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Abstract

Garside calculus is the common mechanism that underlies a certain type of normal form for the
elements of a monoid, a group, or a category. Originating from Garside’s approach to Artin’s
braid groups, it has been extended to more and more general contexts, the latest one being that
of categories and what are called Garside families. One of the benefits of this theory is to lead
to algorithms solving effectively the naturally occurring problems, typically the Word Problem.
The aim of this paper is to present and solve these algorithmic questions in the new extended
framework.
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F.A. Garside (1969) solved the Word and Conjugacy Problems in Artin’s braid groupBn

(Artin, 1947) by describing the latter as a group of fractions and analyzing the involved monoid in
terms of its divisibility relation. This approach was continued and extended in several steps, first
to Artin-Tits groups of spherical type (Brieskorn and Saito, 1972; Deligne, 1972; Adyan, 1984;
Thurston, 1988; Charney, 1992; Epstein et al., 1992; El-Rifai and Morton, 1994), then to a larger
family of groups now known as Garside groups (Dehornoy and Paris, 1999; Dehornoy, 2002).
More recently, it was realized that going to a categorical context allows for capturing further
examples (Krammer, 2008; Bessis, 2006b,a; Digne and Michel, 2006), and a coherent theory has
now emerged with a central unifying notion called Garside families (Dehornoy et al., 2013a,b):
the central notion is a certain way of decomposing the elements of the reference category or its
groupoid of fractions and a Garside family is what makes the construction possible.

What we do in this paper is to present and analyze the main algorithms arising in this new,
extended context of Garside families, with two main directions, namely recognizing that a candi-
date family is a Garside family and using a Garside family to compute in the category, typically
finding distinguished decompositions and solving the Word Problem along the lines of Dehornoy
(2008). This results in a corpus of about twenty algorithms that are proved to be correct, ana-
lyzed, and given examples. We do not address the Conjugacy Problem here, as extending the
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methods of Gebhardt (2005) and Gebhardt and González-Meneses (2010) will require further
developments that we keep for a subsequent work.

The paper consists of six sections. The preliminary Section0 explains the intuitive objective
of Garside theory, namely to obtain distinguished expressions for elements of an algebraic struc-
ture, and it presents some examples that motivate (and justify) the extension of its techniques to
a category theoretic setting. Section 1 is a review of Garside families and the derived notions
involved in the approach, together with some basic results that appear in other sources. Next,
we address the question of effectively recognizing Garside families and we describe and analyze
algorithms doing it: in Section 2, we consider the case when the ambient category is specified
using a presentation (of a certain type), whereas, in Section 3, we consider the alternative ap-
proach when the category is specified using what is called a germ. Finally, the last two sections
are devoted to those computations that can be developed oncea Garside family is given. In Sec-
tion 4, we consider computations taking place in the reference category or monoid (“positive
case”), whereas, in Section 5, we address similar questionsin the groupoid or group of fractions
of the reference category (“signed case”).

0. Motivation

Consider the free Abelian monoidNn. We can define a partial order onNn by saying that
( f1, ... , fn) 4 (g1, ... , gn) holds if we havefi 6 gi for i = 1, ... , n. It is obvious that4 is a lattice
order, that is, that any two elements (f1, ... , fn) and (g1, ... , gn) of Nn have a unique least common
upper bound and a unique greatest common lower bound with respect to4: the former is given
by (max{ f1, g1}, ... ,max{ fn, gn}), while the latter is given by (min{ f1, g1}, ... ,min{ fn, gn}).

Define∆ = (1, ... , 1) ∈ Nn. Clearly, the setS = { f ∈ Nn | f 4 ∆} generates the monoidNn.
In fact, every element ofNn has auniquerepresentation as a product of the formg1g2 ···gk such
thatg1, ... , gk are nontrivial elements ofS and 1, f 4 gi impliesgi−1 f < S for i = 2, ... , k and
arbitrary f . The latter condition is a maximality statement: it says that, in the sequenceg1, ... , gk,
it is not possible to extract a nontrivial fragmentf from the entrygi and incorporate it in the
previous entrygi−1 without leaving the generating setS.

While the above construction may seem artificial for the (fairly trivial) situation of the free
Abelian monoidNn, a similar construction has proved to be an extremely powerful tool in a more
complicated setting, namely that of the braid groupBn, respectively the braid monoidB+n.

The braid monoid admits a natural partial order, called theprefix order, defined as follows:
For f , g in B+n we say thatf 4 g holds ifg can be written as a productf h with h in B+n. (The prefix
order can be defined for any left-cancellative monoid. Analogously, one can define asuffix order
for any right-cancellative monoid.) At the center of the solutions to the Word and Conjugacy
Problems inBn found by Garside and others lies thehalf twist∆, defined as the braid inB+n in
which any two strands cross exactly once. The setS = { f ∈ B+n | f 4 ∆} generates the monoidB+n
and, moreover, every element ofB+n has auniquerepresentation as a product of the formg1g2 ···gk

such thatg1, ... , gk are nontrivial elements ofS and 1, f 4 gi impliesgi−1 f < S for i = 2, ... , k
and arbitraryf .

The discovery of various other situations that allow for an analogous construction led to
the introduction of the notion ofGarside monoids.A monoid M is called a Garside monoid if
it satisfies the following conditions: (i) it is cancellative; (ii) it is a lattice with respect to the
prefix order4 and with respect to the suffix order<; (iii) it is strongly Noetherian, meaning
that there exists a mapλ : M → N such that, forf , g in M, g , 1 impliesλ(g) > 1 and
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λ( f g) > λ( f ) + λ(g), and (iv) there exists an element∆ of M, called aGarside elementof M,
such that the setS = { f ∈ M | f 4 ∆} equals the set{ f ∈ M | ∆ < f }, andS is a finite generating
set ofM. In this context, every element ofM has anormal decompositionas a product of the
form g1g2 ···gk such thatg1, ... , gk are nontrivial elements ofS and 1, f 4 gi impliesgi−1 f < S
for i = 2, ... , k and arbitraryf .

While the framework of Garside monoids has proved efficient, it has emerged that the hy-
potheses are too restrictive: There are many natural examples in which normal decompositions
of elements completely analogous to the ones described above exist, although the structure in
question is not a Garside monoid; we mention some of them below, referring to Dehornoy et al.
(2013a) for details. By contrast, the framework of Garside families in a category, which we shall
define below, will cover all these examples.

Infinite braids
We can define theinfinite braid group B∞ as the direct limit of the system obtained from

B1, B2, B3, ... with the natural embedding ofBi into Bi+1 for eachi. The monoidB+∞ is defined
in the same way from the monoidsB+1, B

+

2, ...; it admits no finite generating family: any finite
subfamily can only involve finitely many strands, butB+∞ contains braids involving crossings of
strands with arbitrarily large index. Nevertheless, the family S∞ =

⋃
i>1{ f ∈ B+∞ | f 4 ∆i},

where∆i denotes the Garside element of the Garside monoidB+i , allows normal decompositions
of elements ofB+∞ analogous to the ones described above.

Klein bottle group
ConsiderK = Z ⋊ϕ Z, whereϕ is the automorphism ofZ defined byϕ(1) = −1, and letK+

be the submonoid ofK generated by the elements (1, 0) and (0, 1) of K. It can be shown thatK+

admits the presentation〈ab | a = bab〉. As ba 4 a holds, the monoidK+ is not Noetherian.
Nevertheless, the setS = { f ∈ K+ | f 4 a2} allows normal decompositions of elements ofK+

analogous to the ones described above.

Wreathed free Abelian group
Consider the wreath productTn = Z ≀ Sn, that is, the semidirect product of the free Abelian

groupZn and the symmetric groupSn with Sn acting onZn by permuting the components. We
defineT +n to be the monoidN ≀ Sn. Write 0 for the element (0, ... , 0) of Nn and1 for the element
(1, ... , 1) of Nn. Clearly, the elements ofTn of the form (0, π) with 1 , π ∈ Sn are nontrivial
invertible elements of finite order. In particular,T +n cannot be a Garside monoid, as the quotient
group of a Garside monoid is torsion-free. Nevertheless, the setS = {(v, 1) | v 4 1}, where4 is
the partial order of the free Abelian monoidNn we met earlier, allows normal decompositions of
elements ofTn analogous to the ones described above.

Ribbon categories
For n > 2 and 16 i, j < n, defineBR+n(i, j) = {β ∈ B+n | σiβ = βσ j} and letBR+n be

the category whose object set is{1, ... , n− 1} and whose family of morphisms with sourcei and
target j is BR+n(i, j). Considering the Garside element∆n and the prefix order4n of the braid
monoidB+n, we defineS =

⋃
16i, j<n{β ∈ BR

+

n(i, j) | β 4n ∆n}. It can be shown that, with respect
to the partial order4 induced by left-divisibility in the categoryBR+n, the elements ofBR+n admit
normal decompositions as products of elements ofS, analogous to the ones described above. The
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notion of the ribbon category, and the existence of normal decompositions, prove to be crucial
for the analysis of normalizers and centralizers in braid groups.

The existence of the above examples (and of many other similar ones), which do not enter
the framework of Garside groups but nevertheless seem to share their main properties, clearly
suggests that a more general unifying framework should exist, and our claim is that the Garside
families investigated in the rest of this paper provide sucha framework. The motivation for the
extension is twofold: the first goal is to capture more cases,the second one is to isolate the really
essential assumptions, thus deepening our understanding of the structures involved.

1. The general context

In this introductory section, we present the background of categories and Garside families,
together with some general existence and uniqueness results that will be used and, often, refined
in the sequel of the paper. Proofs appear in other sources andthey will be omitted in general.

1.1. Categories

The general context is that of categories, which should be seen here just as monoids with
a partial product, that is, one that is not necessarily defined everywhere. Aprecategory(or
multigraph) is a familyA plus two maps, “source” and “target”, ofA to another familyObj(A)
(the objects ofA), and acategoryis a precategory equipped with a partial multiplication such
that f g exists if and only if the target off , denoted trg(f ), coincides with the source ofg,
denoted src(g). The multiplication is associative whenever defined and, in addition, has a neutral
element 1x for each objectx, that is, 1xg = g = g1y holds for everyg with sourcex and targety.
If C is a category, the family of all neutral elements is denoted by 1C and, forA included inC
andx, y in Obj(C), the family of elements ofA with sourcex and targety is denoted byA(x, y).
A monoid is the special case of a category when there is only one object, so that the product is
always defined. It is convenient to represent the elements ofa category using arrows, so that an

elementg with sourcex and targety is represented byx y
g

.

Free categories and paths
If A is a precategory, the free category generated byA is the familyA∗ of all A-paths, that

is, all finite sequences (s1, ... , sp) of elements ofA such that the target ofsi−1 is the source ofsi

for everyi, together with, for each objectx, an empty pathεx, and equipped with concatenation
of paths. Whenw is anA-path, we denote by‖w‖ the length ofw, and, for 16 i 6 ‖w‖, we
denote byw[i] the i-th entry inw. ForB included inA, we denote the family of allB-paths of
length p by B[p]. If w1,w2 are two paths, we denote byw1|w2 the concatenation ofw1 andw2

when it exists, that is, when the target ofw1 (defined to be the target of the last entry inw1)
coincides with the source ofw2 (defined to be the source of the first entry inw2). We identify a
length one path with its unique entry. Then a lengthp path (s1, ... , sp) is the concatenation of the
length one paths made of its successive entries, so that it can be denoted bys1| ··· |sp. WhenA is
a set, that is, a precategory with one object only, the condition about source and targets vanishes,
and it is usual to sayA-word forA-path.
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Presentations
Every category that is generated by a familyA is a quotient of the free categoryA∗, and,

for R a family of pairs ofA-paths, it is said to admit the presentation (A;R) if it is isomorphic
to A∗/≡+R where≡+R is the congruence onA∗ generated byR. The elements ofR are called
relations, and, in this context, it is customary to writeu = v instead of (u, v) for a relation
and, in concrete examples, to omit the concatenation sign, thus writing s1 ···sp = t1 ··· tq rather
thans1| ··· |sp = t1| ··· |tq. If (A;R) is a presentation, we write〈A | R〉+ for the category presented
by (A;R)—which is determined only up to isomorphism—and, forw anA-path, we write [w]
for the≡+R-class ofw, that is, for the element of〈A | R〉+ represented byw—which is also the
evaluation of the pathw in the category〈A | R〉+.

Cancellativity
All categories we shall consider here will have to satisfy some cancellativity condition, at

least on one side.

Definition 1.1. A categoryC is calledleft-cancellative(resp. right-cancellative) if f g = f g′

(resp. g f = g′ f ) impliesg = g′ for all f , g, g′ in C.

A category is calledcancellativeif it is both left- and right-cancellative. In a left- (or right-)
cancellative category, an element has a left-inverse if andonly if it has a right-inverse, and so
there is a unique, non-ambiguous notion ofinvertibleelement. ForC a left-cancellative category,
we denote byC× the subgroupoid ofC consisting of all invertible elements. An invertible element
will be callednontrivial if it is not an identity-element 1x.

Divisibility, lcm, lcm-selector
Associated with every (left-cancellative) category—hence, in particular, every monoid—

comes a natural left-divisibility relation.

Definition 1.2. Assume thatC is a left-cancellative category. Forf , g in C, we say thatf is a
left-divisorof g, or, equivalently, thatg is aright-multipleof f , denotedf 4 g, if there existsg′

in C so thatf g′ = g holds.

The hypothesis that the ambient category is left-cancellative is needed to guarantee that left-
divisibility is a partial preordering; the associated equivalence relation is right-multiplication by
an invertible element: the conjunction off 4 g andg 4 f is equivalent to the existence of an
invertible elemente satisfying f e= g, which will be denoted byf =× g hereafter.

Simple derived notions stem from the left-divisibility relation, corresponding to greatest
common lower bound and least common upper bound. We say thath is a greatest common
left-divisor, or left-gcdof f andg if h left-divides f andg and every left-divisor off andg left-
dividesh. Symmetrically, we sayh is a least common right-multiple, or right-lcmof f andg if h
is a right-multiple off andg and every right-multiple off andg is a right-multiple ofh. Right-
lcms and left-gcds, if they exist, are unique up to right-multiplication by an invertible element,
hence unique if the ambient category has no nontrivial invertible element. In the latter case, we
write f ∨ g and f ∧g for the right-lcm and the left-gcd off andg (if they exist), andf \ g for the
unique element that satisfiesf ∨ g = f ( f \ g).

Definition 1.3. We say that a left-cancellative categoryC admits right-lcms(resp. admits local
right-lcms) if any two elements ofC with the same source (resp. if any two elements ofC that
admit a common right-multiple) admit a right-lcm.
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Finally, we shall sometimes need to choose right-lcms explicitly. The following terminology
is then natural.

Definition 1.4. Assume thatC is a left-cancellative category, andA is a generating subfamily
of C. A right-lcm selectoronA is a partial mapθ : A×A → A∗ such that, for alls, t inA, the
elementsθ(s, t) andθ(t, s) are defined if and only ifs andt admit a right-lcm and, in this case,
there exists a right-lcmh of sandt such that boths|θ(s, t) andt|θ(t, s) representh.

Note that, ifC is a left-cancellative category that admits no nontrivial invertible element, then
the map (f , g) 7→ f \ g is a right-lcm selector onC.

The notions of a right-divisor and left-multiple are definedsymmetrically, and so are the
derived notions of a right-gcd, and a left-lcm selector.

Noetherianity conditions
Definition 1.5. A left-cancellative categoryC is calledright-Noetherianif every bounded≺-
increasing sequence inC is finite.

By extension, we say that a (positive) presentation is right-Noetherian if the associated cat-
egory is right-Noetherian. Standard results (see for instance Lévy, 1979) give the following
criterion for establishing Noetherianity conditions.

Lemma 1.6. A presentation(A;R) is right-Noetherian if and only if there exists a mapλ ofA∗

to the ordinals that is≡+R-invariant and satisfiesλ(s) > 0 for every s inA andλ(s|w) > λ(w) for
all w inA∗ and s inA.

Note that every presentation (A;R) such thatR consists of relations of the formu = v with
u, v of the same length is right-Noetherian, as one can then defineλ(w) to be the length ofw.

Ore category, groupoid of fractions
Finally, we recall that a groupoid is a category in which every element is invertible, a group

corresponding to the special case when there is only one object, that is, the product is always
defined.

We say that a groupoidG is agroupoid of left-fractionsfor a subcategoryC if every element
ofG admits an expression of the formf −1g with f , g in C. The following result of Ore is classical:

Proposition 1.7. (Clifford and Preston, 1961) Say that a category isleft-Ore(resp.right-Ore) if
it is cancellative and any two elements that have the same target (resp. source) admit a common
left-multiple (resp. right-multiple). Then a category embeds in a groupoid of left-fractions (resp.
of right fractions) if and only if it is left-Ore (resp. right-Ore).

A category that is both left- and right-Ore will be called anOre category.

1.2. Normal decompositions and Garside families

The central idea in our approach consists in introducing distinguished decompositions of a
certain type for the elements of the considered category. These decompositions involve a refer-
ence subfamily of the ambient category and correspond to theprinciple of recursively selecting
maximal left-divisors lying in the reference family.
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Definition 1.8. Assume thatC is a left-cancellative category. ForS included inC, a C-path
g1| ··· |gp is calledS-greedy(resp. S-normal) if, for every i < p, we have

∀s∈S ∀ f∈C (s 4 f gigi+1⇒ s 4 f gi) (1.9)

(resp. this and, in addition, every entrygi lies inS♯, defined to beSC× ∪ C×).

When using diagrams in which the elements of the category arerepresented by arrows, we

shall indicate that a pathg1|g2 isS-greedy by appending a small arc as in g1 g2 .

Example 1.10.Consider the free Abelian monoidM defined by the presentation (a, b; ab = ba)
and letS = {a, b, ab}, whenceS♯ = {1, a, b, ab}. TheS-normal paths inM are precisely the
pathsg1| ··· |gq that, for somep, p′ in {0, ... , q}, satisfy (i)gi = ab for i = 1, ... , p; (ii) eithergi = a

for i = p+ 1, ... , p′, or gi = b for i = p+ 1, ... , p′; and (iii) gi = 1 for i = p′ + 1, ... , q.

Example 1.11.Consider the wreathed free Abelian monoidT = N2 ⋊S2, where the symmetric
groupS2 acts by permuting the coordinates ofN2. Defining0 = [0, 0] in N2, we clearly have
T× = {0} ×S2, that is, there exists a nontrivial invertible element inT .

Here, and in the sequel, we consider the elements id= 1S2 andτ = (1 2) ofS2, the elements
v1 = [1, 0], v2 = [0, 1] andv12 = [1, 1] in N2, as well as the elementsa = (v1, id), b = (v2, id) and
e = (0, τ) in T .

ForA = {a, b, e}, we haveA♯ = {0, v1, v2} ×S2. Forg1 = (v1, τ) andg2 = (v2, τ), theT -path
g1|g2 isA-normal, but theT -pathsg1|g1 ande|g1 are not. In fact, there is noA-normal pathw
satisfying [w] = [g1|g1] = (v12, id) = ab = ba, since one has (v1, σ) 4 ab and (v2, σ) 4 ab,
but (v1, σ) $ b and (v2, σ) $ a for all σ in S2. Finally, theT -pathab|ab isA-greedy but not
A-normal.

If g is an element of a categoryC, a pathw satisfying [w] = g is called adecompositionof g.
What we shall be interested in in the sequel are the (possible) S-normal decompositions of the
elements of the considered category. One of the interests ofsuch decompositions is that they are
essentially unique.

Proposition 1.12. (Dehornoy et al., 2013b, Proposition 2.11) Assume thatC is a left-cancellative
category andS is included inC. Then any twoS-normal decompositions of an element ofC (if
any) areC×-deformations of one another, where s1| ··· |sp is said to be aC×-deformationof t1| ··· |tq
if there exist invertible elements e0, ... , em, with m = max(p, q), such that e0, em are identity-
elements and tiei = ei−1si holds for1 6 i 6 m, where, for p, q, the shorter path is expanded by
identity-elements (see Figure 1).

s1

t1

s2

t2

sq

tq

sq+1

1-

sp

1-

e1 e−1
1 e2 e−1

2 eq e−1
q

Figure 1:Deformation by invertible elements: invertible elements connect the corresponding entries; if one path
is shorter than the other (here we are in the case q < p), it is extended by identity-elements.

Note that, ifC contains no nontrivial invertible element, that is, the only invertible elements
are the identity-elements, then Proposition 1.12 providesa genuine uniqueness result provided
one discards theS-normal paths that finish with an identity-element.
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As for the existence ofS-normal decompositions, it naturally depends on the familyS. Here
is where Garside families appear:

Definition 1.13. A subfamilyS of a left-cancellative categoryC is called aGarside familyif
every element ofC admits anS-normal decomposition.

Every left-cancellative category is a Garside family in itself, so every left-cancellative cat-
egory contains a Garside family. Practically recognizing whether a given family is a Garside
family will be one of the main tasks of Sections 2 and 3 below. We shall appeal to the fol-
lowing simple characterization which is valid whenever theambient category satisfies special
assumptions:

Lemma 1.14. (Dehornoy et al., 2013a, Corollary IV.2.18) Assume thatC is a left-cancellative
category that is right-Noetherian and admits unique local right-lcms. Then a subfamilyS of C
is a Garside family inC if and only ifS generatesC and, for all s, t in S admitting a common
right-multiple, s∨ t and s\ t lie in S ∪ 1C.

Also, we shall use the following closure result, which in some sense extends Lemma 1.14,
but need not characterize Garside families in general.

Lemma 1.15. (Dehornoy et al., 2013b, Proposition 3.9) IfS is a Garside family in a left-
cancellative categoryC and r is a common right-multiple of two elements s, t of S♯, there exists
a common right-multiple r′ of s and t such that r is a right-multiple of r′ and r′, together with s′

and t′ defined by st′ = ts′ = r ′, lie in S♯.

An application of Lemma 1.15 is that every Garside family gives rise to a simple presentation
of the ambient category. For our current purpose it will be sufficient to state the result in the
particular case when no nontrivial invertible element exists, so that a right-lcm is unique when it
exists.

Proposition 1.16. (Dehornoy et al., 2013a, Proposition IV.3.6) Assume thatS is a Garside
family in a left-cancellative categoryC that contains no nontrivial invertible element and admits
local right-lcms. LetR consist of all relations s(s\ t) = t(t \ s) for s, t in S admitting a common
right-multiple. Then(S;R) is a presentation ofC.

Finally, we shall use the following simple diagrammatic rule aboutS-greedy paths.

Lemma 1.17. (Dehornoy et al., 2013b, Lemma 3.3) (first domino
rule) Assume thatC is a left-cancellative category,S is included
in C, and we have a commutative diagram with edges inC as on
the right. If g1|g2 and g′1| f1 areS-greedy, then g′1|g

′
2 is S-greedy as

well. g1 g2

g′1 g′2

f0 f1 f2

A second, symmetric domino rule will be mentioned in Lemma 1.32 below.

1.3. Symmetric normal decompositions and strong Garside families

If C is a left-Ore category, then, by Proposition 1.7, it embeds in the groupoid of left-fractions
that we shall denote byEnv(C) (like “enveloping groupoid”). IfS is a Garside family inC, every
element ofC admits anS-normal decomposition, and it is natural to try to extend theresult
from C to Env(C), that is, to find distinguished decompositions for the elements ofEnv(C) in
terms of elements ofS♯ and their inverses.
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To do it, we extend the notion of anA-path into that of a signedA-path. Formally, if
A is any precategory, we introduce a familyA that is disjoint from and in bijection toA as
A = {s | s ∈ A}, where the source ofs is the target ofs and vice versa. AsignedA-path is

defined to be a (A∪A)-path. We extend the “bar” map to all signed paths by defining(s) = s for
s inA andw1|w2 = w2|w1. ForG a groupoid andA included inG, we extend the notation [w] to
signedA-paths by declaring that [g ] is g−1 for g inA, that is, we use the letters ofA to represent
the inverses of the elements ofA. If w is a signed path and [w] = g holds, we again say thatw is
a decomposition ofg.

WhenC is a left-Ore category andS is a Garside family ofC, we now look for distinguished
decompositions for the elements of the groupoidEnv(C). As every element ofEnv(C) is a left-
fraction, it is natural to consider decompositions that arenegative–positiveS♯-paths, this meaning
that every negative entry precedes every positive entry, where the entries inS♯ are called positive

and those inS♯ are called negative.

Definition 1.18. Assume thatC is a left-Ore category.
(i) Two elementsf , g of C are calledleft-disjointif, for all f ′, g′ in C satisfyingf −1g = f ′−1g′

in Env(C), there existsh in C satisfying f ′ = h f andg′ = hg.
(ii) For S included inC, a negative–positive pathgq| ··· |g1| f1| ··· | fp is calledsymmetricS-

greedy(resp. symmetricS-normal) if g1| ··· |gq and f1| ··· | fp areS-greedy (resp. S-normal) and,
in addition,g1 and f1 are left-disjoint.

When using diagrams, we shall indicate that two elementsf , g are left-disjoint by append-

ing a small arc as in g f . So a generic symmetricS-greedy path pictorially
corresponds to a diagram

gq g1 f1 fp ,

and it is symmetricS-normal if, in addition, all edges correspond to elements ofS♯. Note that
a positive path is symmetricS-normal if and only if itS-normal: indeed, a positive path is a
negative–positive path whose negative part is empty, and, for everyg in S♯(x, -), the elementsεx

andg are (trivially) left-disjoint.

Example 1.19. Consider the free Abelian monoidM and the setS as in Example 1.10. The
unordered pairs of left-disjoint elements ofS♯ are precisely{1, 1}, {1, a}, {1, b}, {1, ab}, and
{a, b}, where 1= 1x for the unique elementx of Obj(M).

Like S-normal decompositions in the positive case, symmetricS-normal decompositions
turn out to be (nearly) unique when they exist.

Proposition 1.20. (Dehornoy et al., 2013a, Proposition III.2.16) Assume thatC is a left-Ore
category andS is included inC. Then any two symmetricS-normal decompositions of an el-
ement ofEnv(C) (if any) areC×-deformations of one another, this meaning that there exists a
commutative diagram as in Figure 2.

As for existence, symmetric normal decompositions are connected with left-lcms:

Lemma 1.21. (Dehornoy et al., 2013a, Lemma III.2.19) Assume thatS is a Garside family in
a left-Ore categoryC, that s1| ··· |sp and t1| ··· |tq areS-normal paths, and that t1 ··· tqg = s1 ···sp f
holds. Thentq| ··· |t1|s1| ··· |sp is symmetricS-greedy if and only if t1 ··· tq and s1 ···sp are left-
disjoint, if and only if t1 ··· tqg is a left-lcm of f and g.
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1-

t′q′

tq

t′q

t1

t′1

s1

s′1

sp′

s′p′

sp

1-

e−q e−1 e0 e1 ep′

Figure 2: Deformation of a signed path by invertible elements: invertible elements connect the corresponding
entries ; if some path is shorter than the other (here we have q < q′ and p′ < p), it is extended by identity-elements.

Lemma 1.21 implies that an elementf g−1 of Env(C) admits a symmetricS-normal decom-
position if and only if f andg admit a left-lcm inC, whence:

Proposition 1.22. If S is a Garside family in a left-Ore categoryC that admits left-lcms, ev-
ery element ofEnv(C) that can be expressed as a right-fraction admits a symmetricS-normal
decomposition.

In particular, ifC is an Ore category, then every element ofEnv(C) can be expressed as a
right-fraction, and we obtain:

Corollary 1.23. If S is a Garside family in an Ore categoryC that admits left-lcms, every element
of Env(C) admits a symmetricS-normal decomposition.

When algorithmic questions are involved, it will be convenient to consider special Garside
families that we introduce now.

Definition 1.24. Assume thatC is a left-Ore category. A Garside
familyS of C is calledstrongif, for all s, t inS♯ with the same target,
there exists′, t′ in S♯ that are left-disjoint and satisfys′t = t′s. t

t′

s′ s

The interest of introducing the notion of a strong Garside family is to allow for a refined
version of Proposition 1.22:

Proposition 1.25. (Dehornoy et al., 2013a, Proposition III.2.31) IfS is a strong Garside family
in a left-Ore categoryC that admits left-lcms, every element ofEnv(C) that admits a positive–
negativeS♯-decomposition of lengthℓ admits a symmetricS-normal decomposition of length at
mostℓ.

Finally, as in the positive case, we shall appeal to diagrammatic rules involving normal paths.

Lemma 1.26. (Dehornoy et al., 2013a, Propositions III.2.39 and
III.2.42)

(i) (third domino rule) Assume thatC is a left-cancellative cate-
gory,S is included inC, and we have a commutative diagram with
edges inC as on the right. If g1|g2 is S-greedy, and f1, g′2 are left-
disjoint, then g′1|g

′
2 isS-greedy as well.

g1 g2

g′1 g′2

f0 f1 f2

(ii) (fourth domino rule) Assume thatC is a left-Ore category,
S is included inC, and we have a commutative diagram with edges
in C as on the right. If g1, g2 are left-disjoint, and f1, g′2 are left-
disjoint, then g′1, g

′
2 are left-disjoint as well. g1 g2

g′1 g′2

f0 f1 f2
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1.4. Bounded Garside families and∆-normal decompositions
In many cases, interesting Garside families in a monoid consist of the left-divisors of some

maximal element∆, in which case it is natural to call them bounded by∆. In a category context,
the maximal element has to depend on the source, and it is replaced with a map from the objects
to the elements.

Definition 1.27. A Garside familyS in a cancellative categoryC is calledboundedif there exists
a map∆ fromObj(C) to C satisfying the following conditions:

(i) s ∈ S(x, -) impliess 4 ∆(x),
(ii) ∀y ∈ Obj(C) ∃!z∈ Obj(C) ∀s ∈ S♯(-, y) ∃s′ ∈ S♯(z, -) (s′s= ∆(z)).

Note that, in Definition 1.27, (i) and (ii) are symmetric, as (i) can be stated as

∀x ∈ Obj(C) ∃!y ∈ Obj(C) ∀s ∈ S♯(x, -) ∃s′ ∈ S♯(-, y) (ss′ = ∆(x)),

with y the target of∆(x). In the above context, for every elements of C, the unique elements′

satisfyingss′ = ∆(x) is denoted by∂(s), whereas the unique elements′ satisfyings′s= ∆(z) for
somez is denoted bỹ∂(s).

Remark 1.28. A Garside family satisfying Definition 1.27(i) only is called right-boundedby∆.
The latter notion is natural and useful in the positive case,but it is not sufficient in the signed
case and we shall not consider it here.

Proposition 1.29. (Dehornoy et al., 2013a, Proposition VI.3.11)(i) Every cancellative category
that admits a bounded Garside family is an Ore category.

(ii) Every bounded Garside family is strong.

The most important technical property implied by the existence of the bounding map∆ is the
existence of a derived automorphism of the ambient category.

Lemma 1.30. (Dehornoy et al., 2013a, Proposition VI.1.11) As-
sume thatS is a Garside family bounded by∆ in a cancellative
categoryC. Putφ(x) = trg(∆(x)) for x in Obj(C) andφ(g) = ∂2(g)
for g in C. Thenφ is an automorphism ofC that makes the diagram
aside commutative for every g inC(x, y).

x g y

φ(x) φ(g) φ(y)

∆(x) ∆(y)∂(g)

In terms of normal decompositions, the bounding map impliesa simple connection between
greediness and left-disjointness that need not be valid in general.

Lemma 1.31. (Dehornoy et al., 2013a, Proposition VI.1.46) Assume thatS is a Garside family
bounded by a map∆ in a cancellative categoryC. Then, for all s1, s2 in S♯, the following are
equivalent:

(i) s1|s2 isS-normal;
(ii) ∂(s1) and s2 are left-disjoint;
(iii) ∂(s1) and s2 admit no nontrivial common left-divisor.

A consequence is the following counterpart of the first domino rule.

Lemma 1.32. (Dehornoy et al., 2013a, Lemma VI.1.32) (second
domino rule) Assume thatC is a cancellative category andS is a
bounded Garside family inC. Then, when we have a commutative
diagram as on the right with edges inS♯ in which s1|s2 and t1|s′2 are
S-greedy, then s′1|s

′
2 isS-greedy as well. s′1 s′2

s1 s2

t0 t1 t2
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Note that the second domino rule is not an exact counterpart of the first one in that, here, all
involved elements are supposed to lie in the reference family S♯.

Also, a second type of distinguished decomposition naturally arises for the elements of the
associated groupoid of the considered category: called∆-normal, these decompositions differ
from symmetric normal decompositions in that the denominator is demanded to involve a power
of the Garside map∆. In the case of a monoidM, a bound∆ for a Garside family is an element
of M, and it makes sense to take powers of∆. In the case of a general categoryC, the bound is a
map ofObj(C) to C, and the notion of a power has to be adapted.

Notation 1.33. Assume thatC is a cancellative category and∆ is a Garside map inC. Forn in Z

andx in Obj(C), we put

∆[n] (x) :=



∆(x)|∆(φ(x))| ··· |∆(φn−1(x)) for n > 0,

εx for n = 0,

∆(φ−1(x))|∆(φ−2(x))| ··· |∆(φ−|n|(x)) for n < 0,

(1.34)

and we write∆(n)(x) for the element ofEnv(C) represented by∆[n] (x).

Note that, in every case, the source of∆[n](x) and∆(n)(x) is x and its target isφn(x), and that
∆(−n)(x) is always the inverse of∆(n)(φ−n(x)).

Definition 1.35. Assume thatS is a Garside family ofC bounded by a map∆ in an Ore cate-
goryC.

(i) An elementg of C(x, -) is called∆-like if g =× ∆(x) holds.
(ii) A signedS-path is called∆-normal if it has the form∆[n](-)|s1| ··· |sp with n in Z and

s1| ··· |sp anS-normal path such thats1 is not∆-like.

Thus a∆-normal path is either a positiveS-path beginning with elements in the image of∆,
or an empty path, or a negative–positiveS-path whose negative part consists of elements in the
image of∆.

Proposition 1.36. (Dehornoy et al., 2013a, Proposition VI.3.19) Assume thatS is a Garside
family ofC bounded by a map∆ in an Ore categoryC. Then every element ofEnv(C) admits a
∆-normal decomposition, in which the exponent of∆ is uniquely determined and the other entries
are unique up toC×-deformation.

In the positive case, it is easily seen that∆-like entries must lie at the beginning of anS-
normal path, so a∆-normal path is simply anS-normal path in which the initial∆-like entries
are not only∆-like but even lie in the image of∆. In the signed case, the difference with a sym-
metricS-normal path is more important: in a∆-normal path, the numerator and the denominator
need not be left-disjoint, the requirement being now that∆ does not left-divide the first positive
entry. Actually, Propositions 1.22 and 1.36 are not exactlycomparable, as they require different
assumptions, namely the existence of left-lcms in the former case, and that of a bounded Garside
family in the latter.

2. Recognizing Garside families, case of a presentation

We now begin to investigate the effective methods relevant for Garside structures. In this
section as well as the next one, we address the question of recognizing that a given family is a
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Garside family in the ambient category, as well as checking that the category is eligible for the
Garside approach, that is, it is left-cancellative (resp. left-Ore). The question depends in turn on
the way the category and the candidate Garside family are specified. In this section, we consider
the case when the category is specified using a presentation.

We first define reversing (Subsection 2.1), then address establishing that the ambient cate-
gory is cancellative (Subsection 2.2), recognizing Garside families (Subsection 2.3), and finally
proving further properties like being an Ore category or a strong Garside family (Subsection 2.4).

2.1. The reversing transformation

Before entering the main development, we introduce a technical tool that will be used several
times in the sequel, namely a path transformation called reversing (Dehornoy, 1997, 2003, 2011).

Definition 2.1. Assume thatA is a precategory. Aright-complementonA is a partial mapθ
of A2 toA∗ such thatθ(s, s) is defined and equal toεy for everys in A(x, y) and that, ifθ(s, t)
is defined, thens and t have the same source,θ(t, s) is defined, and boths|θ(s, t) and t|θ(t, s)
are defined and have the same target. A right-complement is called short if, wheneverθ(s, t) is
defined,θ(s, t) has length at most 1, that is, it belongs toA or is empty.

We note that, ifObj(A) consists of a single element, the conditions forθ to be a right-
complement are simply thatθ(s, s) is empty for everys and thatθ(s, t) is defined if and only
if θ(t, s) is.

Definition of right-reversing
We are now ready to introduce right-reversing. We begin withthe special case of a short

right-complement and a negative–positive input path, which will be frequently used in the sequel.

Notation 2.2. If A is a precategory, we writeεA for {εx | x ∈ Obj(A)} andÂ forA∪εA. Forθ a
right-complement onA, we writeθ̂ for the extension ofθ to Â obtained by addinĝθ(εx, εx) = εx

for every objectx plus θ̂(s, εx) = εy andθ̂(εx, s) = s for everys inA(x, y).

Note that̂θ is a right-complement on̂A. We introduce right-reversing by means of an algo-
rithm working on (certain) signedA-paths.

Algorithm 2.3 (Right-reversing, short case, negative–positive input).

Context: A precategoryA, a short right-complementθ onA
Input: A negative–positiveA-pathtq| ··· |t1|s1| ··· |sp

Output: A positive–negativeA-path, orfail
1: ti,0 := ti for i = 1, ... , q
2: s0, j := sj for j = 1, ... , p
3: for i increasing from 1 toq do
4: for j increasing from 1 top do
5: if θ̂(si−1, j , ti, j−1) is definedthen
6: ti, j := θ̂(si−1, j , ti, j−1)
7: si, j := θ̂(ti, j−1, si−1, j)
8: else
9: return fail

10: return sq,1| ··· |sq,p|tq,p| ··· |t1,p
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Lemma 2.4. If θ is a short right-complement on a finite precategoryA, Algorithm 2.3 running
on a pair ofA-paths of length at mostℓ terminates in O(ℓ2) steps.

Proof. The claim is obvious from the pseudocode in Algorithm 2.3.

Running Algorithm 2.3 amounts to recursively constructinga
rectangular grid whose edges are labeled by elements ofA or empty
paths, and in which each elementary square has the type shown
aside, see Figure 3 for an example.

t

s
θ̂(s, t)

θ̂(t, s)

b a b b

a a

b b b

b

b b

b b b

b

Figure 3: The grid associated with a right-reversing, short case. Here we consider the right-
complement θ on {a, b} defined by θ(a, a) = θ(b, b) = ε, θ(a, b) = b, and θ(b, a) = a (with one object
only), and apply Algorithm 2.3 to the negative–positive word b|b|a|b|a|b|b: the initial word is written on
the left (negative part, here a|b|b) and the top (positive part, here b|a|b|b), and then the grid is con-
structed by using the right-complement θ̂ to recursively complete the squares; we use a double line for
ε-labeled arrows. In the current case, the output of the algorithm is the length one word b.

Example 2.5. Recall Example 1.11. We consider a (short) right-
complementθ onA, where fors, t inAwe defineθ(s, t) as the entry
in row s and columnt of the table on the right.

Right-reversing the negative-positive worda|b|e|a|b|e|a yields
the worda as shown in Figure 4.

a b e

a ε b e

b a ε e

e b a ε

a b e a

e e e

b a a

b

a a

a a

a

Figure 4:The grid associated with the right-reversing in Example 2.5.
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We now turn to the case of an arbitrary right-complement, that is, we no longer assume that
θ(s, t) necessarily has length zero or one. Then we can extend the definition of right-reversing,
the only differences being that the constructed grid may involve rectangles whose edges contain
more than one arrow whenθ(s, t) has length at least 2. For the description, it is convenientto
start from an arbitrary signed path, and not necessarily from a negative–positive one.

Algorithm 2.6 (Right-reversing, general case).

Context: A precategoryA, a right-complementθ onA
Input: A signedA-pathw
Output: A positive–negativeA-path, orfail, or no output

1: while ∃i < ‖w‖ (w[i] ∈ A andw[i + 1] ∈ A) do
2: j := min{i | w[i] ∈ A andw[i + 1] ∈ A}
3: s := w[ j]
4: t := w[ j + 1]
5: if θ̂(s, t) is definedthen

6: replaces|t in w with θ̂(s, t)|̂θ(t, s)
7: else
8: return fail
9: return w

Definition 2.7. If Algorithm 2.6 terminates successfully, we say that the initial signedA-pathw
is right-θ-reversibleto the final pathw′, and we writew yθ w′. If u, v are positiveA-paths, and
there exist positive pathsu′, v′ satisfyingu|v yθ v′ |u′, we defineθ∗(u, v) to bev′ andθ∗(v, u) to
beu′.

As in the short case, running Algorithm 2.6 amounts to recur-
sively constructing a grid whose edges are labeled by elements ofA
or empty paths, and in which each elementary square has the type
shown aside. The difference to Algorithm 2.3 is twofold:

t

s
θ̂(s, t)

θ̂(t, s)

Firstly, if the input is an arbitrary signed path, we do not necessary start with a vertical–
horizontal path, but possibly with a staircase in which vertical and horizontal edges alternate; see
Figure 5 for an example.

Secondly, if the right-complementθ is not short, the edges of the grid may have different
sizes; see Figure 6 for an example.

Remark 2.8. More general versions of right-reversing are possible: at the expense of renouncing
to determinism, we can consider multiform right-complements assigning with every pair of let-
ters (s, t) a family of pairs of paths{(u1, v1), ... , (un, vn)} and decide thats|t may reverse to any of
the pathsv1|u1, ... , vn|un (see Dehornoy, 2003). In such a context, several reversing grids may be
associated with an initial path. Although most theoreticalresults can be adapted, these extended
versions are less suitable for algorithms, and we shall not consider them here.

Termination of reversing
It should be clear that, whereas Algorithm 2.3 always terminates (successfully or not, that is,

with an output path or with the output “fail”) in finitely many steps, Algorithm 2.6 may not
terminate.
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b a

a a
a

b

b b

a a

Figure 5: The grid associated with the right-reversing of a signed path. We consider the right-
complement from Figure 3, and apply Algorithm 2.6 to the word a|b|a|a|b|a: the initial word is written
on the top-left boundary (negative edges vertically and positive edges horizontally), and completing
the grid to the bottom-right yields the output word a|a.

b a b b

a
a

b b

b b

b a b

b

a b

b b
b

a

b

a

b

a aa b

Figure 6:The grid associated with a right-reversing for a right-complement that is not short. Here we
consider the right-complement θ on {a, b} defined by θ(a, a) = θ(b, b) = ε, θ(a, b) = b|a, and θ(b, a) = a|b
(with one object only), and apply Algorithm 2.6 to the negative–positive word b|b|a|b|a|b|b (the same
as in Figure 3): the difference is that, now, edges of variable size occur, so that, a priori, the process
need not terminate. In the current case, it terminates, and the output word is a|b|a.

Example 2.9.Consider the right-complementθ defined on{a, b} byθ(a, b) = b andθ(b, a) = b|a.
Let w = a|b|a. Thenw reverses in two steps tob|w|b, hence in 2n steps tobn|w|b

n
for everyn,

never leading to a positive–negative word.

For our current approach, it will be useful to have a simple termination criterion.

Lemma 2.10. Assume thatθ is a right-complement on a precategoryA.
(i) Right-θ-reversing terminates successfully for all valid inputs ifand only if there exists a

familyB ofA-paths that includesA and is such that, for all u, v inB with the same source, there
exist u′, v′ in B satisfyingu|v yθ v′ |u′.

(ii) If a familyB with the properties as in(i) exists and is finite, then, for every signedA-path
of lengthℓ, the right-θ-reversing of w terminates (successfully) in O(ℓ2) steps and all involved
paths have length in O(ℓ).

Proof. (i) If right-θ-reversing is terminating, thenA∗ has the expected property.
Conversely, assume thatB satisfies the property of the lemma. Letθ′ be the restriction ofθ∗

toB. Thenθ′ is a short right-complement onB, so right-θ′-reversing is terminating. Now, assume
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thatu|v is a signedA-path. By assumption,u|v is also a signedB-path, and its right-θ′-reversing
terminates, so there exists a witnessingθ′-grid. Now aθ′-grid of sizep× q is the juxtaposition
of pq θ-grids, whose existence shows that the right-θ-reversing ofu|v also terminates.

(ii) Right-θ′-reversing terminates inO(ℓ2) steps and all involvedB-paths have length inO(ℓ2).
As the familyB is finite, there exists a constant that bounds the length of any element ofB
considered as anA-path, and the claim follows.

Corollary 2.11. If θ is a short right-complement on a finite precategoryA, Algorithm 2.6 run-
ning on a signedA-path of lengthℓ terminates in O(ℓ2) steps.

Proof. If θ is short, the condition of Lemma 2.10 is satisfied withB equal to the familyÂ in
Notation 2.2, that is, the union ofA and the empty paths.

So, starting with an arbitrary right-complementθ, we can possibly show that right-θ-reversing
terminates successfully for all valid inputs by applying the following closure method:

Algorithm 2.12 (Termination of right-reversing).

Context: A precategoryA
Input: A right-complementθ onA
Output: A (minimal) subfamily ofA∗ that includesA and is closed underθ∗

1: A0 := A
2: repeat
3: if θ∗(s, t) is defined for alls, t ∈ Ai then ⊲ right-reversing may fail to terminate
4: Ai+1 := Ai ∪ {θ

∗(s, t) | s, t ∈ Ai}

5: else
6: return fail
7: until Ai+1 = Ai

8: return Ai

Example 2.13. Consider the right-complement of Figure 6 again. Starting with A0 = {a, b}
and applying Algorithm 2.12, we findA1 = A0 ∪ {ε, a|b, b|a}, andA2 = A1: here the pro-
cess terminates in one step, leading to{ε, a, b, a|b, b|a}. The existence of this 5 element family
that is closed under right-reversing implies that right-reversing is terminating with a quadratic
complexity upper bound.

When the closure underθ∗ is infinite, the situation is more complicated and there is nogeneral
result. Examples are known when right-reversing is always terminating but the time (resp. space)
complexity is more than quadratic (resp. linear): for instance, the right-reversing associated with
the right-complementθ defined on{a, b} by θ(a, b) = ε and θ(b, a) = a(bab)3ab is always
terminating, but the time (resp. space) complexity is cubic (resp. quadratic) (Dehornoy, 2012,
Example 10.3), whereas Dehornoy (2000, Proposition VIII.1.11) displays an example (with an
infinite family of generators) where right-reversing is terminating but the only known bound for
time complexity is a tower of exponentials of exponential height.

2.2. Establishing left-cancellativity

We now address our main problem, namely investigating a presented category〈A | R〉+ and,
in particular, trying to recognize whether it is left-cancellative. Here we consider the problem for
presentations of a certain syntactical type. This restriction allows for using right-reversing, and
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it is natural in our context as one can show that every Garsidefamily gives rise to a presentation
that is eligible for this approach (at least in the extended version alluded to in Remark 2.8).

Definition 2.14. A presentation (A;R) is calledpositiveif all relations ofR are of the formu = v
with u, vnonempty; it is calledright-complemented, associated with the right-complementθ, if R
consists of all relationss|θ(s, t) = t|θ(t, s) with (s, t) in the domain ofθ.

Note that, by definition, a right-complemented presentation is positive and that, if (A;R) is
a positive presentation, then the category〈A | R〉+ contains no nontrivial invertible element since
an empty path and a nonempty path cannot beR-equivalent. Saying that a presentation (A;R) is
right-complemented just means that it is positive and that,for all s, t inA, the familyR contains at
most one relation of the forms... = t... . The involved right-complement is short if the paths “...”
have length 0 or 1, that is, all relations inR are of the formu = v with u andv of length 1 or 2.
For instance, the presentation (a, b; ab = ba) is associated with the short right-complement of
Figure 3, whereas the presentation (a, b; aba = bab) is associated with the right-complement
of Figure 6 and Example 2.13. By contrast, the presentation (a, b; ab = ba, a2 = b2) is not
right-complemented since it contains two relations of the forma... = b... .

When a presentation is right-complemented, it is eligible for the associated right-reversing
transformation, leading in good cases to a practical methodfor recognizing left-cancellativity.
The first observation is that right-reversing gives a way to construct common right-multiples in
the associated category:

Lemma 2.15. Assume that(A;R) is a presentation associated with a right-complementθ. Then,
for all A-paths u, v, u′, v′ satisfyingu|v yθ v′ |u′, the paths u|v′ and v|u′ areR-equivalent.

Proof. By definition, each elementary square in the rectangular grid which is associated with
Algorithm 2.6 corresponds to a relation ofR.

Lemma 2.15 says in particular that, ifu, v areA-paths andu|v is right-θ-reversible to an
empty path, thenu andv areR-equivalent, that is, they represent the same element in thecate-
gory 〈A | R〉+. In our context, right-reversing will be useful only when the previous implication is
an equivalence.

Definition 2.16. If (A;R) is a presentation associated with a right-complementθ, we say that
right-reversing iscompletefor (A;R) if u|v yθ ε holds wheneveru andv represent the same
element in〈A | R〉+.

In other words, right-reversing is complete if it always detects equivalence. The interest of
introducing completeness here is the following easy result:

Lemma 2.17. Assume that(A;R) is a presentation associated with a right-complementθ and
right-reversing is complete for(A;R). Then the category〈A | R〉+ is left-cancellative.

Proof. It is sufficient to prove that, ifsbelongs toA andu, v areA-paths such thats|u ands|v are
R-equivalent, thenu andv areR-equivalent. Now, as right-reversing is complete, the hypothesis
implies thatu|s|s|v right-θ-reverses to an empty path. Now the first step in the reversingprocess
necessarily consists in deletings|s. We deduce thatu|v must right-θ-reverse to an empty path,
which, by Lemma 2.15, implies thatu andv areR-equivalent.

We are thus led to look for completeness criteria.
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Definition 2.18. Assume thatθ is a right-complement on a precategoryA. For r, s, t in A,
we say thatθ satisfies thecube conditionat (r, s, t) if either neither ofθ∗(θ∗(r, s), θ∗(r, t)) and
θ∗(θ∗(s, r), θ∗(s, t)) is defined, or both are defined and

θ∗(θ∗(θ∗(r, s), θ∗(r, t)), θ∗(θ∗(s, r), θ∗(s, t)))

is empty.

Proposition 2.19. (Dehornoy et al., 2013a, Proposition II.4.11) Assume that(A;R) is a presen-
tation associated with a right-complementθ and that at least one of the following holds:

(i) the right-complementθ is short
(ii) the presentation(A;R) is right-Noetherian.
Then right-reversing is complete for(A;R) if and only if, for all pairwise distinct s, t, r in A

with the same source, the cube condition for(r, s, t) is satisfied.

Corollary 2.20. If the equivalent conditions of Proposition 2.19 are satisfied, then the cate-
gory 〈A | R〉+ is left-cancellative.

Example 2.21. Both presentations (a, b; ab = ba) and (a, b; aba = bab) are eligible for Propo-
sition 2.19 and Corollary 2.20. Indeed, the former is associated with a short right-complement,
whereas the latter is associated with a right-complement that is not short, but definingλ(w) to
be the length ofw and noting that the (unique) relation of the presentation consists of two words
with the same length, Lemma 1.6 yields that the presentationis right-Noetherian. Then, in order
to apply Proposition 2.19 and Corollary 2.20, we need to check that the cube condition is satisfied
for all triples of pairwise distinct elements of{a, b}, which is vacuously true. We conclude that
both monoids〈a, b | ab = ba〉+ (the free Abelian monoidN2) and〈a, b | aba = bab〉+ (the 3-strand
braid monoidB+3) are left-cancellative.

Example 2.22.Recall Example 2.5 and the short right-complementθ defined there. It is routine
to check that the cube condition is satisfied for allr, s, t in A. Thus, by Proposition 2.19 and
Corollary 2.20, the category〈A | R〉+ defined by the presentation (A;R), whereR is the set of
relations given byθ, is left-cancellative. Note, however, that〈A | R〉+ is not isomorphic to the
wreathed free Abelian monoidT , as the relatione|e = 1T which holds inT is not described
by θ, and hence not included inR. In fact,T is the quotient of〈A | R〉+by the relatione|e = 1.

Remark 2.23. Proposition 2.19 does not exhaust all known types of presentations for which
right-reversing is complete. For instance, the presentation (a, b; a = bab) of the Klein bottle
monoid is not eligible for Proposition 2.19, since the associated right-complementθ is neither
short nor right-Noetherian since no mapλ may satisfyλ(a) = λ(bab) > λ(ab). However right-
reversing is complete and terminating for this presentation, as well as for a number of similar
presentations (Dehornoy, 2012).

2.3. Recognizing Garside

Assuming that (A;R) is a right-complemented presentation and the category〈A | R〉+ has
been shown to be left-cancellative using the method explained in Subsection 2.2, our next task is
to recognize that some subfamily is possibly a Garside family. Once again the task will turn out
to be easy whenever right-reversing is complete for the considered presentation.

The main observation is that, in the above context, the category 〈A | R〉+ admits local right-
lcms, that is, any two elements that admit a common right-multiple admit a right-lcm.
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Lemma 2.24. Assume that(A;R) is a presentation associated with a right-complementθ and
right-reversing is complete for it. Then, for allA-paths u, v with the same source, the ele-
ments[u], [v] admit a common right-multiple in〈A | R〉+ if and only if the right-reversing ofu|v
terminates, in which case we have[u] ∨ [v] = [u|θ∗(u, v)] and[u] \ [v] = [θ∗(u, v)].

Proof. Assume that [u] and [v] admit a common right-multiple in
the category〈A | R〉+. This means that there existA-pathsu′, v′ such
thatu|v′ andv|u′ areR-equivalent. As right-reversing is complete,
this implies thatv′ |u|v|u′ right-reverses to an empty path. Decom-
pose the associated reversing grid as shown aside. The assumption
that the reversing ofv′ |u|v|u′ successfully terminates implies in par-
ticular that the reversing ofu|v successfully terminates, that is, the
pathsθ∗(u, v) andθ∗(v, u) are defined.

v u′

θ∗(u, v)

u

v′

θ∗(v, u)

The diagram then shows that [u|v′] is a right-multiple of [u|θ∗(u, v)] in 〈A | R〉+, so the latter,
which depends only on [u] and [v], is a right-lcm of these elements.

Applying the criterion of Lemma 1.14, we immediately deducea method for recognizing Gar-
side families in the right-Noetherian case. Actually, we obtain more: instead of just a YES/NO
answer for a candidate-subfamily, we obtain the existence and a characterization of the small-
est Garside family that includes the given family. Hereafter, for B ⊆ A∗, we write [B] for
{[w] | w ∈ B}.

Algorithm 2.25 (Smallest Garside family).

Context: A right-Noetherian right-complemented presentation (A;R) for which right-reversing
is complete

Input: A finite subfamilyB ofA∗ that includesA
Output: A subfamily ofA∗ that represents the smallest Garside family of〈A | R〉+ that in-

cludesB ∪ 1A if the algorithm terminates successfully
1: enumerateB as{w1, ... ,wn} and setB̂ := [w1, ... ,wn]
2: i := 2
3: while i 6 |B̂| do
4: for j := 1 to i − 1 do
5: if θ∗(wi ,w j) is definedthen ⊲ right-reversing may fail to terminate
6: Include(B̂, θ∗(wi ,w j))
7: Include(B̂, θ∗(w j ,wi))
8: Include(B̂, wi |θ

∗(wi ,w j))
9: Include(B̂, w j |θ

∗(w j ,wi))
10: else
11: return fail
12: i := i + 1
13: return B̂ ∪ 1A

14: procedure Include(B̂, w) ⊲ appendw to B̂, unlessB̂ contains a path equivalent tow.
15: if 6 ∃i ∈ {1, ... , |B̂|} with θ∗(w,wi) = θ∗(wi ,w) = ε− then
16: appendw to B̂
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Proposition 2.26. Assume that(A;R) is a finite right-Noetherian right-complemented presen-
tation for which right-reversing is complete andB is a finite subfamily ofA∗ that includesA.
Then there exists a smallest finite Garside family ofC including [B] ∪ 1C if and only if Algo-
rithm 2.25 successfully terminates, in which case the returned family of paths represents that
Garside family.

Proof. By Lemma 2.24, any two elements of〈A | R〉+ that admit a common right-multiple admit
a right-lcm, so〈A | R〉+ is eligible for Lemma 1.14. Hence a subfamilyS that includesA ∪ 1A
is a Garside family if and only if, for alls, t in S with a common right-multiple,s∨ t ands\ t
belong toS. So, by Lemma 2.24 again, a familŷB ofA-paths represents a Garside family if and
only if, for all u, v in B̂, the pathsu|θ∗(u, v) andθ∗(u, v) areR-equivalent to at least one element
of B̂. It follows that there exists a smallest Garside family thatincludes [B], namely the smallest
family of words that includesB and is such that, for allu, v in B̂, the pathsu|θ∗(u, v) andθ∗(u, v)
areR-equivalent to elements of̂B.

That smallest subfamilŷB is precisely what Algorithm 2.25 computes. Indeed, what the
latter does is to consider systematically all pairs (wi ,w j) and, for each of them, test whether
θ∗(wi ,w j) (lines 6 and 7) as well aswi |θ

∗(wi ,w j) (lines 8 and 9) areR-equivalent to some existing
pathwi of the list and, if not, append the missing paths to the list. Note that, as right-reversing is
complete, two pathsw,w′ are equivalent if and only ifθ∗(w,w′) andθ∗(w′,w) exist and are empty
(line 15).

Example 2.27. Consider again the presentation (a, b; aba = bab). Running Algorithm 2.25 on
the family {a, b} yields {ε, a, b, a|b, b|a, a|b|a}, a family of words representing the well known
smallest Garside family{1, a, b, ab, ba,∆} of the braid monoidB+3 that includes 1; here and ev-
erywhere in the sequel, we use∆ for aba.

Remark 2.28. If right-reversing is not always terminating, that is, if some elements of the con-
sidered category have no common right-multiple although they share the same source, Algo-
rithm 2.25 may never terminate. Even in the case when right-reversing is always terminating, it
might happen that Algorithm 2.25 does not terminate: for instance, in the case of (a, b; ab2 = ba),
starting from{a, b}, even Algorithm 2.25 does not terminate in finite time: indeed, we have then
θ∗(a, bn) = b2n, and the family{̂a, b} is the infinite family{ε, a} ∪ {b2n

| n > 0}. However, it can
be shown (Dehornoy, 2002, Lemme 1.9) that, when the closure under \ is finite, then the closure
under\ and∨ is necessarily finite.

2.4. Further questions

In the previous subsections, we showed how to establish left-cancellativity and to recognize
Garside families starting from a presentation. We now briefly address further relevant questions,
namely recognizing Ore categories, establishing the existence of lcms, and recognizing strong
and bounded Garside families.

Establishing right-cancellativity
Right-reversing is not suitable here, and no practical method is known for establishing right-

cancellativity directly. However an obvious solution is toconsider the opposite category and the
opposite presentation, that is, to switch left and right everywhere, and apply the previous meth-
ods. Equivalently, we can work with the initial presentation and apply the symmetric counterpart
of right-reversing, naturally calledleft-reversing: whereas right-reversing consists in iteratively
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replacing subpaths of the forms|t with θ(s, t)|θ(t, s), left-reversing consists in replacing subpaths

of the formt|s with θ̃(s, t)|̃θ(t, s) whenθ̃ is a left-complementon the considered precategoryA,
namely a partial map ofA2 toA∗ such that̃θ(s, s) is empty for everys in A and that, if̃θ(s, t)
is defined, thens andt have the same target,θ̃(t, s) is defined, and both̃θ(s, t)|t andθ̃(t, s)|s are
defined and have the same source. In terms of diagrams, this corresponds to constructing a grid
starting from the bottom and the right, instead of from the top and the left. Then the counter-
part of Corollary 2.20 gives a criterion for establishing that the category〈A | R〉+ defined by a
left-complemented presentation (A;R) is right-cancellative.

Establishing the existence of common multiples
Here two different methods can be used. If (A;R) is a presentation associated with a right-

complementθ, then the existence of common right-multiples in〈A | R〉+ is directly connected with
the termination of right-reversing since, as proved in Lemma 2.24, two elements [u] and [v] admit
a common right-multiple (and even a right-lcm) in〈A | R〉+ if and only if the right-θ-reversing
of u|v successfully terminates in finite time. We deduce the following sufficient condition:

Proposition 2.29. If (A;R) is a presentation associated with a right-complementθ and Algo-
rithm 2.12 running on(A;R) succeeds, any two elements of〈A | R〉+with the same source admit
a common right-multiple.

Another approach can be used once a Garside familyS is known. It is based on the following
result, which reduces the existence of common multiples forarbitrary elements to the existence
of common multiples inside the Garside family.

Proposition 2.30. Assume thatS is a Garside family in a left-cancellative categoryC. Then any
two elements ofC with the same source admit a common right-multiple if and only if any two
elements ofS with the same source admit one.

Proof. Obviously the condition is necessary. On the other hand, assume that any two elements
of S with the same source admit a common right-multiple. By Lemma1.15, for alls, t in S♯ with
the same source, there exists′, t′ in S♯ satisfyingst′ = ts′. Now, consider arbitrary elementsf , g
of C with the same source. AsS♯ generatesC, there exists1, ... , sp andt1, ... , tq in S♯ satisfying
f = s1 ···sp andg = t1 ··· tq. Using the result above, one inductively constructs ap× q rectangular
grid based ons1, ... , sp andt1, ... , tq with edges inS♯, and the diagonal of the grid (as well as any
path from the top–left corner to the bottom–right corner) represents a common right-multiple
of f andg.

Note that the construction of a grid in the proof of Proposition 2.30 is directly reminiscent
of a right-reversing process—more exactly, of its non-deterministic extension alluded to in Re-
mark 2.8 as there is no uniqueness of the elements calleds′, t′ in general.

It should be clear that Proposition 2.30 directly leads to aneffective method for deciding the
existence of common right-multiples in the case of a finite Garside family, see Example 2.33
below.

A symmetric argument is possible for common left-multiples. However, as the definition of a
Garside family is not invariant under exchanging left and right, the result takes a different form.
In particular, it only gives a sufficient condition that need not be necessary in general.

Proposition 2.31. AssumeS is a Garside family in a left-cancellative categoryC and, for all s, t
in S♯ with the same target, there exist s′, t′ in S♯ satisfying s′t = t′s. Then any two elements ofC
with the same target admit a common left-multiple.
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The proof is symmetric to that of Proposition 2.30, the inductive step consisting now in
constructing a rectangular grid starting from the bottom and the right. Again Proposition 2.31
leads to an effective method for deciding the existence of common left-multiples in the case of a
finite Garside family, see Example 2.33.

Establishing the existence of lcms
As for the existence of right-lcms (their computation will be addressed in Subsection 4.4),

we shall just mention an algorithmically important consequence of Lemma 1.15:

Proposition 2.32. Assume thatS is a Garside family in a left-cancellative categoryC. ThenC
admits right-lcms (resp. local right-lcms) if and only if any two elements s, t of S♯ with the
same source (resp. that admit a common right-multiple inS♯) admit a right-lcm r insideS♯, this
meaning that r belongs toS♯ and every common right-multiple of s and t that lies inS♯ is a
right-multiple of r.

Proof. By Lemma 1.15, a common right-multiple of two elements ofS♯ must be a right-multiple
of some common right-multiple that lies inS♯. So it is enough to consider right-multiples lying
in S♯, and we deduce that two elements ofS♯ admit a right-lcm inC if and only if they admit
one insideS♯. Then (the proof of) Proposition 2.30 enables one to go fromS♯ to products of
elements ofS♯, that is, to arbitrary elements ofC.

We can thus establish the possible existence of right-lcms by exclusively inspecting right-
multiples inside the considered Garside family.

Recognizing strong and bounded Garside families
So far, we have obtained methods for possibly establishing that a category is left- or right-Ore.

Deciding whether a given Garside familyS is strong is then easy whenS is finite and an effective
method is available for deciding, for allf , g, h, whetherh is a left-lcm of f andg. Note that, by
the counterpart of Lemma 2.24, such a method exists wheneverthe presentation is associated
with a left-complement for which left-reversing is complete. Finally, deciding whether a finite
Garside family is bounded is easy, as it only requires testing divisibility relations.

Example 2.33. We continue with the presentation (a, b; aba = bab) of the monoidB+3. In
Example 2.27, we identified the Garside familyS = {1, a, b, ab, ba,∆} (where we recall∆ is
aba). It is clear that∆ is a right-multiple of every element ofS. By Proposition 2.30, we
conclude that any two elements ofB+3 admit a common right-multiple. Next, we easily check
the existence of right-lcms insideS and, by Proposition 2.32, conclude thatB+3 admits right-lcms
(alternatively one can invoke Lemma 2.24 here as the monoid contains no nontrivial invertible
element).

Similarly,∆ is also a common left-multiple of each element ofS♯, which isS, so, by Propo-
sition 2.31, we deduce that any two elements ofB+3 admit a common left-multiple—whence a
left-lcm by the symmetric counterpart of Lemma 2.24.

Finally, as every element ofS is both a left- and a right-divisor of∆, we deduce that the
Garside familyS is bounded by∆. So, in particular, it is strong.

Example 2.34. Recall the wreathed free Abelian monoidT from Example 1.11. We will see in
Example 3.21 thatS = {a, b,∆}, where∆ = ab = ba, is a Garside family inT .

Proposition 2.30 yields that any two elements ofT admit a common right-multiple, as∆ is
a right-multiple of every element ofS. Moreover, we haveS♯ = {1, a, b,∆, e, ae, be,∆e}, and
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it is easily verified that for anys, t in S♯ there exists′, t′ in S♯ satisfyings′t = t′s, as well as a
right-lcm r of s andt insideS♯. Hence, any two elements ofT admit a common left-multiple
and a right-lcm by Proposition 2.31 respectively Proposition 2.32. As every element ofS is both
a left- and a right-divisor of∆, the Garside familyS is bounded by∆, and thus strong.

3. Recognizing Garside families, case of a germ

We now consider the same questions as in Section 2, namely establishing left-cancellativity
and recognizing Garside families, when the ambient category is specified by giving either the
complete multiplication table (Subsection 3.1), or a germ,defined to be a fragment of the mul-
tiplication table that contains enough information to determine the latter unambiguously (Sub-
sections 3.2 and 3.3). In this case, one obtains a compact method that enables one to treat both
questions (left-cancellativity and Garside family) simultaneously.

3.1. Using the complete multiplication table

We first quickly consider the case of a finite category. Such a category can be specified by
an exhaustive enumeration of its elements, its source and map functions, and its multiplication
table, which all are finite data. All questions are then easy.

First, for a finite category with an explicit multiplicationtable, left-cancellativity can be
decided by an exhaustive inspection. Next, the left-divisibility relation is finite, so checking
the condition (1.9) is easy and, for every subfamilyS of C, one can construct a list of allS-
greedy paths of length two.A priori, it is not clear that this is sufficient to recognize a Garside
family, since the definition of the latter mentions no upper bound on the length of the considered
decompositions. However, such a bound exists, which limitsboth the elements to be considered
and the length of the candidate-decompositions.

Lemma 3.1. (Dehornoy et al., 2013b, Proposition 3.1) A subfamilyS of a left-cancellative
categoryC is a Garside family if and only ifS♯ generatesC and every element of(S♯)2 admits
anS-normal decomposition of length two.

We deduce

Proposition 3.2. Assume thatC is a finite categoryC with n elements, and that the source and
target maps onC and the multiplication table ofC are given. Then the following hold:

(i) It is decidable in time O(n2) whetherC is left-cancellative.
(ii) The left-divisibility relation can be computed in time O(n2).
(iii) If C is left-cancellative andS is a subfamily ofC, then it is decidable in time O(n6)

whetherS is a Garside family inC.

Proof. We can test whetherC is left-cancellative and compute the left-divisibility relation as
follows: For eachf in C, iterate over allg in C, keeping track of the productsf g that occur;C is
left-cancellative if and only if no such product occurs morethan once, and the occurring products
are precisely the right-multiples off . Hence (i) and (ii) hold.

Comparingf g to 1x, wherex is the source off for all f , g in C is sufficient to determineC×,
and thenS♯ can be obtained by computing all productssgfor s in S andg in C×. Thus computing
S♯ takes timeO(n2). To verify thatS♯ generatesC, one computes, fori = 2, 3, ..., the set (S♯)i

by considering all productsgswith g in (S♯)i−1 ands in S♯ until this sequence stabilizes, which
happens after at mostn steps. Thus verifying thatS♯ generatesC takes timeO(n3). Finally, by
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Lemma 3.1, one can decide whether a subfamilyS of C is a Garside family by checking for
each element of (S♯)2 all possibleS-paths of length two against condition (1.9); as each test of
condition (1.9) involvesO(n2) operations, this takes timeO(n6), completing the proof of (iii).

Note that, ifC is infinite,S being finite does not make recognizingS-greediness decidable
in general, as (1.9) contains a universal quantification over an arbitrary elementf of C and, so,
in that case, Lemma 3.1 is of no use.

Remark 3.3. The above analysis partly extends to the case when the category C is infinite but all
operations are computable. For instance, if multiplication, viewed as a partial function ofC2 toC,
is computable, then left-cancellativity is aΠ1

1 condition: by enumerating all triples (f , g, g′) with
g , g′ and checking whetherf g and f g′ are equal, one finds a counter-example in finite time if
one exists, but one never obtains an answer when the categoryis left-cancellative. Similarly, left-
divisibility is a Σ1

1 condition and, therefore,S-greediness, which entails an additional existential
quantification over an arbitrary elementf of C, is aΠ1

2 condition.

3.2. Germs

For an infinite category, it is impossible to exhaustively enumerate the multiplication table.
However, in good cases, it may happen that some finite fragment of the latter determines the
category and provides methods for establishing propertiesof the latter. This is the germ approach
that we now introduce.

Definition 3.4. A germ is a triple (S, 1S, • ) whereS is a precategory,1S is a subfamily ofS
consisting of an element 1x with source and targetx for each objectx, and • is a partial map
of S[2] intoS that satisfies

if s• t is defined, its source is the source ofsand its target is the target oft, (3.5)

1x • s= s= s• 1y hold for eachs in S(x, y), (3.6)

if r • s ands• t are defined, then (r • s) • t is defined if and only ifr • (s• t) is,
in which case they are equal.

(3.7)

The germ is calledleft-associativeif, for all r, s, t in S, it satisfies

if ( r • s) • t is defined, thens• t is defined, (3.8)

and it is calledleft-cancellativeif, for all s, t, t′ in S, it satisfies

if s• t ands• t′ are defined and equal, thent = t′ holds. (3.9)

We shall usually writeS for a germ whose domain isS. WheneverS is a subfamily of a
categoryC, one obtains a germ by considering the restriction of the product ofC toS, that is, the
partial binary operation• onS defined bys• t = st wheneverst is defined inC and it belongs
toS. In the other direction, starting with a germ, we can always construct a category.

Definition 3.10. If S is a germ, we denote byCat(S) the category〈S | R•〉+, whereR• is the family
of all relationss|t = s• t with s, t in S ands• t defined.

When we start with a categoryC and a subfamilyS of C, it may or may not be the case that
the induced germ onS contains enough information to reconstruct the initial categoryC.

25



Example 3.11. Let us consider the braid monoidB+3 again. If we
takeA = {1, a, b}, the table of the induced germ is shown aside, and
the derived monoid is the free monoid based ona, b, hence one that
is not isomorphic toB+3.

• 1 a b

1 1 a b
a a

b b

By contrast, when we start withS = {1, a, b, ab, ba,∆}, the table of the induced germ is less
hollow, and the derived monoid is indeed isomorphic toB+3.

• 1 a b ab ba ∆

1 1 a b ab ba ∆

a a ab ∆

b b ba ∆

ab ab ∆

ba ba ∆

∆ ∆

The good point is that, as in the above example, the germ induced by a Garside family always
contains enough information to reconstruct the initial category:

Lemma 3.12. (Dehornoy et al., 2013b, Proposition 4.8) IfS is a Garside family in a left-
cancellative categoryC andS is the germ induced onS, the categoryCat(S) is isomorphic
to C.

3.3. Establishing left-cancellativity and recognizing Garside
Lemma 3.12 precisely shows that using a germ to specify a category is relevant here: if we

start with a good candidate for a Garside family, the germ will indeed define the category.

Definition 3.13. A germS is said to be aGarside germif S embeds inCat(S), the latter is
left-cancellative, and (the image of)S is a Garside family in that category.

So, for instance, the germs in Example 3.11 are Garside germs. By contrast, below is an
example of a germ that is not a Garside germ although it definesthe ambient monoid.

Example 3.14. Let M = 〈a, b | ab = ba, a2 = b2〉+, andS
consist of 1, a, b, ab, a2. The germS induced onS is shown
aside. It is left-associative and left-cancellative. The category
(here the monoid)Cat(S) is (isomorphic to)M, as the relations
a|a = a2 = b|b anda|b = ab = b|a belong to the familyR•.
HoweverS is not a Garside family inM, asa3 admits noS-
normal decomposition:a2|a is notS-greedy asab left-dividesa3

but nota2, andab|b is notS-greedy asa2 left-dividesa3 but
notab.

• 1 a b a2 ab

1 1 a b a2 ab

a a a2 ab

b b ab a2

a2 a2

ab ab

What we do below is to develop algorithms to decide whether a (finite) germ is a Garside
germ. Note that this includes establishing that the defined category is left-cancellative. Our
method is based on a result by Dehornoy et al. (2013b).

Definition 3.15. Assume thatS is a germ.
(i) We define thelocal left-divisibility relation4S of S by saying thats 4S t holds if and

only if there existst′ in S satisfyingt = st′. We writes ≺S t for the conjunction ofs 4S t and
t 64S s, and we call a sequences1, ... , sn in S non-ascendingif si 6≺S sj holds for 16 i < j 6 n.

(ii) For s1|s2 in S[2] , we putJS(s1, s2) = {t ∈ S | s1 • t is defined andt 4S s2}.
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Proposition 3.16. (Dehornoy et al., 2013b, Proposition 5.9) A germS is a Garside germ if
and only if it is left-associative, left-cancellative, andif, for any s1, s2 in S there exists a4S-
greatest element inJS(s1, s2) (that is, an element r inJS(s1, s2) such that t4S r holds for all t
in JS(s1, s2)).

Corollary 3.17. If S is a Garside germ, if s1|s2 is in S[2] , if t is a 4S-greatest element in the
setJS(s1, s2), and if r is an element ofS satisfying s2 = t • r, then the path s1t|r is anS-normal
decomposition of s1s2 in Cat(S).

Algorithm 3.18 (Recognizing a Garside germ).

Input: A finite germS
Output: true if S is a Garside germ, andfalse otherwise

1: isLeftCancellative, 4S := LeftDivisibility(S)
2: if notisLeftCancellative or not IsLeftAssociative(S) then
3: return false
4: S′ := NonAscending(S, 4S)
5: for s1|s2 in S[2] do
6: if not JHasGreatestElement(S′, s1, s2, 4S) then
7: return false
8: return true

9: function IsLeftAssociative(S)
10: for r |s|t in S[3] do
11: if (r • s) • t↓ and nots• t↓ then
12: return false
13: return true

14: function LeftDivisibility(S) ⊲ whetherS is left-cancellative and, if it is, a table (denoted
by 4S) with the truth values [[s 4S t]] of s 4S t for s, t in S

15: for s ∈ S do
16: for t ∈ S do
17: [[ s 4S t]] := false
18: for t ∈ S do
19: if s• t↓ then
20: if [[ s 4S s• t]] then
21: return false
22: else
23: [[ s 4S s• t]] := true
24: return true, 4S

25: function NonAscending(S, 4S) ⊲ S as a non-ascending sequence
26: S′ := [ ]
27: for s ∈ S do
28: if ∃i ∈ {1, ... , |S′|} with S′[i] ≺S s then
29: inserts intoS at position min({i ∈ {1, ... , |S′|} | S′[i] ≺S s})
30: else
31: appends toS′

32: return S′
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33: function JHasGreatestElement(S′, s1, s2, 4S) ⊲ S′ non-ascending
34: r := ⊥
35: for i := 1 to |S′| do
36: if s1 •S

′[i]↓ andS′[i] 4S s2 then ⊲ S′[i] ∈ JS(s1, s2)
37: if r = ⊥ then
38: r := S′[i]
39: else ifnotS′[i] 4S r then
40: return false
41: return true

Proposition 3.19. Assume thatS is a finite germ with|S| = n and that the partial binary opera-
tion • can be computed in time O(1). Then the following hold; cf. Algorithm 3.18.

(i) The functionIsLeftAssociative decides in time O(n3) whetherS is left-associative.
(ii) The functionLeftDivisibility decides whetherS is left-cancellative and, if it is,

computes the left-divisibility relation4S onS with respect to• in time O(n2).
(iii) Given the left-divisibility relation4S, the functionNonAscending computes a non-

ascending sequence containing the elements ofS in time O(n2).
(iv) Given s1|s2 in S[2] , a non-ascending sequenceS′ containing the elements ofS, and the

left-divisibility relation4S, the functionJHasGreatestElement decides in time O(n) whether
JS(s1, s2) has a4S-greatest element.

(v) It is decidable in time O(n3) whetherS is a Garside germ.

Proof. Claims (i) and (ii) are obvious from the pseudocode in Algorithm 3.18 and the definitions.
The sequenceS′ constructed in the functionNonAscending is non-ascending at any time by

induction: If there is noi satisfyingS′[k] ≺S s, the induction step is trivial. Otherwise, one has
S′[ j] 6≺S s for all j < i by the choice ofi, ands 6≺S S′[ j] for j > i, asS′[k] ≺S s≺S S′[ j] would
contradict the induction hypothesis. It is clear from the pseudocode that the time complexity is
O(n2), so claim (iii) holds.

The functionJHasGreatestElement tests the elements ofS for membership inJS(s1, s2)
in non-ascending order. Moreover, the setJS(s1, s2) is non-empty, as it containsεx, wherex
is the target ofs1. Hence, the setJS(s1, s2) has a4S-greatest element if and only if thefirst
encountered element is an upper bound; this is what the function JHasGreatestElement tests.
It is clear from the pseudocode that the time complexity isO(n), so claim (iv) holds.

Claim (v) then follows with Proposition 3.16.

Example 3.20. We apply Algorithm 3.18 to the second germ of Example 3.11, that is, we have
S = {1, a, b, ab, ba,∆} and • is the partial binary operation onS induced by the multiplication
in B+3 .

One readily verifies that the germ is left-associative and left-cancellative, and computes the
left-divisibility relation4S which is given in the left table below.

We obtainS′ = (∆, ab, ba, b, a, 1) and the non-ascending sequences describing the sets
JS(s1, s2) given in the right table. For each setJS(s1, s2), the first listed element is a maxi-
mum, showing thatS is a Garside germ.
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4S 1 a b ab ba ∆

1 4 4 4 4 4 4

a 4 4 4

b 4 4 4

ab 4 4

ba 4 4

∆ 4

JS 1 a b ab ba ∆

1 (1) (a, 1) (b, 1) (ab, a, 1) (ba, b, 1) S′

a (1) (1) (b, 1) (1) (ba, b, 1) (ba, b, 1)
b (1) (a, 1) (1) (ab, a, 1) (1) (ab, a, 1)
ab (1) (a, 1) (1) (a, 1) (1) (a, 1)
ba (1) (1) (b, 1) (1) (b, 1) (b, 1)
∆ (1) (1) (1) (1) (1) (1)

Example 3.21. Consider again the wreathed
free Abelian monoidT from Example 1.11,
the familyS = {a, b,∆} in T , where∆ = ab,
and the germS♯ which is induced on the set
S♯ = {1, a, b,∆, e, ae, be,∆e}. The germS♯ is
shown on the right.

The category (here the monoid)Cat(S♯) is
(isomorphic to)T , as the relationsa|b = ∆ =
b|a, e|a = be = b|e ande|e = 1 belong to the
family R•. We apply Algorithm 3.18.

• 1 a b ∆ e ae be ∆e

1 1 a b ∆ e ae be ∆e

a a ∆ ae ∆e

b b ∆ be ∆e

∆ ∆ ∆e

e e be ae ∆e 1 b a ∆

ae ae ∆e a ∆

be be ∆e b ∆

∆e ∆e ∆

One readily verifies that the germ is left-associative and left-cancellative, computes the left-
divisibility relation 4

S♯
as well as the setsJ

S♯
(s1, s2) for s1, s2 in S♯, and verifies that each set

J
S♯

(s1, s2) has a maximal element. The left divisibility relation is given in the left table below.
The entry in rows1 and columns2 of the right table shows a maximal element ofJ

S♯
(s1, s2).

(The maximal elements are only unique up to multiplication by the invertible elemente.)

4
S♯

1 a b ∆ e ae be ∆e

1 4 4 4 4 4 4 4 4

a 4 4 4 4

b 4 4 4 4

∆ 4 4

e 4 4 4 4 4 4 4 4

ae 4 4 4 4

be 4 4 4 4

∆e 4 4

maxJ
S♯

1 a b ∆ e ae be ∆e

1 1 a b ∆ 1 a b ∆

a 1 1 b b 1 1 b b

b 1 a 1 a 1 a 1 a

∆ 1 1 1 1 1 1 1 1
e 1 a b ∆ 1 a b ∆

ae 1 a 1 a 1 a 1 a

be 1 1 b b 1 1 b b

∆e 1 1 1 1 1 1 1 1

In particular,S♯ is a Garside germ, that is,S♯ is a Garside family inT . By Lemma 3.1,S is
a Garside family if and only ifS♯ is, so we can conclude thatS = {a, b,∆} is a Garside family
in T .

3.4. Further questions

From that point, results are similar to those of Subsection 2.4: once a germ has been shown
to be a Garside germ, it is known to be a Garside family in its ambient category, and, for instance,
Propositions 2.30 and 2.31 directly apply for the existenceof common multiples. The only point
worth mentioning here is right-cancellativity: let us observe that a germ is a symmetric structure,
so applying the method of Subsection 3.3 to the opposite of the considered germS, that is, (S, •̃ )
with •̃ defined bys •̃ t = t • s, directly leads to a right-cancellativity criterion.
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4. Computing with a Garside family, positive case

We now turn to a different series of questions: here we no longer aim at deciding whether
the ambient category and a candidate family are relevant forthe Garside approach, but we as-
sume that they are and we aim at computing in the context so obtained. In this section, we
consider computations that take place inside the considered category, and postpone to the next
section the computations that take place in the groupoid of fractions. We shall successively con-
sider computing normal decompositions (Subsections 4.1 and 4.2), solving the Word Problem
(Subsection 4.3) and computing least common multiples (Subsection 4.4).

4.1. Computing normal decompositions from the left

By definition, a Garside family gives rise to distinguished decompositions for the elements of
the ambient category, namelyS-normal decompositions. The first natural algorithmic question is
to determine anS-normal decomposition of an elementg specified by an arbitrary decomposition
in terms ofS♯. So the question is, starting from anS♯-pathw, to find an equivalentS-normal
path. Here we shall use an incremental approach, starting from a solution in the case of length
two paths.

Definition 4.1. A subfamilyA of a left-cancellative categoryC satisfies
Property� if, for everys1|s2 inA[2] , there exists anA-greedy decomposi-
tion t1|t2 of s1s2 with t1 andt2 inA. In this case, a mapW that chooses, for
everys1|s2 inA[2] , a pair (t1, t2) as above is called a�-witnessonA. s2

t1

s1 t2

If S is a Garside family, then one easily shows that there exists a�-witness onS♯, that is,
every element of (S♯)2 admits anS-normal decomposition of length 2. Moreover, if the ambient
category admits no nontrivial invertible element, then, byProposition 1.12, the�-witness onS♯

is unique. Note that, if the Garside family was initially specified as a germ, then Corollary 3.17
directly provides a�-witness; see Table 1 for an example.

ε a b ab ba ∆

ε (1, 1) (a, 1) (b, 1) (ab, 1) (ba, 1) (∆, 1)
a (a, 1) (a, a) (ab, 1) (a, ab) (∆, 1) (∆, b)
b (b, 1) (ba, 1) (b, b) (∆, 1) (b, ba) (∆, a)
ab (ab, 1) (∆) (ab, b) (∆, b) (ab, ba) (∆, ba)
ba (ba, 1) (ba, a) (∆, 1) (ba, ab) (∆, a) (∆, ab)
∆ (∆, 1) (∆, a) (∆, b) (∆, ab) (∆, ba) (∆,∆)

Table 1: The �-witness on the Garside family {1, a,b, ab,ba,∆} in the braid monoid B+3: for every pair of ele-
ments (s1, s2), it specifies the unique normal decomposition of s1s2 of length 2. The values directly follow from
considering S as a germ and using the maximal J-function of Example 3.20.

Example 4.2. Consider the Garside germS♯ for the wreathed free Abelian monoidT from
Example 3.21. By the calculations done there, a�-witness onS♯ is given by Table 2.

Algorithm 4.3 (Left-multiplication—see Figure 7).

Context: A Garside familyS in a left-cancellative categoryC, a�-witnessW for S♯
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1 a b ∆ e ae be ∆e

1 (1, 1) (a, 1) (b, 1) (∆, 1) (1, e) (a, e) (b, e) (∆, e)
a (a, 1) (a, a) (∆, 1) (∆, a) (a, e) (a, ae) (∆, e) (∆, ae)
b (b, 1) (∆, 1) (b, b) (∆, b) (b, e) (∆, e) (b, be) (∆, be)
∆ (∆, 1) (∆, a) (∆, b) (∆,∆) (∆, e) (∆, ae) (∆, be) (∆,∆e)
e (e, 1) (be, 1) (ae, 1) (∆e, 1) (e, e) (be, e) (ae, e) (∆e, e)
ae (ae, 1) (∆e, 1) (ae, b) (∆e, b) (ae, e) (∆e, e) (ae, be) (∆e, be)
be (be, 1) (be, a) (∆e, 1) (∆e, a) (be, e) (be, ae) (∆e, e) (∆e, ae)
∆e (∆e, 1) (∆e, a) (∆e, b) (∆e,∆) (∆e, e) (∆e, ae) (∆e, be) (∆e,∆e)

Table 2:The �-witness on the Garside family {1, a,b,∆,e, ae,be,∆e} in the wreathed free Abelian monoid T : for
every pair of elements (s1, s2), it specifies the unique normal decomposition of s1s2 of length 2. The values directly
follow from considering S as a germ and using the maximal J-function of Example 3.21.

Input: An elementt of S♯ and anS-normal decompositions1| ··· |sp of an elementg of C such
that tg exists

Output: An S-normal decomposition oftg
1: t0 := t
2: for i increasing from 1 top do
3: (s′i , ti) :=W(ti−1, si)

4: return s′1| ··· |s
′
p|tp

t s1 s2 sp

s′1 s′2 s′p

t0 t1 t2 tp−1 tp

Figure 7:Algorithm 4.3: starting from t in S♯ and an S-normal decomposition of g, it returns an S-normal decom-
position of tg.

Proposition 4.4. Assume thatS is a Garside family in a left-cancellative categoryC, and W is
a �-witness forS♯. Then Algorithm 4.3 running on t and anS-normal decomposition s1| ··· |sp

of g returns anS-normal decomposition of tg. The function W is called p times.

Proof. By construction, the diagram of Figure 7 is commutative. By assumption,si |si+1 is S-
greedy for everyi, and, by the defining property of a�-witness,s′i |ti is S-normal for everyi.
Then the first domino rule (Lemma 1.17) implies thats′i |s

′
i+1 is S-normal. It is obvious from

Algorithm 4.3 that the functionW is invokedp times.

We can now computeS-normal decompositions for an arbitrary element ofC specified by an
arbitraryS♯-decomposition by iterating Algorithm 4.3.
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Algorithm 4.5 (Normal decomposition).

Context: A Garside familyS in a left-cancellative categoryC, a�-witnessW for S♯

Input: An S♯-decompositiont1| ··· |tp of an elementg of C
Output: An S-normal decomposition ofg

1: t0,i := ti for 1 6 i 6 p
2: for j decreasing fromp to 1do
3: for i increasing from 1 top− j (if any) do
4: (si, j−1, ti, j) :=W(ti−1, j , si, j)

5: sp− j+1, j−1 := tp− j, j

6: return s1,0| ··· |sp,0

Proposition 4.6. Assume thatS is a Garside family in a left-cancellative categoryC and W is a
�-witness forS♯. Then Algorithm 4.5 running on anS♯-decomposition t1| ··· |tp of an element g
of C returns anS-normal decomposition of g. The map W is appealed to p(p− 1)/2 times.

Proof. Consider thefor -loop for j and assume that before the execution of its body,s1, j | ··· |sp− j, j

is anS-normal decomposition oft0, j+1 ··· t0,p, which is alsot j+1 ··· tp; this condition is trivially
satisfied forj = p.

According to Proposition 4.4, the execution of lines 3-5 involves p − j invocations of the
mapW and produces anS-normal decompositions1, j−1| ··· |sp− j+1, j−1 of t0, j ··· t0,p that is, oft j ··· tp.
The claim then follows by induction.

Example 4.7. Consider the Garside familyS = {1, a, b, ab, ba,∆} and the elementg = bab2.
We begin with the empty word,S-normal decomposition of 1, and, starting from the right, we
multiply by the successive letters on the left using Algorithm 4.3 and the�-witness of Table 1,
removing factors equal to 1 after every step, thus findingb, b|b, ab|b and, finally,∆|b for the
(unique)S-normal decompositions ofb, b2, ab2, andg.

Example 4.8. In the wreathed free Abelian monoidT , consider the Garside familyS♯ from
Example 3.21 and the�-witness from Example 4.2. In order to compute anS-normal decompo-
sition of the elementg = be ae e b, we begin with the empty word as anS-normal decomposition
of the element 1 and repeatedly use Algorithm 4.3 to computeS-normal decompositions of the
elementsb, e b, ae e b andg, removing factors equal to 1 after every step. We obtainb, ae,∆e|e
and∆e|ae|e.

4.2. Computing normal decompositions using right-multiplication

Algorithm 4.3 is not symmetric: the construction starts from the left and moves to the right.
It is natural to wonder whether a symmetric right–to–left version exists. The answer depends on
the considered Garside familyS: if the latter satisfies the second domino rule (Lemma 1.32),the
previous constructions have counterparts based on right-multiplication.

Algorithm 4.9 (Right-multiplication—see Figure 8).

Context: A Garside familyS satisfying the second domino rule in a left-cancellative categoryC,
a�-witnessW for S♯

Input: An elementt of S♯, anS-normal decompositions1| ··· |sp of an elementg of C such that
gt is defined

Output: An S-normal decomposition ofgt
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1: tp := t
2: for i decreasing fromp to 1do
3: (ti−1, s′i ) :=W(si , ti)

4: return t0|s′1| ··· |s
′
p

s′1 s′2 s′p

s1 s2 sp t

t0 t1 t2 tp−1 tp

Figure 8:Algorithm 4.9: starting from an S-normal decomposition of g and t, it returns an S-normal decomposition
of gt.

Proposition 4.10(right-multiplication). Assume thatS is a Garside family satisfying the sec-
ond domino rule in a left-cancellative categoryC and W is a�-witness forS♯. Then Algo-
rithm 4.9 running on t inS♯ and anS-normal decomposition s1| ··· |sp of g in C returns an
S-normal decomposition of gt, if the latter is defined. The function W is invoked p times.

Proof. The commutativity of the diagram givest0s′1 ···s
′
p = s1 ···spt. Applying the second domino

rule to each two-square subdiagram of the diagram of Figure 8starting from the right, we see
that the sequencet0|s′1| ··· |s

′
q is S-greedy. As all entries lie inS♯, the sequence isS-normal.

By iterating Algorithm 4.9 (when applicable), we easily obtain a symmetric version of Algo-
rithm 4.5 and Proposition 4.6, that we shall not explicitly state.

Remark 4.11. The effect of the second domino rule is to shorten the computation ofcertain
normal decompositions. Indeed, assume thatt1| ··· |tq and s1| ··· |sp areS-normal paths andtqs1

is defined. By applying Proposition 4.10, we can compute anS-normal decomposition of the
productt1 ··· tqs1 ···sp by filling a diagram as in Figure 9. When valid, the second domino rule
guarantees that the path consisting of the firstp top edges followed byq vertical edges isS-
normal, that is, the triangular part of the diagram may be forgotten.

We conclude with an example of a Garside family that does not satisfy the second domino
rule: its existence shows that no uniform result for multiplication on the right is possible.

Example 4.12. For n > 2, let Mn = 〈a, b | ab
n = bn+1〉+. The method of Subsection 2.2 shows

thatMn is left-cancellative, and that any two elements ofMn that admit a common right-multiple
admit a right-lcm. On the other hand,Mn is not right-cancellative since we haveabn−1

, bn and
abn = bn+1. LetSn = {1, a, b, b2, ... , bn+1}, a subset ofMn with n+3 elements. Using Lemma 3.1,
one can check thatSn is a Garside family inMn.

Now the second domino rule is not valid forSn in Mn.
Indeed, the diagram aside is commutative, the pathsa|b and
bn+1|b areSn-greedy, and all edges corresponds to elements
of Sn. Howeverb|b is notSn-greedy sinceb2 lies in Sn. b b

a b

bn+1 bn+1 bn+1

4.3. Solving the Word Problem
We shall describe two solutions of the Word Problem for a left-cancellative category equipped

with a Garside family, one based on normal decompositions, and one based on reversing.
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s′1 s′p s′1+p s′q+p

s1 sp

t1

tq

t′1

t′q

Figure 9: Finding an S-normal decomposition of t1 ··· tqs1 ···sp when t1| ··· |tq and s1| ··· |sp are S-normal: using
Proposition 4.4, hence the first domino rule only, one determines the S-normal sequence s′1| ··· |s

′
q+p in pq+q(q−1)/2

steps; if the second domino rule is valid, the sequence t′1| ··· |t
′
q is already S-normal, and s′1| ··· |s

′
p|t
′
1| ··· |t

′
q is an S-

normal decomposition of t1 ··· tqs1 ···sp.

UsingS-normal decompositions
Whenever an effective method determining anS-normal decomposition is available, a so-

lution to the Word Problem is very close. However, due to the possible existence of nontrivial
invertible elements,S-normal decompositions need not be readily unique, so a finalcomparison
step is needed.

Definition 4.13. Assume thatC is a left-cancellative category andA is included inC. An =×-test
onA is a mapE of A2 to C× ∪ {⊥} satisfyingsE(s, t) = t whenevers, t are=×-equivalent, and
E(s, t) = ⊥ otherwise.

Algorithm 4.14 (Word Problem, positive case I).

Context: A left-cancellative categoryC, a Garside subfamilyS of C, a�-witnessW onS♯, an
=×-testE onS♯

Input: TwoS♯-pathsu, v
Output: true if u, v represent the same element ofC, andfalse otherwise

1: if src(u) , src(v) or trg(u) , trg(v) then
2: return false
3: else
4: use Algorithm 4.5 withW to find anS-normal paths1| ··· |sp representing [u]
5: use Algorithm 4.5 withW to find anS-normal patht1| ··· |tq representing [v]
6: return the value of CompareNormalPaths(s1| ··· |sp, t1| ··· |tq)

7: function CompareNormalPaths(s1| ··· |sp, t1| ··· |tq)
⊲ the paths should have the same source and the same target

8: x := source oft1 ; y := target oftq
9: e0 := 1x ; ti := 1y for q < i 6 max(q, p) ; sj := 1y for p < j 6 max(q, p)

10: for k := 1 to max(q, p) do
11: if E(ti, ei−1si) , ⊥ then
12: ei := E(ti , ei−1si)
13: else
14: return false
15: return [[ei = 1y]]
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Proposition 4.15. Assume thatS is a Garside family in a left-cancellative categoryC, W is a
�-witness onS♯, and E is an=×-test onS♯.

(i) Given twoS-normal paths u and v of length at mostℓ, the functionCompareNormalPaths
in Algorithm 4.14 decides in time O(ℓ) whether[u] = [v] holds.

(ii) Given twoS♯-paths u and v of length at mostℓ, Algorithm 4.14 decides in time O(ℓ2)
whether[u] = [v] holds.

Proof. (i) By Proposition 1.12, twoS-normal pathsu andvsatisfy [u] = [v] if and only if they are
C×-deformations of one another. The latter in turn is the case if and only ifE(ti , ei−1si) , ⊥ for all
i = 1, ... ,max(p, q) andemax(p,q) = 1y hold in lines 10-14 of the function CompareNormalPaths.
It is obvious that this test takes timeO(ℓ).

(ii) If u andv have different sources or different targets, clearly we have [u] , [v]. Otherwise,
one has [u] = [v] if and only if the paths computed in lines 4 and 5 of Algorithm4.14 represent
the same element. By Proposition 4.6, lines 4 and 5 of Algorithm 4.14 have a cost ofO(ℓ2) and
the lengths of the produced paths is at mostℓ. The claim then follows with (i).

Example 4.16. Consider once again the 3-strand braid monoidB+3. LetS be{1, a, b, ab, ba,∆}.
We saw in Example 2.27 thatS is a (minimal) Garside family inB+3 containing 1, and determined
in Table 1 a�-witness onS. As B+3 contains no nontrivial invertible element, testing for=×

reduces to testing equality.
As in Figure 6, consideru = a|b|b andv = b|a|b|b. Applying Algorithm 4.5, we obtain the

normal decompositionab|b of [u] and the normal decomposition∆|b of [v]. As ab and∆ are not
equal, hence not=×-equivalent, Algorithm 4.14 returnsfalse, that is, one has [u] , [v].

Example 4.17. Consider again the wreathed free Abelian monoidT from Example 4.8. An=×-
test onS♯ is given by the mapE defined on (S♯)2 by E(s, s) = 1 for s in S♯, E(se, s) = E(s, se) =
e for s in {1, a, b,∆}, andE(s, t) = ⊥ for all other pairs (s, t) in (S♯)2.

In Example 4.8, we obtained theS-normal decomposition∆e|ae|e of the elementg =
be ae e b. Similarly, Algorithm 4.5 yields theS-normal decomposition∆|be of the element
g′ = a be a.

Using the function CompareNormalPaths in Algorithm 4.14, we obtaine1 = E(∆,∆e) = e,
e2 = E(be, eae) = E(be, b) = e, ande3 = E(1, ee) = 1, and thus conclude that [g] = [g′] holds.

Using reversing
An alternative solution of the Word Problem that does not require computing a normal form

can be given using the reversing method of Subsection 2.1. Bydefinition, if the investigated
categoryC is specified using a right-complemented presentation (A;R) for which right-reversing
is complete, then twoA-pathsu, v represent the same element ofC if and only if the signed
pathu|v reverses to an empty path, that is, if and only if Algorithm 2.6 running onu|v returns
an empty path. This however provides a solution to the Word Problem only if right-reversing
is known to terminate in finite time. By Lemma 2.10, this happens whenever any two elements
with the same source admit a common right-multiple in the considered category, but nothing can
be said in more general cases.

Now the termination problem does not arise when one considers a presentation that is as-
sociated with a short right-complement, in which case the Word Problem can be solved using
reversing. The point here is that every Garside family givesrise to such a presentation:
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Lemma 4.18. Under the assumptions of Proposition 1.16, the obtained presentation(S;R) ofC
is associated with a short right-complement, and right-reversing is complete for this presenta-
tion.

Proof. Let θ be the partial map defined onS by θ(s, t) = s\ t. By definition, θ is a right-
complement onS and, by Lemma 1.15, it is short. Next, the associativity of the right-lcm
operation implies thatθ satisfies the cube condition for every triple of elements ofS. Then
Proposition 2.19, implies that right-reversing is complete for (S;R).

It follows that the presentation (S;R) is eligible for right-reversing and that the latter solves
the Word Problem.

Algorithm 4.19 (Word Problem, positive case II).

Context: A Garside familyS in a left-cancellative categoryC that admits unique local right-
lcms, the right-lcm selectorθ onS ∪ 1C

Input: TwoS-pathsu, v
Output: true if u, v represent the same element ofC, andfalse otherwise

1: ret := the return value of Algorithm 2.3 for right-complementθ and inputu|v
2: return [[ret = ε-]] ⊲ ret is either a positive–negative path or equal tofail

Lemmas 4.18 and 2.4 immediately imply:

Proposition 4.20.Assume thatS is a Garside family in a left-cancellative categoryC that admits
unique local right-lcms.

(i) Algorithm 4.19 solves the Word Problem ofC with respect toS.
(ii) If S is finite, the complexity of Algorithm 4.19 is quadratic in the length of the input paths.

Example 4.21. Consider once again the 3-strand braid monoidB+3. As seen in Example 2.27,
the five elements family{a, b, ab, ba,∆} is a (minimal) Garside family inB+3. The resulting

presentation ofB+3 is (a, b, ab, ba,∆;R), whereR consists of
(
5
2

)
relations (in which we leave

the concatenation sign to avoid ambiguities)a|ba = b|ab, a|b = ab, a|ba = ba|b, a|ba = ∆,
b|ab = ab|a, b|a = ba, b|ab = ∆, ab|a = ba|b,ab|a = ∆, ba|b = ∆. Starting, as in Example 4.16,
from the wordsu = a|b|b andv = b|a|b|b, we apply Algorithm 2.3 for the inputu|v, obtaining
w = ab|a (see Figure 10) and thus, asw is not empty, we conclude once again thatu andv are
not equivalent.

One of the benefits of the reversing approach is to provide at the same time a decision method
for the left-divisibility relation, as Lemma 4.18 also implies:

Proposition 4.22. If line 2 of Algorithm 4.19 is modified so that the algorithm returnstrue if
ret is a positive path, andfalse otherwise, the modified algorithm returnstrue if and only if
[u] left-divides[v] in C.

Remark 4.23. The above results extend to every left-cancellative category, possibly containing
nontrivial invertible elements and not admitting local right-lcms, at the expense of considering
a more general, non-deterministic version of reversing. But, as said in Remark 2.8, we do not
consider such extensions here.
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Figure 10:The grid associated with the right-reversing of u|v in Example 4.21; compare with the grid
of Figure 6: the final paths are equivalent, but not equal, which is not contradictory as they are obtained
in different ways.

4.4. Computing lcms
Right-lcms

It follows from Lemma 2.24 that, whenever a right-complemented presentation (A;R) is
given for a left-cancellative categoryC and right-reversing is complete for that presentation, then
right-reversing provides a direct algorithm for computingright-lcms when they exist.

Example 4.24. Consider again the presentation (a, b; aba = bab) of the braid monoidB+3 and
the elementsab2 andbab2. We saw in Example 2.21 that right-reversing is complete forthis
presentation. Now, we saw in Figure 6 that the wordb|b|a|b|a|b|b is right-reversible toa|b|a
and, therefore, we conclude that the right-lcm ofab2 andbab2 is ab2 ·ab (which is alsobab2 ·a).

Now, independently of the way the considered categoryC was initially specified, if one
happens to know a right-lcm selectorθ on a generating subfamilyA, we can use the latter, which
by definition is a right-complement, to right-reverseA-paths. If the right-selector is not short,
termination is not guaranteed but, if it is short, we immediately obtain:

Proposition 4.25. Assume thatθ is a short right-lcm selector on some generating familyA in a
left-cancellative categoryC that admits local right-lcms. For allA-paths u, v, if Algorithm 2.3
running onu|v returns a positive–negative path v′ |u′, then[u|v′] is a right-lcm of[u] and[v] in C;
if it returnsfail, then[u] and[v] admit no right-lcm inC. The complexity of the computation is
in O((‖u‖ + ‖v‖)2)

Proof. As observed in the proof of Lemma 4.18, right-θ-reversing must be complete in this case,
and Lemma 2.24 then gives the expected result. Alternatively, we can directly observe that, if
g1 f ′ is a right-lcm of f andg1 andg2 f ′′ is a right-lcm of f ′ andg2, theng1g2 f ′′ is a right-lcm
of f andg1g2, which inductively implies that the diagonal of every rectangle in a right-reversing
grid represents the right-lcm of the left and top edges.

The point here is that, by Lemma 4.18, every Garside family ina left-cancellative category
that admits right-lcms and does not contain any nontrivial invertible elements, gives rise to a short
right-lcm selector, and therefore is eligible for Proposition 4.25. Moreover, by Proposition 2.32,
the existence of right-lcms inC reduces to the existence of right-lcms insideS. It follows that,
whenS♯ is finite, one can effectively decide the existence of right-lcms for the elements ofS♯

and, in addition, obtain a right-lcm selector.
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Example 4.26. Starting with the Garside family{a, b, ab, ba,∆} in B+3, the right-lcm selectorθ
onS leads to the presentation of Example 4.21. Considering as inExample 4.24 the elements
ab2 andbab2, we find their right-lcm by right-θ-reversingb|b|a|b|a|b|b. As seen in Figure 10,
the latter word reverses toab|a, and we conclude once again that the right-lcm ofab2 andbab2

is ab2 · ab.

Remark 4.27. The above approach consisting in using the right-reversingtransformation asso-
ciated with a (short or non-short) right-lcm selectorθ on some subfamilyAmay work even when
A is not a Garside family, providedA generates the ambient categoryC and the family of all
relationssθ(s, t) = tθ(t, s) with s, t in A makes a presentation ofC. Interestingly, this is always
the case whenC is right-Noetherian, but the example of the Dubrovina-Dubrovin 4-strand braid
monoid (Dehornoy, 2012) shows that the property may fail in the general case.

Left-lcms
The case of left-lcms is symmetric, and we shall not say much:by the counterpart of Proposi-

tion 4.25, if there exists a short left-lcm-selectorθ̃ on a generating familyA, then left-̃θ-reversing
a positive–negative pathv|u possibly leads to a negative–positive pathu′ |v′ such thatu′ |v andv′ |u
represent the left-lcm of [u] and [v].

Remark 4.28. Even in the presence of nontrivial invertible elements, it may be possible to apply
Proposition 4.25, respectively its counterpart, and compute right-lcms by right-reversing and
left-lcms by left-reversing. We illustrate this remark by the following example.

Example 4.29. Recall the wreathed free Abelian monoid defined in Example 1.11. It is easily
verified from the multiplication table (cf. Example 3.21) that a short right-lcm selectorθ onS♯ is
given by the left hand table below, and that a short left-lcm selector̃θ onS♯ is given by the right
hand table below.

θ 1 a b ∆ e ae be ∆e

1 1 a b ∆ 1 a b ∆

a 1 1 b b 1 1 b b

b 1 a 1 a 1 a 1 a

∆ 1 1 1 1 1 1 1 1
e e be ae ∆e e be ae ∆e

ae e e ae ae e e ae ae

be e be e be e be e be

∆e e e e e e e e e

θ̃ 1 a b ∆ e ae be ∆e

1 1 1 1 1 e e e e

a a 1 a 1 ae ae e e

b b b 1 1 be e be e

∆ ∆ b a 1 ∆e ae be e

e 1 1 1 1 e e e e

ae b b 1 1 be e be e

be a 1 a 1 ae ae e e

∆e ∆ b a 1 ∆e ae be e

Algorithm 2.3, respectively its counterpart, can be used tocompute right-lcms and left-lcms inT .
For example, usingθ to right-reverse the negative-positive patha|be|be|ae|a|∆e|a, removing
trivial factors when they occur, yields the positive-negative pathe|ae|ae|e. Hence, a right-lcm
of u = ae a∆e a andv = be be a is represented by bothu|e andv|e|ae|ae. In fact, as the element
e is invertible, we havev 4 u.

5. Computing with a strong Garside family, signed case

In this final section, we show how to use (strong) Garside families to compute in groupoids
of fractions. The successive problems we address are findingsymmetric normal decompositions
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(Subsection 5.1), finding∆-normal decompositions (Subsection 5.2), solving the WordProblem
(Subsection 5.3), computing inverses (Subsection 5.4) and, finally, computing lower and upper
bounds (Subsection 5.5).

5.1. Computing symmetric normal decompositions

According to Proposition 1.22, ifS is a Garside family in a left-Ore categoryC, then every
element ofEnv(C), the groupoid of fractions ofC, that can be represented as a right-fraction
admits a symmetricS-normal decomposition. Here we address the question of algorithmically
computing such a decomposition.

Starting from a right fraction
Owing to the above recalled restriction on the considered elements (namely that of being

expressible as a right-fraction), it is natural to first start with a positive–negative path. Then,
Lemma 1.21 reduces the computation of a symmetric normal decomposition to the determination
of a left-lcm:

Algorithm 5.1 (Symmetric normal decomposition, positive–negative input).

Context: A Garside familyS in a left-Ore categoryC that admits left-lcms, a�-witnessW
onS♯, a procedure computing left-lcms inC

Input: A positive–negativeS♯-pathv|u
Output: A symmetricS-normal decomposition of the element [v][u]−1 of Env(C)

1: find u′, v′ such thatu′ |v andv′ |u represent a left-lcm of [u] and [v]
2: find anS-normal patht1| ··· |tq equivalent tou′ using Algorithm 4.5 withW
3: find anS-normal paths1| ··· |sp equivalent tov′ using Algorithm 4.5 withW
4: return tq| ··· |t1|s1| ··· |sp

Proposition 5.2. Assume thatC is a left-Ore category that admits left-lcms,S is a Garside
family inC, W is a�-witness onS♯, and that left-lcms inC can be computed effectively. Then
Algorithm 5.1 returns a symmetricS-normal decomposition of[v][u]−1.

Proof. By construction, the pathss1| ··· |sp andt1| ··· |tq areS-normal, andt1 ··· tqv, which is also
s1 ···spu, is a left-lcm ofu andv. By Lemma 1.21, this implies thattq| ··· |t1|s1| ··· |sp is symmetric
S-normal.

Example 5.3. Again in the case of the braid monoidB+3 given by the presentation (a, b; aba =
bab) and the Garside familyS = {a, b, ab, ba,∆}, let us consider the elementg = a2ba−1b−1.
A decomposition ofg as a right-fraction is the signedA-patha|a|b|a|b. By a symmetric argu-
ment to that used in Example 2.21, the presentation (a, b; aba = bab) is left-complemented and
left-reversing is complete for it. Hence left-reversing computes left-lcms. Here, left-reversing
a|a|b|a|b leads tob|a|b|a|a (see Figure 11, left), soab · a2b, which is alsoba2 · ba, is a left-lcm
of a2b andba. TheS-normal decompositions ofab andba2 respectively areab andba|a. We
conclude thatab|ba|a is a symmetricS-normal decomposition ofg.

Algorithm 5.1 is not fully satisfactory in that, as explained in Subsection 4.4, there exists no
general solution to the question of computing left-lcms. Itmay be that the ambient category has
been specified by a left-complemented presentation (A;R) for which left-reversing is complete,
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in which case left-reversing effectively computes left-lcms, but this need not be the case ingen-
eral. Now, by (the counterpart of) Proposition 4.25, the natural context for computing left-lcms
effectively is when a short left-lcm selector exists.

Lemma 5.4. Assume thatS is a Garside family in a left-Ore categoryC that admits left-lcms.
Then there exists a short left-lcm selector onS♯ if and only ifS is strong.

Proof. ForS to be strong means that, for alls, t with the same target inS♯, there exists′, t′ in S♯

satisfyings′t = t′s and such thats′ andt′ are left-disjoint. By Lemma 1.21,s′t is a left-lcm ofs
andt.

We are thus led to restate Algorithm 5.1 in the case of a strongGarside family.

Algorithm 5.5 (Symmetric normal decomposition, positive–negative input).

Context: A strong Garside familyS in a left-Ore categoryC that admits left-lcms, a short lcm-
selector̃θ and a�-witnessW onS♯

Input: A positive–negativeS♯-pathv|u
Output: A symmetricS-normal decomposition of the element [v][u]−1 of Env(C)

1: left-̃θ-reversev|u into a negative–positive pathu′ |v′

2: find anS-normal patht1| ··· |tq equivalent tou′ using Algorithm 4.5 withW
3: find anS-normal paths1| ··· |sp equivalent tov′ using Algorithm 4.5 withW
4: return tq| ··· |t1|s1| ··· |sp

Proposition 5.6. Assume thatS is a strong Garside family in a left-Ore categoryC that admits
left-lcms, W is a�-witness onS♯, and θ̃ is a short left-lcm selector onS♯. Then Algorithm 5.5
running on a positive–negativeS♯-path v|u returns a symmetricS-normal decomposition of
[v][u]−1 in time O((‖u‖ + ‖v‖)2).

We skip the proof, which is similar to that of Proposition 5.2.

Example 5.7. With the notation of Example 5.3, the difference is that, in Algorithm 5.5, we use
the left-reversing associated with the presentation (S; R̃) deduced from̃θ rather than the initial
presentation (A;R). The result of left-reversinga|a|b|a|b is now the length 3 wordab|ba|a (see
Figure 11, right), which is equivalent tob|a|b|a|a as obtained previously (see Figure 11, left). As
ab andba|a areS-normal, the subsequent normalization steps change nothing, and we conclude
again thatab|ba|a is a symmetricS-normal decomposition ofg.

Example 5.8. Consider again the wreathed free Abelian monoidT . We found a�-witnessW in
Example 4.2 and a short left-lcm selectorθ̃ in Example 4.29. We apply Algorithm 5.5 to compute
a symmetricS-normal decomposition of the positive-negative pathw = ae|a|∆|a|a|be|be.

Left-̃θ-reversing ofw and removing trivial factors yields the negative-positivepathu′ |v′ with
u′ = e andv′ = b|a|e|e, and applying Algorithm 4.5 with the�-witnessW to u′ andv′, again
removing trivial factors, we obtain theS-normal decompositionse of u′ respectively∆|e|e of v′.
Thus,e|∆|e|e is a symmetricS-normal decomposition ofw.

Remark 5.9. Algorithm 5.5 (as well as Algorithm 5.1) obeys the scheme “left-reverse, then
normalize”. We could as well use switch the operations into “normalize, then left-reverse”, as
suggested in Figure 12. The property that guarantees the correctness of the switched version is
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Figure 11:Left-reversing of the word a|a|b|a|b using the left-complement on {a, b} (left) and the left-lcm selector
on the Garside family {a, b,ab, ba,∆} (right). Here the right diagram corresponds to gathering pieces of the left
diagram, but this would not necessarily be the case for more complicated examples.

the third domino rule (Lemma 1.26): left-reversingS-normal paths always producesS-normal
paths.

For instance, in the context of Example 5.7, we could first
find S-normal words equivalent toa|a|b andb|a, namelya|ab
andba, and then left-reverse the (length 3) signed worda|ab|ba.
Of course, the result isab|ba|a once more, but the involved grid
is now the one given on the right. a ab

ba a
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Figure 12:Switching normalization and left-reversing in Algorithm 5.5: on the left, we first left-reverse v|u into u′ |v′

and then normalize u′ into u′′ and v′ into v′′; on the right, we first normalize u into u′ and v into v′ and then left-
reverse v′ |u′ into u′′ |v′′.

Starting from an arbitrary path
Extending Algorithm 5.5 to start with an arbitrary path rather than with a positive–negative

path is easy. Indeed, we saw that every Garside family provides a short right-lcm selector and
using the associated right-reversing transforms an arbitrary path into an equivalent positive–
negative path, if some exists.
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Algorithm 5.10 (Symmetric normal decomposition, general input).

Context: A strong Garside familyS in a left-Ore categoryC that admits left-lcms, a short right-
lcm selectorθ, a�-witnessW, and a short left-lcm selector̃θ onS♯

Input: A signedS♯-pathw
Output: A symmetricS♯-normal decomposition of [w]

1: O := the return value of Algorithm 2.6 withθ running onw
2: if O is a positive–negative pathv|u then
3: compute a symmetricS-normal decompositionu′ |v′ of v|u (Algorithm 5.5)
4: return u′|v′

5: else ⊲ O is fail
6: return fail ⊲ [w] has no symmetricS-normal decomposition

Proposition 5.11. Assume thatS is a strong Garside family in an Ore categoryC, W is a�-
witness,θ is a short right-lcm selector onS♯, and θ̃ is a short left-lcm selector onS♯. Then
Algorithm 5.10 running on a signedS♯-path w returns a symmetricS-normal decomposition
of [w] in time O(‖w‖2).

Proof. By Proposition 5.6, the final sequenceu′ |v′ is a symmetricS-normal decomposition of
the element [v|u] of Env(C). Now, by construction,v|u represents the same element ofEnv(C) as
the initial pathw.

The complexity follows from Lemma 2.10 and Propositions 4.6and 5.6.

Example 5.12. Again in the B+3 context, letw be the signed wordw = b|a|b|a|a. Right-
reversingw using the right-lcm selector on{1, a, b, ab, ba,∆} yields the positive–negative word
a|ab|ba. Left-reversing the latter using the left-lcm selector yields ab|ba|a. Normalizingab
respectivelyba|a do not change these words, and we conclude (once again) thatw is symmetric
normal.

Example 5.13. Consider again the wreathed free Abelian monoidT with the �-witnessW
from Example 4.2 and the short right-lcm selectorθ as well as the short left-lcm selectorθ̃ from
Example 4.29. We use Algorithm 5.10 to compute a symmetricS-normal decomposition of the
signed pathw = ∆|ae|be|ae|b|∆|a, removing trivial factors in every step.

Right-θ-reversing of the pathw using Algorithm 2.6 yields the positive-negative pathv|u with
u = a andv = ae|be|e. Subsequent application of Algorithm 5.5 to the positive-negative pathv|u
yields the symmetricS-normal decompositionu′|v′ of w with u′ = ae andv′ = be|ae.

Remark 5.14. The Baumslag–Solitar presentation (a, b; a = b2ab) gives an example of a monoid
that is left-Ore with left-lcms but not Ore. For instance, asfollows from Example 2.9, the ele-
mentsa andba admit no common right-multiple. As a consequence, the element a−1ba of the
group 〈a, b | a = b2ab〉 admits no expression as a right-fraction, and no expressionas a left-
fraction f −1g where f , g are left-disjoint.

Incremental method
Besides Algorithms 5.5 and 5.10, which are global, we can also look for local methods in

the spirit of Algorithms 4.3 and 4.5, that is, methods for computing, say, a symmetric normal
decomposition ofrg from a symmetric normal decomposition ofg whenr lies in the reference
Garside family. This is easy.
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Algorithm 5.15 (Left-multiplication—see Figure 13).

Context: A strong Garside familyS in a left-Ore categoryC that admits left-lcms, a short left-
lcm selector̃θ and a�-witnessWonS♯

Input: A symmetricS-normal decompositiontq| ··· |t1|s1| ··· |sp of an elementg of Env(C) and an
elementr of S♯

Output: A symmetricS-normal decomposition ofrg, if the latter is defined
1: r−q := r
2: for i decreasing fromq to 1 do
3: t′i := θ̃(r−i , ti) ; r−i+1 := θ̃(ti , r−i)

4: for i increasing from 1 top do
5: (s′i , r i) :=W(r i−1, si)

6: return t′q| ··· |t
′
1|s
′
1| ··· |s

′
p|rp

r tq t1 s1 sp

t′q t′1 s′1 s′p

r−q r−q+1 r−1 r0 r1 rp−1 rp

Figure 13:Algorithm 5.15: starting from r in S♯ and a symmetric S-normal decomposition tq| ··· |t1 |s1| ··· |sp of g,
one obtains a symmetric S-normal decomposition of rg.

Example 5.16. Consider again the wreathed free Abelian monoidT . We saw in Example 5.13
that the pathw = ae|be|ae is a symmetricS-normal decomposition of the elementg = [w].

Applying Algorithm 5.15 with the�-witnessW from Example 4.2 and the short left-lcm se-
lectorθ̃ from Example 4.29, we can conclude that anS-normal decomposition of the elementag
is given byb|ae|be|ae.

Proposition 5.17. Assume thatS is a strong Garside family in a left-Ore categoryC that admits
left-lcms, W is a�-witness onS♯, andθ̃ is a short left-lcm selector onS♯. Then Algorithm 5.15
running on a symmetricS-normal decomposition of an element g ofEnv(C) and r inS♯ returns
a symmetricS-normal decomposition of rg if the latter is defined. The mapθ̃ is invoked2q times
and the map W is invoked p times.

Proof. The third domino rule (Lemma 1.26) implies thatt′1| ··· |t
′
q isS-greedy. The fourth domino

rule implies thatt′1 and s′1 are left-disjoint. Next, the first domino rule implies thats′1| ··· |s
′
p is

S-normal. Finally,s′p|rp isS-normal by construction. Hencet′q| ··· |t
′
1|s
′
1| ··· |s

′
p|rp is symmetricS-

normal. The commutativity of the diagram in Figure 13 then guarantees that the latter sequence
is a decomposition ofrt−1

q ··· t
−1
1 s1 ···sp, hence ofrg.

The symmetry of the definition of symmetric normal paths implies that there exists a coun-
terpart of Algorithm 5.15 computing a symmetric normal decomposition ofgr−1 from one ofg
for r in the reference Garside familyS. By contrast, there exists no simple general method for
left-division (or right-multiplication). However, whenS happens to be bounded, such a method
exists, because left-dividing by an element∆(x) is easy. Now, ifS is bounded by∆ andsbelongs
toS(x, -), thens∂(s) = ∆(x) holds, so that left-dividing byscan be decomposed into left-dividing
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by∆(x) and then left-multiplying by∂(s). Hereafter, in order to simplify notation, we shall often
skip the source of the considered∆-element, thus writing∆(-) instead of∆(x) when mentioningx
explicitly is not necessary.

Algorithm 5.18 (Left-division—see Figure 14).

Context: A Garside familyS bounded by a map∆ in an Ore categoryC, a�-witnessW for S♯

Input: A symmetricS-normal decompositiontq| ··· |t1|s1| ··· |sp of g in Env(C), an elementr of S♯

Output: A symmetricS-normal decomposition ofr−1g, if the latter is defined
1: r−q := r
2: for i decreasing fromq to 1 do
3: (r−i+1, t′i ) :=W(ti , r−i)

4: r ′0 := ∂̃(r0)
5: for i increasing from 1 top do
6: (s′i , r

′
i ) :=W(r ′i−1, si)

7: t′0 := ∂(s′1)

8: return t′q| ··· |t
′
1|t
′
0|s
′
2| ··· |s

′
p|r
′
p

t′q t′1

r tq
t1 s1 s2 sp

φ−1(t′1) s′1 s′2 s′p

r−q r−q+1 r−1 r0

∂̃(r−1) ∂̃(r0) r ′0 r ′1 r ′2 r ′p−1 r ′p

t′0

Figure 14:Left-division by an element of S♯ starting from a symmetric S-normal path tq| ··· |t1|s1| ··· |sp.

Proposition 5.19. Assume thatS is a Garside family that is bounded by a map∆ in an Ore cat-
egoryC. Then Algorithm 5.18 running on a symmetricS-normal decomposition of an element g
ofEnv(C) and r inS♯ returns a symmetricS-normal decomposition of r−1g if the latter is defined.

Proof. By construction, the diagram of Figure 14 is commutative, sothe returned path is equiv-
alent tor |tq| ··· |t1|s1| ··· |sp, hence it is a decomposition ofr−1g, and its entries are elements ofS♯.
So the point is to check that the path is symmetricS-greedy.

First, asti |ti+1 isS-normal fori = 1, ... , q− 1, the second domino rule (Lemma 1.32) implies
that t′i |t

′
i+1 is S-normal as well. Similarly, assi |si+1 is S-normal for i = 1, ... , p − 1, the first

domino rule (Lemma 1.17) implies thats′i |s
′
i+1 isS-normal as well.

So it remains to check thatt′0|t
′
1 isS-normal and thatt′0 ands′2 are left-disjoint. Considert′0|t

′
1.

Assume thats is an element ofS♯ satisfyings 4 φ−1(t′1) and s 4 s′1. A fortiori, we have

s 4 φ−1(t′1)∂̃(r−1) ands 4 s′1r ′1, that is,s 4 r ′0t1 ands 4 r ′0s1. By assumption,t1 ands1 are left-
disjoint, hence we deduces 4 r ′0. Now, by assumption,r0|t′1 isS-normal, hence, by Lemma 1.31,
∂(r0) andt′1 have no nontrivial common left-divisor. Asφ and, therefore,φ−1 is an automorphism
(Lemma 1.30), it follows thatφ−1(∂(r0)) andφ−1(t′1) have no nontrivial common left-divisor.
Now, by definition,φ−1(∂(r0)) is r ′0. As we haves 4 φ−1(t′1) ands 4 r ′0, we deduce thats is
invertible and, therefore,φ−1(t′1) and s′1 have no nontrivial common left-divisor. Applying the

44



automorphismφ, we deduce thatt′1 andφ(s′1), that is,t′1 and∂(t′0), have no nontrivial common
left-divisor. By Lemma 1.31 again, this implies thatt′0|t

′
1 isS-normal.

Finally, again by Lemma 1.31, the assumption thats′1|s
′
2 is S-normal implies that∂(s′1) and

s′2 are left-disjoint: by definition,∂(s′1) is t′0, sot′0 ands′2 are left-disjoint. Sot′q| ··· |t
′
1|t
′
0|s
′
2| ··· |s

′
p|r
′
p

is indeed a symmetricS-normal path.

Example 5.20. Consider (ab)−1(ba2) in B+3 once more.
Suppose that we found thatba|a is anS-normal decompo-
sition ofba2, and we wish to find a (the)S-normal decom-
position of (ab)−1(ba2). Then applying Algorithm 5.18
amounts to completing the diagram on the right, in which
of course we read the expected symmetric normal decom-
positionab|ba|a.

ab ba a

b ba

ab

b ba a

ab

Example 5.21. Consider again the wreathed free Abelian monoidT . We saw in Example 5.13
that the pathw = ae|be|ae is a symmetricS-normal decomposition of the elementg = [w].

Applying Algorithm 5.18 with the�-witnessW from Example 4.2 and noting̃∂(∆e) = e and
∂(ae) = ae, we can conclude that a symmetricS-normal decomposition of the elementa−1g is
given byae|be|e.

If, in Algorithm 5.18,r is ∆(x), then each elementr−i is of the form∆(-), so thatt′i is sim-
ply φ(ti), so thatr ′0 is trivial, and so are all elementsr i with i > 0. We immediately deduce

Corollary 5.22. Assume thatS is a Garside family that is bounded by a map∆ in an Ore
categoryC. If tq| ··· |t1|s1| ··· |sp is a symmetricS-normal decomposition of g, then a symmetric
S-normal decomposition of∆(x)−1g (where x is the source of g) isφ(tq)| ··· |φ(t1)|∂(s1)|s2| ···sp.

5.2. Computing∆-normal decompositions

When a Garside family is bounded, alternative distinguished decompositions for the elements
of the ambient category and its groupoid of fractions arise,namely the∆-normal decompositions.
We now describe incremental methods for computing such decompositions, namely algorithms
that, when starting from a∆-normal decomposition of an elementg and an elementr of the
considered Garside family, return∆-normal decompositions ofrg andr−1g, respectively.

Algorithm 5.23 (Left-multiplication for ∆-normal—see Figure 15).

Context: A Garside familyS that is bounded by a map∆ in an Ore categoryC, a�-witnessW
for S♯, an=×-testE in C

Input: A ∆-normal decomposition∆[n](x)|s1| ··· |sp of an elementg of Env(C), an elementr of S♯

Output: A ∆-normal decomposition ofrg, if the latter is defined
1: r0 := φn(r)
2: for i increasing from 1 top do
3: (s′i , r i) :=W(r i−1, si)

4: if E(∆(-), s′1) , ⊥ then ⊲ s′1 is ∆-like
5: s′2 := E(∆(-), s′1)s′2
6: return ∆[n+1](-)|s′2| ··· |s

′
p|rp

7: else ⊲ s′1 is not∆-like
8: return ∆[n](-)|s′1| ··· |s

′
p|rp
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r ∆[n](-) s1 sp

∆[n](-) s′1 s′p

r φn(r) r0 r1 rp−1 rp

∆[n+1](-)E(∆(-), s′1) if s′1 is ∆-like

Figure 15:Computing a ∆-normal decomposition of rg starting from a ∆-normal decomposition of g: the |n| entries
of the type ∆(-) are treated directly using φn, and then it just remains to left-multiply a (positive) ∆-normal sequence
by an element of S using the standard method. Note that, depending on the sign of n, the diagrams for ∆(n)(-)
consists either of n right-oriented arrows (case n > 0) or of |n| left-oriented arrows (case n 6 0).

Example 5.24. Consider again the wreathed free Abelian monoidT . If follows from Exam-
ple 5.13 that the pathw = be|ae is a∆-normal decomposition of the elementg = [w].

Applying Algorithm 5.23 with the�-witnessW from Example 4.2 and the=×-testE onS♯

from Example 4.17, we can conclude that∆|be|e is a∆-normal decomposition of the elementag.

Algorithm 5.25 (Left-division for ∆-normal—see Figure 16).

Context: A Garside familyS that is bounded by a map∆ in an Ore categoryC, a�-witnessW
for S♯, an=×-testE in C

Input: A ∆-normal decomposition∆[n] (x)|s1| ··· |sp for an elementr of Env(C) and an elementr
of S♯ with sourcex

Output: An ∆-normal decomposition ofr−1g
1: r0 := φn(∂̃(r))
2: for i increasing from 1 top do
3: (s′i , r i) :=W(r i−1, si)

4: if E(∆(-), s′1) , ⊥ then ⊲ s′1 is ∆-like
5: s′2 := E(∆(-), s′1)s′2
6: return ∆[n](-)|s′2| ··· |s

′
p|rp

7: else ⊲ s′1 is not∆-like
8: return ∆[n−1](-)|s′1| ··· |s

′
p|rp

r ∆[n](x) s1 sp

∆(-) ∆[n](-) s′1 s′p

∂̃(r) r0 r1 rp−1 rp

∆[n−1](-)

∆[n] (-)E(∆(-), s′1) if s′1 is ∆-like

Figure 16:Algorithm 5.25 : Computing a ∆-normal decomposition for r−1g from a ∆-normal decomposition of g.

Proposition 5.26. Assume thatS is a Garside family that is bounded by a map∆ in an Ore
categoryC, W is a�-witness onS, and E is an=×-test inC. Then Algorithm 5.23 (resp. Algo-
rithm 5.25) running on a∆-normal decomposition of an element g ofEnv(C) and r inS♯ returns
a ∆-normal decomposition of rg (resp. r−1g) (when the latter is defined).
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Proof. Consider first Algorithm 5.23. Then the diagram of Figure 15 is commutative as, in
particular,r∆(n)(-) = ∆(n)(u)φn(r) holds whenever defined. As usual, the first domino rule implies
that s′1| ··· |s

′
p is S-normal and, by construction,s′p|rp is S-normal. So it just remains to consider

the relation between∆[n] (-) and s′1. Now, if s′1 is not ∆-like, ∆[n] (-)|s′1 is ∆-normal. On the
other hand, ifs′1 is ∆-like, then, by definition, we haves′1 = ∆(-)E(∆(-), s′1), so that∆(-) can
be incorporated to∆[n] (-) to form ∆[n+1](-) and E(∆(-), s′1) can be incorporated tos′2 to form a
new element ofS♯ asC×S♯ ⊆ S♯ holds. Then∆[n+1](-)|s′2 must be∆-normal because the new
elements′2 cannot be∆-like. Indeed,∆(-) 4 s′2 would imply ∆(2)(-) 4 s′1s′2, whence∆(2)(-) 4

s′1s′2r2 = r0s1s2. Now, asr0 lies in S♯, we can write∆(2)(-) = r0∂(r0)∆(-) = r0∆(-)φ(∂(r0)),
so ∆(2)(-) 4 r0s1s2 implies r0∆(-)φ(∂(r0)) 4 r0s1s2, whence∆(-) 4 s1s2, contradicting the
assumption that∆[n](-)|s1 is ∆-normal. So no cascade may occur here.

The argument for Algorithm 5.25 is entirely similar. The only new point is that, in the
diagram of Figure 16, the left square is commutative because∂̃(r)r = ∆(-) holds for everyr
in S♯.

Example 5.27. As in Example 5.20, we assume that we
know the∆-normal decompositionba|a of b2a, and that
we would like to find a (the)∆-normal decomposition of
(ab)−1(b2a). Applying Algorithm 5.25 amounts to com-
pleting the diagram on the right, and we read that the ex-
pected decomposition is∆[−1] |b|ba|a.

ab ba a

∆ b ba

b ba a

Example 5.28. Consider again the wreathed free Abelian monoidT . If follows from Exam-
ple 5.13 that the pathw = be|ae is a∆-normal decomposition of the elementg = [w].

Applying Algorithm 5.23 with the�-witnessW from Example 4.2 and the=×-testE onS♯

from Example 4.17, we can conclude that a∆-normal decomposition of the elementa−1g is given
by∆[−1] |b|be|ae.

5.3. Solving the Word Problem

As in the positive case, we shall describe several solutionsfor the Word Problem in the
involved groupoid of fractions

Using symmetric normal decompositions
First, symmetric normal decompositions give a direct solution extending Algorithm 4.14 to

the signed case.

Algorithm 5.29 (Word Problem, general case I).

Context: A strong Garside familyS in an Ore categoryC that admits left-lcms, a�-witnessW,
a short left-lcm selector̃θ, and an=×-testE onS♯

Input: A signedS♯-pathw
Output: true if w represents an element 1x in Env(C), andfalse otherwise

1: x := src(w) ; y := trg(w)
2: if x , y then
3: returnfalse
4: else
5: use Algorithm 5.10 to find a symmetricS-normal pathu|v that represents [w]
6: return the value of CompareNormalPaths(u, v) (Algorithm 4.14)
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Proposition 5.30. Assume thatS is a strong Garside familyS in an Ore categoryC that admits
left-lcms, W is a�-witness onS, θ̃ is a short left-lcm selector onS♯, and E is an=×-test onS♯.
Then Algorithm 5.29 running on a signedS♯-path w of length at mostℓ decides in time O(ℓ2)
whether[w] is an identity-element inEnv(C).

Proof. By Proposition 5.11, line 5 of Algorithm 5.29 computes a symmetricS-normal pathu|v
representing [w] in time O(ℓ2). The signed pathw represents an identity-element inEnv(C) if and
only if the (positive) pathsu andv represent the same (invertible) element inC. The claim then
follows with Proposition 4.15.

Example 5.31.Consider again the wreathed free Abelian monoidT with the�-witnessW from
Example 4.2, the=×-testE onS♯ from Example 4.17, and the short right-lcm selectorθ as well
as the short left-lcm selector̃θ from Example 4.29.

Running Algorithm 5.10 with�, θ andθ̃ on the signedS♯-pathw = ∆|a|b|a|ae|b|∆|ae, and
removing trivial factors in every step, yields the symmetric S-normal decompositionu|v of [w]
with u = e|e andv = ε. Subsequent application of the function CompareNormalPaths from
Algorithm 4.14 usingE establishes thatu andv are equivalent, so we conclude [w] = 1.

Using∆-normal decompositions
According to Proposition 1.36, when they exist,∆-normal decompositions enjoy the same

uniqueness property as symmetric normal decompositions. Therefore, in the case when the ref-
erence Garside family is not only strong but even bounded, Algorithm 5.29 and Proposition 5.30
admit exact counterparts where symmetric normal is replaced with∆-normal. We skip the details.

Using reversing
As in the positive case, at least when the ambient category contains no nontrivial invertible

element and admits lcms, we can also solve the Word Problem byusing reversing and thus avoid-
ing to compute distinguished decompositions. To stick to the context described in Subsection 2.1
we assume here that the ambient category admits left- and right-lcms and contains no nontrivial
invertible element, which amounts to requiring that the lcms are unique.

Algorithm 5.32 (Word Problem, general case II).

Context: A strong Garside familyS in an Ore categoryC that admits unique right- and left-lcms,
the right-lcm selectorθ onS ∪ 1C and the left-lcm selector̃θ onS ∪ 1C

Input: A signedS-pathw
Output: true if w represents an element 1x in Env(C), andfalse otherwise

1: right-θ-reversew into a positive–negative pathu|v using Algorithm 2.6
2: left-̃θ-reverseu|v into a negative–positive pathu′|v′ using (the left counterpart of) Algo-

rithm 2.3
3: return [[u′ = v′ = ε-]]

Lemma 2.10, Proposition 1.16, and their left counterparts imply:

Proposition 5.33. Assume thatS is a strong Garside familyS in an Ore categoryC that admits
unique right- and left-lcms.

(i) Algorithm 5.32 solves the Word Problem ofEnv(C) with respect toS.
(ii) If S is finite, the complexity of Algorithm 5.32 is quadratic in the length of the input path.
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Appealing to a right- and a left-reversing, Algorithm 5.32 is nicely symmetric. However, it
requires the existence of right-lcms, which is not guaranteed in every Ore category that admits a
strong Garside family. Actually, this assumption is superfluous, since a double left-reversing can
be used instead.

Algorithm 5.34 (Word Problem, general case III).

Context: A strong Garside familyS in an Ore categoryC that admits unique left-lcms, the
left-lcm selector̃θ onS ∪ 1C

Input: A signedS-pathw
Output: true if w represent an element 1x in Env(C), andfalse otherwise

1: left-̃θ-reversew into a negative–positiveu|v using (the left counterpart of) Algorithm 2.6
2: left-̃θ-reversev|u into a negative–positive pathu′|v′ using (the left counterpart of) Algo-

rithm 2.3
3: return [[u′ = v′ = ε-]]

Proposition 5.35. Assume thatS is a strong Garside family in an Ore categoryC that admits
unique left-lcms.

(i) Algorithm 5.34 solves the Word Problem ofEnv(C) with respect toS.
(ii) If S is finite, the complexity of Algorithm 5.34 is quadratic in the length of the input path.

Proof. The signed pathw represents an identity-element inEnv(C) if and only if the pathsu
andv represent the same element inC. By the counterpart of Proposition 1.16, left-θ̃-reversing
is complete and terminating, sou andv represent the same element ofC if and only if v|u is left-
θ̃-reversible to an empty path. By Lemma 2.10, the complexity of Algorithm 5.34 is inO(‖w‖2).

Example 5.36. Running on the signed wordw = ab|ba|a, Algorithm 5.32 right-reversesw into
a|ab|ba, and then left-reverses the latter words back toab|ba|a. The final word is not empty,
hencew does not represent 1 in the groupB3.

Running onw, Algorithm 5.34 first left-reversesw into itself (sincew is a negative–positive
word), then switches the numerator and the denominator intoba|a|ab, and finally left-reverses
the latter word. One finds nowa|b|b, a nonempty word, and one concludes again thatw does not
represent 1.

Remark 5.37. As in Section 4, we could also state a result referring to an arbitrary generating
familyA that satisfies convenient properties but that is not necessarily a strong Garside family.

5.4. Computing decompositions for an inverse

We complete the analysis of our distinguished decompositions with explicit methods for
finding a decomposition ofg−1 from one ofg.

In the case of symmetric normal decompositions, the result is trivial:

Proposition 5.38. Assume thatC is a left-Ore category and thatS is a Garside family inC.
If tq| ··· |t1|s1| ··· |sp is a symmetricS-normal decomposition for an element g ofEnv(C), then
sp| ··· |s1|t1| ··· |tq is a symmetricS-normal decomposition for g−1.

Proof. The definition makes it obvious thatsp| ··· |s1|t1| ··· |tq is symmetricS-normal whenever
tq| ··· |t1|s1| ··· |sp is. On the other hand,g = t−1

q ··· t
−1
1 s1 ···sp impliesg−1 = s−1

p ···s
−1
1 t1 ··· tq inEnv(C).
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The case of∆-normal decompositions is more complicated, as the definition is not symmetric.
However, finding an explicit formula is not difficult. The following result is an adaptation of the
well known analogous result for braid groups respectively Garside groups (see, for instance,
El-Rifai and Morton, 1994, proof of Proposition 4.5).

Proposition 5.39. Assume thatS is a Garside family that is bounded by∆ in a cancellative
categoryC. If ∆(n) |s1| ··· |sp is a ∆-normal decomposition for an element g ofEnv(C), then
∆(−n−p) |∂(φ−n−p(sp))| ··· |∂(φ−n−1(s1)) is a∆-normal decomposition for g−1.

Proof. We first check that the sequence mentioned in the statement is∆-normal. So leti < p.
By hypothesis,si |si+1 is S-normal. Asφ is an automorphism ofS, the pathφ−n−i(si)|φ−n−i(si+1)
is alsoS-normal. By Lemma 1.31, this implies that∂(φ−n−i(si)) andφ−n−i(si+1) are left-disjoint.
The latter element isφ(φ−n−i−1(si+1)), hence it is∂(∂(φ−n−i−1(si+1))). Reading the above dis-
jointness result in a symmetric way and applying Lemma 1.31 once more, we can deduce that
∂(φ−n−i−1(si+1))|∂(φ−n−i(si)) isS-normal. Hence∂(φ−n−p(sp))| ··· |∂(φ−n−1(s1)) isS-normal.

Moreover, the hypothesis thats1 is not∆-like implies thatφ−n−1(s1) is not∆-like either, and,
therefore,∂(φ−n−1(s1)) is not invertible. On the other hand, the hypothesis thatsp is not invertible
implies thatφ−n−p(sp) is not invertible either, and, therefore,∂(φ−n−p(sp)) is not∆-like. Hence,
we conclude that the path∆(−n−p) |∂(φ−n−p(sp))| ··· |∂(φ−n−1(s1)) is ∆-normal.

It remains to check that the latter∆-normal path is a decomposition ofg−1. Now, by construc-
tion, the mapsφ and∂ commute and, pushing the factor∆(n) to the left, we obtain the equality

∆(−n−p)(-) ∂(φ−n−p(sp)) ···∂(φ−n−1(s1)) · ∆(n)(-) s1 ···sp

= ∆(−n−p)(-)∆(n)(-) ∂(φ−p(sp)) ···∂(φ−1(s1)) s1 ···sp, (5.40)

and our goal is to prove that this element is 1y. Let us call the right term of (5.40)E(n, s1, ... , sp).
We shall prove using induction onp > 0 that an expression of the formE(n, s1, ... , sp) equals 1y,
wherey is the target ofsp.

Assume firstp = 0. What remains forE(n) is then∆(−n)(-)∆(n)(-), which, by the remark
following Notation 1.33, is 1y. Assumep > 1. The above result enables us to gather the first two
entries ofE into ∆(−p)(-). Then∂(φ−1(s1)) s1, which is alsõ∂(s1) s1, equals∆(z), wherez is the
source of̃∂(s1). But, then, we can push this∆(-)-factor to the left through the∂(φ−i(si)) factors
with the effect of diminishing the exponents ofφ by one. In this way,E(n, s1, ... , sp) becomes

∆(−p)(-)∆(-) ∂(φ−p+1(sp)) ···∂(φ−1(s2)) s2 ···sp,

which isE(1, s2, ... , sp). By the induction hypothesis, its value is 1y.

5.5. Computing upper and lower bounds
If C is an Ore category, the left-divisibility relation ofC naturally extends into a relation

onEnv(C), namely the relation, still denoted by4, such thatf 4 g holds if there existsh in C
satisfying f h = g. This relation is a partial preordering onEnv(C), and it is a partial ordering if
C admits no nontrivial invertible element. It directly follows from the definition that, iff , g are
elements ofC, then a least common upper bound (resp. a greatest common lower bound) off
andg with respect to4 is (when it exists) a right-lcm (resp. a left-gcd) off andg.

Lemma 5.41. Assume thatC is an Ore category. Then any two elements ofEnv(C) with the same
source admit a least common upper bound (resp. a greatest common lower bound) with respect
to 4 if and only if any two elements ofCwith the same source admit a right-lcm (resp. a left-gcd).
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We skip the easy proof. Then a natural computation problem arises whenever the above
bounds exist. The solution is easy.

Algorithm 5.42 (Least common upper bound with respect to4).

Context: A strong Garside familyS in an Ore categoryC that admits unique left- and right-lcms,
the right-lcm selectorθ onS ∪ 1C and the left-lcm selector̃θ onS ∪ 1C

Input: Two signedS-pathsw1,w2 with the same source
Output: A signedS-path representing the least common upper bound of [w1] and [w2]

1: left-̃θ-reversew1|w2 into a negative–positive pathu|v using (the left counterpart of) Algo-
rithm 2.6

2: right-θ-reverseu|v into a positive–negative pathv′ |u′ using Algorithm 2.3
3: return w1|v′

The solution for greatest lower bound is entirely symmetric.

Algorithm 5.43 (Greatest lower bound with respect to4).

Context: A strong Garside familyS in an Ore categoryC that admits unique left- and right-lcms,
the right-lcm selectorθ onS ∪ 1C and the left-lcm selector̃θ onS ∪ 1C

Input: Two signedS-pathsw1,w2 with the same source
Output: A signedS-path representing the greatest lower bound of [w1] and [w2]

1: right-θ-reversew1|w2 into a positive–negative pathu|v using Algorithm 2.6
2: left-̃θ-reverseu|v into a negative–positive pathv′ |u′ using (the left counterpart of) Algo-

rithm 2.3
3: return w1|v′

Proposition 5.44. Assume thatS is a strong Garside family in an Ore categoryC that admits
unique left- and right-lcms. Then Algorithm 5.42 (resp. Algorithm 5.43) running on two signed
S-paths w1 and w2 of length at mostℓ returns the least upper bound (resp. the greatest lower
bound) of[w1] and[w2] with respect to4 in time O(ℓ2).

Proof. First consider Algorithm 5.42. By the left counterpart of Lemma 2.10, the left-̃θ-reversing
in line 1 takes timeO(ℓ2) and produces twoS♯-pathsu, v of lengthO(ℓ) such that, inEnv(C), we
have [u|v] = [w1|w2], hence [w1] = g[u] and [w2] = g[v] for someg, namely the common class
of the signed pathsw1|u andw2|v. By Proposition 4.25, the right-θ-reversing in line 2 takes time
O(ℓ2) and produces twoS-pathsu′, v′ such thatu|v′ andv|u′ both represent the right-lcm of [u]
and [v], hence their least upper bound with respect to4. As the partial ordering4 is invariant
under left-multiplication, the claim follows.

The claim for Algorithm 5.43 follows in an analogous way fromLemma 2.10 and the left
counterpart of Proposition 4.25, noting that, for allf , g in Env(C) andh in C, the conditions
f h = g and f −1 = hg−1 are equivalent.

When we apply Algorithms 5.42 and 5.43 to a pair of positive paths, we obtain algorithms
that determine right-lcms and left-gcds. In this case, Algorithm 5.42 is simply Algorithm 2.3,
since the left-reversing step is trivial: the initial pathw1|w2 is directly negative–positive. Algo-
rithm 5.43, however, has no equivalent in Section 4. Its output is a path representing the left-gcd
but, in general, it need not be a positive path, although it must be equivalent to a positive path. In
order to obtain a positive output, a third reversing step canbe added.
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Algorithm 5.45 (Left-gcd).

Context: A strong Garside familyS in an Ore categoryC that admits unique left- and right-lcms,
the right-lcm selectorθ onS ∪ 1C and the left-lcm selector̃θ onS ∪ 1C

Input: TwoS-pathsu, v with the same source
Output: An S-path that represents the left-gcd of [u] and [v] in C

1: right-θ-reverseu|v into a positive–negative pathv′ |u′ using Algorithm 2.3
2: left-̃θ-reversev′ |u′ into a negative–positive pathu′′ |v′′ using (the left counterpart of) Algo-

rithm 2.3
3: left-̃θ-reverseu|u′′ into a positive pathw using (the left counterpart of) Algorithm 2.3
4: return w

Proposition 5.46. Assume thatS is a strong Garside family in an Ore-category that admits
unique left- and right-lcms. Then Algorithm 5.45 running ontwoS-paths u, v of length at mostℓ
returns the left-gcd of[u] and[v] in time O(ℓ2).

Proof. It follows from Proposition 5.44 that, foru′′ as computed in line 2, the pathu|u′′ repre-
sents the left-gcd of [u] and [v]. As u andv are both positive, this pathu|u′′ must be equivalent to
some positive path, sayu0. Then the signed pathu|u′′|u0 represents an identity-element inEnv(C),
so the positive pathsu andu0u′′ are equivalent. Since, by the counterpart of Proposition 1.16,
left-reversing is complete for the considered presentation, the pathu|u′′|u0 is left-reversible to
an empty path, that is, the left-reversing grid constructedfrom u|u′′|u0 has empty arrows ev-
erywhere on the left and on the top. This implies in particular that the subgrid corresponding to
left-reversingu|u′′ has empty arrows on the left, that is, with our current notation, that the wordw
computed at line 5 is positive (and equivalent tou0).

By Proposition 5.44, the computation time ofw lies inO(ℓ2) since, by the left counterpart of
Lemma 2.4, the left-̃θ-reversing in line 3 takes timeO(ℓ2).

Example 5.47. Let us consider a last time the monoidB+3 and the elements represented byu =
a|b|b andv = b|a|b|b. As seen in Figure 10, right-reversingu|v using the right-lcm selector
leads to the positive–negative wordab|a. Then left-reversing the latter word using the left-lcm
selector leads to the negative–positive wordb|ab. Finally, left-reversinga|b|b|b gives the positive
worda|b, and we conclude that the left-gcd of [u] and [v] in B+3 is ab. Note that, instead of using
S-words and the associated lcm selector, we could instead useA-words and the initial right-
complement associated with the Artin presentation: the uniqueness of the final result guarantees
that the successive involved words must be pairwise equivalent.
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