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Abstract. We investigate the connection between Tamari lattices and the Thomp-
son group F , summarized in the fact that F is a group of fractions for a certain

monoid F+
sym whose Cayley graph includes all Tamari lattices. Under this corre-

spondence, the Tamari lattice operations are the counterparts of the least common
multiple and greatest common divisor operations in F+

sym. As an application, we

show that, for every n, there exists a length ` chain in the nth Tamari lattice whose

endpoints are at distance at most 12`/n.

1. Introduction

The aim of this text is to show the interest of using monoid techniques to investigate
Tamari lattices. More precisely, we shall describe the very close connection existing
between Tamari lattices and a certain submonoid F+

sym of Richard Thompson’s group F :
equipped with the left-divisibility relation, the monoid F+

sym is a lattice that includes
all Tamari lattices. Roughly speaking, the principle is to attribute to the edges of the
Tamari lattices names that live in the monoid F+

sym. By using the subword reversing
method, a general technique from the theory of monoids, we then obtain a very simple
way of reproving the existence of the lattice operations, computing them, and establishing
further properties.

The existence of a connection between Tamari lattices, associativity, and the Thomp-
son group F has been known for decades and belongs to folklore. What is specific here
is the role of the monoid F+

sym, which is especially suitable for formalizing the connection.
Some of the results already appeared, implicitly in [6] and explicitly in [11]. Several
new results are established in the current text, in particular the construction of a unique
normal form in the monoid F+

sym and the group F (Subsection 4.4) and the (surprising)
result that the embedding of the monoid F+

sym in the Thompson group F is not a quasi-
isometry (Proposition 5.8). In the language of binary trees, this implies that, for every
constant C, there exist chains of length ` whose endpoints can be connected by a path
of length at most `/C (Corollary 5.13).

Let us mention that a connection between the Tamari lattices and the group F is
described in [27]. However both the objects and the technical methods are disjoint
from those developed below. In particular, the approach of [27] does not involve the
symmetric monoid F+

sym, which is central here, but it uses instead the standard Thompson
monoid F+, which is not directly connected with the Tamari ordering.

The text is organized as follows. In Section 2, we recall the definition of Tamari lattices
and Thompson’s group F , and we establish a presentation of F in terms of some specific,
non-standard generators aα indexed by binary addresses. In Section 3, we investigate the
submonoid F+

sym of F generated by the elements aα, we prove that F+
sym equipped with
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divisibility has the structure of a lattice, and we describe the (close) connection between
this lattice and Tamari lattices. Then, in Section 4, we use the Polish encoding of trees
to construct an algorithm that computes common upper bounds for trees in the Tamari
ordering and we deduce a unique normal form for the elements of F and F+

sym. Finally,
in Section 5, we gather results about the length of the elements of F with respect to
the generators aα or, equivalently, about the distance in Tamari lattices, with a specific
interest on lower bounds.

2. The framework

The aim of this section is to set our notation and basic definitions. In Subsections 2.1
and 2.2, we briefly recall the definition of the Tamari lattices in terms of parenthesized
expressions and of binary trees, whereas Subsections 2.3 and 2.4 contain an introduction
to Richard Thompson’s group F and its action by rotation on trees. This leads us
naturally to introducing in Subsection 2.5 a new family of generators of F indexed by
binary addresses, and giving in Subsection 2.6 a presentation of F in terms of these
generators.

2.1. Parenthesized expressions and associativity. Introduced by Dov Tamari in
his 1951 PhD thesis, and appearing in the 1962 article [28]—also see [16] and [18]—
the nth Tamari lattice, here denoted by Tn, is, for every positive integer n, the poset
(partially ordered set) obtained by considering all well-formed parenthesized expressions
involving n+1 fixed variables and declaring that an expression E is smaller than another
one E′, written E 6T E′, if E′ may be obtained from E by applying the associative law
x(yz) = (xy)z in the left-to-right direction. As established in [28], the poset (Tn,6T )
is a lattice, that is, any two elements admit a least upper bound and a greatest lower
bound. Moreover, (Tn,6T ) admits a top element, namely the expression in which all
left parentheses are gathered on the left, and a bottom element, namely the expression
in with all right parentheses are gathered on the right.

As associativity does not change the order of variables, we may forget about their
names, and use • everywhere. So, for instance, there exist five parenthesized expressions
involving four variables, namely •(•(••)), •((••)•), (•(••))•, (••)(••), and ((••)•)•, and
we have •((••)•) 6T (•(••))• in the Tamari order as one goes from the first expression
to the second by applying the associativity law with x = •, y = ••, and z = •. The
Hasse diagrams of the lattices T3 and T4 respectively are the pentagon and the 14 vertex
polyhedron displayed in Figures 1 and 4 below. As is well known, the number of elements
of Tn is the nth Catalan number 1

n+1

(
2n
n

)
.

•(•(••))

•((••)•)

(•(••))•

((••)•)•

(••)(••)

Figure 1. The Tamari lattice T3 made by the five ways of bracketing a four
variable parenthesized expression.

The Tamari lattice Tn is connected with a number of usual objects. For instance, its
Hasse diagram is the 1-skeleton—that is, the graph made of the 0- and 1-cells—of the
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nth Mac Lane–Stasheff associahedron [20, 26]. Also Tn embeds in the lattice made by
the symmetric group Sn equipped with the weak order: Tn identifies with the sub-poset
made by all 312-avoiding permutations (Björner & Wachs [2]).

For every n, replacing in a parenthesized expression the last (rightmost) symbol • with
•• defines an embedding ιn of Tn into Tn+1. We denote by T∞ the limit of the direct
system (Tn, ιn) so obtained. Note that T∞ has a bottom element, namely the class of •,
which is also that of ••, •(••), •(•(••)), etc., but no top element.

2.2. Trees and rotations. There exists an obvious one-to-one correspondence between
parenthesized expressions involving n + 1 variables and size n binary rooted trees, that
is, trees with n interior nodes and n + 1 leaves, see Figure 2. In this text, we shall use
both frameworks equivalently. We denote by T0

∧T1 the tree whose left-subtree is T0 and
whose right-subtree is T1, but skip the symbol ∧ in concrete examples involving •.

• •• (••)• •(••) •((••)•)

Figure 2. Correspondence between parenthesized expressions and trees.

When translated in terms of trees, the operation of applying associativity in the left-
to-right direction corresponds to performing one left-rotation, namely replacing some
subtree of the form T0

∧(T1
∧T2) with the corresponding tree (T0

∧T1)∧T2, see Figure 3.
So the Tamari lattice Tn is also the poset of size n trees ordered by the transitive closure
of left-rotation. We naturally use 6T for the latter partial ordering.

T0

T1 T2 T0 T1

T2

α α

Figure 3. Applying a left rotation in a tree: replacing some subtree of the form
T0
∧(T1

∧T2) with the corresponding tree (T0
∧T1)

∧T2.

In terms of trees, the bottom element of the Tamari lattice Tn is the size n right-comb
(or right-vine) Cn recursively defined by C0 = • and Cn = •∧Cn−1 for n > 1, whereas
the top element is the size n left-comb (or left-vine) C̃n recursively defined by C̃0 = •
and C̃n = C̃n−1

∧• for n > 1.

2.3. Richard Thompson’s group F . Introduced by Richard Thompson in 1965, the
group F appeared in print only later, in [21] and [29]. The most common approach is to
define F as a group of piecewise linear self-homeomorphisms of the unit interval [0, 1].

Definition 1. The Thompson group F is the group of all dyadic order-preserving self-
homeomorphisms of [0, 1], where a homeomorphism f is called dyadic if it is piecewise
linear with only finitely many breakpoints, every breakpoint of f has dyadic rational
coordinates, and every slope of f is an integral power of 2.
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•(•(•(••)))

•((••)(••))

•(•((••)•))

•((•(••))•)

(•(•(••)))•

•(((••)•)•)

(•((••)•))•

((••)(••))•

(••)((••)•)

((•(••))•)•

(((••)•)•)•)

(••)(•(••))

((••)•)(••)

(•(••))(••)

Figure 4. The Tamari lattice T4, both in terms of parenthesized expressions
and binary trees.

Typical elements of F are displayed in Figure 5. In this paper, it is convenient to
equip F with reversed composition, that is, fg stands for f followed by g—using the other
convention simply amounts to reversing all expressions. The notation x0 is traditional
for the element of F defined by

x0(t) =


t
2 for 0 6 t 6 1

2 ,

t− 1
4 for 1

2 6 t 6
3
4 ,

2t− 1 for 3
4 6 t 6 1,

and xi is used for the element that is the identity on [0, 1 − 1
2i ] and is a rescaled copy

of x0 on [1 − 1
2i , 1]—see Figure 5 again. It is easy to check that F is generated by the

sequence of all elements xi, with the presentation

(2.1) 〈x0, x1, ... | xn+1xi = xixn for i < n〉.
One deduces that F is also generated by x0 and x1, with the (finite) presentation

(2.2) 〈x0, x1 | [x−1
0 x1, x0x1x

−1
0 ], [x−1

0 x1, x
2
0x1x

−2
0 ]〉,

where [x, y] denotes the commutator xyx−1y−1.
The group F has many interesting algebraic and geometric properties, see [4]. Its

center is trivial, the derived group [F, F ] is a simple group, F includes no free group of
rank more than 1 (Brin–Squier [3]), its Dehn function is quadratic (Guba [17]). It is
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0 1

x0 :

0 1

x1 :

x0 : x1 :

Figure 5. Two representations of the elements x0 and x1 of the Thompson
group F : above, the usual graph of a function of [0, 1] into itself, below, a diagram
displaying the two involved dyadic decompositions of [0, 1], with the source above
and the target below: this simplified diagram specifies the function entirely.

not known whether F is automatic, nor whether F is amenable. The latter question has
received lot of attention as F seems to lie very close to the border between amenability
and non-amenability.

Owing to the developments of Section 3 below, we mention one more (simple) algebraic
result, namely that F is a group of (left)-fractions, that is, there exists a submonoid of F
such that every element of F can be expressed as f−1g with f, g in the considered
submonoid.

Proposition 2.1. [4] Define the Thompson monoid F+ to be the submonoid of F gener-
ated by the elements xi with i > 1. Then, as a monoid, F+ admits the presentation (2.1),
and F is a group of left-fractions for F+.

Thus F+ consists of the elements of F that admit at least one expression in terms
of the elements xi in which no factor x−1

i occurs. Although easy, Proposition 2.1 is
technically significant as its leads to a unique normal form for the elements of F .

2.4. The action of F on trees. An element of F is determined by a pair of dyadic
decompositions of the interval [0, 1] specifying the intervals on which the slope has a
certain value, and, from there, by a pair of trees.

To make the description precise, define a dyadic decomposition of [0, 1] to be an in-
creasing sequence (t0, ... , tn) of dyadic numbers with t0 = 0 and tn = 1, such that no
interval [ti, ti+1] may contain a dyadic number with denominator less that those of ti
and ti+1: for instance, (0, 1

2 ,
3
4 , 1) is legal, but (0, 3

4 , 1) is not. Then dyadic decompo-
sitions are in one-to-one correspondence with binary rooted trees: the decomposition
associated with • is (0, 1), whereas the one associated with T0

∧T1 is the concatenation
of those associated with T0 and T1 rescaled to fit in [0, 1

2 ] and [12 , 1].
As the diagram representation of Figure 5 shows, every element of the group F is

entirely specified by a pair of dyadic decompositions, hence by a pair of trees. Provided
adjacent intervals are gathered, this pair of decompositions (hence of trees) is unique.
We shall denote by (f−, f+) the pair of trees associated with f . For instance, we have
1− = 1+ = •, and, as illustrated in Figure 6, (x0)− = •(••), (x0)+ = (••)•, (x1)− =
•(•(••)), and (x1)+ = •((••)•). By construction, the trees f− and f+ have the same
size. Moreover, we have (f−1)− = f+ and (f−1)+ = f− as taking the inverse amounts
to exchanging source and target in the diagram.

We now define a partial action of the group F on finite trees. Hereafter, we denote by B
the family of all finite, binary, rooted trees, and by B# the family of all (finite, binary,
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x0

x1

Figure 6. Canonical pair of trees associated with an element of the group F .

rooted) labeled trees whose leaves wear labels in N. Thus B identifies with the family
of all parenthesized expressions involving the single variable •, and B# with the family
of all parenthesized expressions involving variables from the list {•0, •1, ...}. Forgetting
the labels (or the indices of variables) defines a projection of B# onto B; by identifying •
with •0, we can see B as a subset of B#. If T is a tree of B, we denote by T# the tree
of B# obtained by attaching to the leaves of T labels 0, 1, ... starting from the left.

Definition 2. A substitution is a map from N to B#. If σ is a substitution and T is a
tree in B#, we define Tσ to be the tree obtained from T by replacing every i-labeled leaf
of T by the tree σ(i).

Formally, Tσ is recursively defined by the rules

(•i)σ = σ(i), (T0
∧T1)σ = Tσ0

∧Tσ1 .

For instance, if T is •3(•0•2) and we have σ(0) = •• and σ(2) = σ(3) = •, then Tσ

is •((••)•).
Definition 3. If T, T ′ are labeled trees and f is an element of the Thompson group F , we
say that T ∗ f = T ′ holds if we have T = (f#

− )σ and T ′ = (f#
+ )σ for some substitution σ.

Example 2.2. First consider f = 1. Then we have 1− = 1+ = •, whence 1#
− = 1#

+ = •0.
For every tree T , we have T = (1#

−)σ for any substitution satisfying σ(0) = T , and, in
this case, we have (1#

−)σ = T . So T ∗ 1 is always defined and it is equal to T .
Consider now x0. Then we have x0− = •(••), whence x0

#
− = •0(•1•2). For a tree T ,

there exists a substitution satisfying T = (•0(•1•2))σ if and only if T can be expressed
as T0

∧(T1
∧T2). In this case, the tree ((•0•1)•2)σ is (T0

∧T1)∧T2. So T ∗ x0 is defined if
and only if T is eligible for a left-rotation and, in this case, T ∗ x0 is the tree obtained
from T by that left-rotation, see Figure 3.

Consider finally x1. Arguing as above, we see that T ∗ x1 is defined if and only if T
can be expressed as T0

∧(T1
∧(T2

∧T3)), in which case T ∗ f is the tree T0
∧((T1

∧T2)∧T3),
that is, the tree obtained from T by a left-rotation at the right-child of the root.

T0

T1T2 T0 T1

T2

T T ∗ x0
x0

T0

T1

T2 T3

T0

T1 T2

T3

T T ∗ x1

x1

Figure 7. Action of x0 and x1 on a tree: respectively applying a left-rotation
at the root, and at the right-child of the root.

The above definition specifies what can naturally be called a partial action of the
group F on (labeled) trees—labels are not important here as rotations do not change
their order or repeat them, but they are needed for a clean definition of substitutions.
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Proposition 2.3. (i) For every (labeled) tree T and and every element f of F , there
exists at most one T ′ satisfying T ′ = T ∗ f .

(ii) For every (labeled) tree T , we have T ∗ 1 = T .
(iii) For every (labeled) tree T and all f, g in F , we have (T ∗ f) ∗ g = T ∗ fg, this

meaning that either both terms are defined and they are equal, or neither is defined.
Moreover, for all f1, ... , fn in F , there exists T such that T ∗ fi is defined for each i.

Sketch, see [11] for details. (i) For f in F , a given tree T can be expressed in at most
one way as (f#

− )σ and, as the same variables occur on both sides of the associativity law,
there is in turn at most one corresponding tree (f#

+ )σ.
Point (ii) has been established in Example 2.2. For (iii), the point is that there

exists a simple rule for determining the pair of trees associated with fg. Indeed, we
have (fg)− = fσ− and (fg)+ = gτ+, where σ and τ are minimal substitutions satisfying
fσ+ = gτ−—that is, (σ, τ) is a minimal identifier for f+ and g−.

As for the final point, it comes from the fact that, by construction, every tree f#
−

has pairwise distinct labels and, therefore, a tree T can be expressed as (f#
− )σ if and

only if the skeleton of T (as defined in Definition 4 below) includes the skeleton of f#
− .

Then, for f1, ... , fn in F , one can always find a tree T whose skeleton includes those
of (f1)#−, ... , (fn)#−. �

Proposition 2.4. For all (labeled) trees T, T ′, the following are equivalent:
(i) One can go from T to T ′ using a finite sequence of rotations—that is, by applying

associativity;
(ii) The trees T and T ′ have the same size, and the left-to-right enumerations of the

labels in T and T ′ coincide;
(iii) There exists f in F satisfying T ′ = T ∗ f .

In this case, the element f involved in (iii) is unique.

Sketch, see [11] for details. The equivalence of (i) and (ii) follows from the syntactic
properties of the terms occurring in the associativity law, namely that the same variables
occur on both sides, in the same order.

Next, assume that T and T ′ are equal size trees. Then T and T ′ determine dyadic
decompositions of [0, 1], and there exists a dyadic homeomorphism f , hence an element
of F , that maps the first onto the second. Provided the enumerations of the labels in T
and T ′ coincide, we have T ′ = T ∗ f . So (ii) implies (iii).

Conversely, we saw in Example 2.2 that the action of x0 and x1 is a rotation. On the
other hand, we know that x0 and x1 generate F . Therefore, the action of an arbitrary
element of f is a finite product of rotations. So (iii) implies (ii).

Finally, the uniqueness of the element f possibly satisfying T ′ = T ∗ f follows from
the fact that the pair (T, T ′) determines a unique pair of dyadic decompositions of [0, 1],
so it directly determines the graph of the dyadic homeomorphism f . �

Proposition 2.4 states that F is the geometry group of associativity in the sense of [11].
A similar approach can be developed for every algebraic law, and more generally every
family of algebraic laws, leading to a similar geometry monoid (a group in good cases).
In the case of associativity together with commutativity, the geometry group happens
to be the Thompson group V , whereas, in the case of the left self-distributivity law
x(yz) = (xy)(xz), the geometry group is a certain ramified extension of Artin’s braid
group B∞ [8]—also see the case of x(yz) = (xy)(yz) in [9]. In the latter cases, the
situation is more complicated than with associativity as, in particular, the counterparts
of (i) and (ii) in Proposition 2.4 fail to be equivalent.



8 PATRICK DEHORNOY

2.5. The generators aα. Considering the action of the group F on trees invites us
to introducing, beside the standard generators xi, a new, more symmetric family of
generators for F .

In order to define these elements, we need an index system for the subtrees of a tree.
A common solution consists in describing the path connecting the root of the tree to the
root of the considered subtree using (for instance) 0 for “forking to the left” and 1 for
“forking to the right”.

Definition 4. A finite sequence of 0’s and 1’s is called an address; the empty address is
denoted by ∅. For T a tree and α a short enough address, the α-subtree of T is the part
of T that lies below α. The set of all α’s for which the α-subtree of T exists is called the
skeleton of T .

Formally, the α-subtree is defined by the following recursive rules: the ∅-subtree of T
is T , and, for α = 0β (resp. 1β), the α-subtree of T is the β-subtree of T0 (resp. T1) if T
is T0

∧T1, and it is undefined otherwise.

Example 2.5. For T = •((••)•) (the rightmost example in Figure 2), the 10-subtree
of T is ••, while the 01- and 111-subtrees are undefined. The skeleton of T consists of
the seven addresses ∅, 0, 1, 10, 100, 101, and 11.

By definition, applying associativity in a parenthesized expression or, equivalently,
applying a rotation in a tree T consists in choosing an address α in the skeleton of T
and either replacing the α-subtree of T , supposed to have the form T0

∧(T1
∧T2), by the

corresponding (T0
∧T1)∧T2, or vice versa, see Figure 3 again. By Proposition 2.4, this

rotation corresponds to a (unique) element of F .

Definition 5. For every address α, we denote by aα the element of F whose action is a
left-rotation at α. We denote by AAA the family of all elements aα for α an address.

According to Example 2.2 and Figure 7, the action of x0 is a left-rotation at the root
of the tree, and, therefore, we have x0 = a∅. Similarly, x1 is left-rotation at the right-
child of the root, that is, at the node with address 1, and, therefore, we have x1 = a1.
More generally, all elements aα can be expressed in terms of the generators xi, as will
be done in Subsection 2.6 below. For the moment, we simply note that iterating the
argument for x1 gives for every i > 1 the equality xi = a1i−1 , where 1i−1 denotes 11...1,
i− 1 times 1.

The trees T such that T ∗ aα is defined are easily characterized. Indeed, a necessary
and sufficient for T ∗ aα to exist is that the α-subtree of T is defined and a left-rotation
can be applied to that subtree, that is, it can be expressed as T0

∧(T1
∧T2). This is true if

and only if the addresses α0, α10, and α11 lie in the skeleton of T , hence actually if and
only if α10 lies in the skeleton of T since β0 may lie in the skeleton of a tree only if β1
and β do. Symmetrically, T ∗ a−1

α is defined if and only if α01 lies in the skeleton of T .
As a tree has a finite skeleton, there exist for every tree T finitely many addresses α such
that T ∗ a±1

α is defined, see Figure 8.
Before proceeding, we note that the forking nature of the family AAA naturally gives rise

to a large family of shift endomorphisms of the group F .

Lemma 2.6. For every address α, there exists a (unique) shift endomorphism shα of F
that maps aβ to aαβ for every β.

Proof. For f in F , let sh1(f) denote the homeomorphism obtained by rescaling f , ap-
plying it in the interval [ 12 , 1], and completing with the identity on [0, 1

2 ]. Then sh1 is
an endomorphism of F , and it maps xi to xi+1 for every i. Moreover, for every β, the
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a−1
10

a−1
1

a1

a∅∅
1

10

Figure 8. The four elements a±1
α such that T ∗ a±1

α is defined in the case T = •(((••)•)(••)).

element sh1(aβ) is the rescaled version of aβ applied in the interval [ 12 , 1]. By definition,
this is a1β .

Symmetrically, for f in F , let sh0(f) denote the homeomorphism obtained by rescal-
ing f , applying it in the interval [0, 1

2 ], and completing with the identity on [ 12 , 1]. Then
sh0 is an endomorphism of F , and, for every β, the element sh0(aβ) is the rescaled version
of aβ applied in the interval [0, 1

2 ], hence it is a0β .
Finally, we recursively define shα for every α by sh∅ = idF and, for i = 0, 1, shiα(f) =

shi(shα(f)). By construction, shα(aβ) = aαβ holds for all α, β. �

2.6. Presentation of F in terms of the elements aα. As the family {x0, x1}, which
is {a∅, a1}, generates the group F , the family AAA generates F as well. By using the
presentation (2.1) or (2.2), we could easily deduce a presentation of F in terms of the
elements aα. However, we can obtain a more natural and symmetric presentation by
coming back to trees and associativity, and exploiting the geometric meaning of the
elements of AAA.

Lemma 2.7. Say that two addresses α, β are orthogonal, written α ⊥ β, if there exists γ
such that α begins with γ0 and β begins with γ1, or vice versa. Then all relations of the
following family RRR are satisfied in F :

aα aβ = aβ aα for α ⊥ β,(2.3)

aα11β aα = aα aα1β , aα10β aα = aα aα01β , aα0β aα = aα aα00β ,(2.4)

a2
α = aα1 aα aα0.(2.5)

Proof. By Proposition 2.4, in order to prove that two elements f, f ′ of F coincide, it is
enough to exhibit a tree T such that T ∗ f and T ∗ f ′ are defined and equal.

The commutation relations of type (2.3) are trivial. If α and β are orthogonal, the α-
and β-subtrees are disjoint, and the result of applying rotations (as well as any transfor-
mations) in each of these subtrees does not depend on the order. So we have

shα(f) shβ(g) = shβ(g) shα(f)

for all transformations f, g and, in particular, aα aβ = aβ aα.
The quasi-commutation relations of type (2.4) are more interesting. Assume that T, T ′

are trees and a∅ maps T to T ′. Then, by definition, the 1-subtree of T ′ is a copy of the
11-subtree of T . Now, assume that f is a (partial) mapping of B to itself. Then, starting
from T , first applying a∅ and then applying f to the 11-subtree leads to the same result
as first applying f to the 1-subtree and then applying a∅, see Figure 9. Moreover, if f is
a partial mapping, the result of one operation is defined if and only if the result of the
other is. So, in all cases, we have

a∅ sh11(f) = sh1(f) a∅.
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Applying this to f = aβ then gives a∅ a11β = a1β a∅. Shifting by α this relation, we
obtain aα aα11β = aα1β aα, the first relation of (2.4). Arguing similarly with the 0- and
10-subtrees in place of the 11-subtree, one obtains the other relations of (2.4).

Finally, the relations of (2.5) stem from the pentagon of Figure 1. As Figure 10
shows, the relation a2

∅ = a1 a∅ a0 is satisfied in F and, therefore, so is its shifted version
a2
α = aα1 aα aα0 for every address α. �

T T ′

f
sh11(f) sh1(f)

a∅

a∅

a∅

a∅

a11 a1

Figure 9. Quasi-commutation relation in F : the general scheme and one example.

a1

a∅
a0

a∅ a∅

Figure 10. Pentagon relation in the group F .

It is then easy to check that the above relations actually exhaust the relations con-
necting the elements aα in the group F .

Proposition 2.8. [6, 11] The group F admits the presentation 〈AAA | RRR〉.
Proof. By Lemma 2.7, the relations of RRR are valid in F . Conversely, to prove that these
relations make a presentation, it is sufficient to show that they include the relations of
a previously known presentation. This is what happens as, for 1 6 i < n, the relation
a1na1i−1 = a1i−1a1n−1 , which is a reformulation of the relation xn+1xi = xixn of (2.1),
occurs in RRR as the first relation of (2.4) with α = 1i−1 and β = 1n−i. �

As an application, we compute the elements aα in terms of the generators xi.

Proposition 2.9. If α is an address containing at least one 0, say α = 1i01+i010i1 ...10im
with m > 0 and i, i0, ... , im > 0, then, putting g = xim+1

i+m+1 ... x
i1+1
i+2 x

i0+1
i+1 , we have

(2.6) aα = g−1x−1
i+m+2xi+m+1g.

Proof. It is sufficient to establish the formula in the case i = 0 as, then, applying shi1
gives the general case. We use induction on (m, i0) with respect to the lexicographical
(well)-order, that is, (m′, i′0) is smaller than (m, i0) if and only if we have either m′ < m,
or m′ = m and i′0 < i0.
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Assume first (m, i0) = (0, 0), that is, α = 0. Then the pentagon relation at ∅ gives

aα = a0 = a−1
∅ a−1

1 a2
∅ = x−1

1 (x−1
2 x1)x1,

which is the expected instance of (2.6). Assume now m > 1 and i0 = 0, that is α =
010i1 ... 10im . Then the quasi-commutation relation for ∅ and 01β gives

(2.7) aα = a010i1 ... 10im = a−1
∅ a101+i110i2 ... 10ima∅ = x−1

1 (a101+i110i2 ... 10im )x1.

The number of non-initial symbols 1 in 01+i110i2 ... 10im is m − 1. As (m − 1, i1) is
smaller than (m, 0), the induction hypothesis gives a01+i110i2 ... 10im = g−1x−1

m+1xmg with
g = xim+1

m ... xi2+1
2 xi1+1

1 . Using sh1, we get a101+i110i2 ... 10im = h−1x−1
m+2xm+1h with

h = xim+1
m+1 ... x

i2+1
3 xi1+1

2 . Merging with (2.7), we deduce the expected value for aα.
Assume finally i0 > 1. Then the quasi-commutation relation for ∅ and 00β gives

aα = a01+i010i1 ... 10im = a−1
∅ a0i010i1 ... 10ima∅ = x−1

1 a0i010i1 ... 10imx1.

The pair (m, i0 − 1) is smaller than the pair (m, i0), so the induction hypothesis gives
aα = x−1

1 (g−1x−1
m+2xm+1g)x1 with g = xim+1

m+1 ... x
i1+1
2 xi01 , again the expected instance

of (2.6). So the induction is complete. �

Example 2.10. Consider α = 01100, which corresponds to m = 2, and i = i0 = i1 = 0,
and i2 = 2. Then we find aα = g−1x−1

4 x3g with g = x3
3x2x1, that is, a01100 is equal

to x−1
1 x−1

2 x−3
3 x−1

4 x4
3x2x1.

3. A lattice structure on the Thompson group F

Here comes the core of our study, namely the investigation of the submonoid F+
sym of F

generated by the elements aα. The main result is that F+
sym has the structure of a lattice

when equipped with its divisibility relation, and that this lattice is closely connected
with the Tamari lattices, which occur as initial sublattices.

These results are not trivial, as, in particular, determining a presentation of F+
sym

is not so easy. Our approach relies on using subword reversing, a general method of
combinatorial group theory that turns out to be well suited for F+

sym. One of the outcomes
is a new proof (one more!) of the fact that Tamari posets are lattices.

The section is organized as follows. The symmetric Thompson monoid F+
sym is intro-

duced in Subsection 3.1, and it is investigated in Subsection 3.2 using subword reversing.
The lattice structure on F+

sym and its connection with the Tamari lattices are described in
Subsection 3.3. Finally, a few results about the algorithmic complexity of the reversing
process are gathered in Subsection 3.4.

3.1. The symmetric Thompson monoid F+
sym. Once new generators aα of the Thomp-

son group F have been introduced, it is natural to investigate the submonoid generated
by these elements.

Definition 6. The symmetric Thompson monoid F+
sym is the submonoid of F generated

by the elements aα with α a binary address.

The family AAA of all elements aα is a sort of closure of the family of standard genera-
tors xi under all local left–right symmetries, so the above terminology is natural. Another
option could be to call F+

sym the dual Thompson monoid as the relation of F+ and F+
sym

is reminiscent of the relation of the standard braid monoids and the dual braid monoids
generated by the Birman–Ko–Lee braids.

Although straightforward, the following connection is essential for our purpose:
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Lemma 3.1. For all trees T, T ′, the following are equivalent
(i) We have T 6T T ′ in the Tamari order;
(ii) There exists f in F+

sym satisfying T ′ = T ∗ f .

Proof. By definition, T 6T T ′ holds if there exists a finite sequence of left-rotations
transforming T into T ′. Now applying the left-rotation at α is letting aα act. �

In order to investigate the monoid F+
sym and its connection with the Tamari lattices, it

will be necessary to first know a presentation of F+
sym. Owing to Propositions 2.1 and 2.8,

the following result should not be a surprise.

Proposition 3.2. [6, 11] The monoid F+
sym admits the presentation 〈AAA | RRR〉+, and F is

a group of right-fractions for F+
sym (that is, every element of F can be expressed as fg−1

with f, g in F+
sym).

However, the proof of Proposition 3.2 is more delicate than the proof of Proposition 2.1,
and no very simple argument is known.

Sketch of the proof developed in [6, 11]. In order to prove that the relations ofRRR generate
all relations connecting the elements aα in the monoid F+, one introduces, for every size n
tree T , an explicit sequence cT of elements aα satisfying Cn ∗ cT = T—as will be made
in the proof of Proposition 3.9 below. The point is then to show that, if T ′ = T ∗ w
holds, then the relations of RRR are sufficient to establish the equivalence of cT ′ and cTw.
Then, if two AAA-words u, v represent the same element of F+

sym, and T is a tree such that
both T ∗ u and T ∗ v are defined, the above argument shows that cTu and cT v are RRR-
equivalent, since both are RRR-equivalent to cT∗u. Provided RRR-equivalence is known to
allow left-cancellation, one deduces that u and v are RRR-equivalent, as expected. �

Here we shall propose a new proof, which is more lattice-theoretic in that it exclusively
relies on the so-called subword reversing method, which we shall see below is directly con-
nected with the Tamari lattice operations. Instead of working with F+

sym, we investigate
the abstract monoid 〈AAA |RRR〉+ defined by the presentation (AAA,RRR) of Proposition 2.8. A
priori, as F+

sym is generated by AAA and satisfies the relations of RRR, we only know that F+
sym

is a quotient of 〈AAA |RRR〉+.
Definition 7. Assume that M is a monoid. For f, g in M , we say that f left-divides g,
or that g is a right-multiple of f , written f 4 g, if fg′ = g holds for some g′ of M . We
use Div(f) for the family of all left-divisors of f .

It is standard that the left-divisibility relation is a partial pre-ordering. Moreover, if
M contains no invertible element except 1, this partial pre-ordering is a partial ordering,
that is, the conjunction of f 4 g and g 4 f implies f = g.

Lemma 3.3. In order to establish Proposition 3.2, it is sufficient to prove that the
monoid 〈AAA |RRR〉+ is cancellative and any two elements admit a common right-multiple.

Proof. A classical result of Ore (see for instance [5]) says that, if a monoid M is can-
cellative and any two elements of M admit a common right-multiple, then M embeds in
a group of right-fractions G. Moreover, if M admits the presentation 〈A |R〉+, then G
admits the presentation 〈A |R〉. So, if the hypotheses of the lemma are satisfied, then
the monoid 〈AAA |RRR〉+ embeds in a group of fractions that admits the presentation 〈AAA |RRR〉.
By Proposition 2.8, the group 〈AAA |RRR〉 is the group F . Therefore, 〈AAA |RRR〉+ is isomorphic
to the submonoid of F generated by AAA, that is, to F+

sym. Hence F+
sym admits the expected

presentation, and F is a group of right-fractions for F+
sym. �
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3.2. Subword reversing. In order to apply the strategy of Lemma 3.3, we have to
prove that the presented monoid 〈AAA |RRR〉+ is cancellative and any two elements of 〈AAA |RRR〉+
admit a common right-multiple. The subword reversing method [7, 10] proves to be
relevant. We recall below the basic notions, and refer to [13] or [14, Section II.4] for a
more complete description.

Hereafter, words in an alphabet A are called (positive) A-words, whereas words in the
alphabet A∪A−1, where A−1 consists of a copy a−1 for each letter a of A, are called signed
A-words. We say that a group presentation (A,R) is positive if all relations in R have
the form u = v where u and v are nonempty positive A-words. We denote by 〈A |R〉+ and
by 〈A |R〉 the monoid and the group presented by (A,R), respectively, and we use ≡+

R

(resp. ≡R) for the congruence on positive A-words (resp. on signed A-words) generated
by R. Finally, for w a signed A-word, we denote by w the element of 〈A |R〉 represented
by w, that is, the ≡R-class of w.

Definition 8. Assume that (A,R) is a positive presentation. If w,w′ are signed A-words,
we say that w is right-R-reversible to w′ in one step if w′ is obtained from w either by
deleting some length 2 subword a−1a or by replacing some length 2 subword a−1b with
a word vu−1 such that av = bu is a relation of R. We write w yR w′ if w is right-R-
reversible to w′ in finitely many steps.

The principle of right-R-reversing is to use the relations of R to push the negative
letters (those with exponent −1) to the right, and the positive letters (those with expo-
nent +1) to the left. The process can be visualized in diagrams as in Figure 11.

Example 3.4. Consider the presentation (AAA,RRR), which is positive. Let w be the
signed AAA-word a−1

1 a∅a
−1
00 a1. Then w contains two negative–positive length 2 subwords,

namely a−1
1 a∅ and a−1

00 a1. There exists in RRR a unique relation of the form a1 ... = a∅ ... ,
namely a1a∅a0 = a2

∅, and a unique relation a00 ... = a1 ... , namely a00a1 = a1a00.
Therefore, there exists two ways to right-RRR-reverse w, namely replacing a−1

1 a∅ with
a∅a
−1
00 a

−1
∅ and obtaining w1 = a∅a0a

−1
∅ a1, or replacing a−1

00 a1 with a1a
−1
00 and obtain-

ing w′1 = a−1
1 a∅a1a

−1
00 . The words w1 and w′1 each contain a unique negative–positive

length 2 subword, and reversing it leads in both cases to w2 = a∅a0a
−1
∅ a1a

−1
00 . The

word w2 contains a unique negative–positive length two subword and reversing it leads
to w3 = a∅a0a∅a

−1
0 a−1

∅ a−1
00 . As the latter word contains no negative–positive subword,

no further right-reversing is possible. See Figure 11.

It is easy to see that, if (A,R) is a positive presentation and w,w′ are signed A-
words, then w yR w

′ implies w ≡R w′ and that, if u, v, u′, v′ are positive A-words, then
u−1v yR v

′u′−1 implies uv′ ≡+
R vu

′. In particular, using ε for the empty word,

(3.1) u−1v yR ε implies u ≡+
R v.

In general, (3.1) need not be an equivalence, but it turns out that this is the interesting
situation, in which case the presentation (A,R) is said to be complete with respect to
right-reversing. Roughly speaking, a presentation is complete with respect to right-
reversing if right-reversing always detects equivalence. The important point here is that
the presentation (AAA,RRR) has this property.

Lemma 3.5. [6] The presentation (AAA,RRR) is complete with respect to right-reversing.
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a1

a∅

a∅ a0 a∅

a∅

a0

a00

a∅

a1

a1

a00

Figure 11. Right-RRR-reversing of the signed AAA-word a−1
1 a∅a

−1
00 a1: we draw

the initial word as a zigzag path (here in dark green) from SW to NE by as-
sociating with every letter a a horizontal arrow labeled a and every letter a−1

a vertical arrow labeled a (crossed in the wrong direction); then reversing
a−1b to vu−1 corresponds to closing the open pattern made by a vertical a-
arrow and a horizontal b-arrow with the same source by adding horizontal ar-
rows labeled v and vertical arrows labeled u; the final word corresponds to the
rightmost path from the SW corner to the NE corner, here a∅a0a∅a

−1
0 a−1

∅ a−1
00

(light green).

Sketch. By [13, Proposition 2.9], a sufficient condition for a positive presentation (A,R)
to be complete with respect to right-reversing is that (A,R) satisfies

(3.2)

(i) There exists a ≡+
R-invariant map λ from positive A-words to N

satisfying λ(uv) > λ(u) +λ(v) for all u, v and λ(a) > 1 for a in A,
and
(ii) For all a, b, c in A and all positive A-words u, v, if a−1cc−1b yR

vu−1 holds, then v−1a−1bu yR ε holds as well.

We claim that (AAA,RRR) satisfies (3.2). As for (i), we cannot use for λ the length of words,
as it is not ≡+

RRR-invariant: in the pentagon relation, the length 2 word a2
∅ is ≡+

RRR-equivalent
to the length 3 word a1a∅a0. Now, for T a tree, let µ(T ) be the total number of 0’s
occurring in the addresses of the leaves of T : for instance, we have µ(•(••)) = 2 and
µ((••)•) = 3, as the leaves of •(••) have addresses 0, 10, 11, with two 0’s, and those
of (••)• have addresses 00, 01, 1, with three 0’s. Then put

(3.3) λ(w) = µ(w+)− µ(w−).

For instance, if w is a∅, the trees w− and w+ are •(••) and (••)•, and one finds λ(a∅) =
3− 2 = 1. A similar argument gives λ(aα) = 1 for every address α. More generally, one
easily checks that T 6T T ′ implies µ(T ′) > µ(T ). Hence the function λ takes values in N.
Moreover, a counting argument shows that, in the previous situation, µ(T ′σ)− µ(Tσ) >
µ(T ′) − µ(T ) holds for every substitution σ. If u and v are positive AAA-words, then, as
seen in the proof of Proposition 2.3, we have (uv)− = uσ− and (uv)+ = vτ+ for some
substitutions σ, τ satisfying uσ+ = vτ−. We deduce

λ(uv) = µ(uv+)− µ(uv−) = µ(vτ+)− µ(uσ−) = µ(vτ+)− µ(vτ−) + µ(uσ+)− µ(uσ−)

> µ(v+)− µ(v−) + µ(u+)− µ(u−) = λ(v) + λ(u).

As for (ii), the problem is to check that, whenever α, β, γ are addresses and the
signed word a−1

α aγa
−1
γ aβ is right-RRR-reversible to some positive–negative word vu−1,

then v−1a−1
α aβu is right-RRR-reversible to the empty word. The systematic verification
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seems tedious. Actually it is not. First, what matters is the mutual position of the ad-
dresses α, β, γ with respect to the prefix ordering, and only finitely many patterns may
occur. Next, for every pair of addresses α, β, there exists in RRR exactly one relation of the
form aα... = aβ ... , which implies that, for every signed AAA-word w, there exists at most
one pair of positive AAA-words u, v such that w is right-RRR-reversible to vu−1. Finally, all
instances involving quasi-commutation relations turn out to be automatically verified.
So, the only critical cases are those corresponding to the triple of addresses ∅, 1, 11 and
its translated and permuted copies, and a direct verification is then easy. For instance,
the reader can see on Figure 12 that we have a−1

∅ a1a
−1
1 a11 yRRR a

2
∅a
−1
00 a

−1
0 a−1

∅ a−1
01 a

−1
1 and

a−3
∅ a11a1a10a∅a0a00 yRRR ε. �

∅

1

0

1 ∅ 0

01

∅

∅

∅

0

∅

0

∅

0

001

11

∅

11 1 10 ∅ 0 00

1 ∅

∅

∅

∅ ∅

00

0

∅

10

1

ε

ε

ε

ε

ε

ε

Figure 12. Proof of Lemma 3.5: a−1
∅ a1a

−1
1 a11 is right-RRR-reversible

to a2
∅a
−1
00 a

−1
0 a−1

∅ a−1
01 a

−1
1 (left), and a−3

∅ a11a1a10a∅a0a00 is right-RRR-
reversible to the empty word; dotted lines represent the empty word
that appears when a pattern a−1

α aα is reversed.

Once a positive presentation is known to be complete with respect to right-reversing,
it is easy to deduce properties of the associated monoid.

Proposition 3.6. The monoid 〈AAA |RRR〉+ is left-cancellative.

Proof. By [13, Proposition 3.1], if (A,R) is a positive presentation that is complete
with respect to right-reversing, a sufficient condition for the monoid 〈A |R〉+ to be left-
cancellative is that

(3.4) R contains no relation of the form au = av with a in A and u 6= v.

By definition, RRR satisfies (3.4). Hence the monoid 〈AAA |RRR〉+ is left-cancellative. �

As for right-cancellation, no new computation is needed as we can exploit the symme-
tries of RRR. First, we introduce a counterpart of right-reversing where the roles of positive
and negative letters are exchanged.

Definition 9. Assume that (A,R) is a positive presentation. If w,w′ are signed A-
words, we say that w is left-R-reversible to w′ in one step if w′ is obtained from w either
by deleting some length 2 subword aa−1 or by replacing some length 2 subword ab−1

with a word u−1v such that ua = vb is a relation of R. We write w

x

R w′ if w is
left-R-reversible to w′ in finitely many steps.

Of course, properties of left-reversing are symmetric to those of right-reversing.

Proposition 3.7. The monoid 〈AAA |RRR〉+ is right-cancellative.
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Proof. The argument is symmetric to the one for Proposition 3.6, and relies on first
proving that (AAA,RRR) is, in an obvious sense, complete with respect to left-reversing. Due
to the symmetries ofRRR, this is easy. Indeed, for w a signedAAA-word, let w̃ denote the word
obtained by reading the letters of w from right to left, and exchanging 0 and 1 everywhere
in the indices of the letters aα. For instance, ã110a∅ is a∅a001. A direct inspection shows
that the family R̃RR of all relations ũ = ṽ for u = v a relation ofRRR isRRR itself. It follows that,
for all signed AAA-words w,w′, the relations w yRRR w

′ and w̃ x

RRR w̃′ are equivalent. Then,
as w 7→ w̃ is an alphabetical anti-automorphism, the completeness of (AAA,RRR) with respect
to right-reversing implies the completeness of (AAA,R̃RR), hence of (AAA,RRR), with respect to left-
reversing. As the right counterpart of (3.4) is satisfied, we deduce that the monoid 〈AAA |RRR〉+
is right-cancellative. �

In order to complete the proof of Proposition 3.2 using the strategy of Lemma 3.3,
we still need to know that any two elements of the monoid 〈AAA |RRR〉+ admit a common
right-multiple. Using the action on trees, it is easy to prove that result in F+

sym. But
this is not sufficient here as we do not know yet that F+

sym is isomorphic to 〈AAA |RRR〉+. We
appeal to right-reversing once more.

Proposition 3.8. Any two elements of 〈AAA |RRR〉+ admit a common right-multiple.

Proof. If (A,R) is a positive presentation, saythat right-R-reversing is terminating if,
for all positive A-words u, v, there exist positive A-words u′, v′ satisfying u−1v yRRR

v′u′−1. We noted that the latter relation implies uv′ ≡+
R vu

′, thus implying that, in the
monoid 〈A |R〉+, the elements represented by u and v admit a common right-multiple.
So, in order to establish the proposition, it is sufficient to prove that right-RRR-reversing
is terminating, a non-trivial question as, because of the pentagon relations, the length
of the words may increase under right-reversing, and there might exist infinite reversing
sequences—try right-reversing of a−1ba in the presentation (a, b, ab = b2a).

Now, by [13, Proposition 3.11], if (A,R) is a positive presentation, a sufficient condition
for right-R-reversing to be terminating is that (A,R) satisfies

(3.5)

(i) For all a, b in A, there is exactly one relation a ... = b ... in R,
and
(ii) There exists a family Â of positiveA-words that includesA and
is closed under right-R-reversing, this meaning that, for all u, v
in Â, there exist u′, v′ in A# ∪ {ε} satisfying u−1v yRRR v

′u′−1.

We claim that (AAA,RRR) satisfies (3.5). Indeed, (i) follows from an inspection of RRR. As
for (ii), let us put

âα,r = aαaα0 ... aα0r−1

for α an address and r > 1, see Figures 14 and 19 for an illustration of the action of âα,r
on trees. Then the family ÂAA of all words âα,r includesAAA as we have aα = âα,1 for every α,
and it is closed under right-RRR-reversing as we find

(3.6) â−1
β,s âα,r yRRR



â0s−r,s−r for β = α with r < s,

âα,r â
−1
β,s for β ⊥ α,

âα,r â
−1
α0r+1γ,s for β = α0γ,

âα,r â
−1
α0r1γ,s for β = α10rγ,

âα,r â
−1
α0i1γ,s for β = α10i1γ with i < r,

âα,r+s â
−1
α0i,s for β = α10i with i < r,
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see Figure 13. Note that ÂAA is the smallest family that includes AAA and is closed under
right-RRR-reversing as the last type of relation in (3.6) inductively forces any such family
to contain âα,r for every r. �

∅ 0 00 000 0000 00000

∅ 0 00 000 0000

0100 0010 0001 000 000

010 001 00 00

01 0 0

∅ 0 00 000

10

100

1000

∅ 0 00 000 0000 00000 000000

000

00

0

Figure 13. Closure of the family bAAA under right-reversing: â−1
10,3â∅,4 reverses

to â∅,7â
−1
0,3, which corresponds to the last relation in (3.6) with α = ∅, r = 4,

s = 3, i = 1 (the letter “a” has been skipped everywhere).

In terms of the generators âα,r, the pentagon relation can be expressed as a2
∅ = a1â∅,2,

with both sides of length 2. The last type in (3.6) corresponds to an extended pentagon
relation âα,r âα0i,s = âα10i,s âα,r+s for all r, s, i with i < r, whose counterpart in terms
of tree rotation is displayed in Figure 14.

â10i,s â∅,r+s

â∅,r â0i,s

Figure 14. Extended pentagon relation âα,r âα0i,s = âα10i,s âα,r+s, here for
α = ∅, r = 4, s = 3, i = 2.

We thus established that the monoid 〈AAA |RRR〉+ satisfies the conditions of Lemma 3.3
and, therefore, the proof of Proposition 3.2 is complete.

3.3. The lattice structure of F+
sym. Here comes the central point, namely the con-

nection between the right-divisibility relation of the monoid F+
sym, which we now know

admits the presentation 〈AAA |RRR〉+, and the Tamari posets. We recall that Div(f) denotes
the family of all left-divisors of f .

Proposition 3.9. For every n > 1, the subposet (Div(an−1
∅ ),4) of (F+

sym,4) is iso-
morphic to the Tamari poset (Tn,6T ). The poset (

⋃
n Div(an∅ ),4) is isomorphic to the

Tamari poset (T∞,6T ).

Proof. An immediate induction gives the equality Cn ∗ an−1
∅ = C̃n for every n, that is,

the element an−1
∅ of F+

sym maps the right-comb Cn to the left-comb C̃n. Hence Cn ∗ f is
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defined for every element f of F+
sym that left-divides an−1

∅ . Thus, as Cn belongs to Tn and
the action of F+

sym preserves the size of the trees, we obtain a well defined map

(3.7) In : f 7→ Cn ∗ f
of Div(an−1

∅ ) into Tn. By Proposition 2.4, the map In is injective. On the other hand,
we claim that In is surjective. To prove it, it suffices to exhibit, for every size n tree T ,
an element of F+

sym that maps the right-comb Cn to T . Now, for every tree T , define two
elements cT , c′T of F+

sym by the recursive rules:

(3.8) cT =

{
1
c′T0

sh1(c′T1
) a∅

c′T =

{
1 for T of size 0,
c′T0

sh1(c′T1
) a∅ for T = T0

∧T1.

For every size n tree T and every p ≥ 1, we have Cn ∗ cT = T and Cn+p ∗ c′T = T∧Cp, as
shows an induction on T : everything is obvious for T = •, and, for T = T0

∧T1, it suffices
to follow the diagrams of Figure 15. Note that introducing both cT and c′T is necessary
for the induction. However, the connection c′T = cT a1i−1 ... a1a∅, where i is the length
of the rightmost branch in T , is easy to check.

Thus In is a bijection of Div(an−1
∅ ) onto Tn. Moreover, In is compatible with the

orderings. Indeed, assume f 4 g, say fg′ = g. Then, by Proposition 2.3, we have
(Cn ∗ f) ∗ g′ = Cn ∗ g, whence Cn ∗ f 6T Cn ∗ g by Lemma 3.1. This completes the proof
that (Div(an−1

∅ ),4) is isomorphic to the Tamari poset (Tn,6T ).
As for T∞, we observe that, for every n, we have Cn+1 = C#

n
σ where σ is the substitu-

tion that maps 0, ... , n− 1 to • and n to ••. On the other hand, by definition, Div(an−1
∅ )

is an initial segment of Div(an∅ ) and, for every f in Div(an−1
∅ ), we have

Cn+1 ∗ f = C#
n
σ ∗ f = (Cn ∗ f)#σ,

hence In+1(f) = ιn(In(f)). It follows that the family (In)n>1 induces a well defined
map I∞ of

⋃
n Div(an∅ ) into T∞. The map I∞ is injective because In is, it is surjective

as, by definition, T∞ is the limit of the directed system (Tn, ιn), and it preserves the
orderings as In does. �

Cn

Cn1

T0 T1T0

c′T0 sh1(cT1)

Cn+p
Cn1+p

Cp

Cp

T0 T0
T1 T0 T1

c′T0
sh1(c′T1

) a∅

Figure 15. For T a size n tree,
cT describes how to construct T from the right-comb Cn, and c′T de-
scribes how to construct T∧Cp from Cn+p; the figure illustrates the recursive
definition of c′T (above) and cT (below) for T = T0

∧T1, with n1 denoting the

size of T1.
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Remark 3.10. The subset
⋃
n Div(an∅ ) involved in Proposition 3.9 is a proper subset

of F+
sym as, for instance, it contains no aα such that 0 occurs in α: indeed, in this case,

Cn ∗ aα is not defined, whereas Cn ∗ f is defined for every f left-dividing an−1
∅ .

The connection of Proposition 3.9 can be used in both directions. If we take for
granted that the Tamari posets are lattices, we deduce that the subsets (Div(an−1

∅ ),4)
of (F+

sym,4) must be lattices as well, that is, with the usual terminology of left-divisibility
relation, that any two elements of

⋃
n Div(an∅ ) admit a least common right-multiple, or

right-lcm, and a greatest common left-divisor, or left-gcd.
On the other hand, if we have a direct proof that (F+

sym,4) is a lattice, then the
isomorphism of Proposition 3.9 provides a new proof of the lattice property for the
Tamari posets. This is what happens.

Proposition 3.11. The poset (F+
sym,4) is a lattice.

Corollary 3.12. For every n, the Tamari poset (Tn,6) is a lattice.

To establish Proposition 3.11, we once again appeal to subword reversing.

of Proposition 3.11. By [13, Proposition 3.6], if (A,R) is a positive presentation that
is complete with respect to right-reversing, a sufficient condition for any two elements
of 〈A |R〉+ that admit a common right-multiple to admit a right-lcm is that (A,R) satisfies
Condition (i) of (3.5); moreover, in this case, the right-lcm of the elements represented
by two A-words u, v is represented by uv′ and vu′, where u′, v′ are the positive A-words
for which u−1v yR v

′u′−1 holds.
Now, as already noted, (AAA,RRR) satisfies (3.5). Hence any two elements of F+

sym that
admit a common right-multiple admit a right-lcm. On the other hand, by Proposition 3.8,
any two elements of 〈AAA |RRR〉+, that is, of F+

sym, admit a common right-multiple. Hence
any two elements of F+

sym admit a right-lcm. In other words, any two elements in the
poset (F+

sym,4) admit a least upper bound.
As for left-gcd’s, we can argue as follows. Let 4̃ denote the right-divisibility relation,

which is the binary relation such that f 4̃ g holds if and only if we have g′f = g for
some g′ (the difference with 4 is that, here, f appears on the right and not on the left).
Then we have the derived notions of a left-lcm and a right-gcd. An easy general result
says that, if f, g, f ′, g′ are elements of a monoid and satisfy fg′ = gf ′, then f and g admit
a left-gcd if and only if f ′ and g′ admit a left-lcm. By Proposition 3.8, any two elements
of F+

sym admit a common right-multiple and so, it suffices to show that any two elements
of F+

sym admit a left-lcm to deduce that they admit a left-gcd. Now, the existence of
left-lcm’s in F+

sym follows from the properties of left-RRR-reversing, which we have seen in
the proof of Proposition 3.7 are similar to those of right-RRR-reversing. �

Remark 3.13. Another way of deducing the existence of left-gcd’s from that of right-
lcm’s is to use Noetherianity properties. The existence of the function λ of (3.3) implies
that a set Div(f) contains no infinite increasing sequence f1 ≺ f2 ≺ ... in F+

sym. For all
f, g, the family Div(f) ∩ Div(g) is nonempty as it contains 1, and, by Noetherianity, it
contains a 4-maximal element, which must be a left-gcd of f and g.

3.4. Computing the operations. We conclude this section with results about the
algorithmic complexity of subword reversing in F+

sym. Here we concentrate on space
complexity, namely bounds on the length of words; it would be easy to state analogous
bounds on the number of reversing steps, hence for time complexity.

Proposition 3.14. If w,w′ are signed AAA-words, w yRRR w′ implies |w′| 6 |w|2/4 + |w|.
More precisely, we have |w′| 6 p+ q + pq if w contains p positive letters and q negative
letters. These bounds are sharp.



20 PATRICK DEHORNOY

Proof. By construction, the RRR-reversing steps in the right-RRR-reversing of w to w′ can be
gathered into R̂RR-reversing steps, which are at most pq in number. Consider the sum of
the indices r of the involved generators âα,r. Each RRR-reversing step increases this sum
by 1 at most (in the case of a pentagon relation), so the total sum in the final p + q
generators âα,r is at most p + q + pq. So, when the generators âα,r are decomposed as
products of aα’s, at most p+ q + pq of the latter occur.

The bound is sharp, as an easy induction gives

(a1p−1 ... a1a∅)−1 aq1p yRRR aq∅ (â1p−1,q ... â1,qâ∅,q)−1,

a word of length p+ q that is right-RRR-reversible to a word of length p+ q + pq. �

Other upper bounds can be obtained by using the action of F+
sym on trees. To state

the result, it is convenient to introduce the following natural terminology.

Definition 10. For every signed AAA-word w, the right-numerator N
r
(w) and the right-

denominator Dr(w) of w are the unique AAA-words satisfying w yRRR Nr(w)Dr(w)−1. Sym-
metrically, the left-numerator Ǹ (w) and the left-denominator Dr(w) of w are the unique
AAA-words satisfying w x

RRR D`
(w)−1Ǹ (w).

As left- and right-RRR-reversings are terminating, the positive AAA-words Nr(w), Dr(w),
Ǹ (w), and D

`
(w) exist for every signed AAA-word w.

Proposition 3.15. Assume that w is a signed AAA-word and T ∗ w is defined for some
size n tree T . Then we have

(3.9) max(|Ǹ (w)|+ |D
r
(w)|, |Ǹ (w)|+ |D

r
(w)|) 6 (n− 1)(n− 2)/2.

In order to establish Proposition 3.15, we need a preliminary result about the action
of AAA-words on trees. First, if T is a tree and w is a signed AAA-word, we say that T ∗ w
is defined if T ∗ u is defined for every prefix u of w. Now, if two signed AAA-words w,w′

represent the same element of F , the hypothesis that T ∗ w is defined for some tree T
does not guarantee that T ∗ w′ is also defined: for instance, T ∗ ε is always defined, but
T ∗ a−1

α aα is not. However, this cannot happen with reversing.

Lemma 3.16. Assume that w,w′ are signed-AAA-words and w is right- or left-RRR-reversible
to w′. Then, for every tree T such that T ∗ w is defined, T ∗ w′ is defined as well.

Proof. The problem with arbitrary equivalences is that new pairs a−1
α aα or aαa−1

α may
be created. This however is impossible in the case of (right- or left-) reversing, as we can
only delete such pairs, but not create them. A complete formal proof requires to check
all possible cases: this is easy, and we skip the details. �

of Proposition 3.15. Let T ′ = T∗w. By definition, w is right-RRR-reversible toNr(w)Dr(w)−1,
and left-RRR-reversible toD

`
(w)−1Ǹ (w). By Lemma 3.16, this implies that T∗Nr(w)Dr(w)−1

and T ∗D
`
(w)−1Ǹ (w) are defined. Put T̀ = T ∗D

`
(w)−1 and T

r
= T ∗N

r
(w). By hypoth-

esis, the terms T, T ′, T̀ , and T
r

all have size n. Hence there exists a positive AAA-word u
(namely cT̀ ) mapping the right comb Cn to T̀ . By symmetry, there exists a positive
AAA-word v mapping T

r
to the left comb C̃n. Then uǸ (w)D

r
(w)v and uD

`
(w)N

r
(w)v are

RRR-equivalent positive AAA-words, and both map Cn to C̃n, see Figure 16. Now an−2
∅ also

maps Cn to C̃n. Hence, by Proposition 2.4, we must have

(3.10) an−2
∅ ≡+

RRR uǸ (w)D
r
(w)v ≡+

RRR uD`
(w)N

r
(w)v.

Then the function λ of (3.3) provides an upper bound for the lengths of the words RRR-
equivalent to a given word. In the current case, we have λ(an−2

∅ ) = (n−1)(n−2)/2, and
(3.9) follows. �
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T

T ′

Cn C̃n
w

yRRRRRR

y

Ǹ (w) D
r
(w)

N
r
(w)D

`
(w)

u v
T̀ T

r

Figure 16. Bounding the lengths of the left- and right-numerators and denom-
inators of a signed AAA-word w in terms of the size of a term T such that T ∗ w is
defined.

The upper bound of (3.9) is close to sharp: for w = (a1p−1 ... a1a∅)−1 aq1p , the wordD
r
(w)

is â1p−1,q ... â1,qâ∅,q, which has length pq in the alphabet AAA, so the sum of the lengths
of Ǹ (w) and Dr(w) is p+pq, while the minimal size of a term T such that T ∗w is defined
is p+ q + 2.

To conclude with subword reversing, we mention one more result that involves both
left- and right-reversing. The example of ε and a∅a

−1
∅ shows that RRR-equivalent words

need not have RRR-equivalent numerators and denominators: the right-numerator of ε is ε,
whereas the right-numerator of a∅a−1

∅ is a∅. This cannot happen when left- and right-
numerators are mixed in a double reversing.

Proposition 3.17. For w a signed AAA-word, define Ǹ
r
(w) to be N

r
(D

`
(w)−1Ǹ (w)) and

D
r̀
(w) to be D

r
(D

`
(w)−1Ǹ (w)). Then w ≡RRR w′ implies Ǹ

r
(w′) ≡+

RRR Ǹ r
(w) and D

r̀
(w′) ≡+

RRR

D r̀(w).

We first observe that Ǹ
r
(w)D

r̀
(w)−1 is a minimal fractionary expression of w:

Lemma 3.18. If w,w′ are RRR-equivalent signed AAA-words, there exist a positive AAA-word u
satisfying

(3.11) N
r
(w′) ≡+

RRR Ǹ r
(w)u and D

r
(w′) ≡+

RRR D r̀
(w)u.

Proof. By construction, the word w isRRR-equivalent to D
`
(w)−1Ǹ (w), and the latter word

is right-RRR-reversible to Ǹ
r
(w)D

r̀
(w)−1. Hence we have

(3.12) D
`
(w)Ǹ

r
(w) ≡+

RRR Ǹ (w)D
r̀
(w),

and, moreover, as mentioned in the proof of Proposition 3.11, the element of F+
sym repre-

sented by D
`
(w)Ǹ

r
(w) and Ǹ (w)D

r̀
(w) is the right-lcm of Ǹ (w) and D

`
(w).

On the other hand, Nr(w
′)Dr(w

′)−1 is RRR-equivalent to w′, hence to w, and therefore
to D

`
(w)−1Ǹ (w)−1. We deduce D

`
(w)Nr(w

′) ≡RRR Ǹ (w)Dr(w
′), whence

(3.13) D
`
(w)N

r
(w′) ≡+

RRR Ǹ (w)D
r
(w′)

since F+
sym embeds in F . As D

`
(w)Ǹ

r
(w) is the right-lcm of Ǹ (w) and D

`
(w), compar-

ing (3.12) and (3.13) implies the existence of u satisfying (3.11). �

of Proposition 3.17. By Lemma 3.18, there exist positive AAA-words u and u′ satisfying
Ǹ

r
(w′) ≡+

RRR Ǹ
r
(w)u and Ǹ

r
(w) ≡+

RRR Ǹ
r
(w′)u′, whence Ǹ

r
(w) ≡+

RRR Ǹ
r
(w)uu′. As F+

sym is
left-cancellative, we deduce ε ≡+

RRR uu′. The only possibility is then that u and u′ are
empty. �

We now return to Tamari lattices, and show how to use right-reversing to compute
lowest upper bounds in the Tamari poset Tn appealing to the words cT of (3.8). Of
course, left-reversing can be used symmetrically to compute greatest lower bounds.
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Proposition 3.19. Assume that T, T ′ are size n trees. Then the least upper bound T ′′

of T and T ′ in the Tamari lattice Tn is determined by

T ′′ = T ∗Nr(c
−1
T cT ′) = T ′ ∗Dr(c

−1
T cT ′).

Proof. As mentioned in the proof of Proposition 3.11, the words cT Nr
(c−1
T cT ′) and

cT ′ Dr
(c−1
T cT ′) both represent the right-lcm of cT and cT ′ in F+

sym. Hence, owing to Propo-
sition 3.9, the image of cT Nr

(c−1
T cT ′) under In, which, by definition, is Cn∗cT Nr

(c−1
T cT ′),

that is, T ∗N
r
(c−1
T cT ′), is the least upper bound in Tn of In(cT ), that is, of Cn ∗cT , which

is T , and In(cT ′), that is, of Cn ∗ cT ′ , which is T ′. �

Example 3.20. Let T = •(((•(••))•)•) and T ′ = (•(••))(•(••)). Using the method
explained in Lemma 4.2 below, one obtains cT = a11a

2
1 and cT ′ = a1a∅. Right-reversing

a−2
1 a−1

11 a1a∅ leads to a100a∅a0a00a
−2
∅ (see Figure 17), and we deduce that the least upper

bound of T and T ′ in the Tamari poset is the tree T ∗a100a∅a0a00, namely (((•(••))•)•)•
(which is also T ′ ∗ a2

∅).

1 10

ε

∅ 0
1

1 ∅

100 ∅ 0 00

∅

∅

1 ∅

11

1

1

Figure 17. Computing the right-lcm of cT and c′T by right-reversing de-
termines the least upper bound of T and T ′ in the Tamari lattice, here for
T = •(((•(••))•)•) and T ′ = (•(••))(•(••)).

4. The Polish normal form on F

We now develop another approach for determining least common multiples in the
monoid F+

sym, whence, equivalently, least upper bounds in the Tamari lattices, namely
using what is known as the Polish algorithm. Initially introduced in the case of the
self-distributivity law [8, Chapter IX], the latter is easily adapted to our current context,
where it provides a unique normal form for the elements of F+

sym and a method for
determining the upper bound of two trees in the Tamari lattice. The main technical tool
here is the covering relation of [12], a variant of the weight sequences of [23]—also see [22]
and [1].

The section is organized as follows. In Subsection 4.1 we recall the standard Polish
encoding of trees and its connection with the Tamari ordering. In Subsection 4.2 we
describe an algorithm that, starting with the Polish encoding of two trees, determines a
common upper bound of the latter in the Tamari lattice together with a distinguished
way of performing the rotations. Then, in Subsection 4.3, we use the covering relation
to control the previous algorithm and, in particular, prove that it always determines the
least upper bound of the initial trees. Finally, in Subsection 4.4, we deduce a unique
normal form for the elements of F that enjoys a sort of weak rationality property.
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4.1. The Polish encoding of trees. As is well known, trees or, equivalently, paren-
thesized expressions can be encoded without parentheses using the Polish notation. Here
we consider the right version, and use ◦ as the operation symbol.

Definition 11. For T a tree, the (right)-Polish encoding of T is the word 〈T 〉 recursively
defined by 〈T 〉 = T if T has size 0, and 〈T 〉 = 〈T0〉 〈T1〉◦ for T = T0

∧T1.

For T of size n, the Polish encoding 〈T 〉 is a word of length 2n+ 1, which we consider
as a map of {1, ... , 2n+ 1} into {•, ◦} (when we restrict to unlabeled trees): thus 〈T 〉(k)
refers to the kth letter of the word 〈T 〉. There exists a natural one-to-one origin function
from the positions of the letters of 〈T 〉 to the addresses of the nodes of T , recursively
defined for T = T0

∧T1 with T0 of size n0 by the rule that the origin of k in T is 0α where
α is the origin of k in T0 for k 6 2n0 + 1, it is 1α where α is the origin of k − 2n0 − 1
in T1 for 2n0 + 1 < k 6 2n, and it is ∅ for k = 2n + 1. For instance, the Polish
encoding of the tree •((••)•) of Figure 2 is •••◦•◦◦, and the corresponding origins are
•(0)•(100)•(101)◦(10)•(11)◦(1)◦(∅).

For our current purpose, it is important to note the following connection between the
Polish encoding and the Tamari order.

Lemma 4.1. Let <Lex denote the lexicographical extension of the ordering • < ◦ to
{•, ◦}-words. Then, for all trees T, T ′, the relation T 6T T ′ implies 〈T 〉 6Lex 〈T ′〉.
Proof. When translated to the right Polish notation, applying a left-rotation in a tree
amounts to replacing some subword of the form 〈T0〉 〈T1〉 〈T2〉◦◦ with the corresponding
word 〈T0〉 〈T1〉◦〈T2〉◦. The latter word is <Lex-larger than the former, as the beginning
of the word is preserved, until the first letter • associated with 〈T2〉, which is replaced
with ◦. �

When the initial letter • is erased, the words that are the Polish encoding of a trees
identify with Dyck words, defined as those words in the alphabet {•, ◦} such that no initial
segment has more ◦’s than •’s, see for instance [25]. Using the standard correspondence
between such words and random walks in N2, we obtain a simple receipe for determining
the elements cT and c′T of (3.8) from 〈T 〉.
Lemma 4.2. (See Figure 18.) Assume that T is a size n tree. For k in {1, ... , 2n + 1}
recursively define νT (k) by νT (1) = −1 and, for k > 2,

(4.1) νT (k) =


νT (k − 1) + 1 for 〈T 〉(k − 1) = 〈T 〉(k) = •,
νT (k − 1)− 1 for 〈T 〉(p− 1) = 〈T 〉(p) = ◦,
νT (k − 1) otherwise.

Then c′T is obtained from 〈T 〉 by replacing each letter 〈T 〉(k) with ε if it is • and with a1i

with i = νT (k) if is it ◦; the word cT is obtained similarly after erasing the last block of ◦.
We skip the verification, a comparison of the recursive definitions of 〈T 〉 and c′T .

4.2. The Polish algorithm. Assume that T, T ′ are trees of size n and we look for a
(minimal) tree T ′′ that is an upper bound of T and T ′ in the Tamari order. If T and T ′

do not coincide, then one of the words 〈T 〉, 〈T ′〉 is lexicographically smaller than the
other, say for instance 〈T 〉. This means means that there exists k such that 〈T 〉(k) is •,
whereas 〈T ′〉(k) is ◦. In this case, we shall say that T and T ′ have a clash at k. Here is
the point.

Lemma 4.3. Assume that T is a tree and that the kth letter in 〈T 〉 is •. Then there
exists at most one pair (α, r) such that T ∗ âα,p is defined and T and T ∗ âα,r have a clash
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−1
0
1
2

• • ◦ • • • ◦ ◦ • ◦ ◦

a∅ a11 a1 a1 a∅

Figure 18. Computing cT and c′T from the Polish encoding 〈T 〉 of T : write
the kth letter of 〈T 〉 at level νT (k); then c′T is read from the levels of the letters ◦.
Here, for (••)((•(••))•), we read c′T = a∅a11a

2
1a∅, and, discarding the last two

symbols ◦, cT = a∅a11a1.

at k. Moreover, if there exists T ′′ such that T and T ′′ have a clash at k, there exists
exactly one pair as above.

Proof. As Figure 19 shows, if we have T ′ = T ∗ âα,r, then the words 〈T 〉 and 〈T ′〉 coincide
up to the first letter coming from the α10r−11-subtree of T : the latter is • (as is always
the first letter of a Polish encoding), whereas, in 〈T ′〉, we have a letter ◦ at this position.
Thus, the action of âα,r on 〈T 〉 is to replace • by ◦ at a position whose origin in T has
the form α10r−110i for some i.

Consider now the kth letter in 〈T 〉, supposed to be a letter •. The origin of k in T is
a certain address of leaf in T , say β. By the above argument, a pair (α, r) may result in
a clash at k only if we can write β = α10r−110i for some r > 1 and i > 0. For every β,
this happens for at most one pair (α, r), and this happens if and only if β contains at
least two digits 1.

Assume now that T and T ′′ have a clash at k, and consider the value of νT (k) as
defined in (4.1). By construction (and by the standard properties of Dyck words), we
have νT ′′(k) > 0 as 〈T ′′〉(k) is ◦. By construction, we have νT (k) > νT ′′(k) since 〈T 〉(k)
is •, whence νT (k) > 1. This implies (actually an equivalence) that the address β contains
at least two digits 1. Hence there exists a pair (α, r) as above. �

T T ′

T0

T1 T2

Tr

Tr+1

âα,r
α α

α1

α10

α10r

α10r−1

α10r−11

T0 T1

T2

Tr

Tr+1

↓↓↓

↓↓↓
↑
j0

↑
j1

↑
j2

↑
jr

↑
j0

↑
j1

↑
j2

↑
jr

Figure 19. Action of âα,r: the Polish encodings coincide up to the first •
corresponding to T2 in 〈T 〉 (black arrow); the latter is replaced with ◦ in 〈T ′〉
because, in T ′, there is one more right-edge after T1 than in T , and the clash
occurs between the marked letters.
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Now the principle of an algorithm should be clear: starting with two trees T, T ′ such
that the Polish encoding 〈T 〉 and 〈T ′〉 coincide up to position k − 1, we have found a
unique way of applying an iterated left-rotation âα,r to one of the trees so that the clash
is moved further to the right. By iterating the process, we obtain after finitely many
steps two trees whose Polish encodings coincide, that is, we obtain a common upper
bound for the initial trees T, T ′.

Definition 12. Assume that T, T ′ are trees of equal size.
(i) If 〈T 〉 <Lex 〈T ′〉 holds, we denote by s(T, T ′) the unique element âα,r such that

T ∗ âα,r and T ′ have no clash at the position where T and T ′ have one.
(ii) We denote by S(T, T ′) the signed ÂAA-word recursively defined by the rules

(4.2) S(T, T ′) =


ε for T = T ′,

s(T, T ′)S(T ∗ s(T, T ′), T ′) for 〈T 〉 <Lex 〈T ′〉,
S(T, T ′ ∗ s(T ′, T )) s(T ′, T )−1 for 〈T 〉 >Lex 〈T ′〉.

Example 4.4. Let us consider the trees of Example 3.20 again, namely T0 = •(((•(••))•)•)
and T ′0 = (•(••))(•(••)). We find
〈T0〉 = ••••◦◦•◦•◦◦,
〈T ′0〉 = •••◦◦•••◦◦◦.

Thus we have 〈T0〉 <Lex 〈T ′0〉, with a clash at 4 (underlined). The origin of 4 in T0 is
10011, whence s(T0, T

′
0) = a100, and S(T0, T

′
0) = a100 S(T1, T

′
1) with T1 = T0 ∗ a100 and

T ′1 = T ′0, corresponding to
〈T1〉 = •••◦•◦•◦•◦◦,
〈T ′1〉 = •••◦◦•••◦◦◦.

We have now 〈T1〉 <Lex 〈T ′1〉, with a clash at 5. The origin of 5 in T1 is 1001, whence
s(T1, T

′
1) = â∅,3, and S(T1, T

′
1) = â∅,3 S(T2, T

′
2) with T2 = T1 ∗ â∅,3 and T ′2 = T ′1, hence

〈T2〉 = •••◦◦•◦•◦•◦,
〈T ′2〉 = •••◦◦•••◦◦◦.

This time, we have 〈T ′2〉 <Lex 〈T2〉, with a clash at 7. The origin of 7 in T ′2 is 110, so
s(T ′2, T2) is a∅, and S(T2, T

′
2) = S(T3, T

′
3) a−1

∅ with T3 = T2 and T ′3 = T ′2 ∗ a∅, that is,
〈T3〉 = •••◦◦•◦•◦•◦,
〈T ′3〉 = •••◦◦•◦••◦◦.

We find now 〈T ′3〉 <Lex 〈T3〉, with a clash at 9. The origin of 9 in T ′3 is 11, whence
s(T ′3, T3) = a∅, and S(T3, T

′
3) = S(T4, T

′
4) a−1

∅ with T4 = T3 and T ′4 = T ′3 ∗ a∅, that is,
〈T4〉 = •••◦◦•◦•◦•◦,
〈T ′4〉 = •••◦◦•◦•◦•◦.

We have T4 = T ′4, so the algorithm halts. The tree T4 is a common upper bound of T0

and T ′0, and the word S(T0, T
′
0) is a100â∅,3a

−2
∅ .

Thus, for all equal size trees T, T ′, we obtained a distinguished signed ÂAA-word S(T, T ′),
and, by construction, the relation T ′ = T ∗ S(T, T ′) is satisfied.

Remark 4.5. As mentioned in the beginning of the section, an entirely similar algorithm
can be defined with the self-distributivity law x(yz) = (xy)(xz) replacing the associativity
law x(yz) = (xy)z. Then tree rotations are replaced with distributions, which consist in
replacing subtrees T0

∧(T1
∧T2) with (T0

∧T1)∧(T0
∧T2). In this case, the size of the trees

is changed by the transformations, and termination becomes problematic. Actually, in
spite of experimental evidence [15] and positive partial results [8], the question, which
seems to be extremely difficult, remains open.
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4.3. The covering relation. For the moment, we have no connection between the
common upper bound of two trees provided by the Polish algorithm of Subsection 4.2 and
their least upper bound in the Tamari lattice. In particular, if T, T ′ are trees satisfying
T 6T T ′, it is not a priori clear that the Polish algorithm terminates with the pair (T ′, T ′),
that is, the clashes always occur on the first of the two current trees. We shall see now
that this is actually true. The main tool will be the covering relation, a binary relation
that provides a description of the shape of a tree in terms of the addresses of its leaves.
We recall that, if T is a size n tree, T# denotes the labeled tree obtained by attributing
to the leaves of T labels 0 to n from left to right. So, for instance, for T = •((••)•), we
have T# = •0((•1•2)•3), and 〈T#〉 = •0•1•2◦•3◦◦.
Definition 13. (See Figure 20.) Assume that T is a size n tree. For 0 6 i 6 n, we
define addT (i) to be the origin of •i in 〈T#〉. Then, for j > i, we say that j covers i
in T , written j BT i, if there exists an address γ such that addT (j) has the form γ1p for
some positive p and addT (i) begins with γ0. We write j DT i for “j BT i or j = i”.

T

T ′

γ

γ0

0 i jCT n

0

1
2 3

4
5

Figure 20. Covering relation of T : the leaves are numbered 0 to n, and j
covers i in T if there exists a subtree T ′ such that j is the last (rightmost) label
in T ′, whereas i is a non-final label in T ′. For instance, in the right hand tree, 4
covers 1, 2, 3, but does not cover 0, and 3 covers 1 and 2, whereas 2 covers

nobody.

It is easily seen [12] that, for every j occurring in a tree T , the set of all i’s covered
by j is either empty or is an interval ending in j − 1: if j BT i and j > i′ > i hold, then
so does j BT i′. Also, the relation BT is transitive, and it determines T . We shall need
the more precise result that every initial fragment of the covering relation determines the
corresponding initial fragment of the Polish encoding of T .

Lemma 4.6. Assume that T is a size n tree. Then, for 1 6 j 6 n + 1, the number
of symbols ◦ following the jth letter • in 〈T 〉 is the number of i’s satisfying j BT i and
k 6BT i for j > k > i.

Proof. Write j B#
T i if we have j BT i and k 6BT i for j > k > i. Then, by definition,

j B#
T i holds if and only we have addT (j) = α1q and addT (i) = α01p for some α and

some p, q > 0. Indeed, if we have addT (i) = α0β with β containing at least one 0, say
β = 1p0γ, then we have k BT i for k satisfying addT (k) = α01p01r.

On the other hand, an induction shows that the jth letter • in 〈T 〉 is followed by
r letters ◦ if and only if the address addT (j) has the form γ1r for some γ that does not
finish with 1, that is, is empty or finishes with 0.

Now, assume that addT (j) is γ1r. For 0 6 m < r, let im be the (unique) position
whose address in T has the form γ1m01q for some q. By the above characterization, we
have j B#

T im. So the number of i’s satisfying j B#
T i is at least r.
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Conversely, assume that there are r different positions i0 < ... < ir−1 satisfying j B#
T

im. By the above characterization, there exist α0, ... , αr−1 satisfying addT (im) = αm01∗

and addT (j) = α1∗ As the numbers im are pairwise distinct, so are the addresses αm
and, therefore, we have addT (j) = α01r

′
with r′ > r. �

It directly follows from Lemma 4.6 that the covering relation of a tree T determines
the Polish encoding of T , hence T itself. Actually, the lemma shows more.

Lemma 4.7. Assume that T, T ′ are equal size trees, and (as a set of pairs) BT is properly
included in BT ′ . Then 〈T 〉 <Lex 〈T ′〉 holds.

Proof. Let j be minimal such that there exists i satisfying j BT ′ i but not j BT i.
For k < j, the restriction of the covering relations BT and BT ′ to the interval [1, k]
coincide and, therefore, by Lemma 4.6, the numbers of symbols ◦ following •k−1 in 〈T#〉
and 〈T ′#〉 are equal. So, up to •j−1, the words 〈T 〉 and 〈T ′〉 coincide.

Consider now •j−1. We claim that the number r′ of ◦ following •j−1 in 〈T ′#〉 is larger
than its counterpart r in 〈T#〉, resulting in a clash between 〈T 〉 and 〈T ′〉 and in the
inequality 〈T 〉 <Lex 〈T ′〉. To see that r′ > r holds, we use Lemma 4.6 again. Using B#

T

as in the proof of Lemma 4.6, we note that j B#
T i implies j B#

T ′ i as the restrictions
of BT and BT ′ to [1, j − 1] coincide. By hypothesis, there are r values of i satisfying
j B#

T i, and these values also satisfy j B#
T ′ i. Now, by hypothesis, there exists i′ satisfying

j 6BT i′ and j BT ′ i′. If i′ is chosen maximal, we have j B#
T ′ i
′. Hence there are strictly

more than r values of i satisfying j B#
T ′ i, as expected. �

When a left-rotation transforms a tree T into a tree T ’, the covering relation of T is
included in that of T ′. The precise relation is as follows. Hereafter we use {0, 1}∗ (resp.
{1}∗) for the set of all addresses (resp. all addresses of the form 1i).

Lemma 4.8. Assume T ′ = T ∗âα,r. Then BT ′ is obtained by adding to BT the pairs (j, i)
that satisfy

(4.3) ∃m ∈ {1, ... , r} (addT (j) ∈ α10r+1−m{1}∗) and addT (i) ∈ α0{0, 1}∗.
Proof. Consider Figure 19 again. Let j1, ... , jr denote the last variable in the sub-
trees T1, ... , Tr. A direct inspection shows that every covering pair in T is still a covering
pair in T ′, and that the new covering pairs are the pairs (jm, i) with 1 6 m 6 r and i
occurring in T0: the action of âα,r is to let j1, ... , jm cover the variables of T0. Converted
into addresses, this gives (4.3). �

Lemma 4.8 is important for the Polish algorithm as it bounds possible coverings.

Lemma 4.9. Assume that T, T ′ are equal size trees satisfying 〈T 〉 <Lex 〈T ′〉. Then the
covering relation of T ∗ s(T, T ′) is included in the transitive closure of BT and BT ′ .

Proof. Assume s(T, T ′) = âα,r and let T1 = T ∗ âα,r. We use the notation of Figure 19
once more, calling jm the rightmost variable occurring in Tm for 0 6 m 6 r. Let I
denote the set of all i’s occurring in the subtree T0. By Lemma 4.8, the pairs that belong
to BT1 and not to BT are the pairs (j1, i), ... , (jr, i) with i in I. The hypothesis that
âα,r is s(T, T ′) implies that the number of ◦ following •j−1 in 〈T ′#〉 is larger than its
counterpart in T , so j1 must cover strictly more positions in T ′ than in T . So, necessarily,
j1 BT ′ j0 holds. On the other hand, j0 DT i holds for every i in I, and jm DT j1 holds
for 1 6 m 6 r. It follows that, for all m in {1, ... , r} and i in I, the pair (jm, i) belongs
to the the transitive closure of BT and BT ′ . �
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Lemma 4.10. Assume that T, T ′ are equal size trees. Then the Polish algorithm running
on (T, T ′) terminates with a pair (T∞, T∞) such that BT∞ is the transitive closure of BT
and BT ′ .

Proof. Let (Tt, T ′t ) denote the pair of trees obtained after t steps of the Polish algorithm
running on (T, T ′), and N be the total number of steps. By Lemma 4.8, the relations BTt

make a non-decreasing sequence with respect to inclusion, and so do the relations BT ′t .
So, in particular, the transitive closure of BT and BT ′ is included in the transitive closure
of BTN

and BT ′N . Now, by hypothesis, the latter is BT∞ .
On the other hand, Lemma 4.9 shows that, for every t, the relation BTt+1 is included

in the transitive closure of BTt
and BT ′t , and so is BT ′t+1

. Hence the transitive closure
of BTt+1 and BT ′t+1

is the transitive closure of BTt and BT ′t . Hence BT∞ , which is the
transitive closure of BTN

and BT ′N , is the transitive closure of BT0 and BT ′0 . �

We are ready to put pieces together and state the main results of this section.

Proposition 4.11. For T, T ′, T ′′ equal size trees, the following are equivalent:
(i) The tree T ′′ is the least upper bound of T and T ′ in the Tamari lattice;
(ii) The Polish algorithm running on (T, T ′) returns (T ′′, T ′′);
(iii) The covering relation of T ′′ is the transitive closure of those of T and T ′.

Proof. Let T∨ be the least upper bound of T and T ′ in the Tamari lattice, and T∞ be the
tree such that the Polish algorithm running on (T, T ′) returns (T∞, T∞). By Lemma 4.8,
BT and BT ′ are included in BT∨ . Hence the transitive closure of BT and BT ′ , which by
Lemma 4.10 is BT∞ , is included in BT∨ .

On the other hand, by definition, we have T 6T T∞ and T ′ 6T T∞, whence T∨ 6T
T∞. This implies that BT∨ is included in BT∞ . Hence BT∨ and BT∞ coincide, and,
therefore, T∨ = T∞ holds. So (i) and (ii) are equivalent.

Next, as said above, (ii) implies (iii) by Lemma 4.8. Conversely, if T ′′ is such that BT ′′
is the transitive closure of BT and BT ′ , then BT ′′ coincides with BT∞ and, therefore, we
must have T ′′ = T∞. So, (ii) and (iii) are equivalent. �

Corollary 4.12. For T, T ′ equal size trees, the following are equivalent:
(i) We have T 6T T ′ in the Tamari order;
(ii) There exists f in F+

sym such that T ′ = T ∗ f holds;
(iii) S(T, T ′) is a positive AAA-word, that is, the Polish algorithm running on (T, T ′)

finishes with (T ′, T ′).
(iv) The relation BT is included in BT ′ .

Proof. The equivalence of (i) and (ii) has been established in Lemma 3.1.
Next, it is obvious that (iii) implies (ii) as every element âα,r belongs to F+

sym. Con-
versely, if T 6T T ′ holds, then the least upper bound of T and T ′ is T ′. Hence, by
Proposition 4.11, the Polish algorithm running on (T, T ′) finishes with (T ′, T ′). This
means that the word S(T, T ′) contains positive letters âα,r only. So (ii) implies (iii).

Finally, as observed above, (iii) is equivalent to saying that the Polish algorithm
running on (T, T ′) finishes with (T ′, T ′), whereas (iv) is equivalent to saying that BT ′
is the transitive closure of BT and BT ′ . By Proposition 4.11, the latter properties are
equivalent and, therefore, (iii) and (iv) are equivalent. �

It should be noted that the equivalence of (i) and (iv) in Corollary 4.12 already appears
as [23, Theorem 2.1].
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4.4. The Polish normal form. One of the interests of Proposition 4.11 and Corol-
lary 4.12 is that they provide unique distinguished decompositions for every element
of F and of F+

sym in terms of the generators âα,r. Indeed, we obtained for every pair of
equal size trees (T, T ′) a certain signed ÂAA-word S(T, T ′) such that T ∗S(T, T ′) is defined
and equal to T ′. This word S(T, T ′) does not depend on T .

Lemma 4.13. Assume that f belongs to F and T ∗ f is defined. Then the signed ÂAA-
word S(T, T ∗ f) is an expression of f , and it does not depend on T .

Proof. First, we have T ∗ f = T ∗ S(T, T ′), so, by Proposition 2.4, the word S(T, T ′) is
an expression of f . Next, assume that σ is a substitution, and let us compare the Polish
algorithm running on a pair (T, T ′) and on the pair (Tσ, T ′σ). The word 〈Tσ〉 is obtained
from the word 〈T 〉 by replacing every variable •i with the corresponding word 〈σ(i)〉.
As the variables occur in the same order in the words 〈T 〉 and 〈T ′〉, substituting •i
with 〈σ(i)〉 introduces no new clash. Therefore, if (Tt, T ′t ) are the trees at the tth step
of the algorithm running on (T, T ′), then (Tσt , T

′
t
σ) are the trees at the tth step of the

algorithm running on (Tσ, T ′σ), implying S(T, T ′) = S(Tσ, T ′σ).
By definition, for every f in F , there exists a unique pair of trees (f−, f+) such that

every pair (T, T ∗ f) can be expressed as ((f#
− )σ, (f#

+ )σ). The above result then shows
that S(T, T ∗ f) coincides with S(f−, f+), which only depends on f . �

Definition 14. For f in F , the Polish normal form of f is the signed ÂAA-word S(f−, f+).

Example 4.14. Let f = a∅a1 = a11a∅ (= x1x2 = x3x1). Then we have f− = •(•(•(••)))
and f+ = (••)((••)•). Running the Polish algorithm on these trees returns the (positive)
ÂAA-word a∅a1: so the latter is the Polish normal form of f . By contrast, a11a∅, which
is another ÂAA-expression of f , is not normal. One verifies similarly that the word a2

∅ is
normal, whereas the equivalent words a1â∅,2 and a1a∅a0 are not.

Corollary 4.12 immediately implies:

Proposition 4.15. An element of F belongs to the submonoid F+
sym if and only if its

Polish normal form contains no letter â−1
α,r.

As the family of generators ÂAA is infinite, it makes no sense to wonder whether Polish
normal words form a rational language or whether the Polish normal form can be con-
nected with an automatic structure. However, let us observe that being Polish normal is
a local property that can be characterized in terms of adjacent letters.

Proposition 4.16. A positive ÂAA-word âα1,r1 ... âα`,r`
is Polish normal if and only if

αt0rt < αt+110rt+1−11

holds for every t < `, where < denotes the left–right (partial) ordering of addresses.

Proof. Let w = âα1,r1 ... âα`,r`
and assume that T ∗w is defined. For 0 6 t 6 `, put Tt =

T ∗ âα1,r1 ... âαt,rt
. Then w is normal if, for every 1 6 t 6 `, we have âαt,rt

= s(Tt−1, T`),
that is, âαt,rt

appears at the tth step of the Polish algorithm running on (T, T ∗w). Now,
as shown in Figure 19, the origin in Tt of the letter ◦ involved in the clash between Tt−1

and Tt is αt0rt , whereas the origin in Tt of the letter • involved in the clash between Tt
and Tt+1 lies in αt+110rt+1−11{0}∗. The normality condition is then that, in 〈Tt〉, the
former letter lies on the left of the latter. By construction of the Polish encoding, this
happens if and only if the first address precedes the second in the “left–right–root”
linear ordering of addresses. Due to the form of the second address, this is equivalent to
αt0rt < αt+110rt+1−11. �
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For instance, the word a∅a∅ is normal, as we have ∅01 = 0 < ∅101−11 = 11, but a1â∅,2
is not, as we do not have 101 = 10 < ∅102−11 = 101.

5. Distance in Tamari lattices

We conclude this description of the connections between the Tamari lattice and the
Thompson group F with a few observations about distances in Tn. The general principle
is that it is easy to obtain upper bounds, but difficult to prove lower bounds and many
questions remain open in this area. Our main observation here is that the embedding
of the monoid F+

sym into the group F is not an isometry, and not even a quasi-isometry
(Definition 16): for every positive constant C, there exist elements of F+

sym whose length
in F is smaller than their length in F+

sym by a factor at least C. In terms of Tamari
lattices, this implies that chains are not geodesic (Corollary 5.13).

The plan of the section is as follows. In Subsection 5.1, we quickly survey the known
results about the diameter of Tamari lattices. Then, we show in Subsection 5.2 how to
use the syntactic relations of RRR to obtain (rather weak) distance lower bounds. Finally,
in Subsection 5.3, we use the covering relation to establish (stronger) lower bounds.

5.1. The diameter of Tn. Surprisingly, the diameter of the Tamari lattice Tn is not
known for every n.

Definition 15. For T, T ′ in Tn, the distance between T and T ′, denoted by dist(T, T ′)
is the minimal number of rotations needed to transform T into T ′. The diameter of Tn
is the maximum of dist(T, T ′) for T, T ′ in Tn.

Theorem 5.1 (Sleator, Tarjan, Thurston [24]). For n > 11, the diameter of Tn is at
most 2n− 6; for n large enough, it is exactly 2n− 6.

The argument uses the fact that the maximal distance between two size n trees is also
the maximal number of flips needed to transform two triangulations of an (n + 2)-gon
one into the other. A lower bound for the latter is obtained by putting the considered
triangulations on the two halves of a sphere and bounding the hyperbolic volume of
the resulting tiled polyhedron. It is conjectured that the value 2n − 6 is correct for
every n > 11. However, due to its geometric nature, the argument of [24] works only
for n > n0, with no estimation of n0.

By contrast, combinatorial arguments involving the covering relation of Subsection 4.3
lead to (weaker) results that are valid for every n.

Theorem 5.2. [12] For n = 2p2, the diameter of Tn is at least 2n− 2
√

2n+ 1 and, for
every n, it is at least 2n−

√
70n.

Although no theoretical obstruction seems to exist, the covering arguments have not
yet been developed enough to lead to an exact value of the diameter. However some
candidates for realizing the maximal distance are known.

Conjecture 5.3. [12] For α an address, let 〈α〉 denote the tree recursively specified by
the rules 〈∅〉 = •, 〈0α〉 = 〈α〉∧•, and 〈1α〉 = •∧〈α〉. Define

Zn =

{
〈111(01)p−2〉
〈111(01)p−20〉 Z ′n =

{
〈000(10)p−2〉 for n = 2p+ 3,
〈000(10)p−21〉 for n = 2p+ 4,

see Figure 21. Then one has dist(Zn, Z ′n) = 2n− 6 for n > 9.

Conjecture 5.3 has been checked up to size 19 (sizes below 9 are special, because the
trees are then too small for the generic scheme to start; by the way, the value 2n− 6 is
valid for n = 5, 6, 7, but not for n ≤ 4 and for n = 8).
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Zn Z ′n

Figure 21. The zigzag trees of Conjecture 5.3, here for n = 15; the distance
is 24, as predicted.

5.2. Syntactic invariants. A natural way to investigate distances in the Tamari lattices
is to use the action of F on trees and to study the length of the elements of F with respect
to the generating family AAA. Indeed, Proposition 2.4 directly implies

Lemma 5.4. For all trees T, T ′, we have dist(T, T ′) = ‖S(T, T ′)‖AAA, where ‖f‖AAA is the
AAA-length of f , that is, the length of the shortest signed AAA-word representing f .

In order to establish (lower) bounds on ‖f‖AAA, a natural approach is to use the syntatic
properties of the relations of RRR.

Lemma 5.5. For w a signed AAA-word, denote by |w|1 the number of letters a±1
1i in w.

(i) If u, u′ are RRR-equivalent positive AAA-words, then |u|1 = |u′|1 holds.
(ii) If w,w′ are signed AAA-words, then w yRRR w

′ implies |w|1 > |w′|1 holds.

Proof. In both cases, it suffices to inspect the relations of RRR. In the case of the pentagon
relations, we have |a2

α|1 = |aα0aαaα1|1, both being 2 for α in {1}∗, and 0 otherwise.
Similarly, for (ii), we find |a−1

α aα1|1 = |aαa−1
α0a

−1
α |1, both being 2 for α in {1}∗, and 0

otherwise. The inequality comes from |a−1
α aα|1 = 2 > 0 = |ε|1 for α in {1}∗. �

Note that the counterpart of Lemma 5.5(ii) involving left-reversing is false: a∅a−1
0 is

left-RRR-reversible to a−1
∅ a1a∅, and we have |a∅a−1

0 |1 = 1 < 3 = |a−1
∅ a1a∅|1.

Proposition 5.6. For every f of F and every AAA-word w representing f , we have

(5.1) ‖f‖AAA > |D r̀(w)|1 + |Ǹ r(w)|1.

Proof. Put ` = |D
r̀
(w)|1 + |Ǹ

r
(w)|1. By definition, the word w is right-RRR-reversible to

the word Nr(w)Dr(w)−1, so, by Lemma 5.5(ii), we have

|w|1 > |Nr
(w)D

r
(w)−1|1 = |N

r
(w)|1 + |D

r
(w)|1.

Next, it follows from Proposition 3.17 that there exist a positive AAA-word u satisfying
N

r
(w) ≡+

RRR Ǹ r
(w)u and D

r
(w) ≡+

RRR D r̀
(w)u. Then, by Lemma 5.5(i), we deduce |N

r
(w)|1+

|D
r
(w)|1 > `, whence |w| > |w|1 > `.
Now assume w′ ≡RRR w. By the result above, we have |w′| > |Ǹ

r
(w′)|1 + |D

r̀
(w′)|1.

By Proposition 3.17, we have Ǹ r(w
′) ≡+

RRR Ǹ
r
(w) and D

r̀
(w′) ≡+

RRR D
r̀
(w), whence, by

Lemma 5.5(i), |Ǹ r(w
′)|1 + |D r̀(w

′)|1 = `. Thus |w′| > ` holds for every word w′ that
represents w. By definition, this means that ‖f‖AAA > ` is true. �

Of course, a symmetric criterion involving {0}∗ instead of {1}∗ may be stated.

Example 5.7. Let f = a1a
−1
11 aαa

−1
11 . Left-reversing the word a1a

−1
11 aαa

−1
11 yields the

word a−1
111a

−1
1111a1a∅, which in turn is right-reversible to a1a∅a

−1
1 a−1

11 . We conclude that
Ǹ

r
(w) is a1a∅ and D

r̀
(w) is a11a1. Then Proposition 5.6 gives ‖f‖AAA > 4, that is, the

word a1a
−1
11 aαa

−1
11 is geodesic.
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By construction, the elements cT involved in proof of Proposition 3.9 are represented
by AAA-words all letters of which are of the form aα with α in {1}∗, and, therefore, these
words are geodesic. However, elements of this type are quite special, and the criterion of
Proposition 5.6 is rarely useful. In particular, it follows from the construction that every
element of F can be represented by a word of the form c−1

T cT ′ but, even when the fraction
is irreducible, that is, when the elements represented by cT and cT ′ admit no common
left-divisor in F+

sym, it need not be geodesic, as shows the example of a−p∅ a1pa1p−1 ... a1,
an irreducible fraction of length 2p which is RRR-equivalent to the positive–negative word
a∅a
−p
0 a−1

∅ of length p+ 2.

5.3. The embedding of F+
sym into F . More powerful results can be obtained using

the covering relation of Subsection 4.3. As an example, we shall now establish that the
embedding of the monoid F+

sym into the group F provided by Proposition 3.2 is not an
isometry, that is, there exist elements of F+

sym whose length as elements of F is smaller
than their length as elements of F+

sym. This result is slightly surprising: clearly, fractions
need not be geodesic in general, but we might expect that, when an element of F belongs
to F+

sym, then its length inside F+
sym equals its length inside F .

Definition 16. If (X, d), (X ′, d′) are metric spaces, a map f : X → X ′ is a quasi-isometry
if there exist C > 1 and C ′ > 0 such that 1

C d(f(x, y))−C ′ 6 d′(f(x, y)) 6 Cd(x, y) +C ′

holds for all x, y in X.

The result we shall prove is as follows.

Proposition 5.8. For f in F+
sym, let ‖f‖+AAA denotes the AAA-length of f in F+

sym, that is, the
length of a shortest positive AAA-word representing f . Then the embedding of F+

sym into F
is not a quasi-isometry of (F+

sym, ‖‖+AAA) into (F, ‖‖AAA).

In order to establish Proposition 5.8, it is enough to exhibit a sequence of elements fp
of F+

sym satisfying ‖fp‖AAA = o(‖fp‖+AAA). This is what the next result provides.

Lemma 5.9. For every p > 1, let up be the ÂAA-word

â(10)p,1 â(10)p−1,2 ... â10,p â∅,p+1.

Then, for every p, we have ‖up‖AAA 6 3p+ 1 and ‖up‖+AAA = (p+ 1)(p+ 2)/2.

Establishing Lemma 5.9 requires to prove two inequalities, namely an upper bound
on ‖up‖AAA and a lower bound on ‖up‖+AAA . As always, the first task is easier than the second.

Lemma 5.10. For every p > 1, we have ‖up‖AAA 6 3p+ 1.

Proof. For p > 1, let wp = a(10)p a−1
(10)p−11 a(10)p−1 a−1

(10)p−21 a(10)p−2 ... a−1
101 a10 a

−1
1 a∅.

Then wp is a signed AAA-word of length 2p + 1. An easy induction using the formulas
of (3.6) shows that wp is right-reversible to the positive–negative word upâ

−1
∅,p, see Fig-

ure 22. As the latter word has AAA-length 3p+ 1, the result follows. �

In order to complete the proof of Lemma 5.9, it remains to prove that ‖up‖+AAA is
p(p+ 3)/2. As the length of up is p(p+ 3)/2, the point is to prove:

Lemma 5.11. For every p > 1, the word up is geodesic in F+
sym.

Proof. With the notation of Conjecture 5.3, let Tp be the size 2p+ 2 tree 〈(10)p1〉. Then
Tp ∗ up is defined and equal to T ′p = 〈0p+11p〉, see Figure 23.

We look at the covering relations that are satisfied in T ′p but not in Tp. First, 2p+ 1
covers 0 in T ′p but not in Tp. We deduce that everyAAA-word transforming Tp to T ′p contains
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10,2 ∅,3

∅,2

1010

10

100

10

101010

10101

1010
101

1

∅

1010,2 10,3 ∅,4

00

0

∅

y y y

y y

y

Figure 22. Right-reversing the signed AAA-word wp, here with p = 3. The
numerator is the word up of Lemma 5.9, whereas the denominator is the length p
word â∅,p (as usual, the letters “a” have been skipped).

at least one step with critical index 2p+ 1, the critical index of aα being defined as the
unique j such that applying aα adds at least one relation j B i, that is, the unique j
such that addT (j) lies in α10{1}∗.

Now, here is the point: 2p covers 0 and 1 in T ′p, but not in Tp. We deduce that every
AAA-word transforming Tp to T ′p contains at least one step with critical index 2p. But
we claim that every such word must actually contain at least two such steps, that is,
one step cannot be responsible for the two new covering relations. Indeed, 2p covers 2
in Tp, but does not cover 1. The only situation when a step adding 2p B 1 in a tree T
can simultaneously add 2p B 0 is when 1 covers 0 in T . But this cannot happen here,
because we are considering positive AAA-words only, so any possible covering satisfied at
an intermediate step must remain in the final tree T ′p. As 1 does not cover 0 in T ′p, it is
impossible that 1 covers 0 at any intermediate step. Thus two steps are needed to ensure
2p B 1 and 2p B 0.

The sequel is similar. In T ′p, the number 2p − 1 covers 0, 1, and 2, whereas, in Tp, it
covers only 3. Then at least three steps are needed to ensure 2p − 1 B 2, 2p − 1 B 1,
and 2p − 1 B 0. Indeed, a step can cause 2p − 1 to simultaneously cover 1 and 2 only
if 2 covers 1 at the involved step, which cannot happen as 2 does not cover 1 in T ′p; the
argument is then the same for 1 and 0 once we know that 2 does not cover 1.

Similarly, 4 steps are needed to force 2p−2 to cover 3 to 0, then 5 steps to force 2p−3
to cover 4 to 0, etc., and p + 1 steps to force p + 1 to cover p to 0. We conclude that
1 + 2 + · · · + (p + 1), that is, (p + 1)(p + 2)/2, steps at least are needed to go from Tp
to T ′p. Hence up is geodesic among positive AAA-words. �

4 5
3

6
2

7
1

8
0

Tp

3 4
2

1
0

5
6

7
8

T ′
p

3 4
2

1
0

5 6
7
8

T ′′
p

Figure 23. The trees of Lemma 5.11 with the leaf labelling involved in the
covering relation, here in the case p = 3. The tree T ′′p is the intermediate tree Tp∗
wp obtained after 2p + 1 steps: applying â∅,p to T ′′p leads to T ′p in a total of

3p+ 1 rotations.

Thus the proof of Proposition 5.8 is complete.
Finally, we translate the above arguments into the language of Tamari lattices.
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Definition 17. For T, T ′ in Tn satisfying T 6T T ′, the positive distance dist+(T, T ′)
from T to T ′ is the minimal number of left-rotations needed to transform T into T ′.

Proposition 5.12. For every even n, there exist T, T ′ in Tn satisfying

(5.2) dist(T, T ′) 6
12
n

dist+(T, T ′).

Proof. Write n = 2p+2 and let Tp, T ′p be the size n trees of the proof of Lemma 5.11. Then
we have dist(Tp, T ′p) 6 3p+ 1 and dist+(Tp, T ′p) = (p+ 1)(p+ 2)/2, whence dist(Tp, T ′p) 6
12n−16
n(n+2) dist+(Tp, T ′p) in term of n, and, a fortiori, (5.2). �

Corollary 5.13. Chains are not geodesic in Tamari lattices; more precisely, for every n,
there exists a length ` chain of Tn whose endpoints are at distance less than 12`/n.

We conclude with a few open questions.

Question 5.14. For w a positive AAA-word, is the number λ(w) of (3.3) a least upper
bound for the length of the words that are RRR-equivalent to w?

The answer is positive in the case of an∅ . Indeed, we have λ(an∅ ) = n(n + 1)/2 and
an∅ ≡+

RRR â1n−1,1 â1n−2,2 ... â1,n−1 â∅,n. The general case is not known.

Question 5.15. Does the Polish normal form of Definition 14 satisfy some Fellow Trav-
eler Property, that is, is the distance between the paths associated with the normal forms
of elements f and fa±1

α uniformly bounded?

A positive solution would provide a sort of infinitary automatic structure on F . The
question should be connected with a possible closure of Polish normal words under left-
or right-RRR-reversing

Finally, using mapping class groups and cell decompositions, D. Krammer constructed
for every size n tree T an exotic lattice structure on Tn in which T is the bottom element
[19].

Question 5.16. Can the Krammer lattices be associated with submonoids of the Thomp-
son group F?

More generally, a natural combinatorial description of the Krammer lattices is still
missing, but would be highly desirable. Connections with permutations and braids in
the line of [2] can be expected.
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