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THE SUBWORD REVERSING METHOD

PATRICK DEHORNOY

Abstract. We summarize the main known results involving subword reversing, a method
of semigroup theory for constructing van Kampen diagrams by referring to a preferred
direction. In good cases, the method provides a powerful tool for investigating pre-
sented (semi)groups. In particular, it leads to cancellativity and embeddability criteria
for monoids and to efficient solutions for the word problem of monoids and groups of
fractions.

Subword reversing is a combinatorial method for investigating presented semigroup. It
has been developed in various contexts and the results are scattered in different sources [13,
15, 24, 17, 20, 25, 5, ...]. This text is a survey that discusses the main aspects of the method,
its range, its uses, and its efficiency. The emphasis is put on the exportable applications
rather than on the internal technicalities, for which we refer to literature. New examples
and open questions are mentioned, as well as a few new results. Excepted in the cases where
no reference is available, proofs are sketched, or just omitted.

General context and main results. As is well known, working with a semigroup or
a group presentation is usually very difficult, and most problems are undecidable in the
general case. Subword reversing is one of the few methods that can be used to investigate a
presented semigroup, possibly a presented group. The specificity of the method is that, in
order to solve the word problem of a presented semigroup, or, equivalently, construct a van
Kampen diagram for a pair of initially given words, one directly compares the words one to
the other instead of separately reducing each of them to some normal form, as in standard
approaches like Knuth–Bendix algorithm or Gröbner–Shirshov bases (see Figure 1).

Every semigroup presentation is in principle eligible for subword reversing, but the method
leads to useful results only when some condition called completeness is satisfied. The good
news is that the completeness condition is satisfied in a number of nontrivial cases and that,
even if it is not initially satisfied, it can be satisfied once a certain completion procedure has
been performed.

The general philosophy is that, whenever the completeness condition is fulfilled, some
properties of the considered semigroup can be read from the presentation easily. Typically,
when a presentation is complete, it is sufficient that the presentation contains no obvious
obstruction to left-cancellativity, namely no relation of the form sv = sv′ with v 6= v′,
to be sure that the presented semigroup does admit left-cancellation. Combined with a
completeness criterion (several exist), this leads to practical, easy to use, cancellativity
criteria, such as the following one.

Theorem 1 (a criterion for left-cancellatibility). Assume that a semigroup (or a monoid) M
admits a presentation (S,R) satisfying the following conditions:
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Figure 1. Solving the word problem of a presented semigroup: to compare
two words w and w′, contrary to methods based on rewrite systems, which
separately reduce w and w′ to some distinguished equivalent words NF(w),
NF(w′) and check the equality of the latter (left diagram), word reversing
(right diagram) appeals to no normal form and tries to directly construct a van
Kampen diagram by reading the letters from left to right.

(i) The set R contains no relation sv = sv′ with s in S and v 6= v′;
(ii) There exists λ : M → N satisfying λ(xy) > λ(x)+λ(y) for all x, y in M and λ(s) > 1

for each s in S;
(iii) The right cube condition holds for each triple in S3—see Definition 2.6.

Then M admits left-cancellation.

Similarly, if, for some generators s, s′, we have in the list of relations several relations
of the form sv′ = s′v, then, in general, in the corresponding semigroup, the elements s
and s′ admit no least common right-multiple (right-lcm), i.e., no common right-multiple of
which every common right-multiple of s and s′ is a right-multiple. In the case of a complete
presentation, it is sufficient that the above obstruction does not occur to be sure that the
monoid does admit right-lcm’s.

Theorem 2 (a criterion for the existence of right lcm’s). Assume that a semigroup (or a
monoid) M admits a presentation (S,R) satisfying the following conditions:

(i) For all s, s′ in S, there is at most one relation of the form sv′ = s′v in R;
(ii) There exists λ : M → N satisfying λ(xy) > λ(x)+λ(y) for all x, y in M and λ(s) > 1

for each s in S;
(iii) The right cube condition holds for each triple in S3—see Definition 2.6.

Then any two elements of M that admit a common right-multiple admit a least common
right-multiple.

On the other hand, subword reversing is also an algorithmic process, and it can be used to
recognize divisors or solve the word problem of the semigroup, and possibly of its enveloping
group. Taking for granted the definition of the reversing relation yR (see Definition 1.4)
we have in particular:

Theorem 3 (a solution of the word problem). Assume that a group G admits a semigroup
presentation1 (S,R) satisfying the following conditions:

(i) The set R contains no relation sv = sv′ or vs = v′s with s in S and v 6= v′;
(iii) There exists λ : 〈S | R〉+ → N satisfying λ(xy) > λ(x)+λ(y) for all x, y in 〈S | R〉+

and λ(s) > 1 for each s in S;
(iii) For all s, s′ in S, there is at most one relation of the form sv′ = s′v in R;
(iv) The left and right cube conditions hold for each triple in S3;

(v) There exists a set of words in the alphabet S, say Ŝ, that includes S and is such that,

for all u, u′ in Ŝ, there exist v, v′ in Ŝ satisfying u−1u′
yR v′v−1.

1i.e., all relations are of the form v = v
′ with v, v

′ nonempty and containing no inverse of the generators
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Then a word w in the alphabet S ∪ S−1 represents 1 in G if and only if v−1v′ yR ε holds,
where v and v′ are the (unique) words in the alphabet S that satisfy w yR v′v−1.

The above statements2 look quite technical, and one may wonder whether any presen-
tation satisfies the many involved requirements. Actually, such presentations do exist, and
there is even a number of them. Indeed, every Artin–Tits presentation is eligible and, more
generally, every Garside group admits presentations that satisfy the above conditions. On
the other hand, it is of course easy to construct examples that do not satisfy the conditions,
and we do not claim that subword reversing is of universal interest. What we do claim is
that, when one is to address an unknown semigroup presentation, it is always worth trying
reversing. Let us mention that, in some cases such as the above-mentioned Artin–Tits pre-
sentations, reversing (or essentially equivalent methods) is the only method known so far
for establishing cancellativity.

Further applications of subword reversing will be mentioned. As a general rule, the
method is well fitted to work with the so-called Garside monoids and groups. In particular,
it is eligible to compute least common multiples, greatest common divisors, and the derived
unique normal forms (“greedy normal forms”).

Historical comments. Subword reversing is, in some sense, the most obvious and elemen-
tary approach for effectively constructing van Kampen diagrams (see Section 1 below), and
it could have been introduced in the early years of the twentieth century. However it seems
it was not considered until much later.

A precursor of subword reversing can be found in Garside’s approach to Artin’s braid
groups [32] and in the subsequent extension to spherical Artin–Tits groups by Brieskorn
and Saito [7]: in particular, Theorem H of [31] and [32] amounts to saying that Artin’s
presentation is complete with respect to subword reversing3. However, the viewpoint is
slightly different from what will be developed below, and reversing remains implicit in these
sources.

It seems that subword reversing in its current form was first explicitly considered in [12, 14]
with the specific aim of investigating the so-called geometry monoid of self-distributivity and
establishing cancellativity results. Soon after, the eligibility of Artin’s braid monoids—which
turn out to be projections of the self-distributivity monoid—was observed [13, 15], and the
connection with Garside’s approach became clear. At the same time, again in the case of
braid monoids and Artin–Tits monoids, the approach of Tatsuoka in [45], and, slightly later,
that of Corran in [11], are closely connected. All these approaches are essentially equivalent
and equally relevant in the case of presentations that define monoids in which least common
multiples exist (“complete complemented presentations” according to the terminology of
Section 2.1 below, “chainable presentations” according to the terminology of [11]). However,
it seems that only subword reversing is suitable for an extension to more general cases [20].

As already illustrated in Figure 1, there seems to be no connection between subword
reversing and the other general algorithmic methods relevant for (semi)groups, because the
latter rely on a totally different approach for solving the word problem. If subword reversing
is to be compared with another existing method, it is Dehn’s algorithm and small cancellation
techniques that seem the closest: all have in common that a van Kampen diagram is built by
using a convenient fragment of the boundary at each step. However, in the case of subword
reversing, the boundary is defined dynamically, resulting in a quadratic complexity rather
than in a linear complexity.

2actually, these are rather templates, as several variants exist; in particular, it is not necessary that the
same presentation is used to establish the various hypotheses, see Remark 3.18

3it may be interesting to mention that, in [31], the principle of the proof of Theorem H is attributed by
F.A.Garside to his advisor G.Higman
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At another level, the completion procedure involved as a preprocessing step in the subword
reversing method turns out to have very little in common with the one involved in the
Gröbner base approach as adapted to the context of presented semigroups [3].

Organization of this text. In Section 1, we describe subword reversing as a particular
strategy for constructing van Kampen diagrams. In Section 2, we analyze the range of the
method, i.e., we state the additional conditions under which reversing is possibly useful,
namely those guaranteeing the so-called completeness property. Then, in Section 3, we list
some results that can be obtained—in good cases—using subword reversing, including a can-
cellativity criterion that is maybe the most striking application of the method. Finally, in
Section 4, we address the question of whether subword reversing, when eligible, leads to effi-
cient algorithms, in particular in terms of solution of the word problem and of isoperimetric
inequalities.

The main new results proved in this text are those of Section 3.6 (Propositions 3.29
and 3.32) about mixed reversing and Section 4.2 (Proposition 4.8) about the optimality of
reversing and its applications to the combinatorial distance between braid words.

Acknowledgment. The author thanks Jérémy Chamboredon for his help in preparing the
final version of this text.

1. Subword reversing: description

Subword reversing can equivalently be described as a syntactic transformation on words,
or as a strategy for constructing van Kampen diagrams in the context of presented semi-
groups or monoids. Here we give both descriptions, starting with the latter, which is more
visual and concrete.

1.1. Van Kampen diagrams. Hereafter we always work with monoids rather than with
arbitrary semigroups, i.e., we always assume that our semigroups contain a unit element,
usually denoted 1. This option is convenient, but unessential.

Assume that (S,R) is a semigroup presentation, i.e., S is a (finite or infinite) nonempty
set and R is a (finite or infinite) family of pairs of nonempty words in the alphabet S,
usually called relations. We denote by 〈S | R〉+ the monoid presented by (S,R), i.e., the
quotient-monoid S∗/≡+

R where S∗ denotes the free monoid of all words in the alphabet S
and ≡+

R denotes the least congruence on S∗ (multiplication-compatible equivalence relation)
that includes R. As is well-known, two words w, w′ of S∗ are R-equivalent, i.e., connected
under ≡+

R, if and only if there exists an R-derivation from w to w′, defined to be a finite
sequence of words (w0, ... , wp) such that w0 is w, wp is w′, and, for each i, there exists {v, v′}
in R and u, u′ in S∗ satisfing {wi, wi+1} = {uvu′, uv′u′}, i.e., wi+1 is obtained from wi by
substituting some subword that occurs in a relation of R with the other element of that
relation.

In the above context, by construction, for each relation {v, v′} of R, the elements of the
monoid 〈S | R〉+ represented by v and by v′ are equal. Owing to this fact, it is customary
to denote the relation {v, v′} as v = v′.

An R-derivation can be nicely visualized using a van Kampen diagram. A (S,R)-van
Kampen diagram for a pair of words (w, w′) is a planar oriented graph with a unique source
vertex and a unique sink vertex and edges labeled by letters of S, so that the labels of each
face correspond to a relation of R and the labels of the bounding paths form the words w
and w′, respectively.

Lemma 1.1 (folklore). If (S,R) is a semigroup presentation, then two words w and w′ of S∗

are R-equivalent if and only if there exists an (S,R)-van Kampen diagram for (w, w′).
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Proof (sketch). If (w0, ..., wp) is an R-derivation from w to w′, then drawing paths labeled
with the successive words wi one below the other and identifying the unchanged letters yields
a van Kampen diagram for (w, w′). Conversely, if K is a van Kampen diagram for (w, w′),
one obtains an R-derivation from w to w′ by enumerating the labels in a sequence of paths
from the source of K to its sink that differ by one face at a time. �

Example 1.2. In the sequel we shall often consider the presented monoid

M = 〈a, b, c, d | ab = bc = ca, ba = db = ad〉+.

Then acaaa and cdbbb represent the same element of M as we have

acaaa ≡+
abcaa ≡+

abbca ≡+
cabca ≡+

cabab ≡+
cadbb ≡+

cdbbb.

A van Kampen diagram corresponding to this derivation is displayed in Figure 2.

a

c

c

d

b

a

c

d

a

b

b

c

a

a

b

a

b

Figure 2. A van Kampen diagram for the derivation of Example 1.2: the
labels of the top path form the word acaaa, those of the bottom path form
cdbbb, and the diagram is tessellated by tiles that correspond to relations.

1.2. A strategy for building van Kampen diagrams. Assuming that (S,R) is a semi-
group presentation, we address the question of effectively building a van Kampen diagram
for a pair of words (w, w′). Of course, such a diagram may exist only if w and w′ are R-
equivalent, so an algorithmic solution to the current question has to include a solution for the
word problem of (S,R), i.e., a method for deciding whether w and w′ are R-equivalent. Pic-
torially, our problem consists in drawing from a common origin two paths labeled w and w′

and tessellating the space between these paths with tiles corresponding to the relations of R.
In this context, subword reversing is the most straightforward strategy, namely starting

from the two edges s, s′ that originate in the source vertex, choosing one relation s... = s′...
in R and iterating the process with the next vertices. So, if the paths w and w′ have an
overall orientation from left to right (as in Figure 2), subword reversing can be called the
“left strategy” as it corresponds to proceeding from left to right, namely

- looking at a (leftmost) pending pattern
s

s′
,

- choosing a relation sv′ = s′v of R, closing this pattern into
s

s′

v′

v
, and repeat.

As it stands, the approach seems naive, and, clearly, it cannot be successful in every case.
Several obstructions may occur. In particular, one gets stuck if, at some step, there is no
eligible relation s... = s′... in R. Also, the process may never terminate, or it may terminate
but boundary words be longer than w, w′, i.e., in order to close the diagram one has to
extend the initial words—which is the best we can hope for if the initial words w, w′ are not
R-equivalent. Also, we observe that the strategy need not be deterministic: if there exist
letters s, s′ such that R contains several relations s... = s′..., each of these is eligible and
there are several ways of performing the process.
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Example 1.3. (See Figure 3.) With the presentation and the words of Example 1.2, starting
from two diverging paths labeled acaaa and cdbbb, we first close the left open (a, c)-pattern
using the relation ab = ca. Then we have two open patterns, namely (a, d) (bottom) and
(c, b) (top). If we choose the former, we can close it using the relation ad = db. In this
way, we find an open pattern consisting of two diverging b-labeled edges: we can see it as
a special open pattern, which can be closed using the trivial relation b = b, i.e., adding
empty words—represented by dotted lines on the picture. Continuing similarly, we arrive
after five steps at a diagram in which the only open pattern is (c, d). Here we are stuck,
because there is no relation c... = d... in our list of relations. So, in this case, the reversing
strategy fails: we know that there exists a van Kampen diagram (for instance, the one of
Figure 2), but we fail to find this one or any other one using our attempted strategy. When
we compare with Figure 2, we see that, in order to proceed and re-obtain the previous van
Kampen diagram, we ought to split the open pattern into two open patterns by inserting a
new, intermediate b-labeled edge, which is precisely what our strategy tries to avoid.

Step 0:

a

c

a
a a

c

d
b

b b

Step 1:

a

c

a
a a

c

d
b

b b

b

a

Step 2:

a

c

a
a a

c

d
b

b b

b

a
d

b

Step 3:

a

c

a
a a

c

d
b

b b

b

a
d

b

Step 4:

a

c

a
a a

c

d
b

b b

b

a

a

c

d

b

Step 5:

a

c

a
a a

c

d
b

b b

b

a

a

c

d

b

Figure 3. Trying to build a van Kampen diagram for the words of Example 1.2
using the reversing strategy; here the strategy fails since one gets stuck at
Step 5.

It will be convenient to standardize the diagrams such as those of Figure 3 so that they
only contain vertical and horizontal edges, plus dotted arcs connecting vertices that are to be
identified in order to (possibly) obtain an actual van Kampen diagram. Such standardized
diagrams will be called reversing diagrams in the sequel. For instance, the reversing diagram
corresponding to the final step in Figure 3 is displayed in Figure 4.

In this way, all tiles in a reversing diagram are obtained in a uniform way, namely by

closing s

s′

into s

s′

v

v′

where sv′ = s′v is a relation of R, or, more accurately, in
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b

b

b

d

c

a c a a a

b a

a c
d

b

Figure 4. Reversing diagram associated with the last diagram in Figure 3:
the only difference is that we insist that all edges are horizontal oriented to the
right or vertical oriented to bottom. Again we are stuck as there is no relation
c... = d... in the presentation.

order to take possible dotted lines into account, closing
s

s′

into
s

s′

v

v′

, including

the degenerate case of
s

s

being closed into
s

s

.

It should then be clear that the construction may be applied to any pair of initial paths
(or, more generally, to any staircase consisting of alternating horizontal and vertical paths),
and that the following three behaviours are a priori possible:

- (i) either one gets stuck with a pair of letters (s, s′) such that R contains no relation
s... = s′...,

- (ii) or the process continues for ever,

- (iii) or the process leads in finitely many steps to a diagram of the form w

w′

v

v′

.

In case (iii), up to identifying the vertices that are connected by a dotted line, the
reversing diagram projects to a van Kampen diagram witnessing that the words wv′ and
w′v are R-equivalent. Therefore, these words represent a common right-multiple of the
elements of the monoid 〈S | R〉+ represented by w and w′, and the reversing process can
be viewed as a method not only for proving the equivalence of two words, but also, more
generally, for constructing common right-multiples. The case when the words v and v′ are
empty, i.e., when the process terminates without introducing additional edges, is the case
when the method gives an actual van Kampen diagram for (w, w′).

1.3. Syntactic description. The reversing method can easily be described using words in
a symmetrized alphabet S ∪ S−1, where S−1 is a formal copy of S consisting of a copy s−1

for each letter s of S. Words in such an alphabet S ∪ S−1 will be called signed words, and
they will be denoted using bold characters, like w, v, ... By contrast, w, v, ... will always
refer to words in the alphabet S.

In order to encode the successive steps of a reversing process, we list the labels in the
righmost paths that connect the South-West corner to the North-East corner in a reversing
diagram. We decide that the contribution of an s-labeled edge in such a path is the letter s
if the edge is crossed according to its orientation, and s−1 in the opposite case. For instance,
the encoding of the (unique) SW-to-NE path in the initial diagram containing w (vertical)



8 PATRICK DEHORNOY

and w′ (horizontal) is w−1w′, where w−1 is “w read in the wrong direction”, i.e., is the word
obtained from w by replacing each letter with its inverse and reversing the order of letters.

With such coding conventions, performing one step of the reversing method, i.e., closing

some open pattern
s

s′

into
s

s′

v

v′

corresponds to replacing a subword s−1s′ with

a word v′v−1 such that sv′ = s′v is a relation of R. This includes the case of
s

s

,

which corresponds to deleting a subword s−1s, i.e., using ε for the empty word, replacing
it with ε, which is also εε−1, hence the same basic step provided s = s is considered to
implicitly belong to R.

Definition 1.4 (reversing). For (S,R) a semigroup presentation and w, w′ signed words
in the alphabet S ∪ S−1, we say that w reverses to w

′ (with respect to R) in one step,
denoted w y

1
R w

′, if there exist a relation sv′ = s′v of R and signed words u, u′ satisfying

(1.1) w = u s−1s′ u′ and w
′ = u v′v−1

u
′.

We say that w reverses to w
′ in k steps, denoted w y

k
R w

′, if there exist words w0, ..., wk

satisfying w0 = w, wk = w
′ and wi y

1
R wi+1 for each i. In this case, the sequence

(w0, ..., wk) is called an R-reversing sequence from w to w
′. We write w yR w

′, or simply
w y w

′, if w y
k
R w

′ holds for some k, i.e., if there exists at least one R-reversing sequence
connecting w to w

′.

If we call the letters of S positive, and those of S−1 negative, then (1.1) shows that, in
terms of the encoding words, reversing amounts to replacing a negative–positive subword
with a positive–negative word. This is the origin of the terminology. Of course, except in
the case of a commutation relation ss′ = s′s, reversing the subword s−1s′ does not readily
means keeping the letters and changing their order.4

Example 1.5. The successive SW-to-NE paths in the diagrams of Figure 3 correspond to
the reversing sequence

BBBD Ca caaa y
1
BBB Da Bcaaa y

1
BB Bb DBcaaa

y
1
BBD Bc aaa y

1
BBDc Aa aa y

1
BB Dc aa,

in which we used A, B, ... for a
−1, b−1, ... and we framed the length-two subword that is to

be reversed at each step.

The words that are terminal with respect to R-reversing are those that contain no length-
two subword of the form s−1s′ such that R contains a relation s... = s′... . Among such
words are all the words of the form v′v−1 where v and v′ are words in the alphabet S, since
such words contain no subword s−1s′ at all.

A reversing diagram starting with w−1w′ and finishing with v′v−1, where w, w′, v, v′ are
positive words, projects to a van Kampen diagram for wv′ and w′v, so the following is
straightforward:

Lemma 1.6. For w, w′, v, v′ in S∗, the relation w−1w′
yR v′v−1, i.e., the existence of an

R-reversing diagram w

w′

v

v′

yR , implies wv′ ≡+

R w′v.

4by the way, the names “redressing” or “rectifying” might have been more appropriate
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Remark 1.7. In Definition 1.4, we consider length-two subwords s−1s′ only. One can
modify the definition so as to allow longer negative–positive subwords u−1u′ where u and
u′ are nonempty words of S∗, and declare that u−1u′ reverses to v′v−1 whenever uv′ = u′v
is a relation of R. This new notion of reversing is actually equivalent to the previous one.
Indeed, if we use y

∗
R for the new notion, it is clear that y

∗
R includes yR. Conversely,

to see that w y
∗
R w′ implies w yR w′, it is sufficient to consider the elementary step

u−1u′
y

∗
R v′v−1. Write u = s1 ... sp and u′ = s′1 ... s′q. By hypothesis, s1 ... spv

′ = s′1 ... s′qv
is a relation of R, and we find

u−1u′ = s−1
p ... s−1

1 s′1 ... s′q yR

s−1
p ... s−1

2 s2 ... spv
′v−1s′q

−1 ... s′2
−1s′2 ... s′q y

p+q−2

R v′v−1,

hence u−1u′
yR v′v−1. The only difference between yR and y

∗
R lies in the number of

reversing steps, but not in the words that can be reached. In terms of diagrams, this means
that we can freely gather reversing tiles so as to avoid trivial steps of the form s−1s y ε.
For instance, in the context of Figure 3, at Step 4, instead of reversing Bca into cAa, and
then identifying the two a-edges to obtain c, we can directly consider the negative–positive
pattern B(ca), and reverse it to c since b · c = (ca) · ε is a relation of the presentation. This

amounts to gathering the two tiles

c a

b a

c

into the unique tile

c a

b

c

.

1.4. Left-reversing. By construction, subword reversing refers to a preferred direction,
namely tessellating van Kampen diagrams starting from the source vertex and proceeding
toward the target vertex, i.e., equivalently, reversing negative–positive subwords s−1s′ into
positive–negative words v′v−1. A symmetric approach is possible, namely starting from
the target vertex of the van Kampen diagram and trying to build a tessellation from right
to left. In syntactic terms, this amounts to reversing a positive–negative subword s′s−1

into a negative–positive word v−1v′ such that vs′ = v′s is a relation of the considered
presentation. Hereafter, the process considered in the previous sections will be called right-
reversing (assuming that the source is drawn on the left of the diagram, the process goes to
the right; also it provides common right-multiples), whereas the symmetric version where
one starts from the target vertex will be called left-reversing and denoted x

R, or simply x.
Of course, the properties of right- and left-reversings are symmetric, and it is enough to
concentrate on one side, except when one combines both procedures as in Sections 3.5
and 3.6 below.

Remark 1.8. Left-reversing is not the inverse of right-reversing: w y w′ does not neces-
sarily imply w′ xw. For instance, for each s in the alphabet, s−1s y ε holds, but ε xs−1s
fails: both for right- and for left-reversing, the empty word is reversible to no word other
than itself. One could recover symmetry by changing the definition and deciding that s−1s
right-reverses to s−1s, and that ss−1 left-reverses to s−1s. This approach seems definitely
poor: by doing so, even in favorable cases like the one of braid monoids—see Example 3.16—
one loses termination. For instance, starting from w = σ−1

1 σ−1
2 σ1σ2, right-reversing w in this

modified way would lead to the infinite series (σ1σ2σ1σ2σ1σ2)
kw(σ1σ2σ1σ2σ1σ2)

−k, instead of
to σ2σ

−1
1 obtained with the initial process, see Figure 5.

2. Subword reversing: range

At this point, we have introduced a tentative strategy for constructing van Kampen
diagrams or, equivalently, for sorting the negative and the positive letters of a signed word
in a symmetrized alphabet S ∪ S−1. However, we already observed that this strategy need



10 PATRICK DEHORNOY

σ1

σ2

σ1

σ2

σ1

σ1

σ2

σ2

σ1

σ2

σ1 σ2 σ1

σ1 σ2 σ2 σ1

σ1 σ2

σ2

σ1

σ2

σ1 σ2

σ1 σ2

σ2

σ1

Figure 5. Modifying the definition of right-reversing so as to make it sym-
metric (left diagram) may lead to a non-terminating process; compare with
usual reversing (right diagram).

not work in every case, and the interest of our approach is not clear yet. The good news
is that there exist nontrivial cases in which the reversing strategy works and, better, there
exist practical criteria for identifying such favorable cases and even forcing initially bad
presentations to become good at the expense of adding some redundant relations.

2.1. Complete presentations. Let (S,R) be a semigroup presentation, and w, w′ be
words in the alphabet S. By construction (or by Lemma 1.6), if w−1w′

yR ε holds, i.e.,
if everything vanishes when R-reversing is applied to w−1w′—we recall that ε denotes the
empty word—then we have w ≡+

R w′. So, in such a case, the reversing strategy is successful
and provides an R-derivation from w to w′. The good case is when the previous implication
is an equivalence, i.e., when reversing always detects equivalence.

Definition 2.1 (complete). A semigroup presentation (S,R) is called complete (with
respect to right-reversing) if, for all words w, w′ in the alphabet S,

(2.1) w ≡+

R w′ implies w−1w′
yR ε.

As recalled above, the converse of (2.1) is always true, so, if (S,R) is complete, (2.1) is
actually an equivalence.

Example 2.2. Our favourite presentation, namely that of Example 1.2, is certainly not
complete: we have seen that the words acaaa and cdbbb are equivalent, but that the revers-
ing strategy fails to find a van Kampen diagram for this pair of words: (acaaa)−1(cdbbb)
does not reverse to the empty word. So (2.1) fails for these words.

Remark 2.3. If we start with a finite presentation (S,R) and every R-reversing sequence
is finite, then completeness implies the solvability of the word problem for 〈S | R〉+. Indeed,
w ≡+

R w′ is then equivalent to w−1w′
yR ε, and the latter can be decided by exhaustively

constructing all R-reversing sequences from w−1w′ and checking whether the empty word
occurs. But, if there exist infinite R-reversing sequences, we may be unable to decide whether
w−1w′ reverses to the empty word, and, therefore, to possibly prove that two words w, w′

are not R-equivalent. In this case, even if the presentation is complete, we need not obtain a
solution to the associated word problem: completeness and solvability of the word problem
are different questions—see Section 3.3 below.

It is easy to see that complete presentations always exist: for every monoid M with
no nontrivial invertible element, the full presentation consisting of a generator x for each
element x of M and a list of all relations x y = z for x, y, z satisfying xy = z in M is complete.
But this result is useless: in most cases, our aim is to investigate a (not yet known) monoid
starting from a presentation, in particular to solve the word problem, whereas writing the
above full presentation would require a prior solution to that word problem. Moreover, we



THE SUBWORD REVERSING METHOD 11

shall mainly be interested in complete presentations that are as small (finite) as possible,
which is rarely the case for a full presentation.

In this context, the three natural problems are:

Question 2.4. (i) How to recognize completeness?
(ii) What to do with a non-complete presentation?
(iii) What to do with a complete presentation?

As can be expected, the answer to Question 2.4(ii) will be: try to make the presentation
complete, whereas the answer to Question 2.4(iii) will be: prove properties of the monoid.

Before addressing these questions, we mention an alternative definition of completeness.

Lemma 2.5. A semigroup presentation (S,R) is complete if and only if, for all u, v, u′, v′

in S∗ satisfying uv′ ≡+

R vu′, there exist u′′, v′′, w in S∗ satisfying u−1v yR v′′u′′−1,
u′ ≡+

R u′′w, and v′ ≡+

R v′′w.

Roughly speaking, completeness holds if every common right-multiple relation factors
through a reversing. The equivalence with Definition 2.1 is easily established.

2.2. The cube condition. As for Question 2.4(i), there exists a satisfactory answer, or,
actually, several satisfactory answers covering various cases. The key notion is as follows.

Definition 2.6 (cube condition). Assume that (S,R) is a semigroup presentation, and
u, u′, u′′ are words in the alphabet S. We say that (S,R) satisfies the cube condition
for (u, u′, u′′) if

(2.2) u−1u′′u′′−1u′
yR v′v−1 implies (uv′)−1(vu′) yR ε.

For X included in S∗, we say that (S,R) satisfies the cube condition on X if it satisfies the
cube condition for every triple (u, u′, u′′) with u, u′, u′′ in X .

Pictorially, (2.2) means that
yu

u′′

u′′

u′

v′

v implies y

u

v′

u′ v

.

We insist that what (2.2) says is that, for each reversing sequence starting from u−1u′′u′′−1u′

and terminating in a positive–negative word v′v−1, we have (uv′)−1(vu′) yR ε. So, in par-
ticular, if there is no such sequence—for instance because every sequence is infinite, or
because the sequences get stuck by lack of a relation—then the cube condition is vacuously
true.

The cube condition is called so because it expresses that, if we start with three edges
labeled u, u′, u′′ in a three-dimensional space and construct three reversing diagrams, re-
spectively from (u, u′′), (u′′, u), and from the two edges extending u′′—thus making three
faces of a cube—then there is a way to complete that cube with reversing diagrams as shown
in Figure 6.

The following is easy.

Proposition 2.7. A semigroup presentation (S,R) is complete with respect to right-reversing
if and only if it satisfies the cube condition on S∗.

Proof (sketch). Assume u−1u′′u′′−1u′
yR v′v−1. Using Lemma 1.6, one easily sees that the

words uv′ and vu′ are R-equivalent. So, if (S,R) is complete, we must have (uv′)−1(u′v) yR

ε, and the cube condition is satisfied for (u, u′, u′′).
Conversely, consider the binary relation u−1u′

yR ε on S∗. This relation contains all
relations of R and, by Lemma 1.6, it is included in ≡+

R. Now, by definition, ≡+

R is the smallest
congruence that contains all relations of R. So, in order to prove that u−1u′

yR ε coincides
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u
u′′

u′

Figure 6. The cube condition: whichever the way of drawing three faces of
a cube using reversing diagrams, one can complete the cube using reversing
diagrams as shown.

with ≡+

R, it suffices to prove that u−1u′
yR ε is itself a congruence. All required properties

are easy, except transitivity. Now assume u−1u′′
yR ε and u′′−1u′

yR ε. Then we have
u−1u′′u′′−1u′

yR ε, so, if (2.2) holds for the triple (u, u′, u′′), we deduce u−1u′
yR ε, the

desired transitivity. �

What was introduced in Definition 2.6 is the right cube condition, which is relevant for
right-reversing. Of course, a symmetric left cube condition is relevant for left-reversing.

2.3. Homogeneous presentations. As it stands, the completeness criterion of Proposi-
tion 2.9 is useless, as checking the cube condition for all triples of words is not feasible.
Fortunately a much more tractable criterion is available whenever a mild additional hypoth-
esis is satisfied, namely a noetherianity condition that prevents a given word to be equivalent
to words of unbounded lengths.

Definition 2.8 (homogeneous). A semigroup presentation (S,R) is said to be (left)-
homogeneous if there exists an ≡+

R-invariant mapping λ of S∗ to ordinals satisfying, for
every letter s in S and every word w in S∗,

(2.3) λ(sw) > λ(w).

The mapping λ should be seen as a (weak) length function on the monoid 〈S | R〉+.
In usual cases, it can be assumed to take values in natural numbers, which are particular
ordinals. A typical case is when all relations in R preserve the length of words, i.e., they
have the form v′ = v where v′ and v have the same length: then the length function is ≡+

R-
invariant and (2.3) is trivially satisfied. Saying that a presentation (S,R) is homogeneous
(with a witness-function with values in N) is equivalent to saying that the monoid 〈S | R〉+

satisfies the condition (ii) of Theorems 1, 2, and 3 of the introduction.
The main result is as follows.

Proposition 2.9. [20] Assume that (S,R) is a homogeneous semigroup presentation. Then
(S,R) is complete if and only if it satisfies the cube condition on S.

The proof is a rather delicate induction involving the function λ provided by the homo-
geneity assumption. The benefit with respect to Proposition 2.9 is clear: with the criterion of
Proposition 2.9, it is enough to check the cube condition for triples of letters. In particular,
in the case of a finite presentation, only finitely many triples have to be considered.

Example 2.10. The presentation of Example 1.2 is homogeneous. Indeed, all relations are
of the form v = v′ where v and v′ have length two, so the length function can be used
as the desired function λ. It is easy to check that the cube condition is satisfied for most
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triples of letters. For instance, consider the triple (a, b, c). Then AbBc reverses to bA and
to dbAA—we recall that, in examples, we use A for a−1, etc. So checking the cube condition
for (a, b, c) means checking that both (a · b)−1(c · a) and (a · db)−1(c · aa), i.e., BAca and
BDAcaa, reverse to the empty word, which is the case indeed. On the other hand, we know
that the presentation is not complete, so the cube condition must fail for some triple of
letters. Actually it fails for (c, d, a). Indeed, CaAd reverses to aaBB. Now AACdbb does not
reverse to the empty word: as there is no relation c... = d... in the presentation, this word
reverses to no word but itself and, therefore, the cube condition fails for (c, d, a).

Many important families of semigroup presentations turn out to be complete with respect
to subword reversing. This is the case in particular for all Artin–Tits presentations, which
are those presentations in which all relations take the form

(2.4) ss′ss′... = s′ss′s...

with both sides of the same length. Artin’s presentation of the braid groups, which involve
such relations with words of length 2 and 3, are typical examples (see Example 3.16). It is
an interesting exercise to check the cube condition for a triple of letters pairwise connected
by relations of the type (2.4).

2.4. Completion. When we start with a semigroup presentation (S,R) that turns out to
be complete, then we are in the optimal case and the monoid 〈S | R〉+ is directly eligible
for the results explained in Section 3 below.

However, even if the initial presentation (S,R) is not complete, typically, if the cube
condition turns out to fail for some triple of letters, as in the case of Example 2.10, then using
subword reversing is not completely impossible. Indeed, assume that the cube condition
fails for some triple (s, s′, s′′). This means that we found words v, v′ such that s−1s′′s′′−1s′

reverses to v′v−1, but (sv′)−1(s′v) does not reverse to the empty word. Now, in this case, we
have sv′ ≡+

R s′v, and sv′ and s′v are R-equivalent words whose equivalence is not detected

by reversing. Let R̂ be obtained by adding the relation sv′ = s′v to R. As sv′ ≡+

R s′v holds,

the new relation is redundant, and the monoid 〈S | R̂〉+ coincides with 〈S | R〉+. On the

other hand, by construction, the word (sv′)−1(sv′) is R̂-reversible to the empty word, as

shows the R̂-reversing sequence

v′−1s−1s′v y v′−1v′v−1v y v′−1v′ y ε.

In this way, we obtained a new presentation (S, R̂) of the same monoid, and we can check
the cube condition for it. Notice that, as a new relation has been added, new possibilities
of reversing have been added and the previously checked cases must be revisited.

In this way we obtain an iterative completion procedure that consists in adding redundant
relations to the presentation. Two cases are possible. The good case is when one obtains a
complete presentation after finitely many completion steps, in which case subword reversing
is useful for investigating the considered monoid. The bad case is when the completion
never comes to an end and leads to larger and larger presentations, in which case subword
reversing is likely to be of no use.

Example 2.11. Returning to the case of Example 2.10, we saw that the cube condition
fails for (c, d, a), as it leads to the equivalence caa ≡+

dbb, which is not detected by re-
versing. According to the general principle, adding the relation caa = dbb provides a new
presentation of the same monoid. By construction, the new presentation is homogeneous
(with the same witnessing pseudolength function), and we check again the cube condition
for all triples of letters. For instance, with respect to the initial presentation, the word AcCd

reverses to no word of the form v′v−1 with v, v′ positive, so the cube condition for (a, d, c) is
vacuously true. With the completed presentation, AcCd reverses to baBB, and we can check
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that ABAdbb reverses to the empty word, so the cube condition is satisfied for that triple. It
turns out that it is satisfied for all triple of letters and, therefore, the completed presentation

(a, b, c, d | ab = bc = ca, ba = db = ad, caa = dbb)

is complete. When we revisit with this extended presentation the equivalent words of Ex-
ample 1.2, then, as expected, we are no longer stuck after five reversing steps and we finally
obtain a van Kampen diagram witnessing the equivalence of the initial words, as expected
(see Figure 7).

b

b

b

d

c

a c a a a

b a

a c
d

a

a

b b b

Figure 7. After adding the (redundant) relation caa = dbb to the presenta-
tion, we can extend the reversing diagram of Figure 4. We finish with dotted
arcs everywhere, thus obtaining a van Kampen diagram witnessing that the
initial words are equivalent.

Remark 2.12. Several other algorithmic methods consist of investigating a presented
monoid by iteratively adding redundant relations so as to satisfy certain completeness con-
ditions, and it is natural to look for possible connections with the current completion. A
typical case is that of the Gröbner–Shirshov bases. Apart from some isolated examples,
it turns out that the reversing completion and the Gröbner–Shirshov completion are unre-
lated in general (the reversing completion being much smaller in most cases) [3]. As for
the Knuth–Bendix completion, it is defined in a framework of oriented rewrite rules, so a
comparison does not really make sense.

2.5. The case of complemented presentations. So far, we made no restriction about
the number of relations in the considered presentations. When we add such restrictions,
things may become more simple and new completeness criteria appear.

Definition 2.13 (complemented). A semigroup presentation (S,R) is called (right)-
complemented if, for each s in S, there is no relation s... = s... in R and, for s, s′ distinct
in S, there is at most one relation s ... = s′ ... in R.

For instance, the presentation of Example 1.2 is not complemented: it contains two rela-
tions of the form a... = b..., namely ab = bc and ad = ba. Note that the completion process
of Section 2.4 can delete the possible complemented character of the initial presentation: for
instance, starting with the complemented presentation (a, b, c | ac = ca, bc = cb, ab = bac)
of the Heisenberg monoid, the completion process leads to adding the relation ab = cba,
thus yielding a non-complemeneted presentation with two relations a... = b... [20].

For a complemented presentation, reversing is a deterministic process: at each step, at
most one relation is eligible, and, therefore, for every initial signed word w, only one reversing
diagram can be constructed from w—but several reversing sequences may start from w as
there may be several ways of enumerating the tiles of the reversing diagram.

In such a framework, a binary operation on (positive) words is naturally associated with
reversing.
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Definition 2.14 (complement). For (S,R) a complemented semigroup presentation and
w, w′ in S∗, the R-complement of w′ in w, denoted w\Rw′ or, simply, w\w′, (“w under
w′”), is the unique word v′ of S∗ such that w−1w′ reverses to v′v−1 for some v in S∗, if such
a word exists.

The symmetry of reversing guarantees that, if w\w′ exists, then so does w′\w and, in
this case, w−1w′ reverses to (w\w′)(w′\w)−1. So w\w′ and w′\w are the last two sides of
the reversing rectangle built on w and w′, when the latter exists, i.e., when the (unique)
maximal R-reversing sequence from w−1w′ is finite:

w

w′

yR w′\
R

w .

w\
R

w′

It is then easy to restate the cube condition as an algebraic condition satisfied by the
complement operation.

Proposition 2.15. [20] Assume that (S,R) is a complemented semigroup presentation.
Then, for all words u, u′, u′′ in S∗, the following are equivalent:

(i) (S,R) satisfies the cube condition on {u, u′, u′′};
(ii) either ((u\u′)\(u\u′′))\((u′\u)\(u′\u′′))) is the empty word or it is undefined, and

the same holds for all permutations of u, u′, u′′.
(iii) either (u\u′)\(u\u′′) and (u′\u)\(u′\u′′)) are R-equivalent or they are not defined,

and the same holds for all permutations of u, u′, u′′.

The equivalence of (i) and (ii) is an amusing application of the statement of the cube
condition in a complemented framework, and it requires to simultaneously consider the
triples (u, u′, u′′), (u′, u′′, u), and (u′′, u, u′). The sufficiency of (iii) is slightly more delicate
to establish.

It may be noted that, in the complemented context, the cube of Figure 6 takes the more
simple—and more cube-like—form displayed in Figure 8.

u
u′′

u′

ε
ε

ε

u

u′

u′′

ε

ε

ε

Figure 8. The cube condition in a complemented context: when we draw
the six faces of the cube, then reversing the three small triangular sectors leads
to empty words everywhere, and the cube closes (left diagram); equivalently,
starting from three edges, we use reversing to close three faces, and then repeat
the process twice: at the end, everything vanishes (right diagram).

Example 2.16. As it is not complemented, our preferred example, namely the presentation
of Example 1.2, is not eligible for the criterion of Proposition 2.15. But all Artin–Tits
presentations, which involve relations of the form (2.4), are eligible, and the criterion applies.
For instance, it is an easy exercise to check that, for all values of the indices i, j, k, the
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braid words (σi\σj)\(σi\σk) and (σj\σi)\(σj\σk) are equivalent (due to the symmetries of the
braid relations, only three cases are to be considered, acoording to whether the indices are
neighbors or not).

For a presentation that is both homogeneous and complemented, the completeness crite-
rion of Proposition 2.9 applies, and it can be restated using the equivalent forms of Propo-
sition 2.15. However, an alternative criterion also exists in the complemented case, which is
valid even for a non-homogeneous presentation.

Proposition 2.17. [19] Assume that (S,R) is a complemented semigroup presentation, and

Ŝ is a subset of S∗ that includes S and is closed under complement, in the sense that, for

all w, w′ in Ŝ, the word w\w′ lies in Ŝ whenever it exists. Then (S,R) is complete if and

only if it satisfies the cube condition on Ŝ.

Thus, in the complemented case, checking the cube condition not only on letters, but
also on the closure of letters under complement enables one to forget about the homogeneity
condition, which may be uneasy to establish (in terms of complexity hierarchies, this is a
complete Π1

1-condition, hence far from decidable).

Remark 2.18. We do not claim that the criteria of Propositions 2.9 and 2.17 are optimal,
but it seems difficult to extend them much. In particular, all hypotheses are significant. For
instance, (a, b, c | a = b

2
c, ba = c, ca = c) is an example of a complemented presentation for

which the cube condition holds for each triple of letters and there exists a finite set of words

that is closed under complement, namely Ŝ = {a, b, c, ε, bc}. Nevertheless the presentation
is incomplete: a and bca

2 are equivalent words but Abca
2 reverses to a

3 and not to ε.
This is compatible with the above criteria, since the presentation is not homogeneous (a3 is

equivalent to the empty word), and the cube condition fails for (a, bc, c), a triple from Ŝ.

We conclude this section with an alternative characterization of completeness (but one
that leads to no practical criterion) involving the operation \

R
of Definition 2.14.

Proposition 2.19. A complemented presentation (S,R) is complete if and only if \R is
compatible with ≡+

R, i.e., the conjunction of u′ ≡+

R u and v′ ≡+

R v implies u′\
R

v′ ≡+

R u\
R

v,
this meaning that either the two expressions exist and are equivalent, or that neither exists.

One implication is specially simple: by construction, w\
R

w = ε always holds, so, if \
R

is
compatible with ≡+

R, then w′ ≡+

R w implies w′\
R

w = w\
R

w′ = ε, because ε is ≡+

R-equivalent
to no nonempty word, and this means that w−1w′ reverses to ε.

No extension of Proposition 2.19 to the non-complemented case is known.

3. Subword reversing: uses

We now turn to the uses of subword reversing. So, here, we assume that we have a com-
plete semigroup presentation (S,R), and explain which properties of the monoid 〈S | R〉+ or
of the group 〈S | R〉 can be established. The general philosophy is that, when a presentation
is complete, several properties that are difficult to prove in general become easy to read, the
most important one being cancellativity.

The successive topics addressed in this section are: proving cancellativity, proving the
existence of least common multiples, solving the word problems, recognizing and working
in Garside monoids, obtaining minimal fractionary decompositions, and, finally, proving
embeddability of a monoid in a group.

3.1. A cancellativity criterion. Recognizing whether a presented monoid admits cancel-
lation5 is a difficult question. A well-known criterion of Adyan [1], see also [43], is often

5i.e., whether xy = xz or yx = zx implies y = z (respectively, left- and right-cancellativity)
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useful, but it is valid only for those presentations (S,R) in which there is no cycle for the
binary relation on S that connects two letters s, s′ if there is a relation s... = s′... in R. In
particular, the criterion is not valid whenever there exists a pair of letters with at least two
relations s... = s′..., or a triple of letters with at least one relation s... = s′... for each pair.
By contrast, whenever we have a complete presentation—hence in a context where there are
often many relations—we have the following very simple criterion.

Proposition 3.1. [20] Assume that (S,R) is a complete semigroup presentation. Then the
monoid 〈S | R〉+ is left-cancellative if and only if v−1v′ yR ε holds for each relation of the
form sv = sv′ in R. In particular, a sufficient condition for 〈S | R〉+ to be left-cancellative
is that there is no relation of the form sv = sv′ in R.

Proof (in the particular case when there is no relation sv = sv′ in R). Assume sw ≡+

R sw′.
We want to prove w ≡+

R w′. The completeness of (S,R) implies (sw)−1(sw′) yR ε, i.e.,
there exists a sequence

w−1s−1sw′
y

1 ... y
1 ... y

1 ε.

Now the first step in the above reversing sequence must be w−1s−1sw′
y w−1w′, since there

is no other possibility. But then the sequel of the sequence witnesses that w−1w′ reverses
to the empty word, hence implies that w and w′ are R-equivalent, see Figure 9.

The proof in the general case is similar, hardly more delicate. �

s

w

s w′

Figure 9. Left-cancellativity: the assumption that (sw)−1(sw′) reverses to
the empty word implies that w−1w′ reverses to the empty word, since the first
step must consist in deleting s−1s.

Example 3.2. The criterion of Proposition 3.1 applies to the monoid M of Example 1.2.
Indeed, we saw in Example 2.11 that

(a, b, c, d | ab = bc = ca, ba = db = ad, caa = dbb)

is a complete presentation for M . This presentation contains no relation of the form s... =
s..., so the criterion implies that M is left-cancellative. Note that Adyan’s criterion applies
neither to the above presentation, nor to the initially considered presentation of M .

Question 3.3. How to prove that the monoid M of Examples 1.2 is (left)-cancellative
without using the criterion of Proposition 3.1?

Combining Proposition 3.1 with the completeness criterion of Proposition 2.9 directly
leads to the result stated as Theorem 1 in the general introduction. Also, observing that,
by definition, a complemented presentation contains no relation s... = s..., we deduce

Corollary 3.4. Every monoid that admits a complete complemented presentation is left-
cancellative.

This applies in particular to all Artin–Tits monoids, as first established in [32] in the case
of braid monoids and in [26, 7] in the general case—and, more generally, to a number of
presentations defining Garside monoids (see Section 3.4 below).
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3.2. Existence of least common multiples. The next application involves least common
multiples. We recall that, if M is a monoid, and x, y are elements of M , we say that y is a
right-multiple of x, or, equivalently, that x is a left-divisor of y, if y = xy′ holds for some y′.
As was pointed out above, subword reversing, when it terminates, produces common right-
multiples: assuming that M is 〈S | R〉+ and that w, w′ are two words in the alphabet S,
reversing w−1w′ leads to a word of the form v′v−1 and, in that case, Lemma 1.6 says that
the words wv′ and w′v are R-equivalent, i.e., they represent a common right-multiple of the
elements of M represented by w and w′.

In the same context, we say that an element z of the monoid M is a least common right-
multiple, or right-lcm, of x and y if z is a right-multiple of x and y, and every common
right-multiple of x and y is a right-multiple of z. The following notion has become standard.

Definition 3.5 (local lcm). A monoid M is said to admit local right-lcm’s if any two
elements of M that admit a common right-multiple admit a right-lcm.

In general, it is uneasy to establish that two elements in a presented monoid possibly
admit an lcm, and, therefore, to possibly recognize those monoids that admit local lcm’s.
This becomes easy whenever a complete presentation is known.

Proposition 3.6. [20] Assume that (S,R) is a complete semigroup presentation. Then
a sufficient condition for the monoid 〈S | R〉+ to admit local right-lcm’s is that (S,R) is
complemented (in the sense of Definition 2.13).

Proof (sketch). For w in S∗, let [w] denote the element of the monoid 〈S | R〉+ represented
by w. Let w, w′ belong to S∗ and assume that [w] and [w′] admit a common right-multiple z.
This means that there exist words v, v′ in S∗ such that wv′ and w′v both represent z, hence
are R-equivalent. As the presentation is complete, (wv′)−1(w′v) reverses to the empty word.
A standard argument shows that the reversing diagram can be split into four subdiagrams
as shown in Figure 10. We deduce that w\w′ and w′\w exist and that z is a right-multiple
of the element [w(w\w′)]. By construction, the latter element only depends on [w] and [w′].
So, every common right-multiple of [w] and [w′] is a right-multiple of [w(w\w′)], which is
therefore a right-lcm of [w] and [w′]. �

w

v′

w′ v

w′\w

w\w′

Figure 10. Least common right-multiple: every common right-multiple of the
element represented by the words w and w′ is a right-multiple of the element
represented by w(w\w′) and w′(w′\w).

Combining Proposition 3.6 with the completeness criterion of Proposition 2.9 gives now
the result stated as Theorem 2 in the general introduction.

Example 3.7. The completeness assumption is crucial in Proposition 3.6, as shows the
example of

(3.1) M = 〈a, b, c | aba = b
2, aca = cb, bca = c

2〉+.

Indeed it is easy to see that the relations of (3.1) provide a presentation of Artin’s group
braid group B4—see Example 3.16 below—in terms of the non-standard generators a = σ1,
b = σ2σ1, c = σ3σ2σ1. The above presentation is complemented: for each pair of generators,
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there exists exactly one relation in (3.1) that provides a common right-multiple, and one
might think that right lcm’s exist in M . However this is not the case. Indeed, in M , we
have a · ba = b · b, but also a · c2

b = b · cac, as shows the derivation

ac
2
b = acaca = cbca = c

3 = bcac.

Now, cac cannot be a right-multiple of b in M , since no relation of (3.1) applies to the
word cac and, therefore, the latter cannot be equivalent to a word beginning with the
letter b. So, in M , the elements a and b admit no right-lcm.

The reason for the inapplicability of Proposition 3.6 is that the presentation (3.1) is not
complete. Indeed, the cube condition fails for the triple (a, b, c): the word AcCb reverses
to cacaCAC, and (a · caca)−1(b · cac), i.e., ACACAbcac, reverses to aA, whereas the cube
condition would require that it reverses to the empty word.

Getting a complete presentation for M seems uneasy: after adding the missing relation
acaca = bcac that fixes the previous obstruction, new obstructions appear. For instance,
the cube condition fails for the triple (b, b, a), leading to relations of increasing length. It
turns out that the elements involved in the new relations need not divide the element c

4,
which represent the braid ∆2

4 and might be expected to play the role of a fixed point here.

Question 3.8. Does the monoid of (3.1) admit left-cancellation? Does it embed in its
enveloping group?

Apart from subword reversing, which remains useless as long as no complete presentation
has been identified, no general method seems to be eligible here, and even the above natural
questions seem to be open. (However we conjecture that M is isomorphic to a submonoid
of Artin’s braid group B4 via the mapping a 7→ σ1, b 7→ σ2σ1, and c 7→ σ3σ2σ1.)

3.3. Word problems. The next application of subword reversing involves word problems.
As explained in Remark 2.3, the completeness of (S,R) need not automatically provide a
solution for the word problem of the presented monoid 〈S | R〉+ or (even less) of the presented
group 〈S | R〉, because reversing may never terminate, i.e., there may exist infinite reversing
sequences never reaching any terminal word of the form v′v−1 with v, v′ in S∗.

Example 3.9. Consider the Baumslag–Solitar presentation (a, b | a2
b = ba). Then we find

Bab y aBAb y aBabA,

and it is clear that reversing will never terminate since, starting with a signed word w,
we arrived in two steps at a word that properly includes w. Thus, there exists an infinite
reversing sequence from w that contains longer and longer words.

Similarly, the type Ã2 Artin–Tits presentation

(a, b, c | aba = bab, bcb = cbc, aca = cac)

gives the reversing sequence

Bac y abABc y abAcbCB y abcaCAbCB,

i.e., we go in three steps from a signed word w to a word that admits w
−1 as a proper

subword, whence again an infinite reversing sequence.

We are thus lead to looking for conditions guaranteeing the termination of reversing. First,
we have the following characterization, whose proof is similar to that of Proposition 3.6.

Lemma 3.10. If (S,R) is a complete semigroup presentation, then, for all w, w′ in S∗, at
least one reversing sequence starting from w−1w′ ends with a word of the form v′v−1 with
v, v′ in S∗ if and only if the elements of 〈S | R〉+ represented by w and w′ admit a common
right-multiple.
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However, Lemma 3.10 leads to no practical criterion when we wish to use reversing to
establish properties of a still unknown monoid.

Counter-examples to termination like those of Example 3.9 can occur only when at least
one relation involves a word of length 3 or more. Indeed, otherwise, the length of the signed
words appearing in a reversing sequence does not increase, and termination in guaranteed.
Similar results hold for relations involving words of arbitrary length whenever there exists

a set of words Ŝ that includes the original alphabet S and is closed under reversing in the
sense of Proposition 2.17 (or its extension to a non-complemented context). Indeed, in this

case, the hypothesis means that, in terms of the alphabet Ŝ, every relation involves words
of length at most two. Various results can be established along this line (see [20]), and we
just mention a general one.

Proposition 3.11. [20] Assume that (S,R) is a complete semigroup presentation and there

exists a subset Ŝ of S∗ that includes S and satisfies the conditions

∀u, u′ ∈ Ŝ ∃v, v′ ∈ Ŝ (u−1u′
yR v′v−1),(3.2)

∀u, u′ ∈ Ŝ ∀v, v′ ∈ S∗ (u−1u′
yR v′v−1 ⇒ v, v′ ∈ Ŝ).(3.3)

Then every R-reversing sequence leads in finitely many steps to a positive–negative word. If

Ŝ is finite, then the word problem of the presented monoid 〈S | R〉+ is solvable in exponential
time, and in quadratic time if (S,R) is complemented.

Proof (sketch). As shown in Figure 12, the general form of (the diagram associated with) a
signed word w on the alphabet S ∪ S−1 is a staircase whose elementary edges belong to S,

hence to Ŝ. Then Condition (3.3) implies that every reversing diagram from w splits into

a rectangular grid all of which edges belong to Ŝ, whereas Condition (3.2) guarantees that
at least one such grid exists. If the initial word contains p letters of S and q letters of S−1,

the grid contains at most pq squares. If Ŝ is finite, there exist only a finite number of such
squares and, therefore, one complete diagram can be constructed in time bounded by O(pq).

In order to solve the word problem of the presented monoid 〈S | R〉+, starting with two
words u, u′ in the alphabet S, one has to reverse in all possible ways u−1u′ and look whether
at least one reversing leads to the empty word. Each reversing requires a quadratic amount
of time, but there may be exponentially many diagrams and the resulting time upper bound
is exponential.

If the presentation is complemented, then there is only one reversing diagram, and, there-
fore, the overall procedure requires quadratic time only. �

w

∈ bS ∈ bS

∈ bS

∈ bS
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Figure 11. Termination of subword reversing in Proposition 3.11: every edge

in the rectangular grid belongs to the subset Ŝ, so the length cannot explode
and one reaches a positive–negative word v′v−1 in finitely many steps, actually
in O(pq) steps where p (resp. q) is the number of positive (resp. negative)
letters in the initial signed word.
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Note that, if (S,R) is a complemented presentation, then (3.2) and (3.3) simply mean

that Ŝ is closed under complement in the sense that, for all u, u′ in Ŝ, the words u\u′

and u′\u exist and belong to Ŝ.

Corollary 3.12. Under the hypotheses of Proposition 3.11, and if, in addition, the monoid
〈S | R〉+ is right-cancellative, the word problem of the presented group 〈S | R〉 is solvable
in exponential time (quadratic time of the presentation is complemented), and the group
satisfies a quadratic isoperimetric inequality.

Proof. Under the current assumptions, the monoid 〈S | R〉+ is cancellative and any two
elements admit a common right-multiple. So Ore’s conditions are satisfied, and the monoid
〈S | R〉+ embeds in the group 〈S | R〉, which is a group of fractions [10]. Let w be a signed
word in the alphabet S ∪ S−1. Then w reverses to some positive–negative word v′v−1, so,
using ≡R for the group equivalence, we have

w ≡R ε ⇔ v′v−1 ≡R ε ⇔ v ≡R v′ ⇔ v ≡+

R v′ ⇔ v−1v′ yR ε.

This shows that the word problem of 〈S | R〉 can be solved using a double reversing: first
reverse w to v′v−1, then switch the factors into v−1v′ and reverse again; then w represents 1
in 〈S | R〉 if and only if the second reversing yields the empty word, see Figures 12 and 13. �

w

v

v′

v′

u′

uyR yR

Figure 12. Solving the word problem of the presented group 〈S | R〉 by a
double reversing: starting from w, a first reversing leads to v′v−1; then copy
v−1 in front of v′ and reverse again: the word w represents 1 if and only if the
words u and u′ are empty.

w

v

v′

Figure 13. Corollary 3.12 viewed as a method for constructing a van Kampen
diagram by a double reversing: starting from w, the first reversing amounts to
filling the space between the outer path w and a positive–negative word v′v−1,
the second reversing amounts to filling the inner space between v and v′.

Restricting to a complemented presentation, and resorting to the counterpart of Propo-
sition 3.1 for establishing right-cancellativity, we deduce the result stated as Theorem 3 in
the introduction.
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Example 3.13. Returning once more to the presentation of Example 1.2, one easily checks

that Proposition 3.11 applies with Ŝ = {ε, a, b, c, d, a2, ab, ba, b2}. So we deduce that every
reversing sequence ends after finitely many steps with a positive–negative word. Thus we
obtain a solution for the word problem of the monoid M . We saw in Example 3.2 that M is
left-cancellative. Because of the symmetry of the presentation, M is also right-cancellative.
So Ore’s conditions are satisfied, and we deduce that M embeds in a group of fractions,
whose word problem can be solved by the double reversing process of Corollary 3.12. (It
turns out that the involved group of fractions is Artin’s 3-strand braid group B3.)

Remark 3.14. If the set Ŝ involved in Proposition 3.11 is infinite, which certainly happens
if S itself is infinite, then no obvious upper bound exists on the length of the reversing
sequences. In [18, Chapter VIII], there is an example where S is infinite, and the only
known upper bound for the length of a reversing sequence starting from w−1w′ where w, w′

are words of length ℓ (with respect to the alphabet S) is a tower of exponentials whose
height is itself exponential in ℓ.

3.4. Garside structures. In the recent years, there has been an increasing interest in
a particular class of algebraic structures generically called Garside structures, see for in-
stance [6, 9, 24, 22, 27, 38, 40, 42]. Several versions exist, but, in this survey, we shall only
mention Garside monoids and Garside groups. Our point here is that subword reversing
is a useful tool both for recognizing that a presented monoid is a Garside monoid, and for
computing in a Garside monoid once one knows it is.

Definition 3.15 (Garside). [19] A monoid M is called Garside if it is cancellative, it
contains no invertible element except 1, any two elements admit a left- and a right-lcm and
gcd, and there exists an element ∆ of M such that the left- and right-divisors of ∆ coincide,
generate M , and are finite in number.

An element ∆ satisfying the above conditions is called a Garside element. By definition,
a Garside monoid satisfies Ore’s conditions, so it embeds in a group of fractions. A group G
is called Garside if it is the group of fractions of at least one Garside monoid. The main
point about Garside groups and monoids is that the whole structure is fully controlled by
the finite lattice consisting of the (left and right) divisors of the Garside element ∆.

Example 3.16. The seminal example of a Garside group is the group Bn of n-strand braids.
For n > 2, the group Bn admits the presentation

(3.4)

〈
σ1, ..., σn−1

∣∣∣∣
σiσj = σjσi for |i − j| > 2

σiσjσi = σjσiσj for |i − j| = 1

〉
.

A Garside monoid of which Bn is a group of fractions is the submonoid B+++

n of Bn generated
by the elements σ1, ..., σn−1, a Garside element being the so-called fundamental braid ∆n

defined by ∆1 = 1 and ∆n = ∆n−1σn−1...σ2σ1. The lattice of the divisors of ∆n in B+++

n turns
out to be isomorphic to the symmetric group Sn equipped with the weak order [29, Chapter
IX]—see Figure 14.

1

∆4

Figure 14. The 24-element lattice that controls the Garside structure of the
monoid B+++

4 , topologically a 2-sphere.
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Recognizing Garside structures. Every Garside monoid (hence every Garside group)
admits presentations that are eligible for subword reversing.

Lemma 3.17. [24] Every Garside monoid admits a presentation that is complemented and
complete with respect to right reversing.

Proof (sketch). Every Garside monoid admits a smallest generating subset, namely the fam-
ily of its atoms (elements x such that x = yz implies y = 1 or z = 1). One obtains a presen-
tation of the expected type by selecting, for each pair of atoms (s, s′), a relation sv′ = s′v
such that sv′ and s′v represent the right-lcm of s and s′. (Such a presentation can naturally
be called an lcm-presentation.) �

It follows from Lemma 3.17 that, when addressing the question of recognizing Garside
monoids from a presentation, it is natural to concentrate on complemented presentations.
As for left-cancellation and right-lcm’s, the criteria of Propositions 3.1 and 3.6 are relevant,
and so are their symmetric counterparts involving the left-reversing procedure of Section 1.4
for right-cancellation and left-lcm’s. As for identifying Garside elements, subword reversing
still turns out to be suitable. Indeed, when it exists, the least Garside element that is a
multiple of the considered generators S is represented by the longest element in the smallest
set of words that includes S and is closed under the complement and right-lcm operations
(Definition 2.14). We refer to [19] for details.

Remark 3.18. Recognizing a Garside structure, as well as applying Proposition 3.11, or
its application Proposition 3, requires checking a number of conditions. In practice, it may
be convenient to work with several presentations of the considered monoid simultaneously,
and to appeal to the most convenient one for checking each condition. For instance, in the
case of a Garside monoid, a presentation in terms of the atoms is likely to be homogeneous,
whereas a presentation in terms of the divisors of a Garside element (“simple elements”)
may be more suitable for proving the existence of common multiples.

Working in a Garside structure. The second family of problems consists in investigating
a monoid 〈S | R〉+ once one knows that this monoid is Garside and that (S,R) is a complete
complemented presentation. A typical question is to solve the word problem (for the monoid
or for the group): here Proposition 3.11 and Corollary 3.12 are relevant, since the required
hypotheses are necessarily satisfied. Another question is to practically compute the lattice
operations associated with the Garside structure, namely the (right)-lcm and the (left)-gcd.
As for the right-lcm, Proposition 3.6 provides a solution, by means of one reversing. As
for the left-gcd, it is easy to show that it can be similarly computed by means of a triple
reversing, as will be explained in Corollary 3.22 below.

Another application is the possibility of using subword reversing to compute the greedy
normal form. The latter is a distinguished decomposition of every element into a product
of divisors of the considered Garside element.

Definition 3.19 (normal sequence). [28, 2, 29] Assume that M is a Garside monoid
with specified Garside element ∆. A sequence (x1, ..., xp) of divisors of ∆ is called (right)-
normal if x1 is not 1 and, for each i, the element xi is the maximal divisor of ∆ that
right-divides x1...xi.

6

Every nontrivial element in a Garside monoid admits a unique normal decomposition,
a significant result that largely explains the interest in Garside monoids as it entails nice
geometric properties for the monoid and the associated group of fractions (automaticity,
isoperimetric inequality, ...). Our point here is that subword reversing is closely connected
with the computation of the normal form.

6one says that x right-divides y if y = y
′
x holds for some y

′
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Proposition 3.20. [23] Assume that 〈S | R〉+ is a Garside monoid, that (u1, ..., up) is a
sequence of words in S∗ that represents the normal decomposition of some element x, and
that v is a word of S∗ that represents a simple element y left-dividing x. Then the normal
form for y−1x is represented by the sequence (u′

1, ..., u
′
p) inductively determined by v0 = v

and v−1
i−1ui yR u′

iv
−1
i (see Figure 15).

u1 u2 up

u′
1 u′

2 u′
p

v0 v1 v2 vp−1 vp
...

...

y y y

Figure 15. Computation of the normal form by a sequence of reversings.

So computing the normal form of y−1x from that of x reduces to a sequence of reversings.
Computing the normal form of a product easily follows, as multiplying by y amounts to
multiplying by ∆ and dividing by y−1∆, where ∆ is a fixed Garside element. As multiplying
by ∆ is easy, Proposition 3.20 is really the point for computing a normal form.

A further application of Proposition 3.20 is the computation of the homology of a Gar-
side monoid M (and of its group of fractions) by using reversing to construct an effective
resolution of Z by free ZM -modules—see [23], as well as the related papers [44] and [8].

3.5. Fractionary decompositions. The next result combines right- and left-reversings to
obtain short fractionary decompositions in a group of fractions.

If (S,R) is a presentation which is complemented and such that every reversing sequence
is finite, then, for each word w in the alphabet S ∪ S−1, there exist two unique positive
words NR(w) and DR(w)—like “right-numerator” and “right-denominator”—such that w

reverses to NR(w)DR(w)−1. These functions make sense at the level of words, but, even
when the completeness condition is satisfied, they induce no well defined functions at the
level of the presented group 〈S | R〉: if w, w′ represent the same element of 〈S | R〉, it
need not be the case that NR(w) and NR(w′) are equal, or even equivalent. For instance,
if s is a letter of S, the words ss−1 and ε both represent 1, but we have NR(ss−1) = s and
NR(ε) = ε, and, in general, s does not represent 1. This unpleasant phenomenon disappears
when both left- and right-reversings are combined.

Proposition 3.21 ([15] in the particular case of braids). Assume that (S,R) is a presenta-
tion that is left- and right-complemented, left- and right-complete, and, moreover, such that
every left- or right-reversing sequence is finite. Let M = 〈S | R〉+ and G = 〈S | R〉.

(i) For w a signed word in the alphabet S ∪S−1, let N(w) and D(w) denote the positive
words such that NR(w)DR(w)−1 left-reverses to D(w)−1N(w). Then N and D induce well
defined mappings of G to M .

(ii) For each signed word w representing in G a fraction x−1x′ with x, x′ in M , the class
of D(w) in M left-divides x and the class of N(w) in M left-divides x′.

Under the above hypotheses, every element of the group G is a fraction x−1x′ with x, x′

in M . As D(w)−1N(w) is the result of reversing w to the right, and then the result to
the left, what Proposition 3.21 says is that a double reversing process leads to a fractionary
decomposition which is minimal among all possible fractionary decompositions in G.

Proof (sketch). If two signed words w, w′ in the alphabet S ∪ S−1 satisfy

(3.5) ∃v, v′ ∈ S∗
(

NR(w)v ≡+

R NR(w′)v′ and DR(w)v ≡+

R DR(w′)v′
)
,

then, clearly, w and w
′ represent the same element of the group G. Conversely, the relation

defined by (3.5) can be proved to be an equivalence relation on (S ∪ S−1)∗ that is compat-
ible with left- and right-multiplication. As it includes R, it must include the congruence
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generated by R and, therefore, any two signed words w, w′ representing the same element
of G satisfy (3.5) (See [20, Proposition 7.3] for a general form of this result.)

Assume that w, w′ represent the same element of G. Then (3.5) holds. Now, if NR(w)v ≡+

R

NR(w′)v′ and DR(w)v ≡+

R DR(w′)v′ hold, then, by definition of left-reversing, and using NL

for the left-numerator, the counterpart of the right-numerator involving left-reversing, we
have the positive word equivalences

N(w) = NL(NR(w)DR(w)−1) = NL(NR(w)vv−1DR(w)−1)

≡+

R NL(NR(w′)v′v′
−1

DR(w′)−1) = NL(NR(w′)DR(w′)−1) = N(w′),

and a similar relation for denominators. This proves (i).
For (ii), assume that x, x′ lie in M and the signed word w represents x−1x′. Let

u, u′ be words in the alphabet S that represent x and x′, respectively. Then u−1u′ and
NR(w)DR(w)−1 both represent x−1x′, hence uNR(w) and u′DR(w) represent the same el-
ement of G. The hypotheses imply that M embeds in G, so that uNR(w) and u′DR(w)
also represent the same element of M . In other words, we have uNR(w) ≡+

R u′DR(w). By
definition of left-completeness, this implies that u is a left-multiple of DL(NR(w)DR(w)−1),
i.e., of D(w), and that u′ is a left-multiple (with the same quotient) of NL(NR(w)DR(w)−1),
i.e., of N(w). �

Corollary 3.22. Under the assumptions of Proposition 3.21, the left-gcd of two elements x, x′

of M represented by two words u, u′ is determined by the following algorithm: right-reverse
u−1u′ to v′v−1, then left-reverse v′v−1 to w−1w′; finally, left-reverse uw−1 to w−1

∗ u∗. Then
w∗ must be empty, and u∗ represents the left-gcd of x and x′.

Proof. With the notation of Proposition 3.21, we have w = D(u−1u′) and w′ = N(u−1u′).
Proposition 3.21 says that, in the monoid M , the class of u is a left-multiple of the class of w,
the class of u′ is a left-multiple of the class of w′, and that the classes of w and w′ admit no
nontrivial common left-divisor. It follows that the left-gcd of the classes of u and u′ is the
class of uw−1 (and of u′w′−1). By construction, this is the class of u∗. �

Always in the context of Proposition 3.21, we have two different ways of solving the
word problem of the presented monoid 〈S | R〉+, one using right-reversing, and one using
left-reversing. Indeed, for all words w, w′ of S∗, we have

(3.6) w ≡+

R w′ ⇔ w−1w′
yR ε ⇔ w′w−1 x

R ε.

Associated with these two options are two7 methods for solving the word problem of the
presented group 〈S | R〉: having to consider a signed word w, we first right-reverse it
to NR(w)DR(w)−1 but, then, in Proposition 3.11, we switch the factors and right-reverse
DR(w)−1NR(w), whereas, in Proposition 3.21, we keep the word and left-reverse it. In the
context of Figure 13, the two methods correspond to filling the small inner domain from left
to right, or from right to left. In both cases, the criterion is that w represents 1 if and only
if the final word is empty. But the involved final words need not be the same, although they
always represent conjugate elements. This leads to the following

Question 3.23. Assume that (S,R) is a complete complemented semigroup presentation.
Define Φ : S∗ × S∗ → S∗ × S∗ by Φ(u, v) = (DR(u−1v), NR(u−1v)). Is every Φ-orbit
necessarily finite?

Experiments suggest a positive answer, at least in the case of braids. If true, this property
might be connected with the specific properties of braid conjugacy [30, 33, 34].

7actually four as we may also begin with left-reversing
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Remark 3.24. We already insisted that the left-reversing relation

x

is not the inverse of the
right-reversing relation y. However, it may happen that, starting from a negative–positive
word u−1u′, right-reversing leads to a positive–negative word v′v−1, from which left-reversing
leads back to the initial word u−1u′. But, even in the case of such reversible reversings, it
need not be true that every word that can be reached from u−1u′ by right-reversing can be
reached from v′v−1 by left-reversing, and vice versa. Here is a counter-example in the braid
group B4. We have

σ−1
3 σ−1

1 σ2σ3 y σ2σ3σ1σ2σ
−1
1 σ−1

3 σ−1
2 σ−1

1

xσ−1
3 σ−1

1 σ2σ3.

Now, σ−1
3 σ2σ3σ1σ2σ

−1
3 σ−1

2 σ−1
1 can be reached from σ2σ3σ1σ2σ

−1
1 σ−1

3 σ−1
2 σ−1

1 using x, but it
cannot be reached from σ−1

3 σ−1
1 σ2σ3 using y.

3.6. An embeddability criterion. We conclude the section with a (partial) criterion guar-
anteeing that a monoid 〈S | R〉+ possibly embeds in its enveloping group 〈S | R〉. Again we
resort to a combination of right- and left-reversings.

If a semigroup presentation (S,R) satisfies the assumptions of Proposition 3.21, a signed
word w represents 1 in the associated group if and only if a double reversing from w,
namely a right-reversing followed by a left-reversing, leads to the empty word. A fortiori, if
�R denotes the transitive closure of the union of the relations yR and

x

R,

(3.7) A signed word w represents 1 in 〈S | R〉 if and only if w �R ε holds.

On the other hand, for the trivial presentation of a free group, (3.7) holds as well, since,
in this case, the relation � is just the standard free group reduction. We may thus wonder
whether (3.7) holds for more general families of presentations, typically for all Artin–Tits
presentations. It is easy to see that this is not the case.

Example 3.25. Let G be the right-angled Artin–Tits group defined by

(3.8) G = 〈a, b, c, d | ac = ca, bc = cb, ad = da, bd = db〉.

So G is a direct product of two free groups of rank 2. As mentioned in Example 2.16, the
presentation of (3.8) is right- and left-complete, the associated monoid is cancellative, it
embeds in the group G [41], and satisfies lots of regularity properties. Let w = ACdaBDcb,
i.e., a−1

c
−1

dab
−1

d
−1

cb. As shown in Figure 17 (left), w represents 1 in G, but w � ε is
false, as w is eligible for no right- or left-reversing associated with the relations of (3.8).

A more interesting relation appears when, in addition to right- and left-reversing, we also
allow applying the semigroup relations and their inverses.

Definition 3.26 (mixed reversing). For (S,R) a semigroup presentation, the mixed
reversing relation  R is the transitive closure of the union of yR, x

R, R, and R−1.

Thus, a signed word w
′ is obtained from another signed word w by one step of mixed

reversing if we have w = u v u
′ and w

′ = uv
′
u
′ with

- either v = s−1s′ and v
′ = v′v−1 for some relation sv′ = s′v of R,

- or v = s′s−1 and v
′ = v−1v′ for some relation v′s = vs′ of R,

- or v = v
′ is a relation of R,

- or we have v = v−1 and v
′ = v′−1 for some relation v = v′ of R.

By construction, the relation R is included in the congruence generated by R: if w  R w
′

holds, then w and w
′ represent the same element of the group 〈S | R〉.

The mixed reversing relation naturally occurs in the case of braids when investigating the
handle reduction of [16]. In general, the relation R properly includes the double reversing
relation �R. For instance, with respect to mixed reversing, the word w of Example 3.25
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reduces to the empty word:

ACdaBDcb R CAdaBDcb R CAadBDcb R CdBDcb

 R CdDBcb R CdDBbc R CdDc R Cc R ε.

We are thus led to considering the condition

(3.9) A signed word w represents 1 in 〈S | R〉 if and only if w  R ε holds.

Saying that (3.9) is valid may be seen as claiming the existence of a weak form of Dehn’s
algorithm [39] inasmuch as it means that, if a signed word w represents 1, then it can be
transformed into the empty word without introducing any pair s−1s or s−1s. Geometrically,
(3.9) means that, if w represents 1, then there exists a van Kampen diagram whose boundary
is labeled w and which contains (at least) one tile containing two adjacent letters of w with
opposite signs, or adjacent letters of w forming one half of a relation of R (Figure 16).

w w w w

yR
v v′ x

R
v v′

≡+

R

v

v′
≡−

R

v

v′

Figure 16. Saying that w  R ε holds means that there is a van Kampen
diagram with boundary w that contains (at least) one tile v = v′ such that w

contains the middle two letters of v−1v′ (resp. the middle two letters of vv′−1,
resp. all of v, resp. all of v−1).

We observed above that the hypothesis that the equivalence (3.7) need not be true8. It
is easy to see that (3.9) may also fail.

Example 3.27. Consider

(3.10) G = 〈a, b, c, d, e, f | ac = cae, bc = cbe, ad = daf, bd = dbf〉.

In other words, G admits the presentation 〈a, b, c, d | [a, c] = [b, c], [a, d] = [b, d]〉. As in
Example 3.25, put w = ACdaBDcb. As shown in Figure 17 (right), w represents 1 in G, but
w  ε is false, as w is eligible neither for a right- or left-reversing, nor for a positive or
negative relation. It can be checked that the presentation (3.10) is complete.

a

b

c

a

c

b

c

d

a

d

b

d

a

b

e c

a

c

b

c

d f

a

d

b

d

Figure 17. Two van Kampen diagrams showing that the word ACdaBDcb

represents 1 in the group of Example 3.25 (left) and in that of Example 3.27
(right): the latter diagram contains no face of the form considered in Figure 16.

However, it seems difficult to construct examples of the above type with Artin–Tits
presentations, because each Artin relation ss′s... = s′ss′... is fully determined by any pair
of adjacent letters. This makes the following conjecture plausible.

8nor does either the naive version, relations of R plus free group reduction: in the free Abelian group
generated by a, b, c, the word aBcAbC represents 1 but it is eligible neither for a positive commutation relation,
nor for a free group reduction
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Conjecture 3.28. Every Artin–Tits presentation (S,R) satisfies (3.9).

As in the proof of Proposition 3.21, the hard part for establishing (3.9) is to show that
the relation u

−1
v  R ε is transitive. A natural approach would consist in showing that

 R is confluent, this meaning that, if we have w  R w1 and w  R w1, then w1  R w
′

and w2 yR w
′ hold for some w

′.
A possible proof of Conjecture 3.28 might entail an extension to arbitrary Artin–Tits

groups of the handle reduction algorithm of [16] that would also solve the word problem.
But, in general, a proof of (3.9) alone need not solve the word problem, since a signed
word can lead to infinitely many words under mixed reversing, even in the Garside case (see
an example in [25] involving 4-strand braids). By contrast, (3.9) is sufficient to solve the
embeddability problem, as we shall now explain.

It is well known that left- and right-cancellativity are necessary conditions for a monoid
to embed in a group, but that these conditions are not sufficient, as shows the example of

〈a, b, c, d, a′, b′, c′, d′ | ac = a
′
c
′, ad = a

′
d
′, bc = b

′
c
′〉+,

where the relation bd = b
′
d
′ fails in the monoid, but holds in every group that satisfies

the above relations. As recalled in the proof of Corollary 3.12, assuming the existence of
common multiples is sufficient to guarantee the embeddability of the monoid in a group of
fractions. But, apart from this special case, very few embeddability criteria are known. Here
is the point where mixed reversing might prove useful.

Proposition 3.29. If (S,R) is a complete semigroup presentation that satisfies (3.9), then
the monoid 〈S | R〉+ embeds in the group 〈S | R〉.

In the result above, completeness refers to right-reversing. Of course, the same conclusion
holds under the symmetric hypothesis involving left-reversing.

Proposition 3.29 will follow from controlling particular decompositions for a signed word.

Definition 3.30 (bridge). (Figure 18) Let (S,R) be a semigroup presentation and u, v be
words in the alphabet S. We say that a signed word w is an R-bridge from u to v if there
exists a sequence of positive words (u1, v1, w1, ..., up, vp, wp) satisfying

w = u1v
−1
1 u2v

−1
2 ...upv

−1
p ,(3.11)

u ≡+

R u1w1, v1w1 ≡+

R u2w2, ... , vp−1wp−1 ≡+

R upwp, vpwp ≡+

R v.(3.12)

u1

u2

up−1

up

v1

v2

vp−1

vp

u

w1

w2

wp−1

wp

v

w

Figure 18. An R-bridge w from u to v: a word equivalent to uv−1, plus a
collection of ≡+

R-commutative diagrams connecting u to v through w.

If w is an R-bridge from u to v, then the relations (3.11) and (3.12) easily imply that w

and uv−1 represent the same element in the group 〈S | R〉. For our current purpose, the
nice point is that bridges are preserved under mixed reversing.
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Lemma 3.31. If (S,R) is a complete semigroup presentation and w is an R-bridge from u
to v, then every word w

′ satisfying w  R w
′ is an R-bridge from u to v as well.

Proof. We assume that (u1, v1, w1, ..., up, vp, wp) is a sequence witnessing that w is an R-
bridge from u to v, and we shall construct a sequence witnessing that w

′ is also an R-bridge
from u to v. Without loss of generality we may assume that w

′ is obtained by one elementary
step of mixed reversing from w.

Case 1: The word w
′ is obtained from w by applying one relation of R (resp. R−1).

We may assume that none of the intermediate words v1, u2, v2, ..., vp−1, up is empty, for,
otherwise, we may gather adjacent words uk or vk. Then, the intermediate words u and v
are nonempty implies that the subword of w involved in the transformation is a subword
of some factor vk (resp. uk). Define v′k (resp. u′

k) to be the result of applying the involved
relation in vk (resp. uk), and u′

i, v
′
i, w

′
i to be equal to ui, vi, wi in all other cases. Then

(u′
1, ..., w

′
p) is the expected witness.

Case 2: (Figure 19 top) The word w
′ is obtained from w by applying one step of left-

reversing. By definition, there exists an index k, letters s, s′ in S, and a relation v′s = vs′

of R such that uk ends with s, vk ends with s′, and w
′ is obtained from w by replacing the

corresponding subword s′s−1 with v−1v′. Define u′
k, ...w′

k+1 by uk = u′
ks, v′k = v′, u′

k+1 = v,
vk = v′k+1s

′, w′
k = swk, w′

k+1 = s′wk, and complete with u′
i = ui for i < k and u′

i+1 = ui

for i > k, and similarly for v′i and w′
i. Then (u1, v1, w1, ..., u

′
p+1, v

′
p+1, w

′
p+1) is the expected

witness.
Case 3: (Figure 19 bottom) The word w

′ is obtained from w by applying one step
of right-reversing. By definition, there exists an index k, letters s, s′ in S, and a relation
sv′ = s′v of R such that vk−1 begins with s′, uk begins with s, and w

′ is obtained from w by
replacing the corresponding subword s−1s′ with v′v−1. Define u′

k−1, ...u
′
k+1 by vk−1 = sv′k−1,

u′
k = v, v′k = v′, uk = s′u′

k+1, and complete with u′
i = ui for i < k and u′

i+1 = ui

for i > k, and similarly for v′i and w′
i. Here is the key point. By hypothesis, we have

sv′k−1w
′
k−1 ≡+

R s′u′
k+1w

′
k+1. As the presentation (S,R) is complete with respect to left-

reversing, there must exist a word w′
k satisfying

u′
kw′

k ≡+

R v′k−1w
′
k−1 and v′kw′

k ≡+

R u′
k+1w

′
k+1.

Then (u1, v1, w1, ..., u
′
p+1, v

′
p+1, w

′
p+1) is the expected witness. �

We can now establish Proposition 3.29.

Proof of Proposition 3.29. The point is to establish that, if two positive words u, v represent
the same element in the group 〈S | R〉, then they also represent the same element in the
monoid 〈S | R〉+, i.e., that u ≡+

R v holds. So assume that u, v represent the same element
in the group. Then uv−1 represents 1 in the group. So, by hypothesis, we have uv−1  R ε.

Next, we observe that uv−1 is an R-bridge from u to v, as witnesses the sequence (u, v, ε):
indeed, in this case, (3.12) reduces to the valid statements u ≡+

R uε and vε ≡+

R v.
By Lemma 3.31, we deduce that the empty word is an R-bridge from u to v. Assume

that (u1, v1, w1, ..., up, vp, wp) is a witness-sequence. Then (3.11) implies u1 = v1 = ... =
up = vp = ε, and, therefore, (3.12) reads

u ≡+

R w1 ≡+

R w2 ≡+

R ... ≡+

R wp ≡+

R v,

so u ≡+

R v holds, as expected. �

If Conjecture 3.28 is true, applying Proposition 3.29 would provide an alternative proof
of the embeddability of every Artin–Tits monoid in the associated group, arguably more
natural than the beautiful but indirect argument of [41] based on the existence of certain
linear representations extending the Lawrence–Krammer representation of braids [37].
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wk−1

wk

wk+1

vk−1

uk

vk

uk+1

w′
k−1

w′
k

w′
k+1

w′
k+2

v′k−1

u′
k

v′k

u′
k+1

v′k+1

u′
k+2

wk−1

wk

vk−1

uk

w′
k−1

w′
k+1w′

k

v′k−1

u′
k

v′k

u′
k+1

Figure 19. Applying one step of left-reversing (top) or right-reversing (bot-
tom) creates in general a new commutative diagram; the point is that, in the
case of right-reversing, completeness guarantees the existence of the factorizing
edge w′

k.

Finally, it is easy to deduce from Lemma 3.31 one more result involving mixed reversing.

Proposition 3.32. Assume that (S,R) is a complete semigroup presentation, and we have
w  R w

′ with w = uv−1 and u, v ∈ S∗. Then we have w
′
yR u′v′−1 for some u′, v′ in S∗

satisfying u ≡+

R u′w and v ≡+

R v′w for some w in S∗.

Proof (sketch). Using the characterization of completeness given in Lemma 2.5, one eas-
ily shows that, if w

′ is an R-bridge from u to v, then we have w
′

yR u′v′−1 for some
words u′, v′ in S∗ satisfying u ≡+

R u′w and v ≡+

R v′w for some w in S∗. Now, by Lemma 3.31,
uv−1  R w

′ implies that w
′ is an R-bridge from u to v. �

This result answers a question implicit in Remark 1.8: we observed that w

x

R w
′

need not imply w
′
yR w, but Proposition 3.32 shows that, if w is positive–negative, then

w

x

R w
′ implies w

′
yR w

′′ for some w
′′ that is connected with w simply.

4. Subword reversing: efficiency

In Section 1, subword reversing was introduced as a strategy for constructing van Kampen
diagrams. When this strategy works, i.e., when the considered presentation happens to be
complete, it is natural to bring the quality of this strategy into question. We shall see below
that subword reversing need not be optimal, but that some explicit bounds exist on the lack
of optimality. More generally, we gather here a few results about the algorithmic complexity
of subword reversing, both in the general case and in the specific case of Artin’s presentation
of braid groups, which is a key example.

4.1. Upper bounds. For each semigroup presentation, there is a natural notion of dis-
tance between equivalent words, and there is a similar notion for each particular strategy
constructing derivations between equivalent words.

Definition 4.1 (distances). (i) If (S,R) is a semigroup presentation and w, w′ are R-
equivalent words of S∗, the combinatorial distance dist(w, w′) is the minimal number of
relations of R relations needed to transform w into w′.
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(ii) If, moreover, (S,R) is complete, we define disty(w, w′) to be the minimal number of
nontrivial9 steps needed to reverse w−1w′ into the empty word.

By definition, we have

(4.1) dist(w, w′) 6 disty(w, w′)

for all pairs of R-equivalent words w, w′, and saying that the reversing stretegy is optimal
would mean that (4.1) is an equality. This need not be true in general.

Example 4.2. Let us consider Artin’s presentation (3.4) of the 4-strand braid group B4,
and the two words σ1σ2σ1σ3σ2σ1 and σ3σ2σ3σ1σ2σ3, which both represent the braid ∆4. Then
the combinatorial distance turns out to be 6, whereas 8 reversing steps are needed to reverse
the quotient into the empty word [5]. So, in this case, the reversing strategy is not optimal,
i.e., it does not provide a shortest derivation between the two words, or, equivalently, a van
Kampen diagram with the minimal number of faces.

However, it turns out that the gap between the combinatorial distance and the reversing
distance cannot be arbitrarily large. Indeed, without assuming anything about the termi-
nation of reversing, one has the following nontrivial result. Hereafter, we denote by |w| the
length (number of letters) of a word w.

Proposition 4.3. [17] Assume that (S,R) is a finite, complete, complemented presentation,
and, moreover, that the relations of R preserve the length10. Then there exists a constant C
such that, for all R-equivalent words w, w′, one has

(4.2) dist(w, w′) 6 disty(w, w′) 6 dist(w, w′) · 22
C|w|

.

The constant C mentioned in Proposition 4.3 can be computed effectively: roughly speak-
ing, it measures the maximal number of relations involved in a cube condition for a triple of
letters of S. The reason why a double exponential appears is not yet clear, nor is either the
possibility of extending the result to a non-complemented or non-length-preserving context.

Stronger results exist in particular cases. In the context of Proposition 3.11, we observed
that, in the complemented case and when there exists a finite set of words that is closed
under complement, the existence of grids such as the one of Figure 11 provides a quadratic
upper bound for the number of reversing steps: there exists a constant C such that, for all
R-equivalent words w, w′, we have

(4.3) disty(w, w′) 6 C · |w| · |w′|,

where C is a constant that can be computed explicitely from the presentation.
Actually, a stronger result holds, as there is no need that the words w, w′ be R-equivalent.

Definition 4.4 (complexity). If (S,R) is a complemented presentation, and w, w′ are
words of S∗, the reversing complexity compl

y
(w, w′) of (w, w′) is the number of nontrivial

steps needed to reverse w−1w′ to a positive–negative word, if it exists.

If w and w′ are R-equivalent, compl
y

(w, w′) coincides with disty(w, w′) but, in general,
compl

y
(w, w′) is disty(wv′, w′v), where v, v′ are the positive words such that w−1w′ reverses

to v′v−1. In the complemented case and when there exists a finite set of words that is closed
under complement, Proposition 3.11 implies

(4.4) compl
y

(w, w′) 6 C · |w| · |w′|,

for all words w, w′. This holds for every lcm-presentation of a Garside monoid, i.e., every
presentation obtained by selecting, for each pair of minimal generators s, s′, words v, v′ such

9a reversing step of the form s
−1

s y ε is called trivial ; all other reversing steps are called nontrivial
10i.e., they are of the form v = v

′ with |v| = |v′|
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that both sv′ and s′v represent the right-lcm of s and s′. So, (4.4) holds in particular for
the standard presentation of the spherical Artin–Tits groups and, even more particularly,
for Artin’s presentation of the braid group Bn: for each fixed n, there exists a constant Cn

such that compl
y

(w, w′) 6 Cnℓ2 holds for all positive n-strand braid words of length at
most ℓ.

Things become much more difficult when we go to B∞, i.e., we impose no fixed limit on
the indices of the letters σi.

Question 4.5. What is the least upper bound for the reversing complexity of (w, w′) for
w, w′ positive braid words of length at most ℓ?

Surprisingly, the answer is not known. The inequality

compl
y

(σ1σ3...σ2ℓ−1, σ2ℓσ2ℓ−2...σ2) >
4

3
ℓ4

is established in [21], and we conjecture that O(ℓ4) is the highest possible complexity. On
the other hand, the only upper bounds proved so far are an exponential bound O(34ℓ) in [25],
improved to O(32ℓ) in [4], both requiring rather delicate arguments.

Let us also recall that, in the infinitary context mentioned in Remark 3.14, the only
proved upper bound for compl

y
(w, w) is a tower of exponentials of exponential height with

respect to the length of w and w′—which is not superseded by the double exponential of
Proposition 4.3 as, here, we do not assume the initial words to be equivalent.

4.2. Lower bounds. We shall conclude this survey with another application of subword
reversing, namely an application to establishing lower bounds on the combinatorial distance.

The problem we address is to establish effective lower bounds on the combinatorial dis-
tance between two words, usually a difficult task. By contrast, explicitly computing the
reversing distance may be relatively easy when we consider words of a particular form.
The problem is that, in order to deduce from the value of disty(w, w′) a lower bound
on dist(w, w′), we have to know that (4.1) is an equality. So our problem is to prove that
reversing is optimal for some specific words, i.e., that the van Kampen diagram deduced
from reversing entails as few tiles as possible. We shall now describe a method for answering
such questions in the case of Artin’s presentation of braid groups (3.4). This method is
reminiscent of the approach developed in [21] for establishing lower bounds on the rotation
distance between binary trees.

By definition, a van Kampen diagram consists of tiles, each of which is indexed by some
relation of the presentation. In order to prove that a van Kampen diagram K is possibly
optimal, we can attribute names to the tiles and, typically, show that any van Kampen
diagram for the considered pair of words must contain a certain number N1 of tiles with
name ν1, plus a certain number N2 of tiles with name ν2, etc. If the total number of tiles
in K is the sum of the various numbers N1, N2, ..., we are sure that K is optimal.

In the current case of braids, we shall use a “name vs. position” duality to attribute names
to the edges of van Kampen diagrams and, from there, to the tiles. It is standard—see for
instance [28] or [29]—to associate with each positive braid word w, i.e., every sequence of
letters σi, a braid diagram Dw consisting of strands that cross, so that σi corresponds to a
crossing of the strands at positions i and i + 1 (Figure 20).

σi:

1 2 i i+1 n

... ...

Figure 20. The n-strand braid diagram associated with σi; for an arbitrary
braid word w, the diagram Dw is obtained by stacking one above the other the
diagrams corresponding to the successive letters.
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Each strand in a braid diagram has a well-defined initial position, hereafter called its
name, and we can associate with each crossing of the diagram, hence with each letter in
the braid word that encodes it, the names of the strands involved in the crossing. As two
strands may cross more than once, we shall also include the rank of the crossing, thus using
the name {p, q}a for the ath crossing of the strands with initial positions p and q. In this
way, we associate with each positive braid word a sequence of names and, from there, we
attribute names to the edges in any (braid) van Kampen diagram.

Definition 4.6 (name). (Figure 21) Let e be an edge in a van Kampen diagram K for B+++

n .
Let w be the braid word encoding a path γ that connects the source vertex of K to the
source vertex of e. Then the name of e is defined to be {p, q}a, where p and q are the initial
positions of the strands that finish at position i and i + 1 in the braid diagram associated
with w and a − 1 is the number of times the latter strands cross in this diagram.

{2,3}1
σ2

{2,3}2
σ2

{2,3}3
σ2

{2,3}4
σ2

σ1 {1,2}1

σ1 {1,3}1

σ2 {1,2}1

σ1 {1,2}1

σ2 {1,3}1

σ1 {1,3}1

σ2 {1,2}1

σ1 {1,2}1

σ2 {1,3}1
σ2

{1,3}1

σ1

{2,3}1

σ1

{2,3}2

σ1

{2,3}3

σ1

{2,3}4

Figure 21. Attributing names to the edges in a braid van Kampen diagram
(here a reversing diagram); for instance, the rightmost horizontal σ1 edge on
the bottom line receives the name {2, 3}4 because, when one starts from the
top left vertex, it corresponds to the fourth crossing of the strands that start
at positions 2 and 3.

It is easy to check that the name of the edge e does not depend on the choice of the path γ.
The following relations immediately follow from the geometric meaning of the names and
from the interpretation of σi in terms of strand crossing.

Lemma 4.7. Assume that K is a van Kampen diagram for B+++

n , and f is a face of K. If f
is a hexagon, i.e., if f corresponds to a relation σiσjσi = σjσiσj with |i − j| = 1, there exist

pairwise distinct numbers p, q, r in {1, ..., n} and integers a, b, c such that the names of the
edges bounding f respectively are

(4.5) ({p, q}a, {p, r}b, {q, r}c) and ({q, r}c, {p, r}b, {p, q}a).

Similarly, if f is a square, i.e., if f corresponds to a relation σiσj = σjσi with |i−j| > 2, there

exist pairwise distinct numbers p, q, r, s in {1, ..., n} and integers a, b such that the names of
the edges bounding f respectively are

(4.6) ({p, q}a, {r, s}b) and ({r, s}b, {p, r}a).

The proof is essentially contained in the diagrams of Figure 22. Now comes a first
optimality criterion.

Proposition 4.8. Call a family of names sparse if it contains no name of the form {p, r}c

whenever it contains {p, q}a and {q, r}b. Then every van Kampen diagram K with the
property that there exists a sparse family F such that each face of K entails exactly two
names from F is optimal.

Proof. Assume that K is a van Kampen diagram for (w, w′). Let (w0, ... , wm) be a derivation
from w to w′ associated with K as in Lemma 1.1. Let S(wi) be the sequence formed by the
names of the successive letters of wi, and SF (wi) be the subsequence of S(wi) obtained by
deleting all names that do not belong to F .
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By construction, the words wi and wi+1 differ by exactly one braid relation, and the
explicit formulas (4.5) and (4.6) imply that the sequence S(wi+1) is obtained from the
sequence S(wi) by reversing either a triple of names, or a pair of names. Moreover, under the
assumption of the proposition, the sequence SF (wi+1) is obtained from the sequence SF (wi)
by reversing exactly one pair of names in every case. Therefore, the number of inversions
between SF (w) and SF (w′) is m.

The hypothesis that F is sparse implies that one braid relation can cause at most one
inversion in an SF sequence (whereas it may cause three inversions in an S sequence).
Therefore, it is impossible to go from w to w′ by using less that m relations. In other words,
we have dist(w, w′) = m. �

Before giving examples, we reformulate the criterion of Proposition 4.8 in more geometric
terms. The formulas of Lemma 4.7 show that, in every face of a braid van Kampen diagram,
the same names occur on both sides, but in reversed order, as shown in Figure 22. For each
name {p, q}a occurring in K, connecting the middles of the edges with that name provides
a curve, hereafter denoted Σp,q,a, which is transversal to the edges of the diagram. Such
curves are similar to the separatrices of [5] (which correspond to the special case of so-called
simple braids), and we shall use the same terminology here. Then the geometric meaning
of (4.5) and (4.6) is then that, in each hexagon, three separatrices cross each other whereas,
in each square, two separatrices cross.

{p,q}a

{q,r}c

Σp,q,a {p,r}b

{p,r}b

Σp,r,b

{q,r}c

{p,q}a

Σq,r,c

{p,q}a

{r,s}b

Σp,q,a

{r,s}b

{p,q}a

Σr,s,b

Figure 22. Separatrices in a van Kampen diagram for B+++

n : applying one
braid relation reverses the sequence of names of the edges, so, by connecting
the edges with the same name, we obtain curves, called separatrices, that cross
in the middle of the face.

In this context, Proposition 4.8 can be reformulated in the language of separatrices. If F
is a family of names, we naturally say that a separatrix is an F -separatrix if it corresponds
to a name belonging to F . Owing to the subsequent applications, we state the result for a
reversing diagram.

Corollary 4.9. Assume that w, w′ are positive braid words and there exists a sparse family
of names F such that each face of the reversing diagram for w−1w′ contains exactly one
crossing of F -separatrices, and any two F -separatrices cross at most once in that diagram.
Then reversing is optimal for (w, w′).

Example 4.10. Reversing the braid word (σ2σ
2
1 σ2)

−mσ2m
1 leads to the equivalent braid

words (σ2σ
2
1 σ2)

mσ2m
1 and σ2m

1 (σ2σ
2
1 σ2)

m, as shown in Figure 23. Let F consists of the
names {1, 2}a and {2, 3}b. Then F is sparse, and the diagram of Figure 23 satisfies the
requirements of Corollary 4.9. Hence this diagram is an optimal van Kampen diagram, i.e.,
we have

dist((σ2σ
2
1 σ2)

mσ2m
1 , σ2m

1 (σ2σ
2
1 σ2)

m) = 4m2.

This gives a short proof of the result of [35].
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{1,2}1 {1,2}2 {1,2}3 {1,2}4

{2,3}1

{1,3}1

{1,3}2

{2,3}2

{2,3}3

{1,3}3

{1,3}4

{2,3}4

Figure 23. Reversing diagram for the braid words of Example 4.10 (here
with m = 2). Thin edges represent σ1, thick edges represent σ2. The useful
separatrices are thin plain lines: each hexagon contains one crossing of such
lines, and any two of them cross at most one (we ignore the separatrices with
name {1, 3}c, drawn in dotted line). By Corollary 4.9, the diagram is optimal,
i.e., it achieves the combinatorial distance.

Another example is shown in Figure 24. Here one simply starts with the braid words σ2m
1

and σ2m
2 , and the conclusion is again that reversing is optimal; here also, we consider the

separatrices with names {1, 2}a and {2, 3}b.

{1,2}1 {1,2}2 {1,2}3 {1,2}4

{2,3}1

{2,3}2

{2,3}3

{2,3}4

{1,3}1

{1,3}2

{1,3}3

{1,3}4

Figure 24. Reversing from σ−2m
2 σ2m

1 is optimal. Here again, we consider the
separatrices with names {1, 2}a and {2, 3}b, and forget about those with
name {1, 3}c.
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The above optimality results are quite partial since they only involve the very specific case
of Artin–Tits braid monoids. We refer to [5] for further results, in a case that is still more
restricted, namely that of simple braid words, i.e., positive braid words corresponding to
braid diagrams in which any two strands cross at most once. In this case, which is equivalent
to the case of reduced decompositions of permutations into products of transpositions, the
names are all of the form {p, q}1 and simple optimality criteria can be stated: for instance,
the hypothesis that any two separatrices cross at most once guarantees optimality. An
interesting feature is that, in some results, the metric aspects of the reversing diagrams—as
opposed to their topological aspects—play a crucial role.

5. Conclusion

In good cases, namely for complete presentations, subword reversing can be used to
investigate a presented semigroup and its possible group of fractions, mainly to prove can-
cellativity, to solve word problems, to recognize specific families such as Garside structures,
to compute in such structures, possibly to obtain optimal derivations. It seems reasonable
to hope for more applications in the future.

A last comment is in order. Once completeness is granted, using words and reversing
is essentially equivalent to using elements of the monoid and common multiples. However,
before completeness is established, it is crucial to distinguish between words and the elements
they represent: reversing equivalent words need not lead to equivalent results in general, and
subword reversing is really an operation on words, which in general makes no sense at the
level of the elements of the associated semigroup or group.
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