, t • b) for some simple element b, and we
have gcd(f, g) = (t, gcd(a, b), t • gcd(a, b)). On the other hand, Lemma 2.7 gives
φ(f) = (φ(t), φt(a), φ(t • a)) and φ(g) = (φ(t), φt(b), φ(t • b)), whence

gcd(φ(f), φ(g)) = (φ(t), gcd(φt(a), φt(b)), φ(t) • gcd(φt(a), φt(b))).
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t t •D1 φ(t) φ(t •D1)
D1 Dǫ

Dǫ DǫD0D1 D0D1 D00D10D1Dǫ

t •Dǫ t•lcm(Dǫ,D1) φ(t•Dǫ) φ(t)•lcm(D0D1,Dǫ) φ(t•lcm(Dǫ,D1))
D1Dǫ DǫD1Dǫ 6=

Figure 8. The left diagram shows an instance of Relation (6.4):
for the considered choice of t, we find ∆t = DǫD1Dǫ, ∆t•D1

=
D1DǫD0D00D1D10, leading to φt(D1) = Dǫ and φt(Dǫ) = D0D1. Here

φt(Dǫ) and φt(D1) are left-coprime, so (6.4) is true. The right diagram

shows that the counterpart involving lcm’s fails.

If (6.4) holds, we deduce

gcd(φ(f), φ(g)) = φ(gcd(f, g)).

Moreover, if t • a is defined, then a 6= 1 implies µ(φ(t • a)) > µ(φ(t)), whence
φt(a) 6= 1. Then, Proposition 3.18(ii) implies that LD+ is regular. �

Example 6.14. Assume a = Dǫ, b = D1, and t = x⋆(x⋆(x⋆x)). Then t•a and t•b
are defined. On the other hand, we have φ(t) = ((x⋆x) ⋆ (x⋆x)) ⋆ ((x⋆x) ⋆ (x⋆x)).
An easy computation gives φt(Dǫ) = D0D1 and φt(D1) = Dǫ, see Figure 8. We
find gcd(φt(a), φt(b)) = 1 = gcd(a, b), and (6.4) is true in this case.

Note that the couterpart of (6.4) involving right-lcm’s fails. In the current case,
we have

lcm(φt(a), φt(b)) = φt(lcm(a, b)) ·D0D1 :

the terms φ(t • Dǫ) and φ(t • D1) admit a common LD-expansion that is smaller
than φt(t • lcm(Dǫ, D1)), which turns out to be φ2(t), see Figure 8 again.

The reader may similarly check that (6.4) holds for t = (x⋆(x⋆x))⋆(x⋆(x⋆x)) with
a = D0 and b = D1; the values are φt(D0) = D000D010D100D110 and φt(D1) = Dǫ.

Proposition 6.13 leads to a realistic program that would reduce the proof of the
Embedding Conjecture to a (long) sequence of verifications. Indeed, it is shown in
Proposition VIII.5.15 of [18] that every simple element a of LD+ admits a unique
expression of the form

a =

>∏

α∈A

D(eα)
α ,

where D
(e)
α denotes Dα1e−1 ...Dα1Dα and > refers to the unique linear ordering of A

satisfying α > α0β > α1γ for all α, β, γ. In this way, we associate with every simple
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element a of LD+ a sequence of nonnegative integers (eα)α∈A that plays the role of
a sequence of coordinates for a. Then it should be possible to

- express the coordinates of φt(a) in terms of those of a,
- express the coordinates of gcd(a, b) in terms of those of a and b.

If this were done, proving (or disproving) the equalities (6.4) should be easy.

Remark. Contrary to the braid relations, the LD-relations of Lemma 5.3 are not
symmetric. However, it turns out that the presentation of LD+ is also associated
with what can naturally be called a left-complement, namely a counterpart of a
(right)-complement involving left-multiples. But the latter fails to satisfy the coun-
terpart of (6.2), and it is extremely unlikely that one can prove that the monoid LD+

is possibly right-cancellative (which would imply the Embedding Conjecture) using
some version of Proposition 6.6.

7. Reproving braids properties

Proposition 5.12 and Theorem 6.1 connect the Garside structures associated
with self-distributivity and with braids, both being previously known to exist. In
this section, we show how the existence of the Garside structure of braids can be
(re)-proved to exist assuming the existencce of the Garside structure of LD+ only.
So, for a while, we pretend that we do not know that the braid monoid B+

n has a
Garside structure, and we only know about the Garside structure of LD+.

7.1. Projections. We begin with a general criterion guaranteeing that the projec-
tion of a locally left-Garside monoid is again a locally left-Garside monoid.

If S, S are two alphabets and π is a map of S to S
∗

(the free monoid on S),

we still denote by π the alphabetical homomorphism of S∗ to S
∗

that extends π,
defined by π(s1...sℓ) = π(s1)...π(sℓ).

Lemma 7.1. Assume that
• M is a locally left-Garside monoid associated with a complement C on S;

• M is a monoid associated with a complement C on S and satisfying (LG0);

• π : S → S ∪ {ǫ} satisfies π(S) ⊇ S and

(7.1) For all a, b in S, we have C(π(a), π(b)) = π(C(a, b)).

Then M is left-preGarside, and π induces a surjective right-lcm preserving ho-
momorphism of M onto M .

Proof. An easy induction shows that, if u, v are words on S and Ĉ(u, v) exists, then

Ĉ(π(u), π(v)) exists as well and we have

(7.2) Ĉ(π(u), π(v)) = π(Ĉ(u, v)).

Let a, b, c be elements of S. By hypothesis, there exist a, b, c in S satisfying
π(a) = a, π(b) = b, π(c) = c. As M is left-preGarside, by the direct implication
of Proposition 6.6, the relation (6.2) involving a, b, c is true in S∗. Applying π and

using (7.2), we deduce that the relation (6.2) involving a, b, c is true in S
∗
. Then, as

M satisfies (LG0) by hypothesis, the converse implication of Proposition 6.6 implies
that M is left-preGarside.

Then, by definition, the relations aC(a, b) = bC(b, a) with a, b ∈ S make a
presentation of M . Now, for a, b in S, we find

π(a)C(π(a), π(b)) = π(aC(a, b)) = π(bC(b, a)) = π(b)C(π(b), π(a))



32 PATRICK DEHORNOY

in M , which shows that the homomorphism of S∗ to M that extends π induces a
well defined homomorphism of M to M . This homomorphism, still denoted π, is
surjective since, by hypothesis, its image includes S.

Finally, we claim that π preserves right-lcm’s. The argument is almost the
same as in the proof of Theorem 6.1, with the difference that, here, we do not
assume that common multiples necessarily exist. Let a, b be two elements of M
that admit a common right-multiple. Let u, v be words on S∗ that represent a

and b, respectively. By Proposition II.2.16 of [18], the word Ĉ(u, v) exists, and

uĈ(u, v) represents lcm(a, b). Then the word π(uĈ(u, v)) represents a common
right-multiple of π(a) and π(b) in M , and, by (7.2), we have

π(uĈ(u, v)) = π(u) Ĉ(π(u), π(v)),

which shows that the element represented by π(uĈ(u, v)), which is π(lcm(a, b)) by
definition, is the right-lcm of π(a) and π(b) in M . �

We turn to locally left-Garside monoids, i.e., we add partial actions in the pic-
ture. Although lengthy, the following result is easy. It just says that, if M is a
locally left-Garside monoid, then its image under a projection that is compatible
with the various ingredients of the Garside structure is again locally left-Garside.

Proposition 7.2. Assume that
• M is a locally left-Garside monoid associated with a complement C on S and

(∆x)x∈X is a left-Garside sequence for the involved action of M on X;

• M is a monoid associated with a complement C on S that has a partial action
on X and satisfies (LG0);

• π : S → S ∪ {ǫ} satisfies (7.2), θ : S → S is a section for π, ̟ : X → X is a
surjection, and

(7.3)
For x in X and a in M , if x • a is defined, then so is ̟(x) • π(a)

and we have ̟(x) • π(a) = ̟(x • a);

(7.4)
For x in X and a in S, if x • a is defined,

then so is x • θ(a) for each x satisfying ̟(x) = x;

(7.5) For x in X, the value of π(∆x) depends on ̟(x) only.

For x in X, let ∆x be the common value of π(∆x) for ̟(x) = x. Then M is
locally left-Garside, with associated left-Garside sequence (∆x)x∈X , and π induces

a surjective right-lcm preserving homomorphism of M onto M .

Proof. First, the hypotheses of Lemma 7.1 are satisfied, hence M is left-preGarside
and π induces a surjective lcm-preserving homomorphism of M onto M .

Next, by (7.5), the definition of the elements ∆x for x in X is unambiguous. It
remains to check that (∆x)x∈X is a left-Garside sequence with respect to the action

of M on X . So, assume x ∈M , and let x be any element of M satisfying ̟(x) = x.
First, x • ∆x is defined, hence, by (7.3), so is ̟(x) • π(∆x), which is x • ∆x.
Assume now a 6= 1 and x • a is defined. As S generates M , we can assume a ∈ S

without loss of generality. By (7.4), the existence of x • a implies that of x • θ(a).
As (∆x)x∈X is a left-Garside sequence for the action of M on X , we have a′ 4 ∆x

for some a′ 6= 1 left-dividing θ(a). By construction, θ(a) lies in S, and it is an atom
in M . So the only possiblity is a′ = θ(a), i.e., we have θ(a) 4 ∆x. Applying π, we
deduce a 4 ∆x in M .
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Finally, under the same hypotheses, we have ∆x 4 θ(a)∆x•θ(a) in M . Using

π(∆x•θ(a)) = ∆̟(x•θ(a)) = ∆̟(x)•a = ∆x•a,

we deduce ∆x 4 a∆x•a in M , always under the hypothesis a ∈ S. The case of an
arbitrary element a for which x • a exists then follows from an easy induction on
the length of an expression of a as a product of elements of S. �

It should then be clear that, under the hypotheses of Proposition 7.2, [π,̟] is a
surjective, right-lcm preserving functor of C(M,X) to C(M,X).

7.2. The case of LD+ and B+. Applying the criterion of Section 7.1 to the cate-
gories LD+ and B+ is easy.

Proposition 7.3. The monoid B+

∞ is a locally left-Garside monoid with respect to
its action on N, and (∆n)n∈N is a left-Garside sequence in B+

∞.

Proof. Hereafter, we denote by C the complement on {Dα | α ∈ A} associated
with the LD-relations of Lemma 5.3, and by C the complement on {σi | i > 1}
associated with the braid relations of (1.2). We consider the maps π of Lemma 5.10,
and the right-height ht from terms to nonnegative integers. Finally, we define θ by
θ(σi) = D1i−i . We claim that these data satisfy all hypotheses of Proposition 7.2.
The verifications are easy. That the complements C and C satisfy (7.1) follows
from a direct inspection. For instance, we find

π(C(D1, Dǫ)) = π(DǫD1D0) = σ1σ2 = C(σ2, σ1) = C(π(D1), π(Dǫ)),

and similar relations hold for all pairs of generators Dα, Dβ.
Then, the action of LD+ on terms preserve the right-height, whereas the action

of braids on N is trivial, so (7.3) is clear. Next, θ is a section for π, and we observe
that t • θ(σi) is defined if and only if the right-height of t is at least i + 1, hence
if and only if ht(t) • σi is defined, so (7.4) is satisfied. Finally, we observed in
Proposition 5.12 that π(∆t) is equal to ∆ht(t), hence it depends on ht(t) only. So
(7.5) is satisfied.

Therefore, Proposition 7.2 applies, and it gives the expected result. �

Corollary 7.4. (i) The braid category B+ is a left-Garside category.
(ii) For each n, the braid monoid B+

n is a Garside monoid.

Proof. Point (i) follows from Proposition 1.11 once we know that B+

∞ is locally
left-Garside. Point (ii) follows from Proposition 1.12 since, for each n, the sub-
monoid B+

n of B+

∞ is (B+

∞)n in the sense of Definition 1.7. �

Thus, as announced, the Garside structure of braids can be recovered from the
left-Garside structure of LD+.

8. Intermediate categories

We conclude with a different topic. The projection of the self-distributivity cat-
egory LD+ to the braid category B+ described above is rather trivial in that terms
are involved through their right-height only and the corresponding action of braids
on integers is just constant. Actually, one can consider alternative projections
corresponding to less trivial braid actions and leading to two-step projections

LD+ −→ C(B+

∞, X) −→ B+.

We shall describe two such examples.
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π̂ π̂

xp

xq xpxq

(..., p, q, ...) (..., q, p, ...)
σi

D1i−1

Figure 9. Compatibility of the action of D1i−1 on sequences of “sub-

right” variables and of the action of σi on sequences of integers.

8.1. Action of braids on sequences of integers. Braids act on sequences of
integers via their permutations. Indeed, the rule

(8.1) (x1, ..., xn) • σi = (x1, ..., xi−1, xi+1, xi, xi+2, ..., xn)

defines an action of B+

n on Nn, whence a partial action of B+

∞ on N∗, where N∗

denotes the set of all finite sequences in N. In this way, we obtain a new cate-
gory C(B+

∞,N
∗), which clearly projects to B+.

We shall now describe an explicit projection of LD+ onto this category. We
recall that terms have been defined to be bracketed expressions constructed from
a fixed sequence of variables x1, x2, ... (or as binary trees with leaves labelled with
variables xp), and that, for t a term and α a binary address, t/α denotes the subterm
of t whose root, when t is viewed as a binary tree, has address α.

Proposition 8.1. Let B̂+ be the category associated with the partial action (8.1)

of B+

∞ on N∗. Then B̂+ is a Garside category, and the projection [π, ht] of LD+

onto B+ factors through B̂+ into

LD+
[π, π̂]
−−−−→ B̂+

[id, lg]
−−−−−→ B+,

where π̂ is defined for ht(t) = n by

π̂(t) = (varR(t/0), varR(t/10), ..., varR(t/1n−10)),

varR(t) denoting the index of the righmost variable occurring in t.

So, a typical morphism of B̂+ is ((1, 2, 2), σ1, (2, 1, 2)), and the projection of terms

to sequences of integers is given by
xp1 xp2

xpn

7→ (p1, p2, ..., pn).
π̂

Sketch of proof. The point is to check that the action of the LD-law on the indices of
the right variables of the subterms with addresses 1i0 is compatible with the action
of braids on sequences of integers. It suffices to consider the basic case of D1i−1 ,
and the expected relation is shown in Figure 9. Details are easy. Note that, for

symmetry reasons, the category B̂+ is not only left-Garside, but even Garside. �
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8.2. Action of braids on LD-systems. The action of positive braids on se-
quences of integers defined in (8.1) is just one example of a much more general
situation, namely the action of positive braids on sequences of elements of any LD-
system. It is well known—see, for instance, [18, Chapter I]—that, if (S, ⋆) is an
LD-system, i.e., ⋆ is a binary operation on S that obeys the LD-law, then

(8.2) (x1, ..., xn) • σi = (x1, ..., xi−1, xi ⋆ xi+1, xi, xi+2, ..., xn)

induces a well defined action of the monoid B+

n on the set Sn, and, from there, a
partial action of B+

∞ on the set S∗ of all finite sequences of elements of S.

Proposition 8.2. Assume that (S, ⋆) is an LD-system, and let B+

S be the category
associated with the partial action (8.2) of B+

∞ on S∗. Then B+

S is a left-Garside cat-
egory, and, for each sequence s = (s1, s2, ...) of elements of S, the projection [π, ht]
of LD+ onto B+ factors through B+

S into

LD+
[π, πs]
−−−−−−→ B+

S

[id, lg]
−−−−−−→ B+,

where πs is defined for ht(t) = n by

πs(t) = (evals(t/0), ..., evals(t/1n−10)),

evals(t) being the evaluation of t in (S, ⋆) when xp is given the value sp for each p.

We skip the proof, which is an easy verification similar to that of Proposition 8.1.
When (S, ⋆) is N equipped with x⋆y = y and we map xp to p for each p, we obtain

the category B̂+ of Proposition 8.1. In this case, the (partial) action of braids is
not constant as in the case of B+, but it factors through an action of the associated
permutations, and it is therefore far from being free. By contrast, if we take for S
the braid group B∞ with the operation ⋆ defined by x ⋆ y = x sh(y)σ1 sh(x)−1,
where we recall sh is the shift endomorphism of B∞ that maps σi to σi+1 for
each i, and if we send xp to 1 (or to any other fixed braid) for each p, then the
corresponding action (8.2) of B+

∞ on (B∞)∗ is free, in the sense that a = a′ holds
whenever s • a = s • a′ holds for at least one sequence s in (B∞)∗: this follows from
Lemma III.1.10 of [23]. This suggests that the associated category C(B+

∞, (B∞)∗))
has a very rich structure.

Appendix: Other algebraic laws

The above approach of self-distributivity can be developed for other algebraic
laws as well. However, at least from the viewpoint of Garside structures, the case
of self-distributivity seems quite particular.

The case of associativity. Associativity is the law x(yz) = (xy)z. It is syntac-
tically close to self-distributivity, the only difference being that the variable x is
not duplicated in the right hand side. Let us say that a term t′ is an A-expansion
of another term t if t′ can be obtained from t by applying the associativity law in
the left-to-right direction only, i.e., by iteratively replacing subterms of the form
t1 ⋆ (t2 ⋆ t3) by the corresponding term (t1 ⋆ t2)⋆ t3. Then the counterpart of Propo-
sition 4.5 is true, i.e., two terms t, t′ are equivalent up to associativity if and only if
they admit a common A-expansion, a trivial result since every size n term t admits
as an A-expansion the term φ(t) obtained from t by pushing all brackets to the left.

As in Sections 4.3 and 5.2, we can introduce the category A+

0 whose objects
are terms, and whose morphisms are pairs (t, t′) with t′ an A-expansion of t. As
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in Section 5.1, we can take positions into account, using Aα when associativity is
applied at address α, and introduce a monoid A+ that describes the connections
between the generators Aα [22]. Here the relations of Lemma 5.3 are to be replaced
by analogous new relations, among which the MacLane–Stasheff Pentagon relations
A2

α = Aα1AαAα0. The monoid A+ turns out to be a well known object: indeed,
it is (isomorphic to) the submonoid F+ of R. Thompson’s group F generated by
the standard generators x1, x2, ... [11]. Also, the orbits of the partial action of the
monoid A+ on terms are well known: these are the (type A) associahedra, equipped
with the structure known as Tamari lattice.

Now, as in Section 5, we can introduce the categoryA+, whose objects are terms,
and whose morphisms are triples (t, a, t′) with a in A+ and t • a = t′. Using ψ(t)
for the term obtained from t by pushing all brackets to the right, we have

Proposition. The categories A+

0 and A+ are isomorphic; A+

0 is left-Garside with
Garside map t 7→ (t, φ(t)), and right-Garside with Garside map t 7→ (ψ(t), t).

This result might appear promising. It is not! Indeed, the involved Garside
structure(s) is trivial: the maps φ and ψ are constant on each orbit of the action
of A+ on terms, and it easily follows that every morphism inA+

0 andA+ is left-simple
and right-simple so that, for instance, the greedy normal form of any morphism
always has length one3. The only observation worth noting is that A+ provides an
example where the left- and the right-Garside structures are not compatible, and,
therefore, we have no Garside structure in the sense of Definition 1.6.

Central duplication. We conclude with still another example, namely the exotic
central duplication law x(yz) = (xy)(yz) of [20]. The situation there turns out to be
similar to that of self-distributivity, and a nontrivial left-Garside structure appears.
As there is no known connection between this law and other widely investigated
objects like braids, it is probably not necessary to go into details.
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