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ON THE DISTANCE BETWEEN THE EXPRESSIONS OF A
PERMUTATION

MARC AUTORD AND PATRICK DEHORNOY

Abstract. We prove that the combinatorial distance between any two re-
duced expressions of a given permutation of {1, ..., n} in terms of transposi-

tions lies in O(n4), a sharp bound. Using a connection with the intersection
numbers of certain curves in van Kampen diagrams, we prove that this bound

is sharp, and give a practical criterion for proving that the derivations pro-

vided by the reversing algorithm of [Dehornoy, JPAA 116 (1997) 115-197] are
optimal. We also show the existence of length ` expressions whose reversing

requires C`4 elementary steps.

This paper is about the various ways of expressing a permutation as a product
of transpositions and the complexity of transforming one such expression into an-
other. We consider both the absolute complexity (“combinatorial distance”), which
deals with the minimal possible number of steps, and the more specific complexity
(“reversing complexity”), which arises when one uses subword reversing, a certain
prescribed strategy for transforming expressions.

Throughout the paper, we denote by [[1, n]] the set {1, 2, ..., n}, and by si the
transposition that exchanges i and i + 1. A well known result—see for instance
[8]—states that, if π is any permutation of [[1, n]] and u, v are any two reduced (i.e.,
minimal length) expressions of π in terms of s1, ..., sn−1, then one can transform u
into v only using the braid relations

sisjsi = sjsisj with |i− j| = 1,(I)

sisj = sjsi with |i− j| > 2.(II)

In this context, we define the combinatorial distance dist(u, v) of u and v to be the
minimal number of braid relations needed to transform u into v. The standard proof
for the finiteness of dist(u, v) relies on the so-called Exchange Lemma of Coxeter
groups, and it leads to an exponential upper bound for dist(u, v) in terms of n. The
first aim of this paper is to establish a polynomial upper bound, namely a sharp
degree 4 one. Using “n-expression” as a shorthand for “expression representing a
permutation of [[1, n]]”, i.e., involving letters about s1, ..., sn−1 only, we prove

Proposition 1. There exist positive constants C1, C2 such that, for each n,
• all equivalent reduced n-expressions u, v satisfy dist(u, v) 6 C1 n4,
• there exist equivalent n-expressions u, v satisfying dist(u, v) > C2 n4.

(The values C1 = 1/2 and C2 = 1/8 are valid for n large enough.)
The methods we use are geometrical. For the upper bound, we consider some

area in the n-strand braid diagram naturally associated with an n-expression. For
the lower bound, we consider van Kampen diagrams and introduce certain curves
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called separatrices, which are associated with the names of the strands involved in
the successive crossings.

The latter notion, which seems of independent interest, provides general criteria
for proving that a van Kampen diagram (i.e., in algebraic terms, a derivation by
braid relations) is possibly optimal, i.e., it involves the minimal number of braid
relations. In particular, Proposition 1.11 below states that a sufficient condition
for a van Kampen diagram to be optimal is that any two separatrices cross at most
once in it.

In the second part, we address similar complexity issues in the particular case
of subword reversing. This is a specific strategy that, given two equivalent ex-
pressions u, v, returns a derivation of v from u by means of braid relations, i.e.,
equivalently, constructs a van Kampen diagram for the pair (u, v). We observe on
a simple counter-example that the reversing method need not be optimal, but we
deduce from the above approach based on separatrices a simple optimality crite-
rion, namely Proposition 2.5 that states that a sufficient condition for the reversing
method to be optimal for some pair (u, v) is that the so-called reversing diagram
for (u, v) contains no digon, i.e., in algebraic terms, the reversing sequence from uv
contains no ε-step—all technical terms are defined below.

Finally, we address the general question of the complexity of the reversing
method. Frustratingly, the only upper bound we can establish at the moment
is exponential—this does not contradict the polynomial upper bound of Proposi-
tion 1, since reversing need not be optimal. On the other hand, the optimal lower
bound of Proposition 1 induces a similar lower bound in the case of reversing. What
is more interesting is to consider the case of non-necessarily equivalent expressions.
In that case, the reversing method still applies, and its complexity remains widely
unknown. The relevant question is to determine the number comply(u, v) of el-
ementary steps when one starts with expressions u, v of length ` (independently
from the index n). When the lower bound of Proposition 1 is translated in this
language, it leads to a quadratic lower bound comply(u, v) > C `2. This value is
far from optimal.

Proposition 2. There exists a positive constant C3 such that, for each `,
• there exist length ` expressions u, v satisfying comply(u, v) > C3 `4.

(For ` large enough, we can take C3 = 4/3.) At the moment, we do not know
whether the above result is optimal.

It is likely that most results of this paper extend to finite Coxeter groups of other
type. However, the arguments developed here heavily rely on specific properties of
permutations, so how extending to Coxeter types other than A and B is not clear.

Remark. Most constructions developed in this paper in the case of permutations
and their expressions in terms of transpositions can be extended to the case of
positive braid and their decompositions in terms of Artin’s generators σi. Techni-
cally, the case of permutations corresponds to the particular case of the so-called
simple braids, which are the divisors of Garside’s fundamental braid ∆n in the
braid monoid B+

n , see [7] or [6, Chap. 9]. Our reason for choosing the language
of permutations here is that it is more widely accessible and it avoids introducing
the general framework of braids whereas most results would involve simple braids
exclusively. Indeed, it turns out that the worst cases known so far, in particular in
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terms of subword reversing, always involve simple braids. We have no explanation
for this phenomenon.

We finally mention that the results of Section 1 are mainly due to the second
author, whereas those of Section 2 are mainly due to the first author.

1. The combinatorial distance

Hereafter, a word u on the alphabet {s1, ..., sn−1} is generically called an n-
expression. Two n-expressions are called equivalent if they represent the same
permutation of [[1, n]]. Throughout the paper (in particular in view of the braid
diagrams considered below), it is convenient that the product, both for words and
for permutations, refers to reverse composition: uv means “u first, then v”. An n-
expression u is called reduced if the permutation represented by u has no expression
that is shorter than u.

If u and v are equivalent reduced n-expressions, then, as recalled above, one
can transform u into v using the braid relations of types I and II, and we denote
by dist(u, v) the minimal number of braid relations needed to do it. In this section,
we establish bounds for dist(u, v) when n grows to infinity.

1.1. An upper bound result. We begin with an upper bound result. To this
end, we introduce one distinguished reduced expression, called normal, for each
permutation, and we define a strategy that transforms any reduced expression into
the (unique) normal expression that represents the same braid.

For each n-expression u, we define Du to be the n-strand braid diagram obtained
by associating with the letter si the pattern

(1.1)
1 2 i i+1 n

... ...

and by stacking from top to bottom the elementary patterns corresponding to the
successive letters of u. When we speak of the pth strand in Du, we refer to the
strand that starts at the pth position from the left on the top line. It is well known
that u is a reduced expression if and only if any two strands in Du cross at most
once [6, Chap. 9].

Definition. Define sj,i to be sj−1sj−2...si+1si for j > i, and to be the empty
word ε for j = i. An n-expression is called normal if it has the form

(1.2) s1,f(1) s2,f(2) ... sn,f(n),

for some function f : [[1, n]] → [[1, n]] satisfying f(i) 6 i for each i.

(The first factor s1,f(1) is mentioned for symmetry, but is necessarily empty.)

Lemma 1.1. (i) Every normal expression is reduced.
(ii) Each permutation of [[1, n]] admits a unique normal n-expression.

Proof. (i) Assume that u has the form (1.2). Then, for each i, the ith strand crosses
over no jth strand with j > i in the diagram Du. Therefore, any two strands cross
at most once in Du, so u is a reduced expression.

(ii) For f satisfying f(i) 6 i for each i, let nf be the largest m satisfying
f(m) < m, if any, and 0 otherwise, and let πf be the permutation represented
by the expression (1.2) associated with f . We prove that πf determines f using
induction on nf . For nf = 0, the only possibility is that f(i) = i holds for each i, so
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the permutation πf is the identity. Assume now nf > 1. By construction, we have
πf (i) = i for i > nf , and πf (nf ) = f(nf ). Hence πf determines nf and f(nf ).
Next, let f ′ be defined by f ′(i) = f(i) for i < nf , and f ′(i) = i for i > nf .
Then we have πf ′ = πfsnf ,f(nf ), hence πf determines πf ′ . By construction, we
have nf ′ 6 nf − 1. By induction hypothesis, πf ′ determines f ′, hence so does πf .
Finally, f is determined by f ′, nf , and f(nf ), hence by πf . �

For each (reduced) expression u, we denote by NF(u) the unique normal expres-
sion that is equivalent to u. We shall now define a strategy for transforming u
into NF(u).

First, we concentrate on the last factor of the normal form. We have associated
with every n-expression u a braid diagram Du. We shall assume that the pat-
tern (1.1) is drawn in a rectangle that has width n− 1 and height 1. So, if u is an
n-expression of length `, the diagram Du is drawn in an (n− 1)×` grid. It includes
(n− 1)` squares of size 1, and it makes sense to count how many such squares lie
on the left or on the right of a given strand.

Lemma 1.2. For each n-expression u, define a(u) to be the number of plain squares
lying on the right of the nth strand in the diagram Du. Then, for each reduced n-
expression u, there exists an equivalent reduced expression vsn,k, with v an (n− 1)-
expression, satisfying

(1.3) dist(u, vsn,k) 6 a(u).

For an induction it is enough to establish

Claim. If u is not of the form vsn,k with v an (n− 1)-expression, there exists an
n-expression u′ satisfying dist(u, u′) = 1 and a(u′) < a(u).

Proof. Let p be the final position of the nth strand in Du. The hypothesis implies
p < n holds as, otherwise, u itself would be an (n− 1)expression and it could be
expressed as usn,n. Then there exists a unique decomposition

u = v sn,i sj w

with v an (n− 1)-expression, i < n, and j 6= i − 1: we consider the first block
of crossings sn,i in which the nth strand is the front strand, and the hypothesis
on u means that, after that block, there still remains at least one crossing sj in
which the nth strand is not the front strand, which means j 6= i − 1. We consider
the various possible values of j with respect to i. First, j = i − 1 is excluded by
hypothesis, whereas j = i would contradicts the hypothesis that u is reduced since
the nth strand would cross the same strand twice. There remain two cases only.
Case 1: |j − i| > 2. Put u′ = vsn,i+1sjsiw. Then we have dist(u, u′) = 1, and
a(u′) = a(u)− 1, as shown in the following diagrams, which compare the contribu-
tions of the factors sisj and sjsi to the right hand side area of the nth strand (the
nth strand is in bold, and the squares contributing to a are in grey)

case j 6 i− 2:

case j > i + 2:

ji

j i
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Case 2: j = i + 1. By construction this may happen only for i 6 n − 2. Let
u′ = vsn,i+2sisjsiw. Then we have again dist(u, u′) = 1, and a(u′) = a(u) − 2, as
shown in the diagram

case j = i + 1:

ji
So the proof of the claim is complete, and the lemma follows. �

Repeated uses of Lemma 1.2 lead to

Lemma 1.3. For every reduced n-expression u of length `, we have

(1.4) dist(u, NF(u)) 6 n(n− 1)`/2.

Proof. We use induction on n. The result is obvious for n 6 3. Assume n > 4.
Assume that the last factor in NF(u) is sn,k. By Lemma 1.2, there exists a reduced
(n− 1)-expression v of length at most `—actually of length exactly ` − (n − k)—
satisfying dist(u, vsn,k) 6 a(u). By construction, we have a(u) 6 (n− 1)`. On the
other hand, the uniqueness of the normal form implies NF(u) = NF(v)sn,k. Hence,
using the induction hypothesis, we find

dist(u, NF(u)) 6 (n− 1)` + (n− 1)(n− 2)`/2 = n(n− 1)`/2. �

We immediately deduce

Proposition 1.4. For all equivalent n-expressions u, v of length `, we have

(1.5) dist(u, v) 6 (n− 1)(n− 2)`.

As every reduced n-expression has length at most n(n− 1)/2, the upper bound
O(n4) of Proposition 1 follows.

Remark 1.5. Considering the rightmost strand in the argument of Lemma 1.2
is essential. Indeed, for each reduced expression u and each i such that siu is
not reduced, i.e., such that the ith and the i + 1st strands cross in Du, we can
consider the area ai of the domain bounded by the top line and the ith and i + 1st
strands before they cross. It is natural to wonder whether u can be transformed
into an equivalent expression siv in such a way that the parameter ai decreases
at each step—thus obtaining a new proof of the Exchange Lemma. The answer is
negative. Indeed, assume u = s1s3s2s1s3s2. Then the second and third strands
cross in Du and s2u is not reduced: u is equivalent to s2s3s2s1s2s3. However,
there is no way to apply a braid relation to u so as to decrease the area a2 of
the domain bounded by the second and third strands. Indeed, the two expressions
at distance 1 from u are u′ = s3s1s2s1s3s2 and u′′ = s1s3s2s3s1s2, which satisfy
a2(u) = a2(u′) = a2(u′′) = 9, as shown in the diagrams

u u′ u′′
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in each of which nine grey squares occur.

1.2. A lower bound result. We turn to the other direction, namely proving lower
bounds on the combinatorial distance of two equivalent reduced expressions. To
this end, we associate a name to each letter in a reduced expression and observe
that applying one braid relation can only change the associated sequence of names
by a limited amount.

Notation. Hereafter, we use [[1, n]](k) for the set of all subsets of [[1, n]] that have
cardinality k (exactly), and [[1, n]](2,2) for the set of all subsets of [[1, n]](2) that have
cardinality 2, i.e., the set of all non-degenerate pairs of pairs in [[1, n]].

By construction, every crossing in a braid diagram Du involves two strands,
each of which has an initial position that corresponds to an integer in [[1, n]]. By
considering the initial positions of the strands that cross there, we associate with
each instance of a letter si in an n-expression a well defined pair {p, q} in [[1, n]](2),
hereafter called its name.

Definition. For each reduced n-expression u, we define S(u) to be the sequence
composed of the names of the successive letters in u.

So, formally, S(u) is the sequence in [[1, n]](2) recursively defined by S(ε) = ∅
(the empty sequence) and, using _ for concatenation,

S(u) = S(v) _ ({p, q}),

assuming that u = vsi and the strands that finish at positions i and i+1 in Dv are
the pth and the qth ones, i.e., start at positions p and q, respectively.

Example 1.6. Let un = s1,1s2,1...sn,1. Then un is a reduced expression of the
Coxeter element of Sn, i.e., of the flip permutation φ that exchanges i and n − i
for each i. An easy induction gives

(1.6) S(un) = ({1, 2}, {1, 3}, {2, 3}, ..., {n− 2, n− 1}{1, n}, {2, n}, ..., {n− 1, n}).

Symmetrically, let vn be the expression obtained from un by reversing the order of
the factors and flipping their entries, i.e., vn = sn,1sn,2...sn,n−1. Then vn is another
reduced expression of φ, and we find

(1.7) S(vn) = ({n− 1, n}, ..., {2, n}, {1, n}, {n−2, n− 1}, ..., {2, 3}, {1, 3}, {1, 2}) :

so S(vn) is the sequence obtained by reversing the entries of S(un).

By construction, if u is a reduced n-expression, the pair {p, q} occurs in S(u) if
and only if the strands starting at positions p and q cross in the diagram Du, hence
if and only if {p, q} is an inversion of the permutation represented by u. Hence, if
u, v are equivalent reduced n-expressions, the pairs occurring in S(u) and in S(v)
coincide, and S(v) is a permuted image of S(u).

We shall see now that comparing the sequences S(u) and S(v) leads to a lower
bound on the combinatorial distance between u and v.

Definition. If S, S′ are enumerations of [[1, n]](2), we denote by I3(S, S′) (resp.
I2,2(S, S′)) the number of triples {p, q, r} in [[1, n]](3) (resp. the number of pairs of
pairs {{p, q}, {p′, q′}} in [[1, n]](2,2)) such that the order of the pairs {p, q}, {p, r},
{q, r} (resp. the order of {p, q} and {p′, q′}) is not the same in S and S′.
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Proposition 1.7. For all equivalent n-expressions u, v, we have

(1.8) dist(u, v) > I3(S(u), S(v)) + I2,2(S(u), S(v)).

More precisely, every derivation from u to v contains at least I3(S(u), S(v)) rela-
tions of type I and I2,2(S(u), S(v)) relations of type II.

Proof. We first consider the case dist(u, v) = 1, i.e., the case when v is obtained
from u by applying one braid relation. Assume first that v is obtained by ap-
plying a type I relation sisi+1si = si+1sisi+1. Then there exists a unique triple
{p, q, r}, namely the names of the three strands involved in the transformation,
such that the sequence S(v) is obtained from S(u) by replacing the subsequence
{p, q}, {p, r}, {q, r} with {q, r}, {p, r}, {p, q}—see Figure 1 below for an illustration.
So the order of the three pairs arising from {p, q, r} has changed between S(u)
and S(v). On the other hand, any other triple in [[1, n]](3) has at most two elements
in common with {p, q, r}, and the order of the three pairs arising from that triple is
the same in S(u) and S(v). Hence, we have I3(S(u), S(v)) = 1 in this case. On the
other hand, any pair of pairs in [[1, n]](2,2) contains at most one of the three pairs
{p, q}, {p, r}, {q, r} and, therefore, the order of this pair is not changed from S(u)
and S(v). Hence, we have I2,2(S(u), S(v)) = 0 in this case.

Assume now that v is obtained by applying a type II relation sisj = sjsi with
|j − i| > 2. Then there exists a unique pair of pairs {p, q}, {p′, q′} in [[1, n]](2,2),
namely the names of the four strands involved in the transformation, such that the
sequence S(v) is obtained from S(u) by replacing the subsequence {p, q}, {p′, q′}
with {p′, q′}, {p, q}. So the order of the two considered pairs has changed be-
tween S(u) and S(v). On the other hand, any other pair of pairs in [[1, n]](2,2) con-
tains at most one of the two pairs {p, q}, {p′, q′}, and its order is the same in S(u)
and S(v). Hence, we have I2,2(S(u), S(v)) = 1. Moreover, any triple in [[1, n]](3)

gives rise to a triple of pairs that contains at most one of {p, q}, {p′, q′}. Hence the
order of the three pairs in this triple has not changed from S(u) and S(v), and we
have I3(S(u), S(v)) = 0.

We conclude that, in every case, the quantity I3(S(u), S(v)) + I2,2(S(u), S(v))
changes by not more than one (and even by exactly one) when one braid relation
is applied. This clearly implies (1.8). �

We can now complete the proof of Proposition 1.

Corollary 1.8. For each n, there exist reduced n-expressions u, v satisfying

(1.9) dist(u, v) >
1
8
n4 + O(n3).

Proof. Consider the expressions un, vn of Example 1.6. As observed above, the
sequences S(un) and S(vn) are mirror images of one another. It follows that each
triple {p, q, r} in [[1, n]](3) contributes 1 to the parameter I3, leading to

I3(S(un), S(vn)) = #([[1, n]](3)) =
(

n

3

)
.

Similarly, each pair of pairs {{p, q}, {p′, q′}} in [[1, n]](2,2) contributes 1 to the pa-
rameter I2,2, giving

I2,2(S(un), S(vn)) = #([[1, n]](2,2)) =
1
2

(
n

2

)(
n− 2

2

)
= 3

(
n

4

)
. �
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Owing to the last sentence in Proposition 1.7, we also deduce from the above
computation the result that the number of type I braid relations occurring in every
derivation of v from u is at least n3/6 + O(n2).

In the context of Proposition 1.7, it is natural to wonder whether (1.8) is always
an equality, as it turns out to be in simple cases.

Question 1.9. Does the equality

(1.10) dist(u, v) = I3(S(u), S(v)) + I2,2(S(u), S(v))

hold for all equivalent n-expressions u, v?

So far we have not been able to obtain any answer. In particular, computer tries
failed to find expressions disproving the equality (1.10).

Remark 1.10. A result similar to Proposition 1.7 can be obtained by simply
counting the inversion number I(S(u), S(v)) of the sequences S(u) and S(v), i.e.,
the total number of pairs of pairs whose order is changed. One easily checks
that I(S(u), S(v)) is changed by three when a type I relation is applied, and by one
in the case of a type II relation, thus leading to

dist(u, v) > I(S(u), S(v))/3.

Also, it can be mentionned that using areas in braid diagrams as in Section 1.1
can also lead to lower bounds on the combinatorial distance. Indeed, it is easy to
check that applying one braid relation can change such areas by a bounded factor K
only, leading to inequalities of the generic form

dist(u, v) > |area(Du)− area(Dv)|/K.

1.3. Van Kampen diagrams. Proposition 1.7 and the approach of Section 1.2
leads to a nice geometric criterion for proving that a derivation between two reduced
expressions u, v of a permutation π is possibly optimal, i.e., that it realizes the
combinatorial distance dist(u, v) between u and v.

Assume that u, v are equivalent expressions. A van Kampen diagram for (u, v)
is a planar connected diagram K consisting of finitely many adjacent tiles of the
two types

type I:
sj

si

si

sj

sj

si

with |i− j|=1, type II:
sj

si sj

si

with |i− j|>2,

and such that the boundary of K consists of two paths labeled u and v. Because
of the orientation of the edges of the tiles, such a diagram has exactly one initial
vertex (source) and one terminal vertex (sink), and two boundary paths labeled u
and v from the source to the sink.

It is standard—see for instance [9] or [6]—that, if u, v are reduced expressions,
then v can be derived from u using braid relations if and only if there exists a van
Kampen diagram for (u, v). See Figure 2 for an example. More precisely, if v can
be derived from u using N braid relations, then there exists a van Kampen diagram
for (u, v) that contains N tiles, and conversely. So, we have the natural notion of
an optimal (or minimal) van Kampen diagram:

Definition. Assume that K is a van Kampen diagram for (u, v). We say that K is
optimal if the number of tiles in K equals the combinatorial distance dist(u, v).
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In other words, a van Kampen diagram is declared optimal if there exists no
smaller (i.e., containing less tiles) diagram with the same boundary. Our aim in
the sequel will be to describe criteria for recognizing that a van Kampen diagram is
possibly optimal. The first idea is to use names. Assume that K is a van Kampen
diagram for a pair (u, v). Then we can unambiguously attribute a name with every
tile of K. First, we attribute a name to each edge of K. Let e be such an edge.
It follows from the definition of a van Kampen diagram that there exists at least
one path that connects the source of K to any vertex V , and at least one path
that connects V to the sink of K. Hence there is a path γ that connects the source
of K to its sink and contains e. Then the successive labels of the edges of γ make
an expression w, which is certainly equivalent to u (and v) since, by construction,
there is a van Kampen diagram for (u, w), namely the subdiagram of K bounded
by γ and the path labeled u. Then, as in Section 1.2, we attribute a name to each
letter of w, and copy these names on the corresponding edges of γ. In this way, we
have given a name to e which is a certain pair in [[1, n]](2). We claim that this name
only depends on e, and not on the choice of the path γ. As any two paths γ, γ′

correspond to equivalent expressions w,w′, it is enough to consider the case when
w and w′ are deduced from one another using one braid relation, and the result
is then obvious. Then, we observe that the names occurring on the edges of an
elementary tile can be of two types only, namely those displayed in Figure 1.

type I:
{p,q}

{q,r} {p,q}

{q,r}
{p,r}

{p,r}

type II:
{p,q}

{p′,q′} {p,q}

{p′,q′}

Figure 1. Giving names to the tiles in a van Kampen diagram: the
left tile is called {p, q, r}, the right one is called {{p, q}, {p′, q′}}.

Definition. (See Figures 1 and 2.) Assume that K is a van Kampen diagram
for (u, v). We define the name of a tile in K as follows:

• for a type I tile, it is the (unique) triple {p, q, r} of [[1, n]](3) such that the names
of the border edges are {p, q}, {p, r}, and {q, r};

• for a type II tile, it is the (unique) pair {{p, q}, {p′, q′}} of [[1, n]](2,2) such that
the names of the border edges are {p, q} and {p′, q′}.

Then the optimality criterion is

Proposition 1.11. A van Kampen diagram in which any two tiles have different
names is optimal.

Proof. The proof of Proposition 1.7 shows that, if K contains exactly one tile
named {p, q, r}, then the order of {p, q}, {p, r}, {q, r} has changed between S(u)
and S(v). Hence, under the hypothesis, if K contains N hexagons with pairwise
distinct names, then we have I3(S(u), S(v)) > N . Similarly, if K contains ex-
actly one tile named {{p, q}, {p′, q′}}, then the order of {p, q} and {p′, q′} has
changed between S(u) and S(v). So, if K contains N ′ squares with pairwise dis-
tinct names, then we have I2,2(S(u), S(v)) > N ′. Applying Proposition 1.7, we
deduce dist(u, v) > N + N ′, hence dist(u, v) = N + N ′. �
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{{1,3},{2,4}} {{1,2},{3,4}}

Σ1,2

Σ1,3

Σ2,3 Σ1,4

Σ2,4

Σ3,4{1,2,3}

{2,3,4} {1,3,4}

{1,2,4}

s3

s1

s2

s2

s3

s1

s2
s3

s1

s2

s2

s1

s3

s2

s1

s3

s1

s3

s2

s2

s3

s1

{{1,4},{2,3}}

{{1,4},{2,3}}

{{1,2},{3,4}} {{1,3},{2,4}}

s3

s1

s2

s2

s3

s1

s3

s1

s1

s3

s2

s3

s2

s1

s1

s3

s2 s2

s1

s3

s3

s1

s2

s2

s3

s1

Σ1,2

Σ1,3Σ2,4

Σ3,4

{2,3,4}

{1,2,4}

{1,3,4}

{1,2,3}

Figure 2. Two van Kampen diagrams for the pair (s1s2s1s3s2s1,
s3s2s3s1s2s3): a tiling by squares and hexagons witnessing the equiv-
alence of the two expressions. Indexed by pairs, the separatrices are
drawn in grey, inducing a name for every tile. In the top diagram,
no two tiles share the same name, hence the diagram is optimal, and
the combinatorial distance is 6; by contrast, two tiles in the bottom
diagrams share the name {{1, 4}, {2, 3}}, hence the diagram cannot
be optimal.

1.4. Separatrices. Having given names to the edges of a van Kampen diagram,
we can now draw curves that connect the edges with the same name.

Definition. Assume that K is a van Kampen diagram for (u, v), and {p, q} is an
inversion of the permutation π represented by u and v, i.e., we have (q− p)(π(q)−
π(p)) < 0. The {p, q}-separatrix in K is the curve Σp,q obtained by connecting
the middle points of the (diametrally opposed) edges named {p, q} inside each tile,
oriented so that the edges of u are crossed first, and those of v last.

If {p, q} is not an inversion of the involved permutation, we may consider that
Σp,q still exists, but it lies outside the diagram and cuts no edge.
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So, by definition, separatrices are obtained by connecting patterns of the form

Σp,q
Σp,r

Σq,r

for type I, and

Σp,q Σp′,q′

for type II.

To make Σp,q unique, we might require in addition that the curve we choose inside
each tile is the image of the median lines under the affine transformation that maps
a regular polygon to the considered tile (provided the latter is convex).

Then we have the following optimality criterion involving separatrices.

Proposition 1.12. A van Kampen diagram in which any two separatrices cross at
most once is optimal.

Proof. By construction, for each triple {p, q, r} in [[1, n]](3), the only place where
Σp,q and Σp,r may intersect is a type I tile named {p, q, r} and, conversely, the
three separatrices appearing in a type I tile pairwise cross one another. Similarly, for
each {{p, q}, {p′, q′}} in [[1, n]](2,2), the only place where Σp,q and Σp′,q′ may intersect
is a type II tile named {{p, q}, {p′, q′}}, and, conversely, the two separatrices do
cross in such a type II tile. Summarizing, the number of times two separatrices
Σp,q and Σp′,q′ cross is exactly the number of type I tiles named {p, q, p′, q′} if
the set {p, q, p′, q′} has three elements, and the number of type II tiles named
{{p, q}, {p′, q′}} if it has four elements. Hence all tiles in K have pairwise different
names if and only if any two separatrices cross at most once in K, and we apply
Proposition 1.11. �

2. Subword reversing

Up to now, we considered the combinatorial distance between two expressions u, v
representing some permutation, i.e., the minimal number of braid relations needed
to transform u into v. We now address a related, but different question, namely
the number of braid relations needed to transform u into v when one uses the
specific strategy called subword reversing [3, 4]. The latter is known to solve the
word problem, i.e., to provide a step-by-step transformation of u into v by means
of braid relations when this is possible, i.e., when u and v are equivalent reduced
expressions.

Investigating the optimality of the reversing method, i.e., comparing the number
of braid relations used by subword reversing and the combinatorial distance, is a
natural question. Little is known at the moment. Here, we shall establish several
partial results. We observe in particular that the reversing method need not be
optimal but, using the geometric criteria of Sections 1.3 and 1.4, we characterize
cases when reversing turns out to be optimal. Also, in a slightly different con-
text of non-equivalent initial expressions, we shall prove that there exist length `
expressions u, v whose reversing require using O(`4) braid relations, which is not
redundant with Proposition 1.

2.1. Subword reversing and reversing diagrams. We recall that an n-expres-
sion is a word on the alphabet {s1, ..., sn−1}. Hereafter, we introduce a second
alphabet {s1, ..., sn−1} which is a formal copy of the previous one. A word over the
extended alphabet {s1, ..., sn−1, s1, ..., sn−1} will be called an extended n-expression.
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For each extended expression u, we denote by u the extended expression obtained
from u by reversing the order of the letters and exchanging si and si everywhere.
So, for instance, we have s1s2 = s2 s1.

We now introduce a binary relation y (or rewrite rule) on extended expressions.

Definition. If w,w′ are extended expressions, we declare that w y w′ holds if w′

is obtained from w by replacing some subword sisj either by sjsisjsi (if |i− j| = 1
holds), or by sjsi (if |i− j| > 2 holds), or by the empty word ε (if j = i holds). A
finite sequence (w0, ..., wN ) is called a reversing sequence if wk y wk+1 holds for
each k. Finally, we say that w reverses to w′ if there exists a reversing sequence
(w0, ..., wN ) satisfying w0 = w and wN = w′.

The principle of reversing is to push the letters si to the right, and the letters sj

to the left, until no subword sisj remains. For instance, s1s2s1s2s1s2 reverses to
the empty word, as we have

(∗) s1s2s1s2s1s2s1s2s1s2 y s1s2s2s2s2s2s2s1s2s1s1s2 y s1s1s1s1s1s1s2s1s1s2 y s2s1s1s1s1s1s1s2 y s2s2s2s2s2s2 y ε,

where, at each step, the subword that will be reversed has been written in bold.
As will become clear below, a reversing sequence from uv to the empty word

provides a distinguished way of transforming u into v by means of braid relations
and, therefore, there exists an associated van Kampen diagram. Now, it follows
from the particular definition of subword reversing that the associated van Kam-
pen diagrams have specific properties, namely they can essentially be drawn on a
rectangular grid, a specific point that will be important in the sequel.

These diagrams that are essentially van Kampen diagrams will be called reversing
diagrams. As a van Kampen diagram, a reversing diagram consists of edges labeled
by letters si. The specific point is that, in a reversing diagram, all edges are
either horizontal right-oriented edges and vertical down-oriented edges, and that, in
addition to the latter, there may exist ε-labeled arcs. Assume that (w0, ..., wN ) is a
reversing sequence, hence a sequence of extended expressions containing both types
of letters si and sj . First, we draw a connected path indexed by the successive letters
of w0 by attaching a horizontal arrow si→ with each letter si, and a vertical arrow ↓si

with each letter si. Then, we inductively complete the diagram as follows. Assume
that one goes from wk−1 to wk by reversing some subword sisj . By induction

hypothesis, the latter subword sisj corresponds to an open pattern si

sj

in the

diagram. Then we complete that pattern with new arrows, according to the rule

si

sj

→ si

sj

sj si

si

sj

for |i−j|=1,
(type I) si

sj

si

sj

for |i−j|>2,
(type II) si

sj

ε

for i=j,
(type III)

with the convention that ε-labeled dotted arcs, dotted arcs in the diagrams, are
subsequently ignored. For instance, the reversing diagram associated with the above
reversing sequence (∗) is displayed in Figure 3.

Remark 2.1. Because of the ε-labelled arcs, the above patterns are not the most
general ones appearing in a reversing diagram. The general patterns are actually

ε

si

sj

→
ε

si

sj

sj si

si

sj

for |i−j|=1,
(type I)

ε

si

sj

si

sj

for |i−j|>2,
(type II)

ε

si

sj

ε

for i=j.
(type III)
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s1

s2

s1

s2 s1 s2
s1

s2s2 s1

ε
ε

ε
ε

Figure 3. Reversing diagram associated with the sequence (∗), i.e.,
the reversing diagram of the pair (s1s2s1, s2s1s2). Metric aspects
are ignored, so the reversing diagram is always considered up to a
piecewise affine deformation.

In this way, we associate with every reversing sequence a reversing diagram.
Conversely, it is easy to see that, starting with a diagram as above, we can recover
a (not necessarily unique) reversing sequence by reading the labels of the various
paths going from the bottom-left corner to the top-right corner, and using the
convention that a vertical si-labeled edge contributes si.

By construction, subword reversing may be applied to any initial word consisting
of letters si and si, and not only to words of the form uv where u and v are equivalent
reduced expressions. So there is no ambiguity in the following notion.

Definition. If u, v a are expressions, the reversing diagram for (u, v) is the reversing
diagram starting with the word uv.

By construction, the reversing diagram for the pair (u, v) starts with a vertical
down-oriented path labeled u and a horizontal right-oriented path labeled v starting
from a common source. For instance, the diagram of Figure 3 is the reversing
diagram for the pair (s1s2s1, s2s1s2).

By construction, a reversing diagram becomes a van Kampen diagram when all
ε-arcs are collapsed—but we do not do it, and keep the diagrams as they are now,
insisting that they are drawn in a rectangular grid. A reversing diagram contains
three types of tiles:

- type I tiles, which are hexagons, and correspond to type I braid relations,
- type II tiles, which are squares, and correspond to type II braid relations,
- type III tiles, which are digons, and correspond to free group relations sisi = 1.

The latter will be called trivial.
The connection between subword reversing and the problem of recognizing equiv-

alent reduced expressions of a permutation is given by the following result.

Proposition 2.2. [3] (i) For all reduced expressions u, v, there exists a unique pair
of reduced expressions u′, v′ such that uv reverses to v′u′.

(ii) Two reduced expressions u, v represent the same permutation if and only if
uv reverses to the empty word.

In the case of (ii), one implication is clear: by construction, a reversing sequence
from uv to the empty word gives a reversing diagram for (u, v) that concludes with
ε-arcs everywhere on the bottom and the right, hence, after collapsing the ε-edges,
it gives a van Kampen diagram for (u, v), thus proving that u and v are equivalent.
The converse implication is not obvious, as not every van Kampen diagram comes
from a reversing diagram. The specific point is that, in a reversing diagram, two
edges at most start from any vertex, a property that fails in the top diagram of
Figure 2: so that diagram is certainly not associated with a reversing. The proof of
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Proposition 2.2—which actually extends to arbitrary braids—relies on the so-called
Garside theory of braids [7, 6].

In terms of reversing diagrams, the situation is as follows. In the particular case
when u and v are equivalent reduced expressions, the reversing diagram for (u, v)
finishes for ε-labeled arcs everywhere, and collapsing all these ε-labeled arcs yields
a van Kampen diagram for (u, v). In general, if u, v are arbitrary expressions, then
the reserving diagram for (u, v) is still finite, and it finishes with arrows forming a
word of the form v′u′ where u′, v′ are two expressions that need not be empty. Then
collapsing all the ε-labeled arcs yields a van Kampen diagram for the pair (uv′, vu′).
It can be shown that, if u and v are reduced, then uv′ and vu′ are reduced and
equivalent—the latter point is obvious as, by construction, the reversing diagram
for (u, v) provides a van Kampen diagram for (uv′, vu′)—and the permutation rep-
resented by uv′ and vu′ is the least upper bound of the permutations represented
by u and v with respect to the weak order of Sn [1].

In every case, the number of nontrivial tiles in the reversing diagram or, equiv-
alently, the number of nontrivial steps in an associated reversing sequence, is well
defined.

Definition. Assume that u, v are reduced expressions. The reversing complexity
of (u, v), denoted comply(u, v), is the number of nontrivial tiles in the reversing
diagram for (u, v).

Equivalently, the reversing complexity comply(u, v) is the number of nontrivial
steps in a reversing sequence from uv to a word of the form v′u′. By the above
remarks, a reversing diagram for (u, v) with N nontrivial tiles provides a van Kam-
pen diagram for (uv′, vu′) with N tiles, where v′u′ is the final word of the reversing
process. So we always have

(2.1) dist(uv′, vu′) 6 comply(u, v).

In particular, when we start with equivalent reduced expressions u, v, we have

(2.2) dist(u, v) 6 comply(u, v),

since, in this case, the final expressions u′ and v′ are empty by Proposition 2.2(ii).
We shall now discuss the converse inequality, i.e., the question of whether sub-

word reversing, viewed as a particular strategy for finding derivations between
equivalent expressions of a permutation, is efficient, or even possibly optimal.

Proposition 2.3. Subword reversing is not always optimal: There exist equivalent
reduced expressions u, v satisfying dist(u, v) < comply(u, v).

Proof. Consider the 4-expressions u = s1s2s1s3s2s1 and v = s3s2s3s1s2s3, two
expressions of the flip permutation φ4 of S4. Together with Proposition 1.11, the
top diagram in Figure 2 gives dist(u, v) = 6. On the other hand, the reversing
diagram of Figure 4 gives comply(u, v) = 8. �

2.2. An optimality criterion. Despite the negative result of Proposition 2.3,
experiments show that subword reversing is often an efficient strategy. What we
do now is to establish sufficient criteria for recognizing that reversing is possibly
optimal. Of course, we shall say that a reversing diagram D is optimal if the van
Kampen diagram obtained by collapsing the ε-labeled arcs in D is optimal, i.e., if
it realizes the combinatorial distance between the boundary expressions.
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s1

s2

s3

s1 s1
s1

s2

s2

s1 s1

s2

s3

s3

s3 s2 s1 s3 s2

s2s3 s1

s3 s2 s1

s2 s3 s1 s2 s1

s1 s1

s2

s3

s2
s2

s1

Σ2,3

Σ1,4

Figure 4. Reversing diagram for s1s2s3s1s2s1s3s2s3s1s2s1. There
are eight nontrivial tiles (four type I hexagons and four type II squares),
giving comply(s1s2s1s3s2s1, s3s2s3s1s2s1) = 8. Collapsing the ε-
edges in the above diagram yields the bottom van Kampen diagram of
Figure 2. The failure of optimality is witnessed by the two intersections
of the separatrices Σ1,4 and Σ2,3.

Proposition 2.4. A reversing diagram containing no digon, i.e., containing only
tiles of type I and II, is optimal.

Proof. Assume that D is the reversing diagram for (u, v). By definition, the sepa-
ratrices of D start from the edges corresponding to u, i.e., here, from the left. Then
an induction on the number of tiles shows that only the following orientations may
appear in the tiles of D.

Σ Σ Σ

Σ′′ Σ′ Σ′

Hence every vertical edge of D is crossed by a separatrix from left to right, and
every horizontal edge is crossed from bottom to top. Moreover, we see that digons
are the only tiles that can change the orientation of a separatrix from horizontal
to vertical—whereas only hexagons can change the orientation from vertical to
horizontal. Also we see that, if two separatrices cross in a tile, then, when entering
that tile, at least one of them is vertical.

Now assume that two separatrices Σ,Σ′ cross at least twice in D, Two cases may
occur, according to whether the names of these separatrices involve three or four
integers. Assume first that there exist p, q, r satisfying Σ = Σp,q and Σ′ = Σp,r.
Then Σ and Σ′ can cross only in hexagons named {p, q, r}, in which case, putting
Σ′′ = Σq,r, the separatrices Σ and Σ′′, as well as Σ′ and Σ′′, cross too. Let H1 (resp.
H2) be the first (resp. second) hexagon where Σ, Σ′ and Σ′′ cross. Without loss of
generality, we may assume that Σ is horizontal when entering H1 (hence also when
exiting it) and that Σ′ is vertical when exiting H1 (hence also when entering it).
Then Σ′ remains above Σ (measured from the bottom of the diagram)—with Σ′′
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lying in between—until they enter the hexagon H2. Therefore, the only possibility
is that Σ′ is horizontal when entering H2 (from the left), whereas Σ is vertical
when entering H2 (from the bottom). This is possible only if a digon changes the
orientation of Σ from horizontal to vertical between H1 and H2.

Assume now that there exist p, q, p′, q′ satisfying Σ = Σp,q and Σ′ = Σp′,q′ . Then
Σ and Σ′ can cross only in squares named {{p, q}, {p′, q′}}. Let S1 (resp. S2) be
the first (resp. second) square where Σ and Σ′ cross. Without loss of generality,
we can assume that Σ is horizontal after (and before) S1, and Σ′ is vertical. Then,
as in the case of hexagons, Σ′ remains above Σ until they enter the square S2.
Therefore, Σ′ is horizontal when entering S2 (from the left), whereas Σ is vertical
when entering S2 (from the bottom). Hence a digon changes the orientation of Σ
from horizontal to vertical between S1 and S2.

So, in any case, two separatrices may cross twice only if there is a digon in D.
Then we apply Proposition 1.12. �

The previous result can be improved by showing that some digons are harmless
and can be ignored. Indeed, consider a pattern of the form sisi+1si. Then we
have sisi+1si y si+1sisi+1sisi y si+1sisi+1, corresponding to an hexagon with an

appended digon si

si

si+1

sisi+1

si+1 si

ε in the diagram. Let us introduce two new types

of hexagonal tiles, namely, for |i− j| = 1,

type I’: si

sj si

sj si

sj , type I”:
si

sj

si

sj

sj

si
.

Unsing such tiles amounts to replacing two adjacent tiles with one unique tile of the
new type, but they do not change anything in the rest of the diagram. In this way,
we obtain a new type of reversing diagrams that we call compacted. Note that the
compacted diagram associated with an initial expression uv need not be unique,
as there may be several ways of grouping the tiles, see Figure 5. However, as the
situation after a tile of type I’ or I” is exactly the same as the situation after the
corresponding type I tile followed by a type III tile, the number of nontrivial tiles
is the same in any diagram associated with a given initial pair (u, v).

The expected improvement of Proposition 2.4 is

Proposition 2.5. A compacted reversing diagram containing no digon, i.e., con-
taining only tiles of types I, I’, I”, and II, is optimal.

Proof. The new tiles of type I’ and I” do not change the orientation of separatrices.
Indeed, the corresponding possibilities are
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s1

s2

s3

s1

s2

s1

s3 s2 s3 s1 s2 s3

Σ2,3

Σ1,4

s1

s2

s3

s1

s2

s1

s3 s2 s3 s1 s2 s3

Σ2,3

Σ1,4

Figure 5. Two slightly different ways of compacting the reversing
diagram of Figure 4.

None of these tiles changes the horizontal-vertical orientation of the separatrices,
and, therefore, their appearing in a reversing diagram does not affect the argument
used in the proof of Proposition 2.4. �

An application of the above criterion will be mentioned in Remark 2.11 below.

2.3. Upper bounds. Very little is known about the reversing complexity in gen-
eral. In particular, the following conjecture, which is the natural counterpart of
Proposition 1.4, remains open at the moment—see [2] for partial results.

Conjecture 2.6. For all n-expressions u, v of length `, the reversing complexity
comply(u, v) lies in O(n2`).

Even the weaker result of the reversing complexity being polynomial is not
known. By adapting the method used for [5, Prop. 3], one comes up with the
weak result that, if u, v are length ` expressions, then dist(u, v) 6 C · 81` holds
for some constant C. Using a careful analysis of separatrices, one can obtain the
following improvement.

Proposition 2.7. If u, v are expressions of length `, then we have dist(u, v) 6 C ·9`

for some constant C.

As the argument is complicated and, at the same time, the result seems far from
optimal, we skip the proof and refer to [2] for details.

Remark. The index n does not appear in Proposition 2.7. This reflects the fact
that, although the maximal reversing complexity between two n-expressions of
length ` increases with n and `, it does not increase indefinitely: if we denote
by N(n, `) the maximal reversing complexity between two n-expressions of length `,
then, for each `, the value of N(n, `) is constant for n > 2`. This is due to the
fact that, when n is too large with respect to `, the indices of the transpositions si

occurring in an n-expression cannot cover the whole of [[1, n]] and commutation
relations of type II occur. Here again, we refer to [2] for more details.

2.4. A lower bound for the reversing complexity. The n-expressions used
in the proof of Proposition 1.7 to establish the inequality (1.9) have length ` =
n(n− 1)/2 so that, in this way, we obtain for infinitely many values of ` equivalent
reduced expressions of length ` that satisfy dist(u, v) > `(`−1)/2, hence, a fortiori,

(2.3) comply(u, v) >
`(`− 1)

2
.
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Question 2.8. Can one construct a sequence (u`, v`) of pairwise equivalent reduced
expressions of length ` such that comply(u`, v`) is more than quadratic in `?

We leave Question 2.8 open, but we now address another related question and
establish a result that illustrates how complicated the reversing process may be.

Proposition 2.9. For each ` there exist expressions u, v of length ` satisfying

comply(u, v) >
4
3
`4

for ` large enough.

We begin with an auxiliary lemma. Hereafter we write w yk w′ if there is a
length k reversing sequence from w to w′, not counting trivial steps of type III.

Lemma 2.10. For i, p > 1, put ai,p = si+p−1si+p−2...si, bi,p = sisi+1...si+p−1,
ci,p = ai,pai+1,p, and di,p = bi+1,pbi,p. Then, for all i, p, we have

bi,p ai+1,p yNp ai,p+1 bi,p+1,(2.4)

di,p ci+2,p yN ′
p ci,p+2 di,p+2,(2.5)

with Np = p2 + p− 1 and N ′
p = 4p2 + 8p− 3.

b2,3 b2,4

b1,3

b2,5

b1,5

d1,3 d1,5

a1,5 a2,5

c1,5

a3,3 a4,3

a3,4

a4,3

a4,4

c2,3

b3,3 b3,4

s2 s2

s5 a2,3

s5

b1,3 b1,3

a3,4

s1 s1 s1

b2,3 b2,3 b2,3

s6

s6

s6

a3,3

a3,3

a2,4

Figure 6. Proof of Relation 2.5, here with i = 1 and p = 3; the
grey rectangles correspond to Relation 2.4.

Proof. For (2.4) we use induction on p. The case p = 1 is

bi,1 bi+1,1 y1 ai,2 bi,2,

a restatement of sisi+1 y1 si+1sisi+1si. Assume p > 2. Applying the induction
hypothesis once, plus one reversing step of type I and one step of type III—or one
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type I’ step instead—and 2p− 1 steps of type II, we obtain

bi,p ai+1,p = si+p−1 bi,p−1 si+pbi,p−1 si+pbi,p−1 si+p ai+1,p−1

yp−1 si+p−1 si+p bi,p−1 ai+1,p−1bi,p−1 ai+1,p−1bi,p−1 ai+1,p−1

yNp−1 si+p−1 si+psi+p−1 si+psi+p−1 si+p ai,p bi,p

y1 si+p si+p+1 si+p si+p+1 ai+1,psi+p+1 ai+1,psi+p+1 ai+1,p bi,p

y0 si+p si+p+1 si+p ai+1,p−1si+p ai+1,p−1si+p ai+1,p−1 bi,p

yp si+p si+p+1 ai+1,p−1 si+p bi,p = ai,p+1 bi,p+1,

where, in each case, the factors that are about to be reversed are marked in bold.
We deduce Np = Np−1 + 2p = p2 + p− 1.

The computation for (2.5) is illustrated in Figure 6. Using (2.4) four times, plus
4p + 1 type II steps, we obtain:

di,p ci+2,p = bi,p bi+1,p ai+2,pbi+1,p ai+2,pbi+1,p ai+2,p ai+3,p

yNp bi,p ai+1,p+1 bi+1,p+1 ai+3,p

= bi,p si+p+1bi,p si+p+1bi,p si+p+1 ai+1,p bi+1,p+1 ai+3,p

yp si+p+1 bi,p ai+1,pbi,p ai+1,pbi,p ai+1,p bi+1,p+1 ai+3,p

yNp si+p+1 ai,p+1 bi,p+1 bi+1,p+1 ai+3,p

= ai,p+2 bi,p+1 bi+2,p si+1 ai+3,psi+1 ai+3,psi+1 ai+3,p

yp ai,p+2 bi,p+1 bi+2,p ai+3,pbi+2,p ai+3,pbi+2,p ai+3,p si+1

yNp ai,p+2 bi,p+1 ai+3,p+1 bi+3,p+1 si+1

= ai,p+2 bi+1,p si si+p+2 ai+2,psi si+p+2 ai+2,psi si+p+2 ai+2,p bi+2,p+2

yp+1 ai,p+2 bi+1,p si+p+2bi+1,p si+p+2bi+1,p si+p+2 ai+2,p si bi+1,p+1

yp ai,p+2 si+p+2 bi+1,p ai+2,pbi+1,p ai+2,pbi+1,p ai+2,p si bi+1,p+1

yNp ai,p+2 si+p+2 ai+1,p+1 bi+1,p+1 si bi+1,p+1 = ci,p+2 di,p+2,

leading to N ′
p = 4p2 + 8p− 3. �

We can now establish Proposition 2.9.

Proof of Proposition 2.9. (See Figure 7.) We put

u` = s2`s2`−2...s2 and v` = s1s3...s2`−1,

and analyze the reversing of u`v`. The latter consists of three sequences of elemen-
tary steps. First, `(`− 2)/2 steps of type II lead to

s2 s1 s4 s3 ... s2` s2`−1.

Then, ` type I steps lead to s1s2s1s2 s3s4s3s4 ... s2`−1s2`s2`−1s2`, which is

c1,1 d2,1 c3,1 d4,1 ... c2`−1,1 d2`,1.

From there, we apply (2.5) repeatedly: after `− 1 applications, we obtain

c1,1 · c1,3 d2,3 c3,3 d4,3 ... c2`−3,3 d2`−2,3 · d2`,1;

after `− 2 more applications, we obtain

c1,1 c1,3 · c1,5 d2,5 c3,5 d4,3 ... c2`−5,5 d2`−4,5 · d2`−2,3 d2`,1,
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and so on. After using (2.5) `(`− 1)/2 times, we finally obtain

c1,1 c1,3...c1,2`+1 d2,2`−1 d4,2`−3 ... d2`−2,3 d2`,1.

A careful bookkeeping shows that the total number of reversing steps involved in
the process is (8`4 − 23`2 + 9` + 12)/6, hence Θ(`4) as announced. �

s1 s3 s5 s7

s1 s3 s5 c7,1

s1 s3 c5,1 c7,3

s1 c3,1 c5,3 c7,5

c1,1 c3,3 c5,5 c7,7

s2

s4

s6

s8

d2,1

s4

s6

s8

d2,3

d4,1

s6

s8

d2,5

d4,3

d6,1

s8

d2,7

d4,5

d6,3

d8,1

Figure 7. Proof of Proposition 2.9, here for ` = 4; each grey rectan-
gle corresponds to applying Relation (2.5), hence contains a number
of elementary tiles that lies in O(`2).

Remark 2.11. At the expense of using one type I’ tile for the proof of Relation 2.4,
no type III tile is used thoughout the above constructions. Using Proposition 2.5,
we conclude that the reversing diagram we obtained gives an optimal van Kampen
diagram, i.e., it realizes the combinatorial distance between the boundary words,
here u` c1,1 c1,3 ... c1,2`+1 and v` d2`,1 d2`−2,3 ..., d4,2`−3 d2,2`−1.

With Proposition 2.9, we prove that comply(u, v) can be quartic in the length
of u and v. We conjecture this lower bound is also an upper bound, but have no
proof of this result so far. The problem is that we have no control on the number of
hexagons and digons that may occur in a reversing diagram. There is a quadratic
upper bound on the lengths of the final expressions u′, v′ that may arise from some
initial pair (u, v) of length ` expressions, but this does not directly lead to a bound
on the number of type I reversing steps used (the only ones that increase the length)
because some subsequent type III steps might erase the letters so created.

Remark 2.12. As mentioned in the introduction, most results of this paper extend
to positive braids. For instance, the optimality criterion of Proposition 1.12 extends
to positive braids at the expense of adding a notion of rank in the definition of
separatrices: in the braid diagram associated with a permutation, i.e., with a simple
braid, any two strands cross at most once, and we introduce one separatrix Σp,q only.
For the case of arbitrary positive braids, we should introduce several separatrices
for pairs of strands that cross more than one time, Σ(k)

p,q being associated with the
kth intersection of the strands p and q. As for subword reversing, it works in the
general braid case exactly as in the case of simple braids, i.e., of permutations.
Experiments show that the worst cases in terms of complexity arise with simple
braids. So we have no better result in the general braid case than in the particular
permutation case.
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