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COMBINATORIAL DISTANCE BETWEEN BRAID WORDS

PATRICK DEHORNOY

Abstract. We give a simple naming argument for establishing lower bounds
on the combinatorial distance between (positive) braid words.

1 It is well-known that, for n > 3, Artin’s braid group Bn, which is the group
defined by the presentation

ø
σ1, ..., σn−1

ØØØØ
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

¿

has a quadratic Dehn function, i.e., there exist constants Cn, C0
n such that, if w is

an n-strand braid word of length ` that represents the unit braid, then the number
of braid relations needed to transform w into the empty word is at most Cn`2 and,
on the other hand, there exists for each ` at least one length ` word w such that
the minimal number of such braid relations is at least C0

n`2—see for instance [2].
In a recent posting [3], Hass, Kalka, and Nowik developed a knot theoretical

argument for establishing lower bounds on the combinatorial distance between two
equivalent positive braid words, i.e., on the minimal number of braid relations
needed to transform the former into the latter. Using some knot invariants intro-
duced in [4], they prove
Proposition 1. For each m, the combinatorial distance between the (equivalent)
braid words σ2m

1 (σ2σ
2
1σ2)m and (σ2σ

2
1σ2)mσ2m

1 equals 4m2.
The purpose of this note is to observe that the above result also follows from the

direct combinatorial argument similar to the one developed in [1] for the reduced
expressions of a permutation.

By definition, a braid word w is a finite sequence of letters σi and their inverses,
and it naturally encodes a braid diagram D(w) once one decides that σi encodes
the elementary diagram in which the (i + 1)st strand passes over the ith strand.
For instance, the diagrams associated with the words of Proposition 1 are displayed
in Figure 1.

For simplicity, we restrict to positive braid words, i.e., words that contain no
letter σ−1

i —see Remark 5 below. Each strand in a braid diagram has a well-defined
initial position, hereafter called its name, and we can associate with each crossing
of the diagram, hence with each letter in the braid word that encodes it, the names
of the strands involved in the crossing. As two strands may cross more than once,
we shall also include the rank of the crossing, thus using the name {p, q}a for the
ath crossing of the strands with initial positions p and q. In this way, we associate
with each positive braid word a sequence of names:
Definition 2. (See Figure 1.) For w a positive braid word, the sequence S(w) is
defined to be empty if w is the empty word and, for w = w0σi, to be the sequence
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obtained from S(w0) by appending {p, q}a, where p and q are the initial positions
of the strands that finish at position i and i + 1 in D(w0) and a− 1 is the number
of times the latter strands cross in D(w0).
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{2,3}1 {1,3}1 {1,3}2 {2,3}2 {2,3}3 {1,3}3 {1,3}4 {2,3}4 {1,2}1 {1,2}2 {1,2}3 {1,2}4

{1,2}1 {1,2}2 {1,2}3 {1,2}4 {2,3}1 {1,3}1 {1,3}2 {2,3}2 {2,3}3 {1,3}3 {1,3}4 {2,3}4

Figure 1. Braid diagrams associated with the two braid words of
Proposition 1 (here with m = 2), together with the associated se-
quences of names.

The fact that three (resp. four) different strands are involved in a braid σiσi+1σi

(resp. σiσj with |i − j| > 2) and the explicit definition of the names immediately
imply

Lemma 3. Assume that w,w0 are n-strand braid words and w0 is obtained from w
by applying one braid relation σiσi+1σi = σi+1σiσi+1 (resp. σiσj = σjσi with
|i − j| > 2). Then there exist pairwise distinct numbers p, q, r in {1, ..., n} and
integers a, b, c (resp. pairwise distinct p, q, r, q and integers a, b) such that S(w0) is
obtained from S(w) by reversing some subsequence ({p, q}a, {p, r}b, {q, r}c) (resp.
reversing some subsequence ({p, q}a, {r, s}b)).

Then Proposition 1 is easy.

Proof of Proposition 1. Figure 2 below makes the upper bound trivial, so we only
have to prove a lower bound result. Let wm and w0

m be the involved braid words. We
consider the entries of the form {1, 2}a and {2, 3}b in S(wm) and S(w0

m). In S(wm),
they appear in the order {1, 2}1, ..., {1, 2}2m, {2, 3}1, ..., {2, 3}2m, whereas in S(w0

m)
they appear in the order {2, 3}1, ..., {2, 3}2m, {1, 2}1, ..., {1, 2}2m. By Lemma 3, ap-
plying one braid relation can only switch two entries in these sequences. Therefore,
at least 4m2 braid relations (of the form σ1σ2σ1 = σ2σ1σ2) are needed to exchange
the 2m entries {1, 2}a and the 2m entries {2, 3}b.

We conclude with a few additional observations.

Remark 4. Each derivation from a (positive) braid word to another equivalent
one can be illustrated using a van Kampen diagram, which is a planar diagram tes-
selated by tiles corresponding to braid relations—see for instance [2], and Figure 2
below. For each name {p, q}a occurring in the diagram, connecting all edges having
that name yields a family of transversal curves called separatrices in [1]. It is easy
to check that, if any two separatrices of a van Kampen diagram cross at most once,
then the diagram must be optimal, in the sense that the number of faces is the
minimal possible one, i.e., it achieves the combinatorial distance. This criterion is
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clearly satisfied in the case of Figure 2. As the diagram has 4m2 faces, we conclude
that the combinatorial distance between the bounding words is exactly 4m2.

{1,2}1 {1,2}2 {1,2}3 {1,2}4

{2,3}1

{1,3}1

{1,3}2

{2,3}2

{2,3}3

{1,3}3

{1,3}4

{2,3}4

Figure 2. A van Kampen diagram witnessing that the two braid
words of Proposition 1 are equivalent (here with m = 2). Thin edges
represent σ1, thick edges represent σ2. The dotted (red) lines connect
the edges bearing the same name; as any two of them cross at most
once, the diagram achieves the combinatorial distance.

Remark 5. The current approach can be easily extended to arbitrary braid words.
The name attributed to a negative crossing σ−1

i has to be defined to be {p, q}−1
a ,

where p, q still are the initial positions of the strands that cross, and a is the num-
ber of earlier crossings of these strands, counted algebraically, i.e., it is the linking
number of these two strands so far. For instance, the sequence S(σ1σ

−3
2 σ2σ1)

is ({1, 2}1, {1, 3}−1
0 , {1, 3}−1

−1, {1, 3}−1
−2, {1, 3}−2, {1, 2}2). Then Lemma 3 remains

valid, as the contribution of the free group relations σiσ
−1
i = σ−1

i σi = 1 consists in
creating or deleting a subsequence of the form ({p, q}a, {p, q}−1

a ) or ({p, q}−1
a , {p, q}a).

Remark 6. A more symmetric and still more obvious example implying a number
of relations that is quadratic with respect to the length of the initial words is ob-
tained by starting with σ2m

1 and σ2m
2 and completing them into their least common

right multiple. Then the sequence associated with the first braid word must begin
with {1, 2}1, ..., {1, 2}2m, whereas that associated with the second one must begin
with {2, 3}1, ..., {2, 3}2m, so, by Lemma 3 again, 4m2 braid relations are certainly
needed to transform one into the other—see Figure 3 for an illustration in terms of
van Kampen diagram and separatrices.
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Figure 3. A van Kampen diagram witnessing that the braid words
σ2m

1 (σ2σ
2
1σ2)m and σ2m

2 (σ1σ
2
2σ1)m are equivalent and lie at combi-

natorial distance 4m2 (here with m = 2). As in Figure 2, the dotted
(red) lines connect the edges bearing the same name. Any two of
them cross at most once, hence the diagram is optimal.
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