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Abstract. Garside families have recently emerged as a relevant context for
extending results involving Garside monoids and groups, which themselves
extend the classical theory of (generalized) braid groups. Here we establish
various characterizations of Garside families, that is, equivalently, various cri-
teria for establishing the existence of normal decompositions of a certain type.

In 1969, F.A. Garside [21] solved the word and conjugacy problems of Artin’s
braid groups by using convenient monoids. This approach was pursued [1, 19, 25, 20,
8] and extended in several steps, first to Artin-Tits groups of spherical type [7, 15],
then to a larger family of groups now known as Garside groups [12, 9, 10]. More
recently, it was realized that going to a categorical context allows for capturing
further examples [18, 3, 11, 23], and a coherent theory now emerges around a
central unifying notion called a Garside family. The aim of this paper is to present
the main basic results of this approach. A more comprehensive text, including
examples and many further developments, will be found in [14]. Algorithmic issues
are addressed in [13].

The philosophy of Garside’s theory as developed in the past decades is that, in
some cases, a group can be realized as a group of fractions for a monoid and that the
divisibility relations of the latter provide a lot of information about the group. The
key technical ingredient in the approach is a certain distinguished decomposition
for the elements of the monoid and the group in terms of some fixed (finite) family,
usually called the greedy normal form. Our current approach consists in analyzing
the abstract mechanism underlying the greedy normal form and developing it in
the general context of what we call Garside families. The leading principle is that,
with Garside families, one should retrieve all results about Garside monoids and
groups at no extra cost.

In the current paper, we concentrate on one fundamental question, namely char-
acterizing Garside families. As the latter are defined to be those families that
guarantee the existence of the normal form, this exactly amounts to establishing
various (necessary and sufficient) criteria for this existence. Two types of character-
izations will be established here: extrinsic characterizations consist in recognizing
whether a subfamily of a given category is a Garside family, whereas intrinsic ones
consist in recognizing whether an abstract family (more precisely, a precategory)
generates a category in which it embeds as a Garside family.

Beyond the results themselves, one of our goals is to show that the new frame-
work, which properly extends those previously considered in literature, works ef-
ficiently and provides arguments that are both simple and natural. In particular,
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appealing to a categorical framework introduces no additional complexity and helps
in many places to develop a better intuition of the situation. Among the specific
features in the current approach are the facts that it is compatible with the existence
of nontrivial invertible elements, and requires no Noetherianity assumption.

The paper is organized as follows. In Section 1, we quickly list the basic notions
about categories and the derived divisibility relations needed for further develop-
ments. In Section 2, we introduce the central notion of an S-normal decomposition
for an element of a category, and define a Garside family to be a family S such that
every element of the ambient category admits at least one S-normal decomposition.
Next, in Section 3, we establish what we called various extrinsic characterizations of
Garside families, mainly based on closure properties and on properties of so-called
head functions. Then, in Section 4, we turn to intrinsic definitions and develop the
notion of a germ, which, as the name suggests, is a sort of partial structure from
which a category can be constructed. In Section 5, we establish various character-
izations of Garside germs, which are those germs that embed as Garside families
in the category they generate. Finally, in Section 6, we give an interesting applica-
tion of the previous results, namely the construction of the classical and dual braid
monoids associated with a Coxeter or a complex reflection group.

1. Categories and divisibility

In this preliminary section, we fix some terminology. As mentioned in the intro-
duction, it is convenient to work in a category framework that we describe here.

1.1. The category framework. The general context is that of categories, which
are seen here just as monoids with a conditional, not necessarily everywhere defined
product. A precategory is a family of elements with two objects called “source” and
“target” attached to each element, and a category is a precategory equipped with
a partial binary product such that fg exists if and only if the target of f coincides
with the source of g. In addition, the product is assumed to be associative whenever
defined and, for each object x, there exists an identity-element 1x attached to x,
so that 1xg = g = g1y holds for every g with source x and target y. A monoid is
the special case of a category when there is only one object, so that the product
is always defined. It is convenient to represent an element g with source x and

target y using an arrow as in x y
g

.

Definition 1.1. A category C is said to be left-cancellative (resp. right-cancellative)
if fg = fg′ (resp. gf = g′f) implies g = g′ in C. It is called cancellative is it is both
left- and right-cancellative.

(In other words, in the usual language of categories [22], a category is left-
cancellative if all morphisms are epimorphisms, and it is right-cancellative if all
morphisms are monomorphisms.) In the sequel, we shall always work with cat-
egories that are (at least) left-cancellative. This implies in particular that there
exists a unique, well defined notion of invertible element.

Lemma 1.2. If C is a left-cancellative category, an element g of C with source x
and target y has a left-inverse, that is, there exists f satisfying fg = 1y, if and only
if it has a right-inverse, that is, there exists f satisfying gf = 1x.
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Proof. Assume fg = 1y. Right-multiplying by f , we deduce fgf = f , which, by
left-cancellativity, implies gf = 1x. Similarly, gf = 1x implies gfg = g, whence
fg = 1y. �

If C is a left-cancellative category, we shall say that an element g of C is in-
vertible if it admits a left- and right-inverse, naturally denoted by g−1. Note that
the product of two invertible elements is always invertible, that the inverse of an
invertible element is invertible, and that an identity-element 1x is invertible (and
equal to its inverse). Thus the invertible elements of a left-cancellative category C
make a subgroupoid of C.

Notation 1.3. For C a left-cancellative category, we denote by C× the family of all
invertible elements of C and, for every subfamily S of C, we put S♯ = SC× ∪ C×.

In the above notation, as everywhere in the paper, if X1,X2 are subfamilies
of a category C, we denote by X1X2 the family of all elements of C that can be
expressed, in at least one way, as g1g2 with gi ∈ Xi, i = 1, 2. So, for instance, SC×

is the family of all elements obtained by right-multiplying an element of S by an
invertible element. In such a context, we naturally write X r for X ···X , r factors.

1.2. The divisibility relations.

Definition 1.4. Assume that C is a left-cancellative category. For f, g in C, we say
that f is a left-divisor of g, or, equivalently, that g is a right-multiple of f , written
f 4 g, if there exists g′ in C satisfying fg′ = g. Symmetrically, we say that f is a
right-divisor of g, or, equivalently, that g is a left-multiple of f , if there exists g′

in C satisfying g = g′f .

In terms of arrows and diagrams, f being a left-divisor
of g corresponds to the existence of an arrow g′ making
the diagram on the right commutative.

f

g

g′

Notation 1.5. For C a left-cancellative category and f, g in C, we write f =× g if
there exists an invertible element e satisfying fe = g, and f ≺ g for the conjunction
of f 4 g and g 64 f .

Lemma 1.6. If C is a left-cancellative category, the relation 4 is a partial pre-
ordering on C, and the conjunction of f 4 g and g 4 f is equivalent to f =× g.

Proof. For every g with target y, we have g = g1y, so g 4 g always holds. Next, if
we have both fg′ = g and gh′ = h, we deduce f(g′h′) = (fg′)h′ = gh′ = h, so the
conjunction of f 4 g and g 4 h implies f 4 h. So 4 is reflexive and transitive.

Assume f 4 g and g 4 f . Then there exist f ′, g′ satisfying fg′ = g and gf ′ = f .
We deduce f(g′f ′) = (fg′)f ′ = gf ′ = f , whence g′f ′ = 1y where y is the target
of f . It follows that f ′ and g′ must be invertible, which implies f =× g. Conversely,
fe = g with e ∈ C× implies f = ge−1, so f =× g implies f 4 g and g 4 f . �

It follows that the left-divisibility relation of a category C is a partial ordering
on C if and only if the relation =× is equality, that is, if and only if, the only
invertible elements of C are the identity-elements. In this case, we shall say that C
has no nontrivial invertible element.
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1.3. Paths and free categories. We now fix some terminology and notation for
paths, which are the natural counterparts of sequences (or words) in the context of
a monoid. The notion does not depend on the product of the category but only on
the sources and targets of the considered elements, and it will be useful to define it
in the more general context of a precategory, which is like a category but with no
product and identity-elements.

Definition 1.7. Assume that X is a precategory. For q > 1, a path in X , or X -path,
of length q is a sequence (g1, ... , gq) of elements of X such that, for 1 < k 6 q, the
target of gk−1 coincides with the source of gk. In this case, the source (resp. target)
of the path is defined to be the source of g1 (resp. the target of gq). In addition, for
every object x, one defines an empty path εx associated with x, whose source and
target are x and whose length is zero. The family of all X -paths of length q (resp.
all X -paths) is denoted by X [q] (resp. by X ∗). If w1, w2 are X -paths and the target
of g1 coincides with the source of g2, the concatenation of w1 and w2 is denoted
by w1 |w2.

In the case of a set, that is, a precategory with one object, the condition about
source and target vanishes, and an X -path is simply a finite sequence of elements
of X , or, equivalently, a word in the alphabet X .

Notation 1.8. By definition, an X -path (g1, ... , gq) is the concatenation of the q
length one paths (g1), ... , (gq). Identifying the length one path (g) with its unique
entry g, we then find (g1, ... , gq) = g1 | ··· |gq, a simplified notation used in the sequel.

Lemma 1.9. For every precategory X , the family X ∗ equipped with concatenation
and the empty paths εx for x in Obj(X ) is a category, still denoted by X ∗. Every
category C including X and generated by X is a homomorphic image of X ∗: there
exists a surjective functor of X ∗ onto C that extends the identity on X .

The proof is standard. Owing to Lemma 1.9, the category X ∗ is called the free
category based on X (or the free monoid in the case of a set). If C is a category and
X is a subfamily of C, the unique functor of X ∗ to C that extends the identity maps
on X and Obj(X ) is the evaluation map that associates to each X -path g1 | ··· |gq

the product g1 ···gq as computed using the product of C. In this case, we say that
the path g1 | ··· |gq is a decomposition of the element g1 ···gq of C.

If X is a precategory and R is a family of pairs of X -paths of the form {w, w′}
with w, w′ sharing the same source and the same target, one denotes by 〈X |R〉+

the category X ∗/≡ where ≡ is the smallest congruence on X ∗ that includes R, that
is, the smallest equivalence relation compatible with the product. If a pair {w, w′}
lies in R, the evaluations of the paths w and w′ in the quotient-category 〈X |R〉+

coincide, and, therefore, it is customary to write w = w′ instead of {w, w′} in this
context, and to call such a pair a relation of the presented category 〈X |R〉+.

2. S-normal decompositions

We now arrive at a central topic in the current approach, namely the notion of
an S-normal decomposition for an element of a category.

2.1. The notion of an S-greedy path. The first step is the notion of an S-
greedy path, which captures the intuition that each entry in the path contains as
much of S as is possible.
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Definition 2.1. Assume that S is a subfamily of a left-cancellative category C,
that is, S is included in C. A C-path g1 | ··· |gq is called S-greedy if, for every i < q,
we have

(2.2) ∀h∈S ∀f∈C (h 4 fgigi+1 ⇒ h 4 fgi).

Note that S-greediness is a local property in that a path g1 | ··· |gq is S-greedy if
and only if every length two subpath gi |gi+1 is S-greedy.

In terms of diagrams, the fact that g1 |g2 is S-greedy
means that every diagram as aside splits: whenever h left-
divides fg1g2, it left-divides fg1, so there exists f ′ satisfy-
ing hf ′ = fg1. Then the assumption hg′ = fg1g2 implies
hf ′g2 = hg′, whence f ′g2 = g′ by left-cancelling h. g1 g2

h ∈ S

f g′f ′

Before proceeding, we establish two technical results about greedy paths. The
first result is that the strength of greediness is not changed by the possible existence
of nontrivial invertible elements.

Lemma 2.3. For every subfamily S of a left-cancellative category C, being S-greedy
and S♯-greedy are equivalent properties.

Proof. By definition, a path that is S♯-greedy is X -greedy for every X included
in S♯. As S is included in S♯, being S♯-greedy implies being S-greedy.

Conversely, assume that g1 |g2 is S-greedy, and we have h 4 fg1g2 with h ∈ S♯.
Two cases are possible. Assume first h ∈ SC×, say h = h′e with h′ ∈ S and e ∈ C×.
Then we have h′e 4 fg1g2, hence h′ 4 fg1 since g1 |g2 is S-greedy, that is, there
exists f ′ satisfying h′f ′ = fg1. We deduce he−1f ′ = fg1, hence h 4 fg1. Assume
now h ∈ C×. Then we can write h 4 hh−1, whence h 4 fg1 again. In every case,
h 4 fg1 holds, and g1 |g2 is S♯-greedy. �

The second result involves the connection between the current notion of greed-
iness and the one in the literature. If g1 |g2 is S-greedy, then, in particular, every
element of S that left-divides g1g2 left-divides g1, which is the notion of a greediness
considered for instance in [20] or [9]. The current definition is stronger as it involves
the additional factor f in (2.2). However, this implication becomes an equivalence,
that is, one recovers the usual notion of greediness, when the reference family S
satisfies some conditions.

Definition 2.4. A subfamily X of a left-cancellative cat-
egory C is called closed under right-complement if
(2.5)
∀f, g∈X ∀h∈C (f, g 4 h ⇒ ∃f ′, g′∈X (fg′ = gf ′ 4 h)).

is satisfied.

g∈X

f∈X

g′∈X

f ′∈X

Lemma 2.6. Assume that C is a left-cancellative category, and S is a subfamily
of C such that S♯ generates C and is closed under right-complement. Then g1 |g2 is
S-greedy if and only if one has

(2.7) ∀h∈S (h 4 g1g2 ⇒ h 4 g1).

Proof. As already observed, by definition, (2.7) holds whenever g1 |g2 is S-greedy.
Conversely, assume that (2.7) holds, and we have h 4 fg1g2. By assumption, S♯
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generates C, so we can write f = f1 ···fp with f1, ... , fp in S♯. Then f1 and h
belong to S♯ and, by assumption, both left-divide f1 ···fpg1g2. The assumption
that S♯ is closed under right-complement implies the existence of f ′

1 and h1 in S♯

satisfying f1h1 = hf ′
1 4 f1 ···fpg1g2, see Figure 1. Left-cancelling f1, we deduce

h1 4 f2 ···fpg1g2 and, arguing similarly, we deduce the existence of of f ′
2 and h2

in S♯ satisfying f2h2 = h1f
′
2 4 f2 ···fpg1g2, and so on. After p steps, we obtain

f ′
p and hp in S♯ satisfying fphp = hp−1f

′
p and hp 4 g1g2. Repeating the proof of

Lemma 2.3, we see that (2.7) implies ∀h∈S♯ (h 4 g1g2 ⇒ h 4 g1) and we deduce
hp 4 g1, whence h 4 f1 ···fpg1 using the commutativity of the diagram. Hence
g1 |g2 is S-greedy. �

f1 f2 fp

g1

f ′
1 f ′

2 f ′
p

f̂

g2

h h1 h2 hp−1 hp

f

Figure 1. Proof of Lemma 2.6: whenever S
♯ generates the ambient

category and is closed under right-complement, each relation h 4 fg1g2

leads to a relation of the form hp 4 g1g2 and, therefore, the restricted form
of greediness implies the general form.

2.2. The notion of an S-normal path. Building on the notion of an S-greedy
path, we can now introduce the distinguished decompositions we shall be interested
in.

Definition 2.8. Assume that S is a subfamily of a left-cancellative category C. A
C-path g1 | ··· |gq is called S-normal if it is S-greedy and, in addition, the entries
g1, ... , gq lie in S♯.

Like greediness, S-normality is a local property: a path g1 | ··· |gq is S-normal
if and only if every length two subpath gi |gi+1 is S-normal. In diagrams, it will
be convenient to indicate that a path g1 |g2 is S-normal by drawing a small arc

connecting the ends of the arrows, as in
g1 g2 . We shall naturally

say that a path g1 | ··· |gq is an S-normal decomposition for an element g of the
ambient category if g1 | ··· |gq is a decomposition of g that is S-normal.

For further reference, we first observe that, in an S-normal path, invertible
elements can always be added at the end and that, conversely, an invertible entry
cannot be followed by a non-invertible one.

Lemma 2.9. Assume that S is a subfamily of a left-cancellative category C.
(i) If g2 is invertible, then every path of the form g1 |g2 is S-greedy.
(ii) If g1 is invertible and g2 lies in S♯, then a path of the form g1 |g2 is S-greedy

(if and) only if g2 is invertible.
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Proof. (i) Assume that g2 is invertible. Then, for every h in S, the relation
h 4 fg1g2 implies h 4 fg1g2g

−1
2 , whence h 4 fg1, and g1 |g2 is S-greedy.

(ii) Assume that g1 is invertible, g2 lies in S♯, and g1 |g2 is S-greedy. By
Lemma 2.3, g1 |g2 is S♯-greedy and we have g2 = g−1

1 g1g2 with g2 ∈ S♯, whence
g2 4 g−1

1 g1. The latter relation implies that g2 is invertible. �

It follows that, in an S-normal path, the non-invertible entries always occur first,
and the invertible entries always occur at the end.

We now address the uniqueness of S-normal decompositions. The good news is
that (some form of) uniqueness comes for free.

Definition 2.10. (See Figure 2.) Assume that C is a left-cancellative category. A C-
path f1 | ··· |fp is said to be a deformation by invertible elements, or C×-deformation,
of another path g1 | ··· |gq if there exist e0, ... , er in C×, r = max(p, q), such that e0

and er are identity-elements and ei−1gi = fiei holds for 1 6 i 6 r, where, for p 6= q,
the shorter path is expanded by identity-elements.

g1

f1

g2

f2

gp

fp

gp+1

1-

gq

1-

e1 e−1
1 e2 e−1

2 ep e−1
p

Figure 2. Deformation by invertible elements: invertible elements con-
nect the corresponding entries; if one path is shorter (here we are in the
case p < q), it is extended by identity-elements.

If the ambient category C contains no nontrivial invertible element, then being
a C×-deformation just means coinciding up to adding final identity-elements. The
uniqueness result for S-normal decompositions is as follows:

Proposition 2.11. Assume that S is a subfamily of a left-cancellative category C.
Then any two S-normal decompositions of an element of C (if any) are C×-deformat-
ions of one another.

The proof appeals to an auxiliary result.

Lemma 2.12. Assume that S is a subfamily of a left-cancellative category C. If
g1 | ··· |gq is an S-greedy C-path, then g1 |g2 ···gq is S-greedy as well.

Proof. Assume h 4 fg1(g2 ···gq), where h lies in S. Using associativity, we write
h 4 (fg1 ···gq−2)gq−1gq, and the assumption that gq−1 |gq is S-greedy implies
h 4 (fg1 ···gq−2)gq−1, which is also h 4 (fg1 ···gq−3)gq−2gq−1. The assumption
that gq−2 |gq−1 is S-greedy implies now h 4 (fg1 ···gq−3)gq−2, and so on. Finally,
we obtain h 4 (f)g1g2, and the assumption that g1 |g2 is S-greedy implies h 4 fg1.
So g1 |g2 ···gq is S-greedy. �

Proof of Proposition 2.11. Assume that f1 | ··· |fp and g1 | ··· |gq are S-normal de-
compositions of an element g of C. Let y be the target of g. At the expense
of adding factors 1y at the end of the shorter path, we may assume p = q: by
Lemma 2.9, adding identity-elements at the end of an S-greedy path yields an
S-greedy path.

Let e0 = 1x, where x is the source of g. By Lemma 2.12, the path g1 |g2 ···gq is
S-greedy, hence, by Lemma 2.3, S♯-greedy. Now f1 belongs to S♯ and left-divides
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f1 ···fp, which is e0g1 ···gq, so it must left-divide g1. In other words, there exists e1

satisfying f1e1 = e0g1. Left-cancelling f1 in f1 ···fp = (f1e1)g2 ···gp, we deduce
f2 ···fp = e1g1 ···gq. Now f2 belongs to S♯ and, by Lemma 2.12 again, g2 |g3 ···gq is
S-greedy, so we deduce the existence of e2 satisfying f2e2 = e1g1, and so on, giving
the existence of ei satisfying fiei = ei−1gi for every 1 6 i 6 q.

Exchanging the roles of f1 | ··· |fp and g1 | ··· |gq and arguing symmetrically from
e′0 = 1x, we obtain the existence of e′i satisfying gie

′
i = e′i−1fi for every 1 6 i 6 p.

We deduce, for every i, the equalities (f1 ···fi)ei = g1 ···gi and (g1 ···gi)e
′
i = f1 ···fi,

which imply that e′i is the inverse of ei. Hence f1 | ··· |fp is a C×-deformation of
g1 | ··· |gq. �

It can be checked that, conversely, every C×-deformation of an S-normal decom-
position of an element g is again an S-normal decomposition of g provided the
relation C×S ⊆ S♯ is satisfied, but we shall not need that result here.

A direct application of Proposition 2.11 is that the number of non-invertible
entries in an S-normal decomposition of an element g does not depend on the
choice of that decomposition: indeed, if g and g′ are connected by an equality
g′e = e′g with e, e′ invertible, then g is invertible if and only if g′ is invertible. So
the following notion is non-ambiguous.

Definition 2.13. Assume that S is a subfamily of a left-cancellative category C.
The S-length of an element g of S, written ‖g‖S , is the number of non-invertible
entries in an S-normal decomposition of g (if any).

Of course, the number ‖g‖S is defined only if g admits at least one S-normal
decomposition.

Lemma 2.14. Assume that S is a subfamily of a left-cancellative category C. Then
every element g of C that admits an S-normal decomposition admits an S-normal
decomposition of length ‖g‖S.

Proof. Assume that g1 | ··· |gq is an S-normal decomposition of g. Let r = ‖g‖S.
By definition, r is the number of non-invertible entries in g1 | ··· |gq, so r 6 q holds.
Assume r < q. By Lemma 2.9, the entries g1, ... , gr are non-invertible, whereas
gr+1, ... , gq are invertible. But, then, gr ···gq is an element of S♯, and therefore
g1 | ··· |gr−1 |gr ···gq is an S-normal decomposition of g that has length r. �

We shall prove

Proposition 2.15. Assume that S is a subfamily of a left-cancellative category C.
Then ‖g‖S 6 r holds for every element g in (S♯)r that admits an S-normal decom-
position.

We begin with a new auxiliary result about greedy paths.

Lemma 2.16. Assume that S is a subfamily of a left-cancellative category C. If
g1 | ··· |gq is S-greedy and r < q holds, then g1 ···gr |gr+1 ···gq is Sr-greedy.

Proof. Assume h 4 fg1 ···gq with h ∈ Sr, say h = h1 ···hr with h1, ... , hr ∈ S.
By Lemma 2.12, g1 |g2 ···gq is S-greedy, hence the assumption implies h1 4 fg1,
so there exists f ′

1 satisfying h1f
′
1 = fg1. Using left-cancellativity, we deduce

h2 ···hr 4 f ′
1g2 ···gq. By Lemma 2.12 again, g2 |g3 ···gq is S-greedy, and we deduce

h2 4 f ′
1g2, so there exists f ′

2 satisfying h2f
′
2 = f ′

1g2. Repeating the argument, we
find after r steps f ′

r satisfying hrf
′
r = f ′

r−1gr, and we deduce h1 ···hrf
′
r = fg1 ···gr,

whence h 4 fg1 ···gr. So g1 ···gr |gr+1 ···gq is Sr-greedy. �
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Proof of Proposition 2.15. Assume that g1 | ··· |gq is an S-normal decomposition for
an element g that belongs to (S♯)r. If q 6 r holds, then ‖g‖S 6 r is trivial. Assume
now q > r. By Lemma 2.3, the path g1 | ··· |gq is S♯-greedy so, by Lemma 2.16 (ap-
plied with S♯), the sequence g1 ···gr |gr+1 ···gq is (S♯)r-greedy. As g belongs to (S♯)r

and it left-divides g1 ···gq, we deduce that g left-divides g1 ···gr, say gf = g1 ···gr.
As we have g = g1 ···gq, by left-cancelling g1 ···gr, we deduce gr+1 ···gqf = 1y, where
y is the target of f . It follows that gr+1, ... , gq all must be invertible. So the
non-invertible entries are among g1, ... , gr, and ‖g‖S 6 r follows. �

2.3. Garside families. After uniqueness, we now address the existence of S-
normal decompositions. If every element of the ambient category admits an S-
normal decomposition, then, clearly, the family S♯ must generate the category.
However this necessary condition is not sufficient in general, and we shall introduce
Garside families precisely as those families that guarantee the existence of normal
decompositions.

Definition 2.17. A Garside family in a left-cancellative category C is a subfamily S
of C such that every element of C admits an S-normal decomposition.

Garside families exist in every category: indeed, if C is any left-cancellative
category, then C is a Garside family in itself since, for every g in C, the length one
path g is a C-normal decomposition of g. On the other hand, it may happen that C is
the only Garside family in C: for instance, this is the case for the monoid 〈a, b | ab =
ba, a2 = b

2〉+ as, anticipating on Definition 3.5 and Proposition 3.9, one can see
using induction on r > 0 that every subset that is closed under right-comultiple
and contains 1, a, and b contains ar+1 and a

r
b for every r, hence coincides with the

whole monoid.
The connection with the notion of a Garside monoid as developed in [12, 9] is

easily described:

Proposition 2.18. Assume that M is a Garside monoid with Garside element ∆.
Then the family Div(∆) of all divisors of ∆ is a Garside family in M .

Proof. Let g be an element of M \ {1}. Let g1 be the left-gcd of g and ∆. Then g1

belongs to Div(∆), and g1 left-divides g, say g = g1g
′. If g1 is not 1, we repeat the

argument, finding a decomposition g′ = g2g
′′ with g2 the left-gcd of g′ and ∆, and

so on. The assumption that M is atomic guarantees that the construction will stop
after finitely many steps and one finds a decomposition g = g1 ···gq for g in terms
of divisors of ∆.

So it remains to see that the sequence g1 | ··· |gq is Div(∆)-greedy. Now, we claim
that the family Div(∆) satisfies the conditions of Lemma 2.6. Indeed, by definition
of a Garside element, Div(∆) generates M . On the other hand, assume f, g 4 ∆
and f, g 4 h. Then f and g left-divide the left-gcd h1 of h and ∆, so we have
fg′ = gf ′ 4 h1 for some f ′, g′. By construction, h1 belongs to Div(∆), and so
do f ′ and g′, since all right-divisors of ∆ also are left-divisors. Hence Div(∆) is
closed under right-complement. Now, assume h 4 g1 ···gq with h ∈ Div(∆). Then
h left-divides the left-gcd of g1 ···gq and ∆, which is precisely g1. By Lemma 2.6,
we deduce that g1 |g2 ···gq is Div(∆)-greedy and, a fortiori, so is g1 |g2. Applying
the same argument to g′, g′′... inductively shows that gi |gi+1 is Div(∆)-greedy as
well. So the sequence g1 | ··· |gq is Div(∆)-normal, every element of M admits a
Div(∆)-normal decomposition, and Div(∆) is a Garside family in M . �
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3. Recognizing Garside families

Definition 2.17 gives no practical criterion for recognizing Garside families. Our
aim for now on will be to establish various characterizations of such families, which
amounts to establishing various necessary and sufficient conditions guaranteeing
the existence of normal decompositions.

3.1. Recognizing Garside families I: incremental approach. The first char-
acterization relies on the possibility of constructing S-normal decompositions using
an induction.

Proposition 3.1. A subfamily S of a left-cancellative category C is a Garside
family if and only if

(3.2)
S♯ generates C and every element of (S♯)2 admits an S-normal de-
composition.

As already noted, if S is a Garside family in C, then, by definition, every element
of C admits a decomposition in which every entry lies in S♯, so S♯ must generate C,
and every element admits an S-normal decomposition hence, in particular, so does
every element of (S♯)2. So every Garside family necessarily satisfies (3.2), and the
point is to prove that, conversely, every family satisfying (3.2) is a Garside family.
We begin with preparatory results.

Lemma 3.3 (“domino rule”).

g1 g2

g′1 g′2

f0 f1 f2

Assume that S is a sub-
family of a left-cancellative category C, and we have a
commutative diagram with edges in C as on the right. If
g1 |g2 and g′1 |f1 are S-greedy, then g′1 |g

′
2 is S-greedy as

well.

Proof. Assume h ∈ S and h 4 fg′1g
′
2. As the diagram is commutative, we have

h 4 ff0g1g2. As g1 |g2 is S-greedy , we deduce h 4 ff0g1, hence h 4 fg′1f1. Now,
as g′1 |f1 is S-greedy, we deduce h 4 fg′1. Therefore g′1 |g

′
2 is S-greedy. �

Lemma 3.4. Assume that S is a subfamily of a left-cancellative category C that
satisfies (3.2) and g is an element of C that admits an S-normal decomposition of
length q. Then, for every f in S♯, the element fg admits an S-normal decomposition
of length q+1 whenever it is defined. Moreover, we have ‖g‖S 6 ‖fg‖S 6 ‖g‖S +1.

Proof. (See Figure 3.) Assume that g1 | ··· |gq is an S-normal decomposition of g.
Put f0 = f . By (3.2) and Proposition 2.15, the element f0g1 of (S♯)2 admits an
S-normal decomposition of length two, say g′1 |f1. Then, similarly, the element f1g2

of (S♯)2 admits an S-normal decomposition of length two, say g′2 |f2, and so on.
Finally, fq−1gq admits an S-normal decomposition of length two, say g′q |fq. By

construction, g′1 | ··· |g
′
q |fq is a decomposition of fg, and its entries lie in S♯. More-

over, for 1 6 i < q, the paths gi |gi+1 and g′i |fi are S-greedy, so the domino rule
(Lemma 3.3) implies that g′i |g

′
i+1 is S-greedy as well. Thus g′1 | ··· |g

′
q |fq is S-greedy,

hence S-normal.
As for the S-length, we can assume q = ‖g‖S , which is always possible by

Lemma 2.14. Then the above argument provides an S-normal decomposition of
length q + 1 for fg, implying ‖fg‖S 6 ‖g‖S + 1. If q = 0 holds, that is, if g
is invertible, then ‖g‖S 6 ‖fg‖S is trivial. Otherwise, we have q > 1 and, by
assumption, the entries g1, ... , gq are not invertible. This implies that g′1, ... , g

′
q
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are not invertible either: indeed, by Lemma 2.9, the assumption that g′i |fi is S-
normal implies that fi is invertible whenever g′i is, so that fi−1gi, hence gi, must be
invertible, contrary to the assumption. Hence ‖g‖S 6 ‖fg‖S is always satisfied. �

f g1 g2 gq

g′1 g′2 g′q

f0 f1 f2 fq−1 fq

Figure 3. Proof of Lemma 3.4: starting from f in S
♯ and an S-normal

decomposition of g, we inductively build an S-normal decomposition of fg.

We can now complete the argument.

Proof of Proposition 3.1. We already noted that, if S is a Garside family in C, then
(3.2) is satisfied.

Conversely, assume that S satisfies (3.2). We prove using induction on r that
every element g of (S♯)r admits an S-normal decomposition. For r = 0, that is, if
g has the form 1x, the empty path εx is an S-normal decomposition of g and, for
r = 1, the sequence (g) is an S-normal decomposition of g. For r > 2, we write
g = fg′ with f in S♯ and g′ in (S♯)r−1, and we apply Lemma 3.4. So every element
of C that belongs to (S♯)r admits an S-normal decomposition. As, by assumption,
S♯ generates C, every element of C is eligible. Hence S is a Garside family in C. �

3.2. Recognizing Garside families II: closure properties. We turn to further
characterizations of Garside families involving closure properties, such as closure
under right-complement (Definition 2.4). Here we introduce another similar notion.

Definition 3.5. A subfamily X of a left-cancellative cat-
egory C is called closed under right-comultiple if
(3.6)

∀f, g∈X ∀h∈C (f, g 4 h ⇒ ∃h′∈X (f, g 4 h′
4 h)).

is satisfied.

g∈X

f∈X
h′∈X

So, in words, a family X is closed under right-comultiple if and only if every
common right-multiple of two elements of X must be a right-multiple of some
common right-multiple that lies in X . On the other hand, we shall naturally say
that a family X is closed under right-divisor if every right-divisor of an element
of X belongs to X . For further reference, we immediately note an easy connection
between closure properties.

Lemma 3.7. A subfamily X of a left-cancellative category that is closed under
right-comultiple and right-divisor is closed under right-complement.

Proof. Assume f, g 4 h with f, g ∈ X . As X is closed under right-comultiple,
there exists h′ in X satisfying f, g 4 h′ 4 h. By definition, this means that there
exist f ′, g′ satisfying fg′ = gf ′ = h′. Now, as X is closed under right-divisor, the
assumption that h lies in X implies that f ′ and g′ also do. But this means that X
is closed under right-complement. �
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We shall need one more notion.

Definition 3.8. Assume that S is a subfamily of a left-cancellative category C.
For g in C, we say that g1 is an S-head of g if g1 belongs to S, it left-divides g, and
every element of S that left-divides g left-divides g1.

Here are the expected characterizations of Garside families.

Proposition 3.9. A subfamily S of a left-cancellative category C is a Garside
family if and only if it satisfies one of the following equivalent conditions:

S♯ generates C, it is closed under right-divisor, and every non-
invertible element of C admits an S-head;

(3.10)

S♯ generates C, it is closed under right-complement, and every non-
invertible element of (S♯)2 admits an S-head;

(3.11)

S♯ generates C, it is closed under right-comultiple and right-divisor,
and every non-invertible element of (S♯)2 admits a ≺-maximal left-
divisor in S.

(3.12)

The difference between the final conditions in (3.11) and (3.12) is that, in (3.12),
we do not demand that every element of S that left-divides the considered element g
left-divides the maximal left-divisor, but only that no proper multiple of the latter
left-divides g, a weaker condition.

Contrary to Proposition 3.1, it is not obvious that the conditions of Proposi-
tion 3.9 necessarily hold for every Garside family, so a proof is needed in both
directions. As usual we shall split the argument into several steps. The first one
directly follows from our definitions.

Lemma 3.13. Assume that S is a subfamily of a left-cancellative category C and
g1 lies in S.

(i) If g1 |g2 is S-greedy, then g1 is an S-head for g1g2.
(ii) Conversely, if S♯ generates C and is closed under right-complement, then g1

being an S-head of g1g2 implies that g1 |g2 is S-greedy.

Proof. (i) We have g1 4 g1g2. Assume h ∈ S and h 4 g1g2. As g1 |g2 is S-greedy,
we deduce h 4 g1, which, by definition, means that g1 is an S-head for g1g2.

(ii) Assume that g1 is an S-head of g1g2. By definition, every element of S that
left-divides g1g2 left-divides g1. Now, by Lemma 2.6, this implies that g1 |g2 is
S-greedy whenever S♯ generates C and is closed under right-complement. �

Lemma 3.14. Assume that S is a Garside family in a left-cancellative category C.
Then S♯ is closed under right-divisor, right-comultiple, and right-complement. More-
over, we have C×S♯ ⊆ S♯.

Proof. Assume that g lies in S♯ and f right-divides g. Then we have ‖g‖S 6 1,
and Lemma 3.4 inductively implies ‖f‖S 6 ‖g‖S , whence ‖f‖S 6 1, which in turn
implies f ∈ S♯. So S♯ is closed under right-divisor.

Next, assume that f, g lie in S♯ and h is a common right-multiple of f and g. Let
h1 | ··· |hr be an S-normal decomposition of h, which exists as S is a Garside family.
Then f is an element of S♯ that left-divides h1 ···hr and h1 | ··· |hr, hence h1 |h2 ···hr,
are S♯-greedy. It follows that f left-divides h1. Similarly g left-divides h1. Hence
h1 is a common right-multiple of f and g that left-divides h and lies in S♯. Hence
S♯ is closed under right-comultiple.
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Then, Lemma 3.7 implies that S♯ is closed under right-complement since it is
closed under right-comultiple and right-divisor.

Finally, assume g ∈ C×S♯, say g = eh with e ∈ C× and h ∈ S♯. Then we have
h = e−1g, so g right-divides an element of S♯, hence it belongs to S♯ by the first
result above. �

Lemma 3.15. Assume that S is a subfamily of a left-cancellative category C that
satisfies C×S♯ ⊆ S♯. Then every element that admits an S-normal decomposition
admits one in which all entries except possibly the last one lie in S \ C×.

Proof. Assume first that g is non-invertible and g1 | ··· |gq is an S-normal decompo-
sition of g. The assumption that g is non-invertible implies that ‖g‖S is at least
one, and, by Lemma 2.14, we can assume that q is the S-length of g, implying that
none of g1, ... , gq is invertible.

As g1 is a non-invertible element of S♯, we can write g1 = g′1e1 with g′1 in S
and e1 in C×. Moreover, the assumption that g1 is not invertible implies that
g′1 is not invertible either. Next, e1g2 belongs to C×S♯, hence, by assumption,
to S♯. So we can write e1g2 = g′2e2 with g′2 in S and e2 in C× and, again, the
assumption that g2 is non-invertible implies that g′2 is non-invertible. We continue
in the same way until gq, finding g′q in S\C× and eq in C× that satisfy eq−1gq = g′qeq.
Then g′1 | ··· |g

′
q−1 |g

′
qeq is a decomposition of g whose non-terminal entries are non-

invertible elements of S.
It remains to see that the latter path is S-greedy. But this follows from the

domino rule (Lemma 3.3) since, for every i, the paths gi |gi+1 and g′i |ei are S-
greedy. Hence g′1 | ··· |g

′
q−1 |g

′
qeq is an S-normal decomposition of g with the expected

properties.
On the other hand, if e is invertible, then, by definition, the length one path e is

an S-normal decomposition of e vacuously satisfying the condition of the statement.
�

We can now complete one direction in the implications of Proposition 3.9.

Proof of Proposition 3.9 (⇒). Assume that S is a Garside family in C. First, as
already noted, S♯ must generate C. Next, by Lemma 3.14, S♯ is closed under right-
complement, right-comultiple, and right-divisor. Finally, let g be a non-invertible
element of (S♯)2. Then the S-length of g is not zero.

Assume first ‖g‖S = 1. Then g belongs to S♯ \ C×, so it can be written as g1e
with g1 ∈ S and e ∈ C×, in which case g1 |e is an S-normal decomposition of g, and,
by Lemma 3.13, g1 is an S-head of g.

Assume next ‖g‖S > 2. By Lemmas 3.14 and 3.15, g admits an S-normal
decomposition g1 | ··· |gq such that g1, ... , gq−1 lie in S. Then g1 |g2 ···gq is S-greedy
and, by Lemma 3.13, g1 is an S-head of g.

Hence (3.10) and (3.11) are satisfied, and so is (3.12) as an S-head is a fortiori
a ≺-maximal left-divisor lying in S. �

Before going to the second half of the proof of Proposition 3.9, we add two more
observations about heads for further reference, namely a characterization of those
elements that admit an S-head and a connection between S- and S♯-heads.

Lemma 3.16. Assume that S is a subfamily of a left-cancellative category C.
(i) If S is a Garside family, an element of C admits an S-head if and only if it

lies in SC.
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(ii) Every S-head is an S♯-head.

Proof. (i) If g admits an S-head, then, by definition, g is left-divisible by an element
of S, so it belongs to SC. Conversely, assume that g lies in SC, say g = g1g

′ with
g1 ∈ S. If g is not invertible, g admits an S-head by Proposition 3.9. Otherwise,
g′ must be invertible, so g =× g1 holds, and every element of S that left-divides g
also left-divides g1. Then g1 is an S-head of g.

(ii) Assume that g1 is an S-head of g. First g1 lies in S, hence a fortiori in S♯.
Next, assume that h belongs to S♯ and h 4 g holds. If h is invertible, then h 4 g1

necessarily holds. Otherwise, write h = h′e with h′ in S and e in C×. Then h 4 g
implies h′ 4 g, whence h′ 4 g1 since g1 is an S-head of g, hence h 4 g1. So g1 is
an S♯-head of g. �

We now establish several preliminary results in view of the converse implication
in Proposition 3.9.

Lemma 3.17. Assume that S is a subfamily of a left-cancellative category C such
that S♯ generates C and is closed under right-complement. Then S♯ is closed under
right-divisor.

Proof. The argument is similar to that used for Lemma 2.6, see Figure 4. So
assume that h belongs to S♯ and g right-divides h, that is, we have h = fg. As S♯

generates C, we can write f = f1 ···fp with f1, ... , fp ∈ S♯. The assumption that
S♯ is closed under right-complement and the fact that h and f1 left-divide f1 ···fpg
imply the existence of f ′

1, h1 in S♯ satisfying hf ′
1 = f1h1 4 f1 ···fpg. By left-

cancelling f1, we deduce that h1 and f2 left-divide f2 ···fpg, whence the existence
of f ′

2, h2 satisfying h1f
′
2 = f2h2 4 f2 ···fpg, and so on until hp−1f

′
p = fphp 4 fpg,

which implies hp 4 g, say hpe = g. By construction, f ′
1 ···f

′
pe is an identity-element,

hence all of the factors must be invertible. Now hp belongs to S♯, hence g, which
is hpe, belongs to S♯C×, which is S♯. So S♯ is closed under right-divisor. �

f1 f2 fp

gf ′
1 f ′

2 f ′
p e

h h1 h2 hp−1 hp

f

Figure 4. Proof of Lemma 3.17: using the closure under right-
complement, one fills the diagram, and concludes that g must lie in S

♯,
since hp lies in S

♯ and e is invertible.

Lemma 3.18. Assume that S is a subfamily of a left-cancellative category C that
generates C and is closed under right-complement. Then every element of (S♯)2

that admits an S-head admits an S-normal decomposition.

Proof. Assume that g is h1h2 with h1, h2 ∈ S♯ and g admits an S-head, say g1.
By assumption, we have h1 4 g with h1 ∈ S♯. By Lemma 3.16, g1 is an S♯-head
of g, implying h1 4 g1, say g1 = h1f . Then we have g = h1fg2 = h1h2, whence
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h2 = fg2. It follows that g2 right-divides h2, an element of S♯. By Lemma 3.17, S♯

must be closed under right-divisor, so g2 lies in S♯. Hence g1 |g2 is a decomposition
of g whose entries lie in S♯.

Finally, by Lemma 3.13, the assumption that g1 is an S-head of g1g2 implies
that g1 |g2 is S-greedy, hence it is an S-normal decomposition of g. �

Lemma 3.19. Assume that S is a subfamily of a left-cancellative category C such
that S♯ is closed under right-comultiple. Then a ≺-maximal left-divisor in S is an
S-head.

Proof. Assume that g1 is a ≺-maximal left-divisor of g lying in S. Write g = g1g2.
Let h be an arbitrary left-divisor of g lying in S. We wish to prove h 4 g1. Now,
g is a common right-multiple of h and g1, which both lie in S, hence in S♯. As the
latter is closer under right-comultiple, there must exist a common right-multiple h′

of h and g1 that lies in S♯ and left-divides g. As we have g1 4 h′, the assumption
that g1 is a ≺-maximal left-divisor of g implies g1 =× h′, whence h 4 h′ 4 g1, and,
finally, h 4 g1. Hence g1 is an S-head of g. �

Proof of Proposition 3.9 (⇐). Assume first that S satisfies (3.10). We claim that
S is also closed under right-comultiple and right-complement. Indeed, assume that
f, g belong to S♯ and f, g 4 h hold. Assume first h /∈ C×, and let h1 be an S-head
of h. As f belongs to S♯ and it left-divides h, we must have f 4 h1, hence fg′ = h1

for some g′, and, similarly, gf ′ = h1 for some f ′. As S♯ is closed under right-divisor,
f ′ and g′ must belong to S♯. If h is invertible, then h belongs to S♯ and we can
take h1 = h, g′ = f−1h1, and f ′ = g−1h1. In all cases, h1, f

′, g′ witness that S♯ is
closed under right-comultiple and right-complement. Hence, (3.10) implies (3.11).

Next, assume that S satisfies (3.11). Then, by assumption, every element of (S♯)2

admits an S-head, hence, by Lemma 3.18, an S-normal decomposition. Hence, by
Proposition 3.1, S is a Garside family in C.

Finally, assume that S satisfies (3.12). First, by Lemma 3.7, the assumption that
S♯ is closed under right-comultiple and right-divisor implies that it is closed under
right-complement. Then, by Lemma 3.19, the existence of a ≺-maximal left-divisor
in S for every element g of (S♯)2 implies the existence of an S-head whenever at
least one such divisor lies in S, which is guaranteed when g is non-invertible. So
(3.12) implies (3.11), and S must be a Garside family again. �

3.3. Special contexts. All results established so far are valid in an arbitrary left-
cancellative category. When the ambient category happens to satisfy additional
properties, some of the conditions involved in the characterizations of Garside fam-
ilies may be automatically satisfied or take simpler forms.

Definition 3.20. A category C is called right-Noetherian if right-divisibility in C
is a well-founded relation, that is, every nonempty subfamily has a least element.

Above, by a least element we mean an element that right-divides every element
of the considered subfamily. We recall that f ≺ g stands for the conjunction of
f 4 g and f 64 g, that is, by Lemma 1.6, the conjunction of f 4 g and f 6=× g.

Lemma 3.21. A left-cancellative category C is right-Noetherian if and only if there
is no bounded ≺-increasing sequence in C.

Proof. Assume that C is right-Noetherian and we have g1 4 g2 4 ··· 4 g in C. For
each i, write gifi = gi+1 and gihi = g. Then we have gihi = gi+1hi+1 = gifihi+1,
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whence hi = fihi+1 by left-cancelling gi. So the sequence (h1, h2, ...) is decreasing
for right-divisibility. Let hN be a least element in {hi | i > 1}. Necessarily fi is
invertible for i > N , which implies gi+1=×gi. So (g1, g2, ...) cannot be ≺-increasing.

Conversely, assume that C contains no bounded ≺-increasing sequence in C, and
let (f1, f2, ...) be a decreasing sequence with respect to right-divisibility. Write
fi = g′ifi+1. Set g = f1, and gi = g′1 ···g

′
i. Then we have g1 4 g2 4 ··· 4 g.

The assumption that C contains no bounded ≺-increasing sequence implies that g′i
is invertible for i large enough. It follows that right-divisibility admits no infinite
descending sequence. By the Axiom of Dependent Choices, this implies that right-
divisibility is a well-founded relation, that is, that C is right-Noetherian. �

Proposition 3.22. A subfamily S of a left-cancellative category that is right-
Noetherian is a Garside family if and only if

(3.23) S♯ generates C and it is closed under right-comultiple and right-
divisor.

Proof. Owing to Proposition 3.9 and (3.12), it is enough to show that every non-
invertible element g in C (or only in (S♯)2) admits a ≺-maximal left-divisor lying
in S. First, as S♯ generates C and g is non-invertible, the latter is left-divisible by
some non-invertible element of S♯, hence by some (non-invertible) element of S,
say g1. If g1 is not ≺-maximal among left-divisors of g lying in S, we can find g2

satisfying g1 ≺ g2 4 g. If g2 is not ≺-maximal, we find g3 satisfying g2 ≺ g3 4 g,
and so on. By Lemma 3.21, the construction cannot be repeated infinitely many
times, which means that some gN must be ≺-maximal among left-divisors of g lying
in S. Then, every non-invertible element of (S♯)2 admits a ≺-maximal left-divisor
in S. So S satisfies (3.12) hence, by Proposition 3.9, it is a Garside family in C. �

A further specialization leads to categories that admit least common right-
multiples.

Definition 3.24. Assume that C is a left-cancellative category. We say that h is
a least common right-multiple, or right-lcm, of f and g if h is a right-multiple of f
and g and every element h′ that is a right-multiple of f and g is a right-multiple
of h. A subfamily S of C is said to be closed under right-lcm in C if every right-lcm
of two elements of S lies in S.

In other words, a right-lcm is a least common upper bound with respect to
left-divisibility.

Proposition 3.25. Assume that C is a left-cancellative category that is right-
Noetherian and such that any two elements of C that admit a common right-multiple
admit a right-lcm. Then a subfamily S of C is a Garside family if and only if

(3.26) S♯ generates C and it is closed under right-lcm and right-divisor.

Proof. Assume that S is a Garside family in C. Then, by Proposition 3.9, S♯ is
closed under right-comultiple. Assume that f, g are elements of S♯ that admit a
common right-multiple. Then f and g admit a right-lcm, say h. As S♯ is closed
under right-comultiple, there exists h′ in S♯ satisfying f, g 4 h′ 4 h. By definition
of a right-lcm, h 4 h′ must hold, whence h′ =× h. So there exists an invertible
element e satisfying h = h′e, whence h ∈ S♯C× = S♯. This shows that S♯ is closed
under right-lcm.
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Conversely, assume that S satisfies (3.26) and we have f, g 4 h with f, g ∈ S♯.
As f, g admit a common right-multiple, they admit a right-lcm, say h′, and, by
assumption, h′ belongs to S♯. By definition of a right-lcm, h′ 4 h holds, so S♯ is
closed under right-comultiple. Then, by Proposition 3.22, S is a Garside family
in S. �

Specializing even more, we consider the case of categories that are both right-
and left-Noetherian, the latter meaning that left-divisibility is well founded. In that
case, standard arguments show that every non-invertible element is a product of
atoms, defined to be those non-invertible elements that cannot be expressed as the
product of at least two non-invertible elements. Then, if C is a Noetherian category
containing no nontrivial invertible element, a subfamily S of C generates C if and
only if S contains all atoms of C. Then Proposition 3.25 directly implies

Proposition 3.27. Assume that C is a left-cancellative category that is Noetherian,
such that any two elements that admit a common right-multiple admit a right-lcm,
and contains no nontrivial invertible element. Then a subfamily S of C is a Garside
family if and only if

(3.28) S contains the atoms of C and it is closed under right-lcm and right-
divisor.

Corollary 3.29. Under the assumptions of Proposition 3.27, there exists a smallest
Garside family in C.

Proof. Under the considered assumptions, an intersection of Garside families is a
Garside family since under these assumptions a Garside family is defined by closure
properties plus the fact that it contains all atoms. In particular, the intersection of
all Garside families of C is a smallest Garside family in C. �

3.4. Recognizing Garside families III: head functions. We return to the
general case, and establish further characterizations of Garside families, this time
in terms of what is called a head function.

Definition 3.30. Assume that C is a left-cancellative category. A partial map H
of C to itself is said to obey the H-law if

(3.31) H(fg) =× H(fH(g))

holds whenever both terms are defined. If (3.31) holds with equality instead of =×,
we say that H obeys the sharp H-law.

In the same context, in addition to the H-law, we shall also consider the following
conditions, supposed to hold for all f, g in the domain of the considered map H :

(3.32) (i) H(g) 4 g, (ii) f 4 g ⇒ H(f) 4 H(g), (iii) g ∈ S♯ ⇒ H(g) =× g.

Proposition 3.33. A subfamily S of a left-cancellative category C is a Garside
family if and only if it satisfies one of the following equivalent conditions:

S♯ generates C and there exists H : C \ C× → S satisfying the H-law
and (3.32);

(3.34)

S♯ generates C, C×S♯ ⊆ S♯ holds, and there exists H : SC → S
satisfying the sharp H-law and (3.32).

(3.35)
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Proof. Let us first observe that, if S♯ generates C and C×S♯ ⊆ S♯ holds, then C \ C×

is included in SC: indeed, in this case, if g is non-invertible, it must be left-divisible
by an element of the form eh with e ∈ C× and h ∈ S \ C×, hence by an element
of S \ C× owing to C×S♯ ⊆ S♯. Hence (3.35) implies (3.34).

Assume that S is a Garside family in C. For g in SC, define H(g) to be an
S-head of g, which exists by Lemma 3.16. Then, by definition, H(g) 4 g always
holds. Next, if f 4 g holds, H(f) is an element of S that left-divides f , hence g, so
H(f) 4 H(g) must hold. Then, if g belongs to S♯ ∩SC, we have g =× g′ for some g′

in S, and we deduce g′ 4 H(g) 4 g, whence H(g) =× g. So H satisfies (3.32).
Finally, assume that fg exists and g lies in SC. If g is non-invertible, then H(g)
is non-invertible as well since ‖g‖S > 1 holds, meaning that g is left-divisible by
at least one non-invertible element of S, so both H(fg) and H(fH(g)) are defined
in this case. On the other hand, if g is invertible, then H(g) =× g holds, and
fg belongs to SC if and only if fH(g) does. In all cases, by (3.32)(i), we have
H(g) 4 g, whence fH(g) 4 fg, and, by (3.32)(ii), H(fH(g)) 4 H(fg). On the
other hand, write g = H(g)g′. By Lemma 3.13, the path H(g)|g′ is S-greedy. Then
the relation H(fg) 4 fg, which holds by (3.32)(i), implies H(fg) 4 fH(g), whence
H(fg) 4 H(fH(g)) since H(fg) lies in S. So we deduce H(fg) =× H(fH(g)), and
H satisfies the H-law.

Next, let S0 be an =×-selector on S, that is, a subfamily of S that contains
exactly one element in each =×-class (which exists by the Axiom of Choice). For g
in SC, define H0(g) to be the unique element of the =×-class of H(g) that lies
in S0. By construction, H0(g) =× H(g) holds for every g in SC and, therefore, the
function H0 satisfies (3.32) and the H-law: for the latter, we have fH(g)=×fH0(g),
whence, by (3.32)(ii), H(fH(g)) =× H(fH0(g)), and, from there,

H0(fg) =× H(fg) =× H(fH(g)) =× H(fH0(g)) =× H0(fH0(g)).

Now, by construction, H0(fg) and H0(fH0(g)) belong to S0, so, being =×-equivalent,
they must be equal. Hence H0 obeys the sharp H-law, and (3.35) is satisfied. By
the initial remark, (3.34) is satisfied too.

Conversely, assume that S satisfies (3.34), with H : C \ C× → S witnessing the
expected conditions. We shall prove that S satisfies (3.10). The first step is to show
that, for each non-invertible g, the element H(g) is an S-head of g. So let g be a
non-invertible element of C. By assumption, H(g) belongs to S and left-divides g.
Assume h 4 g with h ∈ S. By (3.32)(ii) and (iii), we have h =× H(h) 4 H(g),
whence h 4 H(g). Hence H(g) is an S-head of g.

The second step is to show that S♯ is closed under right-divisor. So assume that
g belongs to S♯ and f right-divides g, say g = g′f . If f is invertible, it belongs
to S♯ by definition. Assume now that f , and therefore g, are not invertible. Then
we have g =× h for some h lying in S. By (3.32)(ii) and (iii), we have H(g)=× H(h),
whence H(h) =× h. We deduce H(g) =× g, that is, H(g′f) =× g′f . Then the H-law
implies H(g′f) =× H(g′H(f)), whereas (3.32)(i) gives H(g′H(f)) 4 g′H(f), so we
find

g′f =× H(g′f) =× H(g′H(f)) 4 g′H(f),

hence g′f 4 g′H(f), and f 4 H(f) by left-cancelling g′. As H(f) 4 f always holds
by (3.32)(i), we deduce f =× H(f). As, by definition, H(f) lies in S, it follows that
f lies in S♯. So S♯ is closed under right-divisor.
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It is now easy to conclude. By assumption, S♯ generates C, we saw above that
it is closed under right-divisor, and that every non-invertible element of C admits
an S-head. So S satisfies (3.10) and, by Proposition 3.9, it is a Garside family
in C. �

4. Germs

So far, we have established extrinsic characterizations of Garside families, namely
conditions that describe a Garside family in a given pre-existing category. We turn
now to intrinsic characterizations, that is, we do not start from a pre-existing
category but consider instead an abstract family S equipped with a partial product
and investigate necessary and sufficient conditions for such a structure, here called
a germ, to generate a category in which S embeds as a Garside family.

4.1. The notion of a germ. If S is a subfamily of a category C, then, for f, g
in S such that fg is defined, fg may belong or not to S. Restricting to the case
when the product belongs to S gives a partial map from S [2] to S. The resulting
structure will be called a germ, and we shall be interested in the case when the
whole category can be retrieved from the germ.

In the above situation, we shall denote by • S , or simply • , the partial operation
on S induced by the product of the ambient category. It is easy to see that a partial
operation of this type must obey some constraints.

Lemma 4.1. Assume that S is a subfamily of a category C that contains all identity-
elements of C. The partial operation • of S [2] to S induced by the product of C obeys
the following rules:

If f • g is defined, the source (resp. target) of f • g is the source of f
(resp. the target of g);

(4.2)

1x • f = f = f • 1y hold for each f in S(x, y),(4.3)

If f • g and g •h are defined, then (f • g) •h is defined if and only if
f • (g •h) is, in which case they are equal.

(4.4)

Moreover, if S is closed under right-divisor in C, then • satisfies

(4.5) If (f • g) •h is defined, then so is g •h.

Proof. Points (4.2) and (4.3) follow from the fact that • is induced by the product
of C. Next, (4.4) follows from associativity in C: saying that (f • g) •h exists means
that (fg)h belongs to S, hence so does f(gh). As, by assumption, g •h exists, this
amounts to f • (g •h) being defined.

For (4.5), the hypotheses imply that (fg)h, hence f(gh), belongs to S. As S
is closed under right-divisor, this implies that gh belongs to S, hence that g •h is
defined. �

We shall therefore start from abstract families that obey the rules of Lemma 4.1.
We recall from Definition 1.7 that S [r] denotes the family of all length r paths in S.

Definition 4.6. A germ is a triple (S,1S , • ) where S is a precategory, 1S is a
subfamily of S containing an element 1x with source and target x for each object x,
and • is a partial map from S [2] to S that satisfies (4.2), (4.3), and (4.4). If,
moreover, (4.5) holds, the germ is said to be left-associative. If (S,1S , • ) is a germ,
we denote by Cat(S,1S , • ) the category 〈S |R • 〉

+, where R • is the family of all
relations f |g = f • g with f, g in S and f • g defined.
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In practice, we shall use the generic notation S for a germ with domain S. In
the sequel, an equality of the form g = g1 • g2 always means “g1 • g2 is defined and
g equals it”.

For every subfamily S of a category C, there exists an induced germ S, and the
corresponding relations R • are valid in C by construction. Hence C is a quotient
of Cat(S). In most cases, even if S generates C, the partial product • does not
determine the product of C, and C is a proper quotient of Cat(S). For instance, if C
contains no nontrivial invertible element and is generated by a family of atoms A,
the induced partial product on A consists of the trivial instances listed in (4.3) only,
and the resulting category is a free category based on A. We shall now see that
this cannot happen when S is a Garside family: in this case, the induced structure
S contains enough information to retrieve the initial category C. Here one has to
be careful: if S is a general Garside family in C, then C is generated by S♯, hence
by S ∪ C×, but not necessarily by S itself. To avoid problems, we shall restrict to
particular Garside families.

Definition 4.7. A subfamily S of a category C is called full if S contains all
identity-elements of C and it is closed under right-divisor in C.

It follows from Lemma 3.14 that, for every Garside family S, the family S♯ is a
full Garside family, which we know gives rise to the same greedy and normal paths.
So considering full Garside families is not a proper restriction. (On the other hand,
for S to be full is weaker than satisfying S = S♯: one can exhibit a full Garside
family S such that S is properly included in S♯.) The precise result we shall prove
is then

Proposition 4.8. Assume that S is a full Garside family in a left-cancellative
category C, and let S be the induced germ. Then Cat(S) is isomorphic to C.

By definition, the category Cat(S) is specified by a presentation. In order to
establish Proposition 4.8, we shall show that every (full) Garside family provides a
presentation of its ambient category.

Lemma 4.9. Assume S is a generating subfamily of a left-cancellative category C
that is full and closed under right-comultiple. Then C admits the presentation 〈S |R〉+

where R consists of all relations f |g = h with f, g, h in S that are valid in C.

Proof. First, by assumption, S generates C. Next, by definition, all relations of R
are valid in C. So the point is to show that every equality involving elements of S
that is valid in C is a consequence of finitely many relations of R.

So assume that f1 | ··· |fp and g1 | ··· |gq are two S-paths with the same evalua-
tion in C, that is, f1 ···fp = g1 ···gq holds in C. Then we inductively construct a
rectangular grid as displayed in Figure 5.

Put h′
i,0 = fi+1 ···fp for 0 6 j 6 p, and h′

0,j = gj+1 ···gq for 0 6 j 6 q.
First, we have f1h

′
1,0 = g1h

′
0,1 = h′

0,0 with f1, g1 in S. The assumption that S
is closed under right-comultiple implies the existence of h1,1 in S and f1,1, g1,1, h

′
1,1

satisfying f1g1,1 = g1f1,1 = h1,1, h′
0,1 = f1,1h

′
1,1, and h′

1,0 = g1,1h
′
1,1. Moreover, the

assumption that S is closed under right-divisor implies that f1,1 and g1,1, which
right-divide h1,1, belong to S.

Now we repeat the same argument with h′
0,1, ... , h

′
0,q−1, then h′

1,0, ... , h
′
1,q−1, and

so on until h′
p−1,q−1: starting from the vertex (i−1, j−1), by induction hypothesis,

we have fi,j−1h
′
i,j−1 = gi−1,jh

′
i−1,j = h′

i−1,j−1 with fi,j−1 and gi−1,j in S. As S is
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closed under right-comultiple and right-divisor, there exist fi,j , gi,j , hi,j in S and h′
i,j

in C satisfying fi,j−1gi,j = gi−1,jfi,j = hi,j , h′
i−1,j = fi,jh

′
i,j , and h′

i,j−1 = gi,jh
′
i,j .

At this point, we see that the equality f1 ···fp = g1 ···gq is the consequence of 2pq
relations of the form f |g = h with f, g, h in S, namely the relations fi,j−1 |gi,j = hi,j

and gi−1,j |fi,j = hi,j , plus the p + q relations fi,q |h
′
i,q = h′

i−1,q and gp,j |h
′
p,j =

h′
p,j−1. By construction, all elements h′

i,q and h′
p,j are invertible, and so are all

fi,q and gp,j . As S generates C, every element of C× is a finite product of elements
of S ∩ C× and, therefore, every relation of the form e1 |e2 = e holding in C follows
from finitely many relations of this form with e1, e2, e in S ∩ C×. This completes
the argument. �

g1 g2 gq

1-

f1
h1,1 f1,1

h1,2 f1,2 f1,q−1

h1,q f1,q

g1,1 g1,2 g1,q h′
1,q

gp−1,1 gp−1,2 gp−1,q h′
p−1,q

fp
hp,1 fp,1

hp,2 fp,2 fp,q−1

hp,q fp,q

gp,1 gp,2 gp,q h′
p,q

1-
h′

p,1 h′
p,2 h′

p,q−1

Figure 5. Factorization of the equality f1 ···fp = g1 ···gq in terms of
relations fg = h with f, g, h in S .

We can now complete the proof of Proposition 4.8.

Proof of Proposition 4.8. First, by Proposition 3.9, the family S♯ is closed under
right-comultiple. An easy direct verification shows that, in any case, a subfamily S
is closed under right-comultiple if and only if S♯ is. So, here, S is closed under
right-comultiple. By assumption, it is full, so, by Lemma 4.9, C is presented by
the relations f |g = h with f, g, h in S. This means that C admits the presen-
tation 〈S |R • 〉

+. So C is isomorphic to Cat(S), which, by definition, admits that
presentation. �

So, in the case of a full Garside family, the induced germ contains all information
needed to determine the ambient category, and it is therefore natural to investigate
the germs that occur in this way.

4.2. The embedding problem. From now on, we start from an abstract germ S,
and investigate the properties of the category Cat(S) and of (the image of) S
in Cat(S). The first question is whether S embeds in Cat(S). This need not be
the case in general, but we shall see that left-associativity is a sufficient condition.

Notation 4.10. For S a germ, we denote by ≡ the congruence on S∗ generated
by the relations of R • , and by ι the prefunctor of S to Cat(S) that is the identity
on Obj(S) and maps g to the ≡-class of (g).
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So, by definition, ≡ is the equivalence relation on S∗ generated by all pairs

(4.11) (g1 | ··· |gi |gi+1 | ··· |gq , g1 | ··· |gi • gi+1 | ··· |gq),

that is, the pairs in which two adjacent entries are replaced with their • -product,
assuming that the latter exists. The category Cat(S) is then S∗/≡.

Proposition 4.12. If S is a left-associative germ, the map ι of Notation 4.10 is
injective and the product of Cat(S) extends the image of • under ι. Moreover, ιS
is closed under right-divisor in Cat(S).

Proof. We inductively define a partial map Π from S∗ to S by

(4.13) Π(εx) = 1x and Π(g |w) = g •Π(w) if g lies in S and g •Π(w) is defined.

We claim that Π induces a well defined partial map from Cat(S) to S, more pre-
cisely that, if w, w′ are ≡-equivalent elements of S∗, then Π(w) exists if and
only if Π(w′) does, and in this case they are equal. To prove this, we may as-
sume that Π(w) or Π(w′) is defined and that (w, w′) is of the type (4.11). Let
g = Π(gi+2 | ··· |gp). The assumption that Π(w) or Π(w′) is defined implies that g
is defined. Then (4.13) gives Π(w) = Π(g1 | ··· |gi−1 |h) whenever Π(w) is defined,
and Π(w′) = Π(g1 | ··· |gi−1 |h

′) whenever Π(w′) is defined, with h = Π(gi |gi+1 |g)
and h′ = Π(gi • gi+1 |g), that is,

h = gi • (gi+1 • g) and h′ = (gi • gi+1) • g.

So the point is to prove that h is defined if and only if h′ is, in which case they are
equal. Now, if h is defined, the assumption that gi • gi+1 is defined plus (4.4) imply
that h′ exists and equals h. Conversely, if h′ is defined, (4.5) implies that gi+1 • g
is defined, and then (4.4) implies that h exists and equals h′.

Assume now that g, g′ lie in S and ιg = ιg′ holds, that is, the length one paths
g and g′ are ≡-equivalent. The above claim gives g = Π(g) = Π(g′) = g′, so ι is
injective.

Next, assume that f, g belong to S and f • g is defined. We have f |g ≡ f • g,
which means that the product of ιf and ιg in Cat(S) is ι(f • g).

Finally, assume that g belongs to S and ιg′ is a right-divisor of ιg in Cat(S). This
means that there exist elements f1, ... , fp, g1, ... , gq of S such that ιg is the ≡-class
of f1 | ··· |fp |g1 | ··· |gq and ιg′ is the ≡-class of g1 | ··· |gq. By the claim above, the first
relation implies that Π(f1 | ··· |fp |g1 | ··· |gq) exists (and equals g). By construction,
this implies that Π(g1 | ··· |gq) exists as well, hence that g′ belongs to S. So ιS is
closed under right-divisor in Cat(S). �

In the context of Proposition 4.12, we shall from now on identify S with its
image in the category Cat(S), that is, drop the canonical injection ι. Before going
on, we establish a few consequences of the existence of the above function Π. If
S is a germ, an element e of S is naturally called invertible if there exists e′ in S
satisfying e • e′ = 1x and e′ • e = 1y, with x the source of e and y its target. We
denote by S× the family of all invertible elements of S. Also we introduce a local
version of left-divisibility (a symmetric notion of local right-divisibility will also be
considered below).

Definition 4.14. (i) Assume that S is a germ. For f, g in S, we say that f 4
S

g
(resp. f =×

S
g) holds if g = f • g′ holds for some g′ in S (resp. in S×).

(ii) A germ S is called left-cancellative if there exist no triple f, g, g′ in S satis-
fying g 6= g′ and f • g = f • g′.
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Lemma 4.15. Assume that S is a left-associative germ.
(i) For f, g in S, the relation f 4 g holds in Cat(S) if and only if f 4

S
g holds.

(ii) The relation 4
S

is transitive. If h • f and h • g are defined, then f 4
S

g
implies h • f 4

S
h • g, and f =×

S
g implies h • f =×

S
h • g.

(iii) If, in addition, S is left-cancellative, then f =×

S
g is equivalent to the con-

junction of f 4
S

g and g 4
S

f and, if h • f and h • g are defined, then f 4
S

g is
equivalent to h • f 4

S
h • g, and f =×

S
g is equivalent to h • f =×

S
h • g.

Proof. (i) Assume f, g ∈ S and g = fg′ in Cat(S). As g lies in S and S is closed
under right-divisor in Cat(S), the element g′ lies in S. So we have g ≡ f |g′, whence,
applying the function Π of (4.13), g = Π(g) = Π(f |g′) = f • g′. Therefore f 4

S
g

is satisfied. The converse implication is straightforward.
(ii) As the relation 4 in Cat(S) is transitive, (i) implies that 4

S
is transitive as

well. Next, assume that h • f and h • g are defined, and g = f • g′ holds. By (4.4),
we deduce h • g = h • (f • g′) = (h • f) • g′, whence h • f 4

S
h • g. Considering the

special case when g′ belongs to S×, we deduce that f =×

S
g implies h • f =×

S
h • g.

(iii) Assume f = g • e and g = f • e′. We deduce f = (f • e′) • e, whence
f = f • (e′ • e) by left-associativity. By left-cancellativity, we deduce e′ • e = 1y,
where y is the target of f . So e and e′ are invertible, and f =×

S
g holds.

Assume now that h • f and h • g are defined and h • f 4
S

h • g holds. So we have
h • g = (h • f) • g′ for some g′. By left-associativity, f • g′ must be defined and we
obtain h • g = h • (f • g′), whence g = f • g′ by left-cancellativity, and f 4

S
g.

Finally, f =×

S
g implies h • f =×

S
h • g by (ii). Conversely, h • f =×

S
h • g implies

both h • f 4
S

h • g and h • g 4
S

h • f , hence f 4
S

g and g 4
S

f by the result above,
whence in turn f =×

S
g. �

4.3. Garside germs. Our goal will be to characterize those germs that give rise
to Garside families. To state the results easily, we introduce a terminology.

Definition 4.16. A germ S is said to be a Garside germ if there exists a left-
cancellative category C such that S is a full Garside family of C.

By Proposition 4.8, if S is a full Garside family in some left-cancellative cate-
gory C, the latter must isomorphic to Cat(S). So, a germ S is a Garside germ if
and only if the category Cat(S) is left-cancellative and S is a full Garside family
in Cat(S). In other words, in Definition 4.16, we can assume that the category C
is Cat(S).

We shall now state and begin to establish (the argument will be completed in
Section 5 only) simple conditions that characterize Garside germs.

Definition 4.17. Assume that S is a germ. For g1 |g2 in S [2], we put

IS(g1, g2) = {h ∈ S | ∃g ∈ S (h = g1 • g and g 4
S

g2)},(4.18)

JS(g1, g2) = {g ∈ S | g1 • g is defined and g 4
S

g2}.(4.19)

A map from S [2] to S is called an I-function (resp. a J -function) for S if, for
every g1 |g2 in S [2], the value at (g1, g2) lies in IS(g1, g2) (resp. in JS(g1, g2)).

We recall that, in (4.18), writing h = g1 • g implies that g1 • g is defined. An
element of JS(g1, g2) is a fragment of g2 that can be added to g1 legally, that is,
without going out of S. Note that g1 always belongs to IS(g1, g2) and that, if y is
the target of g1, then 1y always belongs to JS(g1, g2). So, in particular, IS(g1, g2)
and JS(g1, g2) are never empty.
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The connection between IS(g1, g2) and JS(g1, g2) is clear: with obvious notation,
we have IS(g1, g2) = g1 •JS(g1, g2). However, it turns out that, depending on the
situation, using I or J is more convenient, and it is useful to introduce both notions.
Note that, if h belongs to IS(g1, g2) and S embeds in Cat(S), then, in Cat(S), we
have h ∈ S and g1 4 h 4 g1g2. However, the latter relations need not imply
h ∈ IS(g1, g2) a priori since g1g 4 g1g2 is not known to imply g 4 g2 as long as
Cat(S) has not been proved to be left-cancellative.

We shall characterize Garside germs by the existence of I- or J -functions satis-
fying some algebraic laws reminiscent of the H-law of (3.31).

Definition 4.20. If S is a germ, a map F from S [2] to S is said to obey the I-law
if, for every g1 |g2 |g3 in S [3] such that g1 • g2 is defined, we have

(4.21) F (g1, F (g2, g3)) =× F (g1 • g2, g3).

The map F is said to obey the J -law if, under the same hypotheses, we have

(4.22) F (g1, g2 •F (g2, g3)) =× g2 •F (g1 • g2, g3).

If, in (4.21) or (4.22), = replaces =×, we speak of the sharp I- or J -law.

The result we shall prove below is as follows.

Proposition 4.23. A germ S is a Garside germ if and only if it satisfies any one
of the following equivalent conditions:

S is left-associative, left-cancellative, and it admits an I-function that
satisfies the sharp I-law;(4.24)

S is left-associative, left-cancellative, and it admits a J -function that
satisfies the sharp J -law.(4.25)

Note that all conditions in Proposition 4.23 are local in that they only involve
the elements of S and computations taking place inside S. In particular, if S is
finite, the conditions are effectively checkable in finite time.

In this section, we prove only that the conditions are necessary. The converse is
deferred to Section 5 below.

Lemma 4.26. Assume that S is a germ that is left-associative and left-cancellative
and I, J : S [2] → S are connected by I(g1, g2) = g1 • J(g1, g2) for all g1, g2.

(i) The map I is an I-function for S if and only if J is a J -function for S.
(ii) In the situation of (i), the map I obeys the I-law (resp. the sharp I-law) if

and only if J obeys the J -law (resp. the sharp J -law).

Proof. (i) First, the assumption that S is left-cancellative implies that, for every I,
there exists at most one associated J . Then the definitions of an I- and a J -
functions for S directly give the expected equivalence.

(ii) Assume that I is an I-function obeying the I-law. Assume that g1 |g2 |g3 lies
in S [3] and g1 • g2 is defined. By assumption, we have I(g1, I(g2, g3))=

×I(g1 • g2, g3),
which translates into

(4.27) g1 •J(g1, g2 • J(g2, g3)) =× (g1 • g2) • J(g1 • g2, g3).

Then the assumption that S is left-associative implies that g2 •J(g1 • g2, g3) is de-
fined and, therefore, (4.27) implies

(4.28) g1 •J(g1, g2 • J(g2, g3)) =× g1 • (g2 • J(g1 • g2, g3)).
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Finally, by Lemma 4.15, we may left-cancel g1 in (4.28), and what remains is the
expected instance of the J -law. So J obeys the J -law.

The argument in the case when I obeys the sharp I-law is similar: now (4.27)
and (4.28) are equalities, and, applying the assumption that S is left-cancellative,
we directly deduce the expected instance of the sharp J -law. So J obeys the sharp
J -law.

Conversely, assume that J is a J -function for S that satisfies the J -law. As-
sume that g1 |g2 |g3 lies in S [3] and g1 • g2 is defined. By the J -law, we have
J(g1, g2 • J(g2, g3)) =× g2 • J(g1 • g2, g3). By definition of a J -function, the expres-
sion g1 • J(g1, g2 • J(g2, g3)) is defined, hence so is g1 • (g2 • J(g1 • g2, g3)), and we
obtain (4.28). Applying (4.4), which is legal as g1 • g2 is defined, we deduce (4.27),
whence I(g1, I(g2, g3)) =× I(g1 • g2, g3), the expected instance of the I-law. So I
obeys the I-law.

Finally, if J obeys the sharp J -law, the argument is similar: (4.27) and (4.28)
are equalities, and one obtains the expected instance of the sharp I-law. So I obeys
the sharp I-law in this case. �

The (sharp) I- and J -laws are closely connected with the H-law, which implies
that the conditions of Proposition 4.23 are necessary.

Lemma 4.29. Every Garside germ satisfies (4.24) and (4.25).

Proof. Assume that S is a Garside germ. Let C = Cat(S). By definition, S embeds
in C, so, by Proposition 4.12, S must be left-associative. Next, by definition again,
C is left-cancellative and, therefore, S must be left-cancellative as, if f, g, g′ lie in S
and satisfy f • g = f • g′, then fg = fg′ holds in C, implying g = g′.

Next, as S is a Garside family in C, it satisfies (3.35), so there exists H defined
on SC, hence in particular on S2, satisfying the sharp H-law. Then we define
I : S [2] → S by I(g1, g2) = H(g1g2).

First we claim that I is an I-function for S. Indeed, assume g1 |g2 ∈ S [2]. By
definition, we have g1 =× H(g1) 4 H(g1g2) 4 g1g2 in C, hence H(g1g2) = g1g for
some g satisfying g 4 g2. As g right-divides H(g1g2), which lies in S, and, by
Proposition 4.12, S is closed under right-divisor, g must lie in S. By Lemma 4.15,
it follows that H(g1g2) lies in IS(g1, g2).

Next, assume that g1 |g2 |g3 lies in S [3] and g = g1 • g2 holds. Then the sharp
H-law gives H(g1H(g2g3)) = H(g1(g2g3)) = H(gg3). This directly translates into
I(g1, I(g2, g3)) = I(g1 • g2, g3), the expected instance of the sharp I-law. So (4.24)
is satisfied.

Finally, by Lemma 4.26, (4.25) is satisfied as well. �

5. Recognizing Garside germs

We shall now establish two intrinsic characterizations of Garside germs, begin-
ning with the one already stated in Proposition 4.23.

5.1. Using the J -law. The principle for establishing that the conditions of Propo-
sition 4.23 imply that S is a Garside germ is obvious, namely using the given I-
or J -function to construct a head function on S2 and then using Proposition 3.33.
However, the argument is more delicate, because we do not know a priori that
the category Cat(S) is left-cancellative and, therefore, eligible for Proposition 3.33.
So what we shall do is simultaneously constructing the head function and proving
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left-cancellativity. The main point for that is to be able to control not only the
head H(g) of an element g, but also its tail, defined to be the element g′ satisfying
g = H(g)g′. To perform the construction, using a J -function is more convenient
than using an I-function. Here is the key technical result.

Lemma 5.1. Assume that S is a left-associative, left-cancellative germ and J is a
J -function for S that satisfies the sharp J -law. Define functions

K : S [2] → S, H : S∗ → S, T : S∗ → S∗

by g2 = J(g1, g2) •K(g1, g2), H(εx) = 1x, T (εx) = εx and, for g in S and w in S∗,

(5.2) H(g |w) = g • J(g, H(w)) and T (g |w) = K(g, H(w))|T (w).

Then, for each w in S∗, we have

(5.3) w ≡ H(w)|T (w),

and w ≡ w′ implies H(w) = H(w′) and T (w) ≡ T (w′).

Proof. First, the definition of K makes sense and is unambiguous. Indeed, by
definition, J(g1, g2) 4

S
g2 holds, so there exists g in S satisfying g2 = J(g1, g2) • g.

Moreover, as S
is left-cancellative, the element g is unique.
As for proving (5.3), we use induction on the length of w. For w = εx, we have

εx ≡ 1x |εx. Otherwise, for g in S and w in S∗, we find

g |w ≡ g |H(w)|T (w) by induction hypothesis,

≡ g |J(g, H(w)) • K(g, H(w))|T (w) by definition of K,

≡ g |J(g, H(w))|K(g, H(w))|T (w) by definition of ≡,

≡ g • J(g, H(w))|K(g, H(w))|T (w) as J(g, H(w)) lies in JS(g, H(w)),

= H(g |w)|T (g |w) by definition of H and T .

As for the compatibility of H and T with respect to ≡, owing to the inductive
definitions of ≡, H and T , it is sufficient to establish the relations

(5.4) H(g |w) = H(g1 |g2 |w) and T (g |w) ≡ T (g1 |g2 |w)

for g1 • g2 = g and w in S∗ such that g |w is a path (see Figure 6). Now, applying
the sharp form of (4.22) with g3 = H(w) and then using the definition of H(g2 |w),
we obtain

(5.5) g2 • J(g, H(w)) = J(g1, H(g2 |w)).

Then the first relation of (5.4) is satisfied since we can write

H(g |w) = (g1 • g2) • J(g, H(w)) by definition of H ,

= g1 • (g2 • J(g, H(w))) by left-associativity,

= g1 •J(g1, H(g2 |w)) = H(g1 |g2 |w) by (5.5) and the definition of H.

We turn to the second relation in (5.4). Applying the definition of H, we first find

g2 • J(g2, H(w)) = H(g2 |w)

= J(g1, H(g2 |w)) • K(g1, H(g2 |w)) by definition of K,

= (g2 • J(g, H(w))) • K(g1, H(g2 |w)) by (5.5),

= g2 • (J(g, H(w)) • K(g1, H(g2 |w))) by left-associativity,
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whence, as S is a left-cancellative germ,

(5.6) J(g2, H(w)) = J(g, H(w)) • K(g1, H(g2 |w)).

We deduce

J(g, H(w)) •K(g, H(w)) = H(w) by definition of K,

= J(g2, H(w)) • K(g2, H(w)) by definition of K,

= (J(g, H(w)) • K(g1, H(g2 |w))) • K(g2, H(w)) by (5.6),

= J(g, H(w)) • (K(g1, H(g2 |w)) • K(g2, H(w))) by left-associativity.

As S is a left-cancellative germ, we may left-cancel J(g, H(w)), and we obtain

K(g, H(w)) = K(g1, H(g2 |w)) • K(g2, H(w)),

whence K(g, H(w))|T (w) ≡ K(g1, H(g2 |w))|K(g2, H(w))|T (w). Owing to the
definition of T , this is exactly the second relation in (5.4). �

J(g,H
(w))

H(g |w)

K(g, H(w))

H(w)

g

K(g1, H(g2|w)) K(g2, H(w))

g1 g2

J(g1
,H

(g2|w
))

J(g2
,H

(w
))H(g1|g2|w) H(g2|w) H(w)

Figure 6. Proof of Lemma 5.1: attention! as long as the ambient cat-
egory is not proved to be left-cancellative, the above diagrams should be
taken with care.

We can now complete the argument easily.

Proof of Proposition 4.23. Owing to Lemmas 4.29 and 4.26, it suffices to prove now
that (4.25) implies that S is a Garside germ.

So assume that S is a germ that is left-associative and left-cancellative, and J
is a J -function on S that satisfies the sharp J -law. Let C = Cat(S). As S is
left-associative, Proposition 4.12 implies that S embeds in C and is a full family
in C.

Now we appeal to the functions K, H , and T of Lemma 5.1. First, for each w
in S∗ and each g in S such that the target of g is the source of w, we have

(5.7) w ≡ J(g, H(w))|T (g |w) :

indeed, we have g •J(g, H(w)) = H(g |w) and

w ≡ H(w)|T (w) by (5.3),

= J(g, H(w)) • K(g, H(w))|T (w) by definition of K,

≡ J(g, H(w))|K(g, H(w))|T (w) by definition of ≡,

= J(g, H(w))|T (g |w). by definition of T (g |w).

Assume now g |w ≡ g |w′. First, Lemma 5.1 implies H(g |w) = H(g |w′), that
is, g •J(g, H(w)) = g • J(g, H(w′)) owing to the definition of H . As S is a left-
cancellative germ, we may left-cancel g and we deduce J(g, H(w)) = J(g, H(w′)).
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Then, applying (5.7) twice and Lemma 5.1 again, we find

w ≡ J(g, H(w))|T (g |w) ≡ J(g, H(w′))|T (g |w′) ≡ w′,

which implies that C is left-cancellative.
Next, Lemma 5.1 shows that the function H induces a well defined function of C

to S, say H . Then (5.3) implies that H(g) 4 g holds for every g in C. On the
other hand, assume that h belongs to S, and that h 4 g holds in C. This means
that there exists w in S∗ such that h |w represents g. By construction, we have
H(h |w) = h • J(h, H(w)), which implies h 4 H(g) in C. So H(g) is an S-head of g
and, therefore, every element of C admits an S-head.

Finally, by Proposition 4.12, S is closed under right-divisor in C, which implies
that S♯ is also closed under right-divisor: indeed, a right-divisor of an element
of C× must lie in C×, and, if f right-divides ge with g ∈ S and e ∈ C×, then fe−1

right-divides g, hence it belongs to S, and therefore f belongs to SC×, hence to S♯.
Therefore, S satisfies (3.10) in C hence, by Proposition 3.9, it is a Garside family
in C, which, we recall, is Cat(S). Hence S is a Garside germ. �

5.2. Maximum I-functions. Continuing the investigation of Garside germs, we
establish alternative characterizations of the latter involving maximality conditions.
A point of interest is that such characterizations are automatically satisfied in
convenient Noetherian contexts, leading to simplified versions of the criteria similar
to the results of Subsection 3.3.

In Proposition 4.23, we characterized Garside germs by the existence of an I-
or a J -function that satisfies the (sharp) I-law or J -law. We now consider I- or
J -functions that satisfy maximality conditions.

Definition 5.8. An I-function (resp. a J -function) F is called maximum if, for
all g1, g2, every element h of IS(g1, g2) (resp. of JS(g1, g2)) satisfies h 4

S
F (g1, g2).

Proposition 5.9. A germ S is a Garside germ if and only if it satisfies any one
of the following equivalent conditions:

S is left-associative, left-cancellative, and, for every g1 |g2 in S [2], the
family IS(g1, g2) admits a 4

S
-greatest element;

(5.10)

S is left-associative, left-cancellative, and admits a maximum I-
function;(5.11)

S is left-associative, left-cancellative, and for every g1 |g2 in S [2], the
family JS(g1, g2) admits a 4

S
-greatest element.

(5.12)

S is left-associative, left-cancellative, and admits a maximum J -
function.(5.13)

The next lemma establishes the equivalence of the conditions involving maximum
functions and greatest elements and proves that the conditions of Proposition 5.9
are satisfied in every Garside germ (this is easy).

Lemma 5.14. (i) For every germ, (5.10) is equivalent to (5.11), and (5.12) is
equivalent to (5.13).

(ii) Every Garside germ satisfies (5.10)–(5.13).

Proof. (i) By definition, an I-function F on S [2] is maximum if and only if, for
every g1 |g2 in S [2], the value F (g1, g2) is a 4

S
-greatest element in IS(g1, g2). So

(5.11) directly implies (5.10). Conversely, if (5.10) is satisfied, we obtain a max-
imum I-function by picking, possibly using the Axiom of Choice, a 4

S
-greatest
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element in IS(g1, g2) for each g1 |g2. So (5.10) implies (5.11). The argument is
similar for (5.12) and (5.13) mutatis mutandis.

(ii) Assume that S is a Garside germ. By Lemma 4.29, S is left-associative and
left-cancellative. For every g in Cat(S), let H(g) be an S-head of g: by Proposi-
tion 3.9, such a head always exists as S is full in Cat(S) and includes 1S . Now define
I, J : S [2] → S by I(g1, g2) = g1 • J(g1, g2) = H(g1g2). Then, as in the proof of
Lemma 4.29, I is a I-function and J is a J -function for S.

Moreover, assume that g1 |g2 lies in S [2] and we have h = g1 • g with g 4 g2.
Then we have h ∈ S and h 4 g1g2, whence h 4 H(g1g2), that is, h 4 I(g1, g2),
since H(g1g2) is an S-head of g1g2. Hence I is a maximum I-function for S. The
argument is similar for J . �

We shall prove the converse implications by using Proposition 4.23. The main
observation is that a maximum J -function necessarily satisfies the J -law.

Lemma 5.15. Assume that S is a germ that is left-associative and left-cancellative,
and J is a maximum J -function for S. Then J satisfies the J -law.

Proof. Assume g1 |g2 |g3 ∈ S [3] and g1 • g2 is defined. Set h = J(g1, g2 • J(g2, g3))
and h′ = g2 • f ′ with f ′ = J(g1 • g2, g3). Our aim is to prove h =× h′.

First, g1 • g2 is defined and g2 4
S

g2 • J(g2, g3) is true, so, by maximality of
J(g1, g2 • J(g2, g3)), we must have g2 4

S
J(g1, g2 • J(g2, g3)), that is, g2 4

S
h. Write

h = g2 • f . By assumption, h belongs to JS(g1, g2 • J(g2, g3)), hence we have h 4
S

g2 • J(g2, g3), that is g2 • f 4
S

g2 • J(g2, g3), which implies f 4
S

J(g2, g3) as S
is left-cancellative, whence in turn f 4

S
g3 since J(g2, g3) belongs to JS(g2, g3).

Now, by assumption, g1 •h, that is, g1 • (g2 • f), is defined, and so is g1 • g2 by
assumption. Hence (g1 • g2) • f is defined as well, and f 4

S
g3 holds. By maximality

of J(g1 • g2, g3), we deduce f 4
S

f ′, whence h 4
S

g2 • f ′ = h′.
For the other direction, the definition of f ′ implies that (g1 • g2) • f ′ is defined

and f ′ 4
S

g3 holds. By left-associativity, the first relation implies that g1 • (g2 • f ′),
that is, g1 •h′, is defined. On the other hand, g2 • f ′ is defined by assumption and
f ′ 4

S
g3 holds, so the maximality of J(g2, g3) implies h′ 4

S
g2 • J(g2, g3). Then

the maximality of J(g1, g2 • J(g2, g3)) implies h′ 4
S

J(g1, g2 • J(g2, g3)), that is,
h′ 4

S
h. So h =× h′ is satisfied, the desired instance of the J -law. �

Not surprisingly, we have a similar property for a maximum I-function with
respect to the I-law.

Lemma 5.16. Assume that S is a germ that is left-associative and left-cancellative,
and I is a maximum I-function for S. Then I satisfies the I-law.

Proof. One could mimic the argument used for Lemma 5.15, but the exposition is
less convenient, and we shall instead derive the result from Lemma 5.15.

So, assume that I is a maximum I-function for S and let J : S [2] → S be
defined by I(g1, g2) = g1 • J(g1, g2). By Lemma 4.26, J is a J -function for S.
Moreover, the assumption that I is maximum implies that J is maximum too.
Indeed, assume h ∈ JS(g1, g2). Then g1 •h is defined and belongs to IS(g1, g2),
hence g1 •h 4

S
I(g1, g2), that is, g1 •h 4

S
g1 • J(g1, g2), whence h 4

S
J(g1, g2) by

Lemma 4.15. Then, by Lemma 5.15, J satisfies the J -law. By Lemma 4.26 again,
this in turn implies that I satisfies the I-law. �

We shall now manage to go from a function obeying the I-law to one obeying
the sharp I-law, that is, force equality instead of =×

S
-equivalence.
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Lemma 5.17. Assume that S is a left-associative and left-cancellative germ, and
I is a maximum I-function for S. Then every function I ′ : S [2] → S satisfying
I ′(g1, g2) =×

S
I(g1, g2) for all g1, g2 is a maximum I-function for S.

Proof. Assume that I ′(g1, g2) =×

S
I(g1, g2) holds for all g1, g2. First I ′ must be an

I-function for S. Indeed, let g1 |g2 belong to S [2]. We have g1 4
S

I(g1, g2) 4
S

I ′(g1, g2), whence g1 4
S

I ′(g1, g2). Write I(g1, g2) = g1 • g and I ′(g1, g2) = g1 • g′.
By definition, we have g 4

S
g2, that is, g2 = g • f for some f , and, by assumption,

g′ = g • e for some invertible element e of S. We find

g2 = (g • (e • e−1)) • f = ((g • e) • e−1) • f = (g • e) • (e−1
• f),

whence g′ 4
S

g2: the second equality comes from (4.4), and the last one from the
assumption that S is left-associative. Hence I ′(g1, g2) belongs to IS(g1, g2).

Now assume h = g1 • g with g 4 g2. Then we have h 4
S

I(g1, g2) by assumption,
hence h 4

S
I ′(g1, g2) by transitivity of 4

S
. So I ′ is a maximum I-function for S. �

Lemma 5.18. Assume that S is a germ that is left-associative, left-cancellative,
and admits a maximum I-function. Then S admits a maximum I-function that

satisfies the sharp I-law.

Proof. Let I be a maximum I-function for S, and let S′ be an =×

S
-selector on S.

For g1 |g2 in S [2], define I ′(g1, g2) to be the unique element of S′ that is =×-
equivalent to I(g1, g2). Then, by construction, I ′ is a function from S [2] to S
satisfying I ′(g1, g2) =×

S
I(g1, g2) for every g1 |g2 in S [2], hence, by Lemma 5.17, I ′

is a maximum I-function for S. By Lemma 5.16, I ′ satisfies the I-law, that is, for
every g1 |g2 |g3 in S [3] such that g1 • g2 is defined, we have

I ′(g1, I
′(g2, g3)) =× I ′(g1 • g2, g3).

Now, by definition of a selector, two elements in the image of the function I ′ must
be equal whenever they are =×-equivalent. So I ′ satisfies the sharp I-law. �

We can now complete the proof of Proposition 5.9.

Proof of Proposition 5.9. Owing to Lemma 5.14, it remains to prove that each of
(5.11) and (5.13) implies that S is a Garside germ.

Assume that S is a germ that is left-associative, left-cancellative, and admits
a maximum I-function. Then, by Lemma 5.18, S admits an I-function I that
satisfies the sharp I-law. Therefore, by Proposition 4.23, S is a Garside germ. So
(5.11) implies that S is a Garside germ.

Finally, assume that S is a germ that is left-associative, left-cancellative, and
admits a maximum J -function J . As already seen in the proof of Lemma 5.16,
the function I defined on S [2] by I(g1, g2) = g1 • J(g1, g2) is a maximum I-function
for S. So (5.13) implies (5.11) and, therefore, it implies that S is a Garside germ. �

5.3. Noetherian germs. Noetherianity assumptions guarantee the existence of
maximum (or minimal) elements with respect to left- or right-divisibility. In the
context of germs, we shall use such assumptions to guarantee the existence of a
maximum J -function under weak assumptions.

Definition 5.19. A germ S is said to be left-Noetherian (resp. right-Noetherian)
if every nonempty subfamily of S has a least element with respect to the local
left-divisibility relation 4

S
(resp. the local right-divisibility relation). The germ is

called Noetherian if it is both left- and right-Noetherian.
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Adapting the proof of Lemma 3.21, one easily sees that a germ S that is left-
associative and left-cancellative is right-Noetherian if and only if, using f ≺

S
for

“f 4
S

g and f 6=×

S g”, there exists no infinite bounded ≺
S
-increasing sequence in S,

that is, there is no sequence f0, f1, ... satisfying f0 ≺
S

f1 ≺
S

... 4
S

g in S.
A subfamily X of a category C is said to admit common right-multiples if any two

elements of X that share the same source admit a common right-multiple lying in X .
The principle for deducing the existence of maximal elements from Noetherianity
is as follows.

Lemma 5.20. Assume that S is a left-cancellative germ that is right-Noetherian,
g belongs to S, and X is a nonempty subfamily of S such that f 4

S
g holds for

every f in X . Then
(i) The family X admits a ≺

S
-maximal element.

(ii) If X admits common right-multiples, X admits a 4
S
-greatest element.

Proof. (i) Let f be an arbitrary element of X . Starting from f0 = f , we construct
a ≺

S
-increasing sequence f0, f1, ... in X . As long as fi is not ≺

S
-maximal in X ,

we can find fi+1 in X satisfying fi ≺S
fi+1 4

S
g. The assumption that C is right-

Noetherian implies that the construction stops after a finite number d of steps.
Then by construction, the element fd is a ≺

S
-maximal element of X .

(ii) By (i), there exists f in X that is ≺
S
-maximal. Let h be an arbitrary element

of X . By assumption, there exists a common multiple f ′ of f and h that lies in X .
Now, by assumption, f is ≺

S
-maximal in X , so f ≺

S
f ′ is impossible, and the only

possibility is f ′ =×

S
f . But, then, h 4 f ′ implies h 4

S
f , that is, f is a right-multiple

of every element of X . �

We can now characterize right-Noetherian Garside germs.

Proposition 5.21. A right-Noetherian germ S is a Garside germ if and only if S is
left-associative, left-cancellative, and, for every g1 |g2 in S [2], the family JS(g1, g2)
admits common right-multiples.

Proof. Assume that S is a Garside germ. Then S is left-associative and left-
cancellative by Lemma 4.29. Next, by Proposition 5.9, S admits a maximum J -
function J . Then, for every g1 |g2 in S [2], the element J(g1, g2) is a right-multiple
of every element of JS(g1, g2), hence a common right-multiple of any two of them.
So JS(g1, g2) admits common right-multiples.

Conversely, assume that S is right-Noetherian and satisfies the conditions of
the statement. Let g1 |g2 belong to S [2]. By assumption, the family JS(g1, g2)
admits common right-multiples, and it is a subfamily of the right-Noetherian fam-
ily S. Hence, by Lemma 5.20, JS(g1, g2) admits a 4

S
-greatest element. Hence, by

Proposition 5.9, S is a Garside germ. �

Remark 5.22. In the situation of Proposition 5.21, the whole category Cat(S)
must be right-Noetherian. We shall not give the proof here.

When we go to the more special case of a germ that admits local right-lcms,
that is, in which any two elements that admit a common right-multiple (inside the
germ) admit a right-lcm (in the germ), we obtain a new sufficient condition for
recognizing a Garside germ.



32 PATRICK DEHORNOY, FRANÇOIS DIGNE, AND JEAN MICHEL

Proposition 5.23. A germ S that is left-associative, left-cancellative, right-Noeth-
erian, admits local right-lcms, and satisfies

(5.24)
for all g, h, h′, h′′ in S, if g •h and g •h′ are defined,

then g •h′′ is defined for every right-lcm h′′ of h and h′.

is a Garside germ.

Proof. Assume that g1 |g2 belongs to S [2], and that h and h′ lie in JS(g1, g2). By
assumption, we have h 4

S
g2 and h′ 4

S
g2. As S admits local right-lcms, there

must exist a right-lcm h′′ of h and h′ that satisfies h′′ 4
S

g2. If S satisfies (5.24), the
assumption that g1 •h and g1 •h′ are defined implies that g1 •h′′ is defined. But,
then, h′′ belongs to JS(g1, g2) and, therefore, JS(g1, g2) admits common right-
multiples. By Proposition 5.21, it follows that S is a Garside germ. �

It turns out that, when right-lcms always exist, the condition (5.24) occurring in
Proposition 5.23 follows from a slight strengthening of the left-associativity assump-
tion. We shall naturally say that a germ S is right-associative if the counterpart
of (4.5) is satisfied, that is, if f • g is defined whenever f • (g •h) is defined, and
that S is associative if it is both left- and right-associative.

Corollary 5.25. A germ that is associative, left-cancellative, right-Noetherian, and
admits right-lcms is a Garside germ.

Proof. Assume that S satisfies the hypotheses of the statement. We check that
(5.24) is satisfied. So assume that g •h and g •h′ are defined and h′′ is a right-lcm

of h and h′. Put f = g •h, f ′ = g •h′, and let f̂ be a right-lcm of f and f ′ (here
we use the assumption that S admits right-lcms, and not only local right-lcms).

First, we have g 4
S

f 4
S

f̂ , whence g 4
S

f̂ , so there exists ĥ satisfying f̂ = g • ĥ.

Then, by Lemma 4.15, f 4
S

f̂ implies h 4
S

ĥ and f ′ 4
S

f̂ implies h′ 4
S

ĥ. So ĥ is a
common right-multiple of h and h′, hence it is a right-multiple of their right-lcm h′′:

we have ĥ = h′′
• e for some e. By assumption, g • ĥ, which is g • (h′′

• e), is defined.
By right-associativity, this implies that g •h′′ is defined, so (5.24) is true. Then, S
is a Garside germ by Proposition 5.23. �

6. Germs derived from a groupoid

We conclude with an application of the previous constructions. Starting from a
group(oid) together with a distinguished generating family, we shall derive a germ,
possibly leading in turn to a new category and a new groupoid. The latter groupoid
is a sort of unfolded version of the initial one. The seminal example corresponds to
starting with a Coxeter group and arriving at the ordinary and dual braid monoid
of the associated Artin-Tits group.

6.1. Tight sequences. Our aim is to associate with every groupoid equipped with
a convenient family of generators a certain germ, so that this germ is a Garside
germ whenever the initial groupoid has convenient properties. In order to make
the construction nontrivial, we shall have to consider sequences of elements in the
initial groupoid that enjoy a certain length property called tightness.

Definition 6.1. Assume that G is a groupoid. We say that a subfamily Σ of G
positively generates G if every element of G admits an expression that is a Σ-path
(no letter in Σ−1). Then, for g in G\{1}, the Σ-length ‖g‖Σ is defined to be the
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minimal number ℓ such that g admits an expression by a Σ-path of length ℓ; we
complete with ‖1x‖Σ = 0 for each object x.

Note that, if Σ is any family of generators for a groupoid G, then Σ ∪ Σ−1

positively generates G. Whenever Σ positively generates a groupoid G, the Σ-
length satisfies the triangular inequality ‖fg‖Σ 6 ‖f‖Σ +‖g‖Σ and, more generally,
for every path (g1, ... , gr) in G

(6.2) ‖g1 ···gr‖Σ 6 ‖g1‖Σ + ··· + ‖gr‖Σ.

Definition 6.3. Assume that G is a groupoid and Σ positively generates G. A
G-path (g1, ... , gr) is called Σ-tight if ‖g1 ···gr‖Σ = ‖g1‖Σ + ··· + ‖gr‖Σ is satisfied.

Lemma 6.4. Assume that G is a groupoid and Σ positively generates G. Then
(g1, ... , gr) is Σ-tight if and only if (g1, ... , gr−1) and (g1 ···gr−1, gr) are Σ-tight, if
and only if (g2, ... , gr) and (g1, g2 ···gr) are Σ-tight.

Proof. To make reading easier, we consider the case of three entries. Assume that
(f, g, h) is Σ-tight. By (6.2), we have ‖fgh‖Σ 6 ‖fg‖Σ + ‖h‖Σ, whence ‖fg‖Σ >

‖fgh‖Σ − ‖h‖Σ = ‖f‖Σ + ‖g‖Σ. On the other hand, by (6.2), we have ‖fg‖Σ 6

‖f‖Σ + ‖g‖Σ. We deduce ‖fg‖Σ = ‖f‖Σ + ‖g‖Σ, and (f, g) is Σ-tight. Next we
have ‖(fg)h‖Σ = ‖f‖Σ + ‖g‖Σ + ‖h‖Σ, whence ‖(fg)h‖Σ = ‖fg‖Σ + ‖h‖Σ since, as
seen above, (f, g) is Σ-tight. Hence (fg, h) is Σ-tight.

Conversely, assume that (f, g) and (fg, h) are Σ-tight. Then we directly obtain
‖fgh‖Σ = ‖fg‖Σ + ‖h‖Σ = ‖f‖Σ + ‖g‖Σ + ‖h‖Σ, and (f, g, h) is Σ-tight.

The argument is similar when gathering final entries instead of initial ones. �

Considering the tightness condition naturally leads to introducing two partial
orderings on the underlying groupoid.

Definition 6.5. Assume that G is a groupoid and Σ positively generates G. For
f, g in G with the same source, we say that f is a Σ-prefix of g, written f 6Σ g,
if (f, f−1g) is Σ-tight. Symmetrically, we say that f is a Σ-suffix of g, if f, g have
the same target and (gf−1, f) is Σ-tight.

Lemma 6.6. Assume that G is a groupoid and Σ positively generates G. Then
being a Σ-prefix and being a Σ-suffix are partial orders on G and 1x 6Σ g holds for
every g with source x.

Proof. As ‖1y‖Σ is zero, every sequence (g, 1y) is Σ-tight for every g with target y,
so g 6Σ g always holds, and 6Σ is reflexive. Next, as the Σ-length has nonnegative
values, f 6Σ g always implies ‖f‖Σ 6 ‖g‖Σ. Now, assume f 6Σ g and g 6Σ f . By
the previous remark, we must have ‖f‖Σ = ‖g‖Σ, whence ‖f−1g‖Σ = 0. Hence,
f−1g is an identity-element, that is, f = g holds. So 6Σ is antisymmetric. Finally,
assume f 6Σ g 6Σ h. Then (f, f−1g) and (g, g−1h), which is (ff−1g, g−1h), are
Σ-tight. By Lemma 6.4, we deduce that (f, f−1g, g−1h) is Σ-tight, and then that
(f, (f−1g)(g−1h)), which is (f, f−1h) is Σ-tight. Hence f 6Σ h holds, and 6Σ is
transitive. So 6Σ is a partial order on G. Finally, as ‖1x‖Σ is zero, every path
(1x, g) with x the source of g is Σ-tight, and 1x 6Σ g holds.

The verifications for Σ-suffixes are entirely similar. �

By definition, (f, g) is Σ-tight if and only if f is a Σ-prefix of fg. For subsequent
use, we note the following weak compatibility condition of the partial order 6Σ

with the product.



34 PATRICK DEHORNOY, FRANÇOIS DIGNE, AND JEAN MICHEL

Lemma 6.7. Assume that G is a groupoid, Σ positively generates G, and f, g are
elements of G. If (f, g) is Σ-tight and g′ is a Σ-prefix of g, then f 6Σ fg′ 6Σ fg
holds.

Proof. Assume g′ 6Σ g. Then, by definition, (g′, g′−1g) is Σ-tight. On the other
hand, by assumption, (f, g), which is (f, g′(g′−1g)), is Σ-tight. By Lemma 6.4, it
follows that (f, g′, g′−1g) is Σ-tight. First we deduce that (f, g′) is Σ-tight, that is
f 6Σ fg′ holds. Next we deduce that (fg′, g′−1g) is Σ-tight as well. As g′−1g is
also (fg′)−1(fg), the latter relation is equivalent to fg′ 6Σ fg. �

6.2. Derived germ. Here is now the basic scheme for constructing a germ. If H
is a subfamily of a category, we denote by 1H the family of all identity-elements 1x
for x source or target of an element of H.

Definition 6.8. Assume that G is a groupoid and Σ positively generates G. For H
included in G, we denote by H/Σ the structure (H,1H, • ), where • is the partial
operation on H such that h = f • g holds if and only if

(6.9) h = fg holds and (f, g) is Σ-tight.

The structure H/Σ is called the germ derived from H and Σ.

So we consider the operation that is induced on H by the ambient product
of G, but with the additional restriction that the products that are not Σ-tight are
discarded. Speaking of germs here is legal, as we immediately see.

Lemma 6.10. Assume that G is a groupoid, Σ positively generates G, and H is a
subfamily of G that includes 1H. Then H/Σ is a cancellative germ that contains no
nontrivial invertible element.

Proof. The verifications are easy. First (4.2) is satisfied by definition of • , and
so is (4.3) since we assume that 1H is included in H. Next, assume that f, g, h
belongs to H and f • g, g •h and (f • g) •h are defined. This means that fg, gh,
and (fg)h belong to H and that the pairs (f, g), (g, h), and (fg, h) are Σ-tight in G.
By Lemma 6.4, (f, g, h), and then (f, gh), which is (f, g •h), are Σ-tight. As f(gh)
belongs to H, we deduce that f • gh, that is, f • (g •h), is defined, and it is equal
to f(gh). The argument is symmetric in the other direction and, therefore, (4.4) is
satisfied. So H/Σ is a germ.

Assume now that f, g, g′ belong to H and f • g = f • g′ holds. This implies fg =
fg′ in G, whence g = g′. So the germ H/Σ is left-cancellative, hence cancellative by
a symmetric argument.

Finally, assume e • e′ = 1x with e, e′ in H. Then we must have ‖e‖Σ + ‖e′‖Σ =
‖1x‖Σ = 0. The only possibility is ‖e‖Σ = ‖e′‖Σ = 0, whence e = e′ = 1x. �

We now consider Noetherianity conditions. Standard results assert that a germ S
is right-Noetherian if and only if there exists a function λ : S → Ord such that
λ(f) < λ(g) holds whenever f is a proper right-divisor of g in S. We also consider
left-Noetherianity, defined as the well-foundedness of the left-divisibility relation 4

S
,

and characterized by the existence of a function λ : S → Ord such that λ(f) < λ(g)
holds whenever f is a proper left-divisor of g in S.

Lemma 6.11. Assume that G is a groupoid, Σ positively generates G, and H is
a subfamily of G that includes 1H. Then the derived germ H/Σ is both left- and
right-Noetherian.
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Proof. Assume that f, g lie in H and we have g = f • g′ for some non-invertible g′

that lies in H. By definition of • , this implies ‖g‖Σ = ‖f‖Σ + ‖g′‖Σ, whence
‖f‖Σ < ‖g‖Σ as, by definition of the Σ-length, the non-invertibility of g′ implies
‖g′‖Σ > 1. So the Σ-length witnesses both for the left- and the right-Noetherianity
of (H, • ). �

Owing to the results of Sections 4 and 5, the only situation when a germ leads to
interesting results is when it is left-associative. These properties are not automatic
for a derived germ H/Σ , but they turn out to be connected with closure under Σ-
suffix and Σ-prefix, where we naturally say that H is closed under Σ-suffix (resp.
Σ-prefix) if every Σ-suffix (resp. Σ-prefix) of an element of H lies in H.

Lemma 6.12. Assume that G is a groupoid, Σ positively generates G, and H is a
subfamily of G that is closed under Σ-suffix (resp. Σ-prefix). Then the germ H/Σ is
left-associative (resp. right-associative) and an element f of H is a local left-divisor
(resp. right-divisor) of an element g in H/Σ if and only if f is a Σ-prefix (resp.
Σ-suffix) of g.

Proof. Assume that H is closed under Σ-suffix and f, g, h are elements of H such
that f • g and (f • g) •h are defined. Then fg and (fg)h lie in H and the pairs
(f, g) and (fg, h) are Σ-tight. By Lemma 6.4, (f, g, h), and then (f, gh) are Σ-
tight. Hence gh is a Σ-suffix of fgh in G and, therefore, by assumption, gh belongs
to H. By Lemma 6.4 again, the fact that (f, g, h) is Σ-tight implies that (g, h) is
Σ-tight, and we deduce gh = g •h. Thus the germ H/Σ is left-associative.

Assume now that f, g lie in H and f is a left-divisor of g in the germ H/Σ . This

means that f • g′ = g holds for some g′ lying in H. Necessarily g′ is f−1g, so
(f, f−1g) has to be Σ-tight, which means that f is a Σ-prefix of g. Conversely,
assume that f, g lie in H and f is a Σ-prefix of g. Then (f, f−1g) is Σ-tight, so
f−1g is a Σ-suffix of g. The assumption that H is closed under Σ-suffix implies
that f−1g lies in H, and, then, f • f−1g = g holds, whence f 4H/Σ

g.

The arguments for right-associativity and right-divisibility in H/Σ are entirely
symmetric, using now the assumption that H is closed under Σ-prefix. �

We now wonder whether H/Σ is a Garside germ. As H/Σ is Noetherian, it is
eligible for the criteria of Section 5.3, and we are led to looking for the satisfaction of
the associated conditions. The latter involve the left-divisibility relation of the germ
and, therefore, by Lemma 6.12, they can be formulated inside the base groupoid in
terms of Σ-prefixes.

Proposition 6.13. Assume that G is a groupoid, Σ positively generates G, H is a
subfamily of G that is closed under Σ-suffix, and

If g, g′ lie in H and admit a common upper bound for 6Σ

then they admit a least common upper bound for 6Σ in H,
(6.14)

If g, g′, g′′, f lie in H, f • g and f • g′ are defined and lie in H,

and g′′ is a least common upper bound of g and g′ for 6Σ,

then f • g′′ is defined.

(6.15)

Then H/Σ is a Garside germ.

Proof. By Lemmas 6.10 and 6.12, the germ H/Σ is left-associative, cancellative,
Noetherian, and it admits no nontrivial invertible element. Hence, by Proposi-
tion 5.23, H/Σ is a Garside germ if it satisfies (5.24). Now, by Lemma 6.12, for g, h
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in H, the relation g 4H/Σ
h is equivalent to g 6Σ h and, therefore, h′′ is a right-lcm

of h and h′ in H/Σ if and only it it is a least common upper bound of h and h′

for 6Σ. So (6.14) means that H/Σ admits local right-lcms, whereas (6.15) is a direct
reformulation of (5.24). �

In the context of Proposition 6.13, as by assumption Σ generates G, we can
weaken (6.14) and (6.15) by restricting to the case when the elements g and g′ lie
in Σ, but one then has to assume that the germ is associative on both sides, that
is, H is also closed under Σ-prefix.

Proposition 6.16. Assume that G is a groupoid, Σ positively generates G, H is a
subfamily of G that is closed under Σ-suffix and Σ-prefix, and

If g, g′ lie in Σ and admit a common upper bound for 6Σ

then they admit a least common upper bound for 6Σ in H,
(6.17)

If g, g′ lie in Σ, f lies in H, f • g and f • g′ are defined and lie in H,

and g′′ is a least common upper bound of g and g′ for 6Σ,

then f • g′′ is defined.

(6.18)

Then H/Σ is a Garside germ.

Proof. We first establish using induction on ℓ that all elements g, g′ of H that admit
a common upper bound gh for 6Σ satisfying ‖gh‖Σ 6 ℓ admit a least common
upper bound for 6Σ. For ℓ = 0 the result is trivial and, for ℓ > 1, we argue
using induction on ‖g‖Σ + ‖g′‖Σ. First, the result is trivial if ‖g‖Σ or ‖g′‖Σ is
zero. Next, if both g and g′ belong to Σ, the result is true by (6.17). Otherwise,
assuming g /∈ Σ, we write g = g1 • g2. Since g1 |g2 as well as g1g2 |h are Σ-tight by
assumption, g1 |g2 |h and, then, g1 |g2h are Σ-tight by Lemma 6.4. As, moreover,
H is closed under Σ-suffix, we have g1 6Σ gh and thus gh is a common upper
bound of g1 and g′ for 6Σ, as H/Σ is cancellative by Lemma 6.10. As we have
‖g1‖Σ + ‖g′‖Σ < ‖g‖Σ + ‖g′‖Σ, the induction hypothesis implies that g1 and g′

admit a least common upper bound for 6Σ, say g1h1. Then g •h is a common
upper bound of g1 • (g2 •h) and g1 •h1 for 6Σ, hence g2 •h is a common upper
bound of g2 •h and h1 for 6Σ. By construction, we have ‖g2h‖Σ < ‖gh‖Σ, so the
induction hypothesis implies that g2 and h1 admit a least common upper bound
for 6Σ, say g2h2. By Lemma 6.7, we have gh2 6Σ gh, and gh2 is a least common
upper bound of g and g′ for 6Σ. So (6.17) implies (6.14).

We now establish similarly using induction on ℓ that, if f, g, g′ lie in H, if f • g,
f • g′ are defined and lie in H, and g, g′ admit a least common upper bound g′′

for 6Σ satisfying ‖g′′‖Σ 6 ℓ, then f • g′′ is defined. For ℓ = 0, the result is trivial
and, for ℓ > 1, we argue using induction on ‖g‖Σ + ‖g′‖Σ. As above, the result is
trivial if ‖g‖Σ or ‖g′‖Σ is zero. Next, if both g and g′ belong to Σ, the result is
true by (6.18). Otherwise, assuming g /∈ Σ, we write g = g1 • g2. The induction
hypothesis implies that, if g1h1 is the least common upper bound of g1 and g′

for 6Σ, then f • (g1h1) is defined. Next, writing g′′ = gh, the assumption that H
is closed under Σ-suffix implies that g2h is the least common upper bound of g2

and h1 for 6Σ. By construction, we have ‖g2h‖Σ < ‖g′′‖Σ and the assumption that
H is closed under Σ-prefix implies that f • g1 lies in H, so the induction hypothesis
implies that fg1g2h, that is, fg′′ lies in H. So (6.18) implies (6.15), and we can
apply Proposition 6.13. �
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On the other hand, if the Σ-prefix relation 6Σ defines an upper-semi-lattice on
the considered subfamily H, that is, any two elements of H admit a least common
upper bound for 6Σ, we obtain a simpler criterion.

Proposition 6.19. Assume that G is a groupoid, Σ positively generates G, and H
is a subfamily of G that is closed under Σ-prefix and Σ-suffix and any two elements
of H admit a 6Σ-least upper bound. Then H/Σ is a Garside germ.

Proof. By Lemma 6.12, the germ H/Σ is (left- and right-) associative, and the
existence of least common upper bounds for 6Σ in G implies the existence of right-
lcms in H/Σ . Moreover, H/Σ is right-Noetherian by Lemma 6.11. Then the latter is
a Garside germ by Corollary 5.25. �

When we consider a germ derived from the whole initial groupoid, the condi-
tions about closure under prefix and suffix becomes trivial, so it only remains the
condition about lcms.

Corollary 6.20. Assume that G is a groupoid, Σ positively generates G, and any
two elements of G admit a 6Σ-least common upper bound. Then G/Σ is a Garside
germ.

So the main condition for obtaining a Garside germ along the above lines is to
find a positively generating subfamily Σ of G such that the partial order 6Σ admits
(local) least common upper bounds.

6.3. The ordinary Artin–Tits monoids. A first important example of the con-
struction described above is the construction of the Artin–Tits monoids starting
from arbitrary Coxeter groups. We take for (G, Σ) a Coxeter system, and keep
the whole of G, that is, we choose H = G. Then the monoid generated by the
germ G/Σ is the usual Artin–Tits monoid associated with G, see [24]. We will use
Proposition 6.16 to show that we have a Garside germ.

First, we recall some well known consequences of the exchange lemma (see for
example [5, No. 1.4 lemme 3]), which states:

Lemma 6.21. If w is a Σ-word of minimal length representing an element g of G
and h is an element of Σ satisfying ‖gh‖Σ 6 ‖g‖Σ, then gh is represented by some
proper subword w′ of w.

The first consequence (see [5, No. 1.8 Corollaire 1]) is

Proposition 6.22. Assume that (G, Σ) is a Coxeter system and I is included in Σ.
Let GI be the subgroup of G generated by I. Then all minimal Σ-words representing
elements of GI are I-words.

The second is

Proposition 6.23. Assume that (G, Σ) is a Coxeter system and I is included in Σ.
Let GI be the subgroup of G generated by I. Then, for f in G, the following are
equivalent:

f has no non-trivial Σ-suffix in GI .(6.24)

‖fg‖Σ = ‖f‖Σ + ‖g‖Σ holds for all g ∈ GI .(6.25)

f has minimal Σ-length in its coset fGI .(6.26)
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Further, if f satisfies the conditions above, it is the unique element of fGI of
minimal Σ-length and, for every g in GI , every Σ-suffix of fg in GI is a Σ-suffix
of g.

The analogous result (reversing left and right) applies to GIf .

Proof. Equation (6.25) implies that f has minimal Σ-length in its coset fGI . Con-
versely, assume that f satisfies (6.26) and let g be an element of minimal Σ-length
in GI such that (6.25) does not hold. Then, if w is a minimal word representing f
and ua is a minimal word representing g with a in I and u an I-word, by mini-
mality of g the word wu is minimal. Since the word wua is not minimal, Lemma
6.21 implies that there is a subword w′ of wu representing also fg. Since ua is a
minimal word, the word w′ must have the form w′′u with w′′ a subword of w. This
contradicts the minimality of f in fGI . We have shown the equivalence of (6.25)
and (6.26).

Conditions (6.24) and (6.26) are equivalent. Indeed, if f has a non-trivial Σ-
suffix h ∈ GI , then we have f = gh with ‖g‖Σ = ‖f‖Σ − ‖h‖Σ so that f is not
an element of minimal Σ-length in fGI . Hence (6.26) implies (6.24). Conversely,
if f ′ is an element of minimal Σ-length in fGI , we have f = f ′h with h ∈ GI

and ‖f‖Σ = ‖f ′‖+‖h‖Σ by (6.25) applied to f ′ (we use that (6.26) implies (6.25)).
Then h is a nontrivial Σ-suffix of f in GI , contradicting (6.24).

Now (6.25) shows that all elements of fGI have a Σ-length strictly larger than
that of f , whence the unicity. Moreover, if an element h of GI is a Σ-suffix of fg with
g ∈ GI , then ‖fg‖Σ = ‖fgh−1‖Σ+‖h‖Σ and by (6.25) we have ‖fg‖Σ = ‖f‖Σ+‖g‖Σ

and ‖fgh−1‖Σ = ‖f‖Σ + ‖gh−1‖Σ which gives ‖g‖Σ = ‖gh−1‖Σ + ‖h‖Σ, so that h
is a Σ-suffix of g. �

Proposition 6.27. For every Coxeter system (G, Σ), the germ G/Σ is a Garside
germ, and the corresponding monoid is the braid monoid associated with (G, Σ).

Proof. We prove that (G, Σ) is eligible for Proposition 6.16. We first look at (6.17);
let a, b ∈ Σ which have a common upper bound for 6Σ. We let I = {a, b} and let
f be the upper bound. Write f = gh where h is of minimal Σ-length in GIf and
g ∈ GI with ‖g‖Σ + ‖h‖Σ = ‖f‖Σ. Then, since a and b are Σ-prefixes of f , by
Proposition 6.23 they are Σ-prefixes of g thus g is a common upper bound of a and
b for 6Σ in GI . Since every element of GI is equal to a product aba . . . or bab . . .
with a number of factors at most the order of ab (if finite), ab has finite order and
we have g = ∆a,b. Thus we found that ∆a,b is a least common upper bound of a
and b for 6Σ.

Next, we show (6.18), thus we assume this time that a, b in Σ andf in G satisfy
‖f‖Σ + 1 = ‖fa‖Σ = ‖fb‖Σ, and we assume that a, b have a common upper bound
for 6Σ, which we have seen is ∆a,b. We have to show ‖f‖Σ + ‖∆a,b‖Σ = ‖f∆a,b‖Σ;
but this is exactly the fact that (6.24) implies (6.25).

That the corresponding monoid is the braid monoid of (G, Σ) results from the
presentation of the monoid associated with G/Σ . �

6.4. The dual monoid. Another important example (which was part of moti-
vating the above developments) is the dual monoid for spherical Artin groups, or,
more generally, for the braid groups associated to well-generated complex reflection
groups.
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This time we take for (G, Σ) a well-generated finite complex reflection group
together with the set of all its reflections. We choose a Coxeter element c in G,
that is, an h-regular element where h is the highest reflection degree (which is
unique since G is well-generated) and we take for H the set Div(c) of all left Σ-
prefixes of c. Then the monoid H/Σ is the dual braid monoid for G in the sense
of David Bessis [2, 8.1]; proposition [2, 8.8] constructs this monoid according to
Proposition 6.19. Bessis has shown [2, 8.2] that the group presented by this germ
is the braid group of G. The lattice property for the case of the dual monoid is
a deep result of which only a case-by-case proof is known in general; see [2, 8.14].
Previous to this work, Bessis had given a construction for the real case in [4], using
case-by-case arguments for the lattice property. There exists a case-free proof for
finite Coxeter groups due to Brady and Watt, see [6].

The same strategy can be applied to Artin groups of affine type. This time we
take for (G, Σ) a Coxeter group of affine type with the set of all its reflections.
We choose again a Coxeter element c, defined here as the product of all simple
reflections in some chosen order, and we take again for H the set Div(c). It has

been proved that, if G is of type G̃2 or C̃n or Ãn and in the last case the order of the
simple reflections is such that two consecutive elements do not commute, then this
germ satisfies the assumptions of Proposition 6.19 and that the group presented
by this germ is the corresponding Artin group. Moreover these are the only cases
where Div(c) is a Garside germ. This last fact and the G̃2-case are unpublished

results of Crisp and McCammond; for the Ã case see [16] and for the C̃ case see [17].
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