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Abstract

Garside calculus is the common mechanism that underlieg@rcéype of normal form for the
elements of a monoid, a group, or a category. Originatinghft@arside’s approach to Artin’s
braid groups, it has been extended to more and more genertaixts, the latest one being that
of categories and what are called Garside families. Oneeb#nefits of this theory is to lead
to algorithms solving £ectively the naturally occurring problems, typically thek¥ Problem.
The aim of this paper is to present and solve these algoritiguméstions in the new extended
framework.
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F.A. Garside (1969) solved the Word and Conjugacy Problemariin’s braid groupB;,
(Artin, 1947) by describing the latter as a group of fractiand analyzing the involved monoid in
terms of its divisibility relation. This approach was caonted and extended in several steps, first
to Artin-Tits groups of spherical type (Brieskorn and Sait®72; Deligne, 1972; Adyan, 1984,
Thurston, 1988; Charney, 1992; Epstein et al., 1992; EkiRihd Morton, 1994), then to a larger
family of groups now known as Garside groups (Dehornoy antsPH999; Dehornoy, 2002).
More recently, it was realized that going to a categoricaitext allows for capturing further
examples (Krammer, 2008; Bessis, 2006b,a; Digne and Mi2bék), and a coherent theory has
now emerged with a central unifying notion called Garsideifes (Dehornoy et al., 2013a,b):
the central notion is a certain way of decomposing the elésnafrthe reference category or its
groupoid of fractions and a Garside family is what makes tirestruction possible.

What we do in this paper is to present and analyze the mainmitdges arising in this new,
extended context of Garside families, with two main direas, namely recognizing that a candi-
date family is a Garside family and using a Garside familydmpute in the category, typically
finding distinguished decompositions and solving the WaabRm along the lines of Dehornoy
(2008). This results in a corpus of about twenty algorithha &ire proved to be correct, ana-
lyzed, and given examples. We do not address the ConjugadfePn here, as extending the
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methods of Gebhardt (2005) and Gebhardt and Gonzalez9é4sr(@010) will require further
developments that we keep for a subsequent work.

The paper consists of six sections. The preliminary Seiexplains the intuitive objective
of Garside theory, namely to obtain distinguished expogssior elements of an algebraic struc-
ture, and it presents some examples that motivate (andiyjuste extension of its techniques to
a category theoretic setting. Section 1 is a review of Garfadhilies and the derived notions
involved in the approach, together with some basic reshéisappear in other sources. Next,
we address the question dfectively recognizing Garside families and we describe aradyae
algorithms doing it: in Section 2, we consider the case whenambient category is specified
using a presentation (of a certain type), whereas, in Se&jave consider the alternative ap-
proach when the category is specified using what is calledra.géinally, the last two sections
are devoted to those computations that can be developeddBaeside family is given. In Sec-
tion 4, we consider computations taking place in the refegerategory or monoid (“positive
case”), whereas, in Section 5, we address similar questicdhe groupoid or group of fractions
of the reference category (“signed case”).

0. Motivation

Consider the free Abelian monold". We can define a partial order &ff' by saying that
(f1,..., fn) < (01, ..., On) holds if we havef; < g; fori = 1,...,n. Itis obvious thakg is a lattice
order, that is, that any two elemenfs,(.., f,) and @, ..., g») of N" have a unique least common
upper bound and a unique greatest common lower bound wipleceto<: the former is given
by (max fi, g1}, ..., max f,, gn}), while the latter is given by (miriz, g1}, ..., min{f,, gn}).

DefineA = (1, ...,1) € N". Clearly, the seS = {f € N" | f < A} generates the monoi".
In fact, every element di" has auniquerepresentation as a product of the fogag, - g« such
thatg;, ..., gk are nontrivial elements af and 1+ f < g impliesgi_1f ¢ Sfori = 2,...,kand
arbitraryf. The latter condition is a maximality statement: it sayd,timethe sequencgy, ..., Ok,
it is not possible to extract a nontrivial fragmehfrom the entryg; and incorporate it in the
previous entng;_; without leaving the generating s8t

While the above construction may seem artificial for therlfdrivial) situation of the free
Abelian monoidN", a similar construction has proved to be an extremely pawibl in a more
complicated setting, namely that of the braid gr@sprespectively the braid monos,.

The braid monoid admits a natural partial order, calledptedix order defined as follows:
For f,gin B;, we say thaf < gholds ifg can be written as a produth with hin B;,. (The prefix
order can be defined for any left-cancellative monoid. Agalgsly, one can definesayfix order
for any right-cancellative monoid.) At the center of theuiins to the Word and Conjugacy
Problems inB, found by Garside and others lies thalf twist A, defined as the braid iB}, in
which any two strands cross exactly once. TheSset{f € B;, | f < A} generates the monoi},
and, moreover, every elementBf has auniquerepresentation as a product of the fayng, -+ gk
such thapy, ..., gk are nontrivial elements % and 1+ f < g impliesgi_1f ¢ Sfori =2,...,k
and arbitraryf.

The discovery of various other situations that allow for aalagous construction led to
the introduction of the notion dbarside monoidsA monoid M is called a Garside monoid if
it satisfies the following conditions: (i) it is cancellagiv(ii) it is a lattice with respect to the
prefix order< and with respect to the ik order:=; (iii) it is strongly Noetherian, meaning
that there exists a map : M — N such that, forf,gin M, g # 1 impliesA(g) > 1 and
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A(fg) > A(f) + A(g), and (iv) there exists an elemefitof M, called aGarside elemendf M,
suchthatthe seé® = {f e M | f < A} equalsthesdif € M | A = f}, andS is a finite generating
set of M. In this context, every element & has anormal decompositioas a product of the
form g;9,--- gk such thaps, ..., gk are nontrivial elements @8 and 1# f < g; impliesg_1f ¢ S
fori =2,...,kand arbitraryf.

While the framework of Garside monoids has provéiitent, it has emerged that the hy-
potheses are too restrictive: There are many natural exeniplhich normal decompositions
of elements completely analogous to the ones describedeabdast, although the structure in
guestion is not a Garside monoid; we mention some of thermbedderring to Dehornoy et al.
(2013a) for details. By contrast, the framework of Garsateifies in a category, which we shall
define below, will cover all these examples.

Infinite braids

We can define thénfinite braid group B, as the direct limit of the system obtained from
Bi, By, Bs, ... with the natural embedding d; into B;,; for eachi. The monoidB;, is defined
in the same way from the monoidg, B;, ...; it admits no finite generating family: any finite
subfamily can only involve finitely many strands, it contains braids involving crossings of
strands with arbitrarily large index. Nevertheless, theifa S, = Ui>1(f € BL, | f < A},
whereA; denotes the Garside element of the Garside moBgidllows normal decompositions
of elements oB;, analogous to the ones described above.

Klein bottle group

ConsiderK = Z x, Z, wheregy is the automorphism df defined byy(1) = -1, and letk*
be the submonoid df generated by the elements ¢} and (Q1) of K. It can be shown tha*
admits the presentatiofab | a = bab). Asba < a holds, the monoidK~ is not Noetherian.
Nevertheless, the s& = {f € K* | f < a?} allows normal decompositions of elementskof
analogous to the ones described above.

Wreathed free Abelian group

Consider the wreath produgt, = Z @ &y, that is, the semidirect product of the free Abelian
groupZ" and the symmetric grou@,, with &, acting onZ" by permuting the components. We
define7; to be the monoidN : &,,. Write O for the element (Q.., 0) of N" and1 for the element
(1,...,1) of N". Clearly, the elements dof;, of the form Q,x) with 1 # = € &, are nontrivial
invertible elements of finite order. In particuldr; cannot be a Garside monoid, as the quotient
group of a Garside monoid is torsion-free. NeverthelegsstiS = {(v,1) | v < 1}, wherex is
the partial order of the free Abelian mondi# we met earlier, allows normal decompositions of
elements of7, analogous to the ones described above.

Ribbon categories

Forn > 2and 1< i,j < n, defineBR.(i,]) = {8 € B, | oif = Bo;} and letBR;, be
the category whose object sef{is ..., n — 1} and whose family of morphisms with sourcand
targetj is BR;(i, j). Considering the Garside elemekt and the prefix ordex, of the braid
monoidB;, we defineS = i j«n{B € BR(I, j) | B <n An}. It can be shown that, with respect
to the partial ordex induced by left-divisibility in the categor$R;,, the elements aBR;, admit
normal decompositions as products of elementS, @nalogous to the ones described above. The
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notion of the ribbon category, and the existence of normebdgositions, prove to be crucial
for the analysis of normalizers and centralizers in braalgs.

The existence of the above examples (and of many other siomkes), which do not enter
the framework of Garside groups but nevertheless seem te shair main properties, clearly
suggests that a more general unifying framework should,eisl our claim is that the Garside
families investigated in the rest of this paper provide sadtamework. The motivation for the
extension is twofold: the first goal is to capture more catbessecond one is to isolate the really
essential assumptions, thus deepening our understanfdimg structures involved.

1. The general context

In this introductory section, we present the backgroundatégories and Garside families,
together with some general existence and uniquenesssésattwill be used and, often, refined
in the sequel of the paper. Proofs appear in other sourcethapavill be omitted in general.

1.1. Categories

The general context is that of categories, which should ke &ere just as monoids with
a partial product, that is, one that is not necessarily défeerywhere. Aprecategory(or
multigraph) is a familyA plus two maps, “source” and “target”, (A to another familyObj(A)
(the objects ofA), and acategoryis a precategory equipped with a partial multiplicationtsuc
that fg exists if and only if the target of, denoted trgf), coincides with the source df,
denoted sraf). The multiplication is associative whenever defined am@ddition, has a neutral
element % for each objeck, that is, 1g = g = g1y holds for everyg with sourcex and targey.
If C is a category, the family of all neutral elements is denotedand, forA included inC
andx, y in Obj(C), the family of elements af1 with sourcex and targey is denoted byA(X, y).
A monoid is the special case of a category when there is orgyotject, so that the product is
always defined. It is convenient to represent the elemerdscategory using arrows, so that an

elemenig with sourcex and targey is represented by _g) y.

Free categories and paths

If Ais a precategory, the free category generatedihy the family A* of all A-paths, that
is, all finite sequences, ..., Sp) of elements ofA such that the target &f_; is the source o
for everyi, together with, for each objegt an empty patla,, and equipped with concatenation
of paths. Wherw is anA-path, we denote bijjw|| the length ofw, and, for 1< i < |wj|, we
denote byw[i] thei-th entry inw. For 8 included in:A, we denote the family of alB-paths of
lengthp by B8P, If wy, w, are two paths, we denote byt |w, the concatenation of; andws
when it exists, that is, when the targetwf (defined to be the target of the last entryvin)
coincides with the source o¥, (defined to be the source of the first entryig). We identify a
length one path with its unique entry. Then a lengibath &, ..., Sp) is the concatenation of the
length one paths made of its successive entries, so that iedenoted bg, |- |sp,. WhenA is
a set, that is, a precategory with one object only, the cardébout source and targets vanishes,
and it is usual to sayA-word for A-path.



Presentations

Every category that is generated by a famflyis a quotient of the free categomt*, and,
for R a family of pairs ofA-paths, it is said to admit the presentatioft; R) if it is isomorphic
to A*/="r where="g is the congruence oil* generated byR. The elements oR are called
relations and, in this context, it is customary to write = v instead of @, v) for a relation
and, in concrete examples, to omit the concatenation siws, writings; -+ s, = t1--tq rather
thans|--|sp = t1] - |tg. If (A; R) is a presentation, we writgA | Ry for the category presented
by (A; R)—which is determined only up to isomorphism—and, foan A-path, we write W]
for the ="¢-class ofw, that is, for the element gfA | R)* represented bw—uwhich is also the
evaluation of the pattv in the categoryA | R)"

Cancellativity
All categories we shall consider here will have to satisfynsaccancellativity condition, at
least on one side.

Definition 1.1. A categoryC is calledleft-cancellative(resp right-cancellative if fg = fg’
(respgf =g'f)impliesg=g forall f,g,g inC.

A category is calle¢tancellativeif it is both left- and right-cancellative. In a left- (or fidr)
cancellative category, an element has a left-inverse ifard if it has a right-inverse, and so
there is a unique, non-ambiguous notiorirsertibleelement. FoC a left-cancellative category,
we denote by the subgroupoid af consisting of all invertible elements. An invertible eleme
will be callednontrivial if it is not an identity-element,d

Divisibility, lcm, lcm-selector
Associated with every (left-cancellative) category—henio particular, every monoid—
comes a natural left-divisibility relation.

Definition 1.2. Assume thaC is a left-cancellative category. Fdérg in C, we say thaff is a
left-divisor of g, or, equivalently, thag is aright-multipleof f, denotedf < g, if there existgy’
in C so thatfg’ = g holds.

The hypothesis that the ambient category is left-candedizg needed to guarantee that left-
divisibility is a partial preordering; the associated emleénce relation is right-multiplication by
an invertible element: the conjunction 6f< g andg < f is equivalent to the existence of an
invertible elemene satisfyingfe = g, which will be denoted by = g hereafter.

Simple derived notions stem from the left-divisibility a¢ibn, corresponding to greatest
common lower bound and least common upper bound. We sayhtlsah greatest common
left-divisor, or left-gcdof f andgif h left-dividesf andg and every left-divisor of andg left-
dividesh. Symmetrically, we saf is aleast common right-multipjer right-lcm of f andgif h
is a right-multiple off andg and every right-multiple of andg is a right-multiple ofh. Right-
Icms and left-gcds, if they exist, are unique up to rightiplication by an invertible element,
hence unique if the ambient category has no nontrivial titlerelement. In the latter case, we
write f v gandf A gfor the right-lcm and the left-gcd df andg (if they exist), andf \ g for the
unique element that satisfiésv g = f(f \ g).

Definition 1.3. We say that a left-cancellative categ@ryadmits right-lcmgresp admits local
right-lcmsg if any two elements o€ with the same sourcegsp if any two elements o that
admit a common right-multiple) admit a right-lcm.
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Finally, we shall sometimes need to choose right-lcms eitjyli The following terminology
is then natural.

Definition 1.4. Assume thaC is a left-cancellative category, atd is a generating subfamily
of C. A right-lcm selectoron A is a partial map : A x A — A* such that, for als t in A, the
elementg)(s,t) andd(t, s) are defined if and only i andt admit a right-lcm and, in this case,
there exists a right-lcrh of sandt such that botls|6(s, t) andt|é(t, ) represenh.

Note that, ifC is a left-cancellative category that admits no nontriviakrtible element, then
the map €, g) — f\gis aright-lcm selector 0G.

The notions of a right-divisor and left-multiple are defirggmmetrically, and so are the
derived notions of a right-gcd, and a left-lcm selector.

Noetherianity conditions
Definition 1.5. A left-cancellative categorg is calledright-Noetherianif every boundedk-
increasing sequence (is finite.

By extension, we say that a (positive) presentation is figttherian if the associated cat-
egory is right-Noetherian. Standard results (see for mtsd évy, 1979) give the following
criterion for establishing Noetherianity conditions.

Lemma 1.6. A presentatior{A; R) is right-Noetherian if and only if there exists a majpf A*
to the ordinals that iss*g-invariant and satisfied(s) > 0 for every s inA andA(sjw) > A(w) for
allwin A* and s inA.

Note that every presentatiorfi( R) such thatR consists of relations of the foromn= v with
u, v of the same length is right-Noetherian, as one can then défineto be the length oiv.

Ore category, groupoid of fractions

Finally, we recall that a groupoid is a category in which gvaement is invertible, a group
corresponding to the special case when there is only one®plbjet is, the product is always
defined.

We say that a groupoi@ is agroupoid of left-fractiongor a subcategorg if every element
of G admits an expression of the forin'g with f, gin C. The following result of Ore is classical:

Proposition 1.7. (Clifford and Preston, 1961) Say that a categorief$-Ore (resp.right-Oré) if

it is cancellative and any two elements that have the sanget#resp. source) admit a common
left-multiple (resp. right-multiple). Then a category ezdb in a groupoid of left-fractions (resp.
of right fractions) if and only if it is left-Ore (resp. rigk®re).

A category that is both left- and right-Ore will be called@re category

1.2. Normal decompositions and Garside families

The central idea in our approach consists in introducintirgjsished decompositions of a
certain type for the elements of the considered categorgs@ldecompositions involve a refer-
ence subfamily of the ambient category and correspond tpriheiple of recursively selecting
maximal left-divisors lying in the reference family.



Definition 1.8. Assume thaC is a left-cancellative category. Fd& included inC, a C-path
01l--1gp is calledS-greedy(resp S-norma)) if, for everyi < p, we have

VseSVfeC (s< fgigi1 = s< fg) (1.9)
(resp this and, in addition, every entry lies in S*, defined to beSC* U C).

When using diagrams in which the elements of the categoryegmesented by arrows, we
shall indicate that a paiin|g» is S-greedy by appending a small arc as_in AR

Example 1.10. Consider the free Abelian monob defined by the presentatioa,b; ab = ba)
and letS = {a,b, ab}, whenceS* = {1,a,b,ab}. TheS-normal paths iV are precisely the
pathsg|---|gq that, for somep, p’ in {0, ..., g}, satisfy (i)g; = ab fori = 1,..., p; (i) eitherg; = a
fori=p+1,..,p,org =bfori=p+1,..,p;and(iijg=1fori=p +1,..,0

Example 1.11. Consider the wreathed free Abelian mon@id= N? x &,, where the symmetric
group&; acts by permuting the coordinatesMf. Defining0 = [0, 0] in N2, we clearly have
7 = {0} x &, that is, there exists a nontrivial invertible elemenfin

Here, and in the sequel, we consider the elementsig, andr = (1 2) of &5, the elements
vi =[1,0], v, = [0, 1] andvy, = [1, 1] in N?, as well as the elemends= (vy, id), b = (v, id) and
e=(0,7)inT.

ForA = {a, b, e}, we haveA® = {0, vy, vo} X S». Forg; = (v1,7) andgz = (W, 7), the7 -path
01102 is A-normal, but the/-pathsg;|g; ande|g; are not. In fact, there is ngl-normal pathw
satisfying W] = [01]01] = (v12,id) = ab = ba, since one has/(,o) < ab and {»,0) < ab,
but (vi,0) £ b and {, o) £ a for all o in &,. Finally, the7 -pathab|ab is A-greedy but not
A-normal.

If gis an element of a categog; a pathw satisfying v] = g is called adecompositiomnf g.
What we shall be interested in in the sequel are the (pojsibiermal decompositions of the
elements of the considered category. One of the interesisobf decompositions is that they are
essentially unique.

Proposition 1.12. (Dehornoy et al., 2013b, Proposition 2.11) Assume ¢higta left-cancellative
category andS is included inC. Then any twaS-normal decompositions of an elementofif
any) areC*-deformations of one another, wherg-s|s; is said to be &*-deformatiorof ty|---|tq

if there exist invertible elementsg,e., en, with m = max(p, g), such that g e, are identity-
elements ande = _;5 holds forl < i < m, where, for p# q, the shorter path is expanded by
identity-elements (see Figure 1).

t t L 1 1
A e A ) — é
H aiie’ eiie) &iey’ a H
Y A M v A V:—)
S S S Sy+1 Sp

Figure 1: Deformation by invertible elements: invertible elements connect the corresponding entries; if one path
is shorter than the other (here we are in the case g < p), it is extended by identity-elements.

Note that, ifC contains no nontrivial invertible element, that is, theyonlertible elements
are the identity-elements, then Proposition 1.12 provadgenuine uniqueness result provided
one discards th&-normal paths that finish with an identity-element.
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As for the existence a$-normal decompositions, it naturally depends on the fa®il{Here
is where Garside families appear:

Definition 1.13. A subfamily S of a left-cancellative category is called aGarside familyif
every element of admits anS-normal decomposition.

Every left-cancellative category is a Garside family ireifsso every left-cancellative cat-
egory contains a Garside family. Practically recognizirtgether a given family is a Garside
family will be one of the main tasks of Sections 2 and 3 belowe $Wall appeal to the fol-
lowing simple characterization which is valid whenever #mbient category satisfies special
assumptions:

Lemma 1.14. (Dehornoy et al., 2013a, Corollary IV.2.18) Assume tfids a left-cancellative
category that is right-Noetherian and admits unique lodght-lcms. Then a subfamilg of C
is a Garside family irC if and only if S generate€> and, for all stin S admitting a common
right-multiple, svtand s\tliein SuU 1.

Also, we shall use the following closure result, which in ogense extends Lemma 1.14,
but need not characterize Garside families in general.

Lemma 1.15. (Dehornoy et al., 2013b, Proposition 3.9) & is a Garside family in a left-
cancellative categorg and r is a common right-multiple of two elements af S, there exists
a common right-multiple’rof s and t such that r is a right-multiple of and r’, together with s
and t defined by $t=ts =r’, lie in S*.

An application of Lemma 1.15 is that every Garside familyegivise to a simple presentation
of the ambient category. For our current purpose it will bfisient to state the result in the
particular case when no nontrivial invertible element &sxiso that a right-lcm is unique when it
exists.

Proposition 1.16. (Dehornoy et al., 2013a, Proposition 1V.3.6) Assume tRat a Garside
family in a left-cancellative catego® that contains no nontrivial invertible element and admits
local right-lcms. LetR consist of all relations &\ t) = t(t\ s) for st in S admitting a common
right-multiple. Then(S; R) is a presentation of.

Finally, we shall use the following simple diagrammaticeraboutS-greedy paths.

Lemma 1.17. (Dehornoy et al., 2013b, Lemma 3.3) (first domino g - g
rule) Assume thaf is a left-cancellative categorys is included L gn 2

in C, and we have a commutative diagram with edge€ ias on

the right. If g|g> and ¢ | f1 are S-greedy, then {g, is S-greedy as fo fa f2

well. g U O
A second, symmetric domino rule will be mentioned in Lemng2below.

1.3. Symmetric normal decompositions and strong Garsiaifss

If Cis a left-Ore category, then, by Proposition 1.7, it embadké groupoid of left-fractions
that we shall denote b§hv(C) (like “enveloping groupoid”). IfS is a Garside family irC, every
element ofC admits anS-normal decomposition, and it is natural to try to extend ithgult
from C to &V(C), that is, to find distinguished decompositions for the @ata of &hv(C) in
terms of elements a$* and their inverses.
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To do it, we extend the notion of agii-path into that of a signecA-path. Formally, if
A is any precategory, we introduce a famiy that is disjoint from and in bijection tA as
A = {s| s € A}, where the source afis the target ofs and vice versa. AsignedA-pathis

defined to be afi U A)-path. We extend the “bar” map to all signed paths by defif@hg sfor
sin A andwi|w> = Wo|w;. ForG a groupoid andA included inG, we extend the notatiom to
signed#-paths by declaring thaif] is g~* for gin A, that is, we use the letters Gt to represent
the inverses of the elements@f If wis a signed path anav] = g holds, we again say thatis
a decomposition ag.

When( is a left-Ore category anfl is a Garside family o€, we now look for distinguished
decompositions for the elements of the group®it(C). As every element ofn\(C) is a left-
fraction, itis natural to consider decompositions tharegative—positivé#-paths, this meaning
that every negative entry precedes every positive entrgrevthe entries it are called positive

and those irS* are called negative.

Definition 1.18. Assume thaC is a left-Ore category.

(i) Two elementd, g of C are calledeft-disjointif, for all f/, g’ in C satisfyingf-'g = f'~1g’
in &v(C), there existé in C satisfyingf’ = hf andg’ = hg.

(ii) For S included inC, a negative—positive paifly| - g1/ f1|--|fp is calledsymmetricS-
greedy(resp symmetricS-norma) if gi|--|gq and fy|--|f, areS-greedy (esp S-normal) and,
in addition,g; andf; are left-disjoint.

When using diagrams, we shall indicate that two elemémgsare left-disjoint by append-

ing a small arc as in 9 M f . So a generic symmetris-greedy path pictorially
corresponds to a diagram

e X et Ve Ve t. N

and it is symmetricS-normal if, in addition, all edges correspond to elementS'ofNote that

a positive path is symmetri§-normal if and only if itS-normal: indeed, a positive path is a
negative—positive path whose negative part is empty, amavieryg in S*(x, -), the elements,
andg are (trivially) left-disjoint.

Example 1.19. Consider the free Abelian monold and the setS as in Example 1.10. The
unordered pairs of left-disjoint elements &t are precisely(1, 1}, {1,a}, {1,b}, {1, ab}, and
{a, b}, where 1= 1, for the unique element of Obj(M).

Like S-normal decompositions in the positive case, symmefricormal decompositions
turn out to be (nearly) unique when they exist.

Proposition 1.20. (Dehornoy et al., 2013a, Proposition 111.2.16) Assume tfias a left-Ore
category andS is included inC. Then any two symmetri§-normal decompositions of an el-
ement ofenv(C) (if any) are C*-deformations of one another, this meaning that there xst
commutative diagram as in Figure 2.

As for existence, symmetric normal decompositions are eotad with left-lcms:

Lemma 1.21. (Dehornoy et al., 2013a, Lemma 111.2.19) Assume thas a Garside family in
a left-Ore category, that g|--+|s, and t|--|tq are S-normal paths, and thagt--t;g = S; - Sp f
holds. Therty|-|t1|si|-|sp is symmetricS-greedy if and only if t--t; and §--s, are left-
disjoint, if and only if {---tg is a left-lcm of f and g.

9
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Figure 2: Deformation of a signed path by invertible elements: invertible elements connect the corresponding
entries ; if some path is shorter than the other (here we have q < g and p’ < p), itis extended by identity-elements.

Lemma 1.21 implies that an elemefd~! of &év(C) admits a symmetriS-normal decom-
position if and only iff andg admit a left-lcm inC, whence:

Proposition 1.22. If S is a Garside family in a left-Ore catego that admits left-lcms, ev-
ery element ofnv(C) that can be expressed as a right-fraction admits a symmétmormal
decomposition.

In particular, ifC is an Ore category, then every elementf(C) can be expressed as a
right-fraction, and we obtain:

Corollary 1.23. If Sis a Garside family in an Ore catego@that admits left-lcms, every element
of &v(C) admits a symmetriS-normal decomposition.

When algorithmic questions are involved, it will be convetito consider special Garside
families that we introduce now.

Definition 1.24. Assume thaC is a left-Ore category. A Garside VA A
family S of C is calledstrongif, for all s, t in S* with the same target, s s
there exists, t’ in S* that are left-disjoint and satisfyt = t's. v oot

The interest of introducing the notion of a strong Garsideifiais to allow for a refined
version of Proposition 1.22:

Proposition 1.25. (Dehornoy et al., 2013a, Proposition 111.2.31)fis a strong Garside family

in a left-Ore categonC that admits left-lcms, every element&if(C) that admits a positive—

negativeS*-decomposition of lengthadmits a symmetri§-normal decomposition of length at
most¢.

Finally, as in the positive case, we shall appeal to diagratiwmules involving normal paths.

Lemma 1.26. (Dehornoy et al., 2013a, Propositions 111.2.39 and , ,
11.2.42) 9 B
(i) (third domino rule) Assume thétis a left-cancellative cate- L/
gory, S is included inC, and we have a commutative diagram with fo f1 fa
edges inC as on the right. If g|g, is S-greedy, and 1, g, are left-
disjoint, then g|g; is S-greedy as well. g,l U g,z
(i) (fourth domino rule) Assume théatis a left-Ore category, toon 22
Sisincluded inC, and we have a commutative diagram with edges L/
in C as on the right. If g, g are left-disjoint, and f, g, are left-
disjoint, then ¢, g, are left-disjoint as well.

10
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1.4. Bounded Garside families aldnormal decompositions

In many cases, interesting Garside families in a monoidisbo§the left-divisors of some
maximal elemena, in which case it is natural to call them boundedAyin a category context,
the maximal element has to depend on the source, and it saegblvith a map from the objects
to the elements.

Definition 1.27. A Garside familyS in a cancellative categoryis calledboundedf there exists
a mapA from Obj(C) to C satisfying the following conditions:

(i) se S(x,-) impliess < A(X),

(i) Yy € Obj(C) A1z Obj(C) Vs e Si(-,y) IS € S¥(z-) (S's= A(D).

Note that, in Definition 1.27, (i) and (ii) are symmetric, §cén be stated as
Vx € Obj(C) Aly € Obj(C) Vs e SF(x,-) IS € S*(-,y) (sS = A(X)),

with y the target ofA(x). In the above context, for every elemextf C, the unique elemerd
satisfyingss = A(X) is denoted byj(s), whereas the unique elemesisatisfyings’'s = A(z) for
somezis denoted by)(s).

Remark 1.28. A Garside family satisfying Definition 1.27(i) only is cafleight-boundecdby A.
The latter notion is natural and useful in the positive césg,it is not sidficient in the signed
case and we shall not consider it here.

Proposition 1.29. (Dehornoy et al., 2013a, Proposition V1.3.1(1)) Every cancellative category
that admits a bounded Garside family is an Ore category.
(i) Every bounded Garside family is strong.

The most important technical property implied by the existeof the bounding mag is the
existence of a derived automorphism of the ambient category

X
Lemma 1.30. (Dehornoy et al., 2013a, Proposition VI.1.11) As- o 9 X

sume thatS is a Garside family bounded b¥ in a cancellative A A
categoryC. Putg(x) = trg(A(X)) for x in Obj(C) and¢(g) = 62(q) ) ag |0

for g in C. Theng is an automorphism af that makes the diagram oO—————>0
g 0 b IEM ) dD &)

aside commutative for every g@(x, y).
In terms of normal decompositions, the bounding map imglisenple connection between
greediness and left-disjointness that need not be valiéieral.

Lemma 1.31. (Dehornoy et al., 2013a, Proposition VI.1.46) Assume & a Garside family
bounded by a map in a cancellative categorg. Then, for all s, s, in S, the following are
equivalent:

() s1|s2 is S-normal;

(i) d(s1) and s are left-disjoint;

(iii) d(s1) and $ admit no nontrivial common left-divisor.

A consequence is the following counterpart of the first damire.

Lemma 1.32. (Dehornoy et al., 2013a, Lemma VI.1.32) (second SN 2
domino rule) Assume that is a cancellative category an§ is a

bounded Garside family i@. Then, when we have a commutative lto tlL t2\
diagram as on the right with edgesd#f in which g|s, and t|s, are > =
S-greedy, then’gs, is S-greedy as well. SR

11



Note that the second domino rule is not an exact counterpdredirst one in that, here, all
involved elements are supposed to lie in the reference yafil

Also, a second type of distinguished decomposition ndiueaises for the elements of the
associated groupoid of the considered category: calledrmal these decompositionsftir
from symmetric normal decompositions in that the denonoiniastdemanded to involve a power
of the Garside map. In the case of a monoilll, a boundA for a Garside family is an element
of M, and it makes sense to take poweraofn the case of a general categarythe bound is a
map ofObj(C) to C, and the notion of a power has to be adapted.

Notation 1.33. Assume that is a cancellative category ardis a Garside map i6. Fornin Z
andx in Obj(C), we put

AXIA@Y)]- A" (X)) forn> 0,
AM(x) 1= { ey forn=0, (1.34)
Al ())IA(@2(N))] - 1A(p7"(x)) forn <O,

and we writeA™(x) for the element o&nv(C) represented by (x).

Note that, in every case, the sourcedst(x) andA™(x) is x and its target i"(x), and that
A="(x) is always the inverse af (¢~"(x)).

Definition 1.35. Assume thatS is a Garside family o€ bounded by a map in an Ore cate-
goryC.

(i) An elementg of C(x, -) is calledA-like if g = A(X) holds.

(i) A signed S-path is calledA-normalif it has the formA"(-)|sy| - |s, with nin Z and
81|+ |sp anS-normal path such tha; is notA-like.

Thus aA-normal path is either a positive-path beginning with elements in the image/of
or an empty path, or a negative—positirgath whose negative part consists of elements in the
image ofA.

Proposition 1.36. (Dehornoy et al., 2013a, Proposition VI1.3.19) Assume thas a Garside
family of C bounded by a map in an Ore categorC. Then every element 8hiv(C) admits a
A-normal decomposition, in which the exponemad uniquely determined and the other entries
are unique up t@+-deformation.

In the positive case, it is easily seen tiatike entries must lie at the beginning of &h
normal path, so @&-normal path is simply as-normal path in which the initiah-like entries
are not onlyA-like but even lie in the image of. In the signed case, theftérence with a sym-
metricS-normal path is more important: infenormal path, the numerator and the denominator
need not be left-disjoint, the requirement being now thabes not left-divide the first positive
entry. Actually, Propositions 1.22 and 1.36 are not exatiyiparable, as they requirdigirent
assumptions, namely the existence of left-lcms in the folcase, and that of a bounded Garside
family in the latter.

2. Recognizing Garside families, case of a presentation

We now begin to investigate thdfective methods relevant for Garside structures. In this
section as well as the next one, we address the questionajnizing that a given family is a
12



Garside family in the ambient category, as well as checHliag the category is eligible for the
Garside approach, that is, it is left-cancellatiesg left-Ore). The question depends in turn on
the way the category and the candidate Garside family ag@figze In this section, we consider
the case when the category is specified using a presentation.

We first define reversing (Subsection 2.1), then addresblestimg that the ambient cate-
gory is cancellative (Subsection 2.2), recognizing Gar&hnilies (Subsection 2.3), and finally
proving further properties like being an Ore category orargg Garside family (Subsection 2.4).

2.1. The reversing transformation

Before entering the main development, we introduce a teahtool that will be used several
times in the sequel, namely a path transformation callegrsévg (Dehornoy, 1997, 2003, 2011).

Definition 2.1. Assume thatA is a precategory. Aight-complemenbn A is a partial may
of A% to A* such tha#(s, s) is defined and equal tg, for everysin A(x,y) and that, ifé(s, t)
is defined, thers andt have the same sourcé(t, s) is defined, and botls|g(s,t) andt|d(t, s)
are defined and have the same target. A right-complementiésichortif, wheneverd(s t) is
defined (s, t) has length at most 1, that is, it belongsicor is empty.

We note that, ifObj(A) consists of a single element, the conditions oo be a right-
complement are simply th&(s, s) is empty for everys and thatd(s,t) is defined if and only
if 6(t, 9) is.

Definition of right-reversing
We are now ready to introduce right-reversing. We begin whth special case of a short
right-complementand a negative—positive input path, thiitl be frequently used in the sequel.

Notation 2.2. If A is a precategory, we writes for {ex | x € Obj(A)} andA for AUexz. Forga
right-complement oA, we writed for the extension of to A obtained by adding(ex, ex) = &x
for every objeci pluso(s, £x) = &y andf(ex, s) = sfor everysin A(X, y).

Note thatd is a right-complement orfl. We introduce right-reversing by means of an algo-
rithm working on (certain) signedi-paths.

Algorithm 2.3 (Right-reversing, short case, negative—pdtve input).

Context: A precategoryA, a short right-compleme#iton A
Input: A negative—positiveA-pathtg| - [t1|Si] - |Sp
Output: A positive—negativeA-path, orfail

L tig:=tifori=1,..,q

22 5j=sforj=1,..,p

3: for i increasing from 1 ta@ do

4 for jincreasing from 1 tg do

5 if 6(s_1,ti,j_1) is definecthen
6: tij = 0(s-1jtij-1)

7 S.,j = 0(ti j-1, Si-1j)

8 else

9: return fail

10: return sgal - |Sgpltgpl -+ [tLp
13



Lemma 2.4. If 6 is a short right-complement on a finite precategoiy Algorithm 2.3 running
on a pair of A-paths of length at mogtterminates in @) steps.

Proof. The claim is obvious from the pseudocode in Algorithm 2.3. O

Running Algorithm 2.3 amounts to recursively constructang —t.
rectangular grid whose edges are labeled by elemetfisarfempty s‘
paths, and in which each elementary square has the type shown ’9‘(3 )
aside, see Figure 3 for an example. -

"e‘(t, 9

b a b b
a a ’
b b b
b b
b b b
b

Figure 3: The grid associated with a right-reversing, short case. Here we consider the right-
complement 6 on {a, b} defined by 6(a,a) = d(b,b) = &, (a,b) = b, and 8(b,a) = a (with one object
only), and apply Algorithm 2.3 to the negative—positive word b|b|a|b|a|b|b: the initial word is written on
the left (negative part, here alb|b) and the top (positive part, here b|alb|b), and then the grid is con-
structed by using the right—complement@to recursively complete the squares; we use a double line for

e-labeled arrows. In the current case, the output of the algorithm is the length one word b.

Example 2.5. Recall Example 1.11. We consider a (short) right-
complemend on A, where fors, tin A we defined(s, t) as the entry a
in row sand columrt of the table on the right.

Right-reversing the negative-positive waafb|e|alble|a yields e
the worda as shown in Figure 4.

v & T (T
M ® ™ | M

a
&
a
b

a b e a
e e e
b a a
a a
a a ’
a

Figure 4:The grid associated with the right-reversing in Example 2.5.
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We now turn to the case of an arbitrary right-complement,ithave no longer assume that
0(s,t) necessarily has length zero or one. Then we can extend fimitide of right-reversing,
the only diferences being that the constructed grid may involve retéanghose edges contain
more than one arrow whei{s, t) has length at least 2. For the description, it is convertient
start from an arbitrary signed path, and not necessarity finegative—positive one.

Algorithm 2.6 (Right-reversing, general case).

Context: A precategoryA, a right-complemert on A
Input: A signedA-pathw
Output: A positive—negativeA-path, orfail, or no output
1: while 3i < [|wl| (W[i] € A andw][i + 1] € A) do
2. j:=min{i | W[i] € Aandw[i + 1] € A}
cosi=w]]
t:=wlj+1]
if 6(s t) is definecthen

3
4
5
6: replacesit in w with 9(s, t)[6(t, s)
7.
8
9:

else
return fail
return w

Definition 2.7. If Algorithm 2.6 terminates successfully, we say that thigahsignedA-pathw
is right-6-reversibleto the final pathw’, and we writew ~y W'. If u, v are positiveA-paths, and
there exist positive paths, v’ satisfyingulv ~y V' |U’, we defined*(u, v) to bev’ andé* (v, u) to
beu’.

As in the short case, running Algorithm 2.6 amounts to recur- —t.
sively constructing a grid whose edges are labeled by elenoéi
or empty paths, and in which each elementary square haspke ty (s 1)
shown aside. The fierence to Algorithm 2.3 is twofold: -

Firstly, if the input is an arbitrary signed path, we do note&sary start with a vertical—
horizontal path, but possibly with a staircase in whichieattand horizontal edges alternate; see
Figure 5 for an example.

Secondly, if the right-complemenitis not short, the edges of the grid may havfetient
sizes; see Figure 6 for an example.

J’a‘(t, 5)

Remark 2.8. More general versions of right-reversing are possiblehatkpense of renouncing
to determinism, we can consider multiform right-completsessigning with every pair of let-
ters (5 t) a family of pairs of path$(us, v1), ..., (Un, Vn)} and decide thadjt may reverse to any of
the paths/|uy, ..., Va[Un (See Dehornoy, 2003). In such a context, several reversidg may be
associated with an initial path. Although most theoretiesllts can be adapted, these extended
versions are less suitable for algorithms, and we shall oisider them here.

Termination of reversing

It should be clear that, whereas Algorithm 2.3 always teatdn (successfully or not, that is,
with an output path or with the outpufdil”) in finitely many steps, Algorithm 2.6 may not
terminate.
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Figure 5: The grid associated with the right-reversing of a signed path. We consider the right-
complement from Figure 3, and apply Algorithm 2.6 to the word a|blajalbla: the initial word is written
on the top-left boundary (negative edges vertically and positive edges horizontally), and completing
the grid to the bottom-right yields the output word a|a.

b a b b
) e b
_b) _a)lb lb H b H
b .
_a, b
{b b {b H
’ :‘gbja 2 la

Figure 6:The grid associated with a right-reversing for a right-complement that is not short. Here we
consider the right-complement 6 on {a, b} defined by 6(a, a) = 8(b,b) = ¢, 6(a,b) = bla, and 8(b, a) = a|b
(with one object only), and apply Algorithm 2.6 to the negative—positive word b[b|a|blalb|b (the same
as in Figure 3): the difference is that, now, edges of variable size occur, so that, a priori, the process

need not terminate. In the current case, it terminates, and the output word is a|b|§.

Example 2.9.Consider the right- complememdefmed orla,b}byé(a,b) =b and@(b a) = bla.
Letw = albla. Thenw reverses in two steps hjw|b hence in 2 steps tob”|w|b for everyn,
never leading to a positive—negative word.

For our current approach, it will be useful to have a simpimteation criterion.

Lemma 2.10. Assume thaf is a right-complement on a precategafy

(i) Right9-reversing terminates successfully for all valid inputarnid only if there exists a
family 8 of A-paths that includest and is such that, for all v in 8 with the same source, there
exist U, v’ in B satisfyingulv ~g V'[U.

(ii) If a family 8 with the properties as i) exists and is finite, then, for every signéepath
of length¢, the right#-reversing of w terminates (successfully) i€ steps and all involved
paths have length in @).

Proof. (i) If right-6-reversing is terminating, theA* has the expected property.
Conversely, assume th8tsatisfies the property of the lemma. l16ébe the restriction of*
to 8. Then¢’ is a short right-complement &8, so right¢’-reversing is terminating. Now, assume
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thatulv is a signedA-path. By assumptionv is also a signe@-path, and its righ#-reversing
terminates, so there exists a witnessihgrid. Now ad’-grid of sizep x q is the juxtaposition
of pg6-grids, whose existence shows that the rigineversing ofl|v also terminates.

(i) Right-¢’-reversing terminates i@(¢?) steps and all involves-paths have length i9(£?).
As the family 8 is finite, there exists a constant that bounds the length pfed@ment of8
considered as afil-path, and the claim follows. O

Corollary 2.11. If 9 is a short right-complement on a finite precategaty Algorithm 2.6 run-
ning on a signedA-path of lengthy terminates in Q¢?) steps.

Proof. If ¢ is short, the condition of Lemma 2.10 is satisfied witrequal to the family# in
Notation 2.2, that is, the union oft and the empty paths. O

So, starting with an arbitrary right-complemeéntve can possibly show that righitreversing
terminates successfully for all valid inputs by applying tbllowing closure method:

Algorithm 2.12 (Termination of right-reversing).

Context: A precategoryA

Input: A right-complemend on A

Output: A (minimal) subfamily ofA* that includesA and is closed unde¥
1. Ay =A

2: repeat

3: if 6*(s t) is defined for alls, t € A; then > right-reversing may fail to terminate
4: Airr = A UG (S1) | Ste A

5: else

6: return fail

7. until Ay = A
8: return A

Example 2.13. Consider the right-complement of Figure 6 again. Startirith W, = {a, b}
and applying Algorithm 2.12, we findi; = Ap U {¢, alb,bla}, and A, = Ajz: here the pro-
cess terminates in one step, leadindgdm, b, a|b, bja}. The existence of this 5 element family
that is closed under right-reversing implies that rightemsing is terminating with a quadratic
complexity upper bound.

When the closure undér is infinite, the situation is more complicated and there ig@eral
result. Examples are known when right-reversing is alwagminating but the timerésp space)
complexity is more than quadratieép linear): for instance, the right-reversing associatetth wi
the right-complemen# defined on{a, b} by 6(a,b) = & andd(b,a) = a(bab)3ab is always
terminating, but the timerésp space) complexity is cubiagsp quadratic) (Dehornoy, 2012,
Example 10.3), whereas Dehornoy (2000, Proposition V.l111] displays an example (with an
infinite family of generators) where right-reversing isnémating but the only known bound for
time complexity is a tower of exponentials of exponentiaghe

2.2. Establishing left-cancellativity

We now address our main problem, namely investigating aepted categoryA|R)" and,
in particular, trying to recognize whether it is left-caliave. Here we consider the problem for
presentations of a certain syntactical type. This restricallows for using right-reversing, and
17



it is natural in our context as one can show that every Gafaitiy gives rise to a presentation
that is eligible for this approach (at least in the extendemdion alluded to in Remark 2.8).

Definition 2.14. A presentation; R) is calledpositiveif all relations ofR are of the formu = v
with u, vnonempty; it is calledight-complementeassociated with the right-compleménif R
consists of all relations|é(s, t) = t|6(t, s) with (s, t) in the domain of.

Note that, by definition, a right-complemented presentaisgpositive and that, iff; R) is
a positive presentation, then the categ@fy| R)" contains no nontrivial invertible element since
an empty path and a nonempty path cannoRkgjuivalent. Saying that a presentatioft R) is
right-complemented just means that it is positive and tbagll s, t in A, the familyR contains at
most one relation of the form.. = t.... The involved right-complement is short if the paths “...”
have length O or 1, that is, all relations#hare of the formu = v with u andv of length 1 or 2.
For instance, the presentation §; ab = ba) is associated with the short right-complement of
Figure 3, whereas the presentatia)lf; aba = bab) is associated with the right-complement
of Figure 6 and Example 2.13. By contrast, the presentatiob; b = ba, a® = b?) is not
right-complemented since it contains two relations of trafa... = b....

When a presentation is right-complemented, it is eligiblethe associated right-reversing
transformation, leading in good cases to a practical methpdecognizing left-cancellativity.
The first observation is that right-reversing gives a waydnstruct common right-multiples in
the associated category:

Lemma 2.15. Assume thatA; R) is a presentation associated with a right-complengerithen,
for all A-paths yv, U, v’ satisfyingulv ~g V'|U, the paths {v' and Ju’ are R-equivalent.

Proof. By definition, each elementary square in the rectangular ghich is associated with
Algorithm 2.6 corresponds to a relation ®f O

Lemma 2.15 says in particular that, ufv are A-paths andijv is right-6-reversible to an
empty path, them andv areR-equivalent, that is, they represent the same element inatee
gory (A |R). In our context, right-reversing will be useful only wher threvious implication is
an equivalence.

Definition 2.16. If (A; R) is a presentation associated with a right-complemiente say that
right-reversing iscompletefor (A; R) if ulv ~y & holds wheneveu andv represent the same
element iKA | R).

In other words, right-reversing is complete if it alwayset#s equivalence. The interest of
introducing completeness here is the following easy result

Lemma 2.17. Assume thafA; R) is a presentation associated with a right-complenteanhd
right-reversing is complete fdiA; R). Then the categoryA | R) is left-cancellative.

Proof. Itis suficient to prove that, i belongs taA andu, v areA-paths such thadu andsjv are
R-equivalent, them andv areR-equivalent. Now, as right-reversing is complete, the higpsis
implies thafu|s|glv right-6-reverses to an empty path. Now the first step in the revesincess
necessarily consists in deletirgp. We deduce thatijv must righté-reverse to an empty path,
which, by Lemma 2.15, implies thatandv areR-equivalent. O

We are thus led to look for completeness criteria.
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Definition 2.18. Assume tha® is a right-complement on a precategafy Forr,stin A,
we say tha® satisfies thecube conditiorat (r, s, t) if either neither ofg*(6*(r, s), 6*(r, t)) and
(6" (s 1), 6°(s, 1)) is defined, or both are defined and

g (6" (6" (r, 9), 0" (r, 1), (6" (s, 1), 0°(s 1))
is empty.

Proposition 2.19. (Dehornoy et al., 2013a, Proposition 11.4.11) Assume {¥tR) is a presen-
tation associated with a right-complemerdnd that at least one of the following holds:

(i) the right-complemerttis short

(i) the presentatio#A; R) is right-Noetherian.

Then right-reversing is complete f@#; R) if and only if, for all pairwise distinct &, r in A
with the same source, the cube condition(igs, t) is satisfied.

Corollary 2.20. If the equivalent conditions of Proposition 2.19 are satdfithen the cate-
gory (A|R)y is left-cancellative.

Example 2.21. Both presentationsa(b; ab = ba) and @, b; aba = bab) are eligible for Propo-
sition 2.19 and Corollary 2.20. Indeed, the former is asgedi with a short right-complement,
whereas the latter is associated with a right-complemettishnot short, but defining(w) to
be the length ofv and noting that the (unique) relation of the presentatiorsists of two words
with the same length, Lemma 1.6 yields that the presentétioght-Noetherian. Then, in order
to apply Proposition 2.19 and Corollary 2.20, we need to kltieat the cube condition is satisfied
for all triples of pairwise distinct elements §f, b}, which is vacuously true. We conclude that
both monoidga, b|ab = ba)' (the free Abelian monoiti?) and(a, b |aba = bab)' (the 3-strand
braid monoidBy) are left-cancellative.

Example 2.22. Recall Example 2.5 and the short right-complengeafined there. It is routine
to check that the cube condition is satisfied forra$f t in A. Thus, by Proposition 2.19 and
Corollary 2.20, the categoryA | R)* defined by the presentatiorfi{ R), whereR is the set of

relations given by, is left-cancellative. Note, however, th@f | R)* is not isomorphic to the

wreathed free Abelian monoifi, as the relatiorele = 1t which holds in7 is not described

by 8, and hence not included R. In fact, 7 is the quotient of A | R)* by the relatiore|e = 1.

Remark 2.23. Proposition 2.19 does not exhaust all known types of prasiens for which
right-reversing is complete. For instance, the presemtgt, b;a = bab) of the Klein bottle
monoid is not eligible for Proposition 2.19, since the agsed right-complemertt is neither
short nor right-Noetherian since no mapnay satisfyi(a) = A(bab) > A(ab). However right-
reversing is complete and terminating for this presentatis well as for a number of similar
presentations (Dehornoy, 2012).

2.3. Recognizing Garside

Assuming that #; R) is a right-complemented presentation and the categ@ryR) has
been shown to be left-cancellative using the method exgthiim Subsection 2.2, our next task is
to recognize that some subfamily is possibly a Garside fariihce again the task will turn out
to be easy whenever right-reversing is complete for theidensd presentation.

The main observation is that, in the above context, the oaye@A | Ry admits local right-
Icms, that is, any two elements that admit a common righttiplaladmit a right-lcm.
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Lemma 2.24. Assume thafA; R) is a presentation associated with a right-complenmeand
right-reversing is complete for it. Then, for afi-paths yv with the same source, the ele-
ments[u], [v] admit a common right-multiple ia7A | Ry if and only if the right-reversing dfilv
terminates, in which case we hajg v [v] = [u|6*(u, V)] and[u] \ [V] = [6*(u, V)].

Proof. Assume thaty] and [v] admit a common right-multiple in v u
the categoryA | R). This means that there exigkpathsu’, v’ such l j H
0*(v, u)

thatulv andv|u’ areR-equivalent. As right-reversing is complete,U
this implies thatv'[ulv|u’ right-reverses to an empty path. Decom-
pose the associated reversing grid as shown aside. The ptisam & (u, v)
that the reversing of |u|v|u’ successfully terminates implies in par-V,
ticular that the reversing aflv successfully terminates, that is, the
pathsg*(u, v) andg*(v, u) are defined.

The diagram then shows thatjy’] is a right-multiple of p|6*(u, V)] in (A|R), so the latter,
which depends only on] and [v], is a right-lcm of these elements. O

Applying the criterion of Lemma 1.14, we immediately dedaeeethod for recognizing Gar-
side families in the right-Noetherian case. Actually, weaib more: instead of just a YISO
answer for a candidate-subfamily, we obtain the existenceaacharacterization of the small-
est Garside family that includes the given family. Hereafter 8 ¢ A*, we write [B] for
{w] | we 8.

Algorithm 2.25 (Smallest Garside family).

Context: A right-Noetherian right-complemented presentatigh®) for which right-reversing
is complete
Input: A finite subfamily8 of A* that includesA
Output: A subfamily of A* that represents the smallest Garside family@f| R)* that in-
cludesB U 14 if the algorithm terminates successfully
1: enumerate as{wy, ..., Wy} and setB = [wa, ..., Wn]
2.0i:=2 _
3: whilei < |8 do

4 for j:=1toi—1do

5 if 6°(wi, w;) is definedthen > right-reversing may fail to terminate
6: |NCLUDE(§§, 6" (Wi, wj))

7 |NCLUDE(§3\, 6" (wj, W)

8 |NCLUDE(.§, Wi |6 (Wi, Wj))

o: INcLUDE(SB, w; |6 (Wj, Wi))

10: else

11: return fail

12: i=i+1

13: return BU 1y

14: procedure INcLupE(B, W) > appendw to B, unlessB contains a path equivalentto
15: if Aie({l,..,|8]} with 6" (w, w;) = 6" (Wi, w) = &_ then
16: appendv to B
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Proposition 2.26. Assume thafA; R) is a finite right-Noetherian right-complemented presen-
tation for which right-reversing is complete alis a finite subfamily ofA* that includesA.
Then there exists a smallest finite Garside family’dhcluding[8] U X if and only if Algo-
rithm 2.25 successfully terminates, in which case the retdrfamily of paths represents that
Garside family.

Proof. By Lemma 2.24, any two elements @fi | R)* that admit a common right-multiple admit
a right-lcm, so(A | R)* is eligible for Lemma 1.14. Hence a subfam#ythat includesA U 14

is a Garside family if and only if, for al t in S with a common right-multiples v t and s\ t
belong taS. So, by Lemma 2.24 again, a fam@of A-paths represents a Garside family if and
only if, for all u,vin B, the pathsi|6*(u, v) andé*(u, v) areR-equivalent to at least one element
of B. It follows that there exists a smallest Garside family thatudes [B], namely the smallest
family of words that include$® and is such that, for ail, vin B, the pathsi|6*(u, v) andg*(u, v)
areR-equivalent to elements &.

That smallest subfamilyB is precisely what Algorithm 2.25 computes. Indeed, what the
latter does is to consider systematically all paing, {v;) and, for each of them, test whether
6*(wi, wj) (lines 6 and 7) as well ag|6*(w;, w;) (lines 8 and 9) ar®-equivalent to some existing
pathw; of the list and, if not, append the missing paths to the ligiteNhat, as right-reversing is
complete, two pathe, w are equivalent if and only #* (w, w) andé*(w’, w) exist and are empty
(line 15). O

Example 2.27. Consider again the presentatianlf; aba = bab). Running Algorithm 2.25 on
the family {a, b} yields {¢, a, b, a|b, b|a, a|bla}, a family of words representing the well known
smallest Garside familyl, a, b, ab, ba, A} of the braid monoidBj] that includes 1; here and ev-
erywhere in the sequel, we uador aba.

Remark 2.28. If right-reversing is not always terminating, that is, ifse elements of the con-
sidered category have no common right-multiple althougy tshare the same source, Algo-
rithm 2.25 may never terminate. Even in the case when righgsing is always terminating, it
might happen that Algorithm 2.25 does not terminate: foiginee, in the case oéi(b; ab? = ba),
starting from{a, b}, even Algorithm 2.25 does not terminate in finite time: indlege have then
6*(a,b" = b?", and the family{m is the infinite family{e, a} U {b%' | n > 0}. However, it can
be shown (Dehornoy, 2002, Lemme 1.9) that, when the closuter, is finite, then the closure
under\ andv is necessarily finite.

2.4. Further questions

In the previous subsections, we showed how to establisitéeftellativity and to recognize
Garside families starting from a presentation. We now lyr@dldress further relevant questions,
namely recognizing Ore categories, establishing the exigt of Icms, and recognizing strong
and bounded Garside families.

Establishing right-cancellativity
Right-reversing is not suitable here, and no practical matth known for establishing right-
cancellativity directly. However an obvious solution isciansider the opposite category and the
opposite presentation, that is, to switch left and rightywhere, and apply the previous meth-
ods. Equivalently, we can work with the initial presentatamd apply the symmetric counterpart
of right-reversing, naturally calleléft-reversing whereas right-reversing consists in iteratively
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replacing subpaths of the forgt with 6(s, t)|6(t, ), left-reversing consists in replacing subpaths

of the formt[s with 6(s, t)[6(t, s) whend is aleft-complemenon the considered precategafy
namely a partial map afi? to A* such thab(s, s) is empty for everysin A and that, ifo(s, t)

is defined, thers andt have the same targéi(t, s) is defined, and both(s, t)|t and(t, s)|s are
defined and have the same source. In terms of diagrams, tiésponds to constructing a grid
starting from the bottom and the right, instead of from the aod the left. Then the counter-
part of Corollary 2.20 gives a criterion for establishingttihe categoryA|R)" defined by a
left-complemented presentatiaf(R) is right-cancellative.

Establishing the existence of common multiples

Here two diferent methods can be used. #;(R) is a presentation associated with a right-
complemend, then the existence of common right-multiplegifi| R)*is directly connected with
the termination of right-reversing since, as proved in Len#1?24, two elementsi] and [v] admit
a common right-multiple (and even a right-lcm) (& | R)* if and only if the rightd-reversing
of ulv successfully terminates in finite time. We deduce the fdlhgsuficient condition:

Proposition 2.29. If (A; R) is a presentation associated with a right-compleneand Algo-
rithm 2.12 running or{A; R) succeeds, any two elementg@f| R)* with the same source admit
a common right-multiple.

Another approach can be used once a Garside fasgyknown. It is based on the following
result, which reduces the existence of common multiplesufoitrary elements to the existence
of common multiples inside the Garside family.

Proposition 2.30. Assume thas is a Garside family in a left-cancellative catega@y Then any
two elements of with the same source admit a common right-multiple if and déh&ny two
elements of with the same source admit one.

Proof. Obviously the condition is necessary. On the other handinasghat any two elements
of S with the same source admit a common right-multiple. By Lemim#, for alls, t in S* with

the same source, there existt’ in S* satisfyingst = ts'. Now, consider arbitrary elementsg

of C with the same source. AS' generate€, there exiss,, ..., S, andty, ..., tq in S* satisfying

f =555 andg = t;--tg. Using the result above, one inductively constructeeq rectangular
grid based orsy, ..., sp andty, ..., ty with edges inS*, and the diagonal of the grid (as well as any
path from the top—left corner to the bottom-right cornepresents a common right-multiple
of f andg. O

Note that the construction of a grid in the proof of Proposit?.30 is directly reminiscent
of a right-reversing process—more exactly, of its non-deiristic extension alluded to in Re-
mark 2.8 as there is no uniqueness of the elements csiligdn general.

It should be clear that Proposition 2.30 directly leads teféective method for deciding the
existence of common right-multiples in the case of a finites@ie family, see Example 2.33
below.

A symmetric argument is possible for common left-multipldswever, as the definition of a
Garside family is not invariant under exchanging left amyhtj the result takes aftierent form.
In particular, it only gives a dticient condition that need not be necessary in general.

Proposition 2.31. AssumeS is a Garside family in a left-cancellative categaiand, for all st
in S* with the same target, there exigt§ in S* satisfying & = t's. Then any two elements@©f
with the same target admit a common left-multiple.
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The proof is symmetric to that of Proposition 2.30, the irtdigcstep consisting now in
constructing a rectangular grid starting from the bottord #re right. Again Proposition 2.31
leads to an fective method for deciding the existence of common lefttipldls in the case of a
finite Garside family, see Example 2.33.

Establishing the existence of lcms

As for the existence of right-lcms (their computation wi#t ddressed in Subsection 4.4),
we shall just mention an algorithmically important conseage of Lemma 1.15:

Proposition 2.32. Assume thas is a Garside family in a left-cancellative categaty ThenC
admits right-lcms (resp. local right-lcms) if and only if ytwo elements,$ of S* with the
same source (resp. that admit a common right-multipl§*nadmit a right-lcm r insideS?, this
meaning that r belongs t6* and every common right-multiple of s and t that liesShis a
right-multiple of r.

Proof. By Lemma 1.15, a common right-multiple of two elementsSéfmust be a right-multiple
of some common right-multiple that lies #f. So it is enough to consider right-multiples lying
in S*, and we deduce that two elementsS¥fadmit a right-lcm inC if and only if they admit
one insideS*. Then (the proof of) Proposition 2.30 enables one to go f8no products of
elements of*, that is, to arbitrary elements 6f O

We can thus establish the possible existence of right-loynaxiolusively inspecting right-
multiples inside the considered Garside family.

Recognizing strong and bounded Garside families

So far, we have obtained methods for possibly establishigicgtcategory is left- or right-Ore.
Deciding whether a given Garside famdyis strong is then easy whéhis finite and an fective
method is available for deciding, for &l g, h, whetherh is a left-lcm of f andg. Note that, by
the counterpart of Lemma 2.24, such a method exists whenleggiresentation is associated
with a left-complement for which left-reversing is comgetfinally, deciding whether a finite
Garside family is bounded is easy, as it only requires tgstinisibility relations.

Example 2.33. We continue with the presentation, b; aba = bab) of the monoidB;. In
Example 2.27, we identified the Garside famBy= {1, a, b, ab, ba, A} (where we recall is
aba). It is clear thatA is a right-multiple of every element af. By Proposition 2.30, we
conclude that any two elements Bf admit a common right-multiple. Next, we easily check
the existence of right-lcms insidgand, by Proposition 2.32, conclude ttggtadmits right-lcms
(alternatively one can invoke Lemma 2.24 here as the mormitains no nontrivial invertible
element).

Similarly, A is also a common left-multiple of each elementS5f which isS, so, by Propo-
sition 2.31, we deduce that any two elementBpfadmit a common left-multiple—whence a
left-lcm by the symmetric counterpart of Lemma 2.24.

Finally, as every element &% is both a left- and a right-divisor &, we deduce that the
Garside familyS is bounded bw. So, in particular, it is strong.

Example 2.34. Recall the wreathed free Abelian mondidfrom Example 1.11. We will see in
Example 3.21 thaF = {a, b, A}, whereA = ab = ba, is a Garside family i1y".
Proposition 2.30 yields that any two elementsyoadmit a common right-multiple, as is
a right-multiple of every element &8. Moreover, we haves® = {1,a,b, A, e, ae, be, Ae}, and
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it is easily verified that for ang t in S* there exists, t’ in S* satisfyings't = t’s, as well as a
right-lcmr of s andt insideS*. Hence, any two elements @f admit a common left-multiple
and a right-lcm by Proposition 2.31 respectively Propogif2.32. As every element & is both
a left- and a right-divisor of\, the Garside familyS is bounded by, and thus strong.

3. Recognizing Garside families, case of a germ

We now consider the same questions as in Section 2, namabliisking left-cancellativity
and recognizing Garside families, when the ambient cayeigospecified by giving either the
complete multiplication table (Subsection 3.1), or a gelefined to be a fragment of the mul-
tiplication table that contains enough information to deti@e the latter unambiguously (Sub-
sections 3.2 and 3.3). In this case, one obtains a compahbrh#tat enables one to treat both
guestions (left-cancellativity and Garside family) sitanleously.

3.1. Using the complete multiplication table

We first quickly consider the case of a finite category. Suchtagory can be specified by
an exhaustive enumeration of its elements, its source apdfumetions, and its multiplication
table, which all are finite data. All questions are then easy.

First, for a finite category with an explicit multiplicatictable, left-cancellativity can be
decided by an exhaustive inspection. Next, the left-ddigy relation is finite, so checking
the condition (1.9) is easy and, for every subfan#lyof C, one can construct a list of ai-
greedy paths of length twaA priori, it is not clear that this is ghicient to recognize a Garside
family, since the definition of the latter mentions no uppeuid on the length of the considered
decompositions. However, such a bound exists, which libath the elements to be considered
and the length of the candidate-decompositions.

Lemma 3.1. (Dehornoy et al., 2013b, Proposition 3.1) A subfan#lyof a left-cancellative
categoryC is a Garside family if and only i§* generate<C and every element ¢5%)? admits
an S-normal decomposition of length two.

We deduce

Proposition 3.2. Assume tha€ is a finite categoryC with n elements, and that the source and
target maps o and the multiplication table af are given. Then the following hold:

(i) Itis decidable in time @?) whetherC is left-cancellative.

(i) The left-divisibility relation can be computed in timéré).

(iii) If C is left-cancellative andS is a subfamily ofC, then it is decidable in time @°)
whetherS is a Garside family irC.

Proof. We can test whethe is left-cancellative and compute the left-divisibilitylagon as
follows: For eachf in C, iterate over alp in C, keeping track of the productg that occur( is
left-cancellative if and only if no such product occurs mitr&n once, and the occurring products
are precisely the right-multiples ¢t Hence (i) and (ii) hold.

Comparingfg to 14, wherex is the source of for all f,gin C is suficient to determin€>,
and thenS* can be obtained by computing all produstgor sin S andgin C. Thus computing
S* takes timeO(n?). To verify thatS* generate€, one computes, far= 2, 3, ..., the set &)
by considering all producigswith g in (S#)"-* andsin S* until this sequence stabilizes, which
happens after at moststeps. Thus verifying tha$* generateg takes timeO(n%). Finally, by
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Lemma 3.1, one can decide whether a subfar§ilgf C is a Garside family by checking for
each element of$¥)? all possibleS-paths of length two against condition (1.9); as each test of
condition (1.9) involve©(n?) operations, this takes tin@n®), completing the proof of (iii). [

Note that, ifC is infinite, S being finite does not make recogniziSggreediness decidable
in general, as (1.9) contains a universal quantificatiom amearbitrary element of C and, so,
in that case, Lemma 3.1 is of no use.

Remark 3.3. The above analysis partly extends to the case when the cg@ginfinite but all
operations are computable. For instance, if multiplicgativewed as a partial function 6f to C,

is computable, then left-cancellativity iSH condition: by enumerating all triples (g, g') with

g # g’ and checking whethefrg and fg’ are equal, one finds a counter-example in finite time if
one exists, but one never obtains an answer when the catiedeftycancellative. Similarly, left-
divisibility is a £} condition and, therefore§-greediness, which entails an additional existential
guantification over an arbitrary elemehof C, is aH% condition.

3.2. Germs

For an infinite category, it is impossible to exhaustivelymerate the multiplication table.
However, in good cases, it may happen that some finite fragofethe latter determines the
category and provides methods for establishing propestitee latter. This is the germ approach
that we now introduce.

Definition 3.4. A germis a triple (S, 1s, «) whereS is a precategoryls is a subfamily ofS
consisting of an element,With source and target for each objeck, and . is a partial map
of S into S that satisfies

if setis defined, its source is the sources#nd its target is the target of (3.5)
1« s=s=s.1, hold for eachsin S(x,y), (3.6)
if r e sands.t are defined, therr¢ s) « t is defined if and only if « (Set) is,

in which case they are equal. (3.7)
The germ is calletkeft-associativef, for all r, s, tin S, it satisfies

if (r«s)«tis defined, thers.t is defined, (3.8)
and it is calledeft-cancellativef, for all s;t,t" in S, it satisfies

if set ands.t’ are defined and equal, thee t’ holds. (3.9)

We shall usually writeS for a germ whose domain iS. WhenevelS is a subfamily of a
categoryC, one obtains a germ by considering the restriction of thepcbofC to S, that is, the
partial binary operation on S defined bys.t = st wheneverstis defined inC and it belongs
to S. In the other direction, starting with a germ, we can alwaysstruct a category.

Definition 3.10. If Sis a germ, we denote lg3at(S) the categoryS | R. ), whereR, is the family
of all relationss|t = set with s, tin S ands.t defined.

When we start with a categotyand a subfamilyS of C, it may or may not be the case that
the induced germ o8 contains enough information to reconstruct the initiatgatyC.
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1ab

Example 3.11. Let us consider the braid monok}, again. If we °

takeA = {1, a, b}, the table of the induced germ is shown aside, and 1({1ahb
the derived monoid is the free monoid basedol, hence one that ala

is not isomorphic tds;. b|b

By contrast, when we start witl = {1, a, b, ab, ba, A}, the table of the induced germ is less
hollow, and the derived monoid is indeed isomorphi@to

. 1 a b ab ba A
1 1 a b ab ba A
a a ab A

b b ba A

ab | ab A

ba | ba A

A A

The good point is that, as in the above example, the germ adliog a Garside family always
contains enough information to reconstruct the initiabgary:

Lemma 3.12. (Dehornoy et al., 2013b, Proposition 4.8) & is a Garside family in a left-
cancellative category and S is the germ induced o8, the categoryCat(S) is isomorphic
toC.

3.3. Establishing left-cancellativity and recognizingrGde
Lemma 3.12 precisely shows that using a germ to specify goates relevant here: if we
start with a good candidate for a Garside family, the gerrhindleed define the category.

Definition 3.13. A germ S is said to be &arside germif S embeds inCat(S), the latter is
left-cancellative, and (the image af)is a Garside family in that category.

So, for instance, the germs in Example 3.11 are Garside geBysontrast, below is an
example of a germ that is not a Garside germ although it defireeambient monoid.

Example 3.14.Let M = (a,blab = ba,a® = b?y, andS
consist of 1a,b,ab,a% The germsS induced onS is shown

aside. It is left-associative and left-cancellative. Tlgesgory : 1 a b a®ab
(here the monoidfat(S) is (isomorphic to)M, as the relations 111 a b a®ab
ala = a%? = blb andalb = ab = bla belong to the familyR,. a | a a® ab
HoweversS is not a Garside family irM, asa® admits noS- b | b ab a
normal decompositiora?|a is notS-greedy asb left-dividesa® a® | a?

but nota?, andab|b is not S-greedy asa? left-dividesa® but ab | ab

notab.

What we do below is to develop algorithms to decide whethdin@g) germ is a Garside
germ. Note that this includes establishing that the defirsdgory is left-cancellative. Our
method is based on a result by Dehornoy et al. (2013b).

Definition 3.15. Assume thatS is a germ.

(i) We define thdocal left-divisibility relation<s of S by saying thats <s t holds if and
only if there existd’ in S satisfyingt = st. We write s < t for the conjunction o6 <s t and
t Xs s, and we call a sequeneg, ..., S, in S non-ascending s £s sj holds for 1< i < j < n.

(i) For s1|s; in S, we putJs(sy, ) = {t € S| 51« tis defined and <s ).
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Proposition 3.16. (Dehornoy et al., 2013b, Proposition 5.9) A ge@nis a Garside germ if
and only if it is left-associative, left-cancellative, aiidfor any g, s, in S there exists axs-
greatest element ity s(s1, &) (that is, an element r it s(s1, ) such that t<s r holds for all t
in Js(s1, %))

Corollary 3.17. If S is a Garside germ, if s, is in S, if t is a <s-greatest element in the
setJs(s1, &), and if r is an element aof satisfying g = ter, then the path g|r is an S-normal
decomposition ofis, in Cat(S).

Algorithm 3.18 (Recognizing a Garside germ).

Input: A finite germS
Output: trueif Sis a Garside germ, anfhlse otherwise
1: isLeftCancellative, s := LErTDivisiBILITY(S)

. if notisLeftCancellative or not lsLertAssociaTive(S) then
return false

S’ := NoNASCENDING(S, Xs)

. for si|s,in S do

if not JHssGreatesTELEMENT(S', S, S, <5) then
return false

: return true

O NAaR DN

9: function IsLErFTASSOCIATIVE(S)
10:  for r|gtin SP! do

11: if (res)et| and nots.t| then
12: return false
13: return true

14: function LerrDivisiBiLity(S) > whetherS is left-cancellative and, if it is, a table (denoted
by <) with the truth values § <s tj of s<stforstinS
15: for se Sdo

16: forte Sdo

17: [s<st]:=false

18: forte Sdo

19: if set] then

20: if [s=<s Set] then

21: return false

22: else

23: [s<s Set] := true

24: return true, s

25: function NoNAscenpING(S, <s) > S as a non-ascending sequence
26: S =]

27: for se Sdo

28: if Ji €{1,...,|8|} with S’[i] <s sthen

29: insertsinto S at position min{i € {1,...,|S'|} | S’[i] <s S})
30: else

31 appendsto S’

32: return &
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33: function JHAsGREATESTELEMENT(S', S1, S, <) > &’ non-ascending
34: r=.1

35: fori:=1to0|S’|do

36: if 1+8[i]] andS’[i] s 2 then > S'i] € Ts(s1, 2)
37: if r = L then

38: r =Sl

39: else ifnotS’[i] s r then

40: return false

41: return true

Proposition 3.19. Assume thas is a finite germ withS| = n and that the partial binary opera-
tion « can be computed in time(D). Then the following hold; cf. Algorithm 3.18.

(i) The functiorsLeftAssociative decides in time () whetherS is left-associative.

(i) The functionLeftDivisibility decides whethe8 is left-cancellative and, if it is,
computes the left-divisibility relatiog s on S with respect to. in time Q(n?).

(i) Given the left-divisibility relation<s, the functionNonAscending computes a non-
ascending sequence containing the elemenssioftime Q\n?).

(iv) Given g|s; in S, a non-ascending sequensé containing the elements &, and the
left-divisibility relation <, the functionJHasGreatestElement decides in time ) whether
Js(s1, ) has axs-greatest element.

(v) It is decidable in time @°) whetherS is a Garside germ.

Proof. Claims (i) and (ii) are obvious from the pseudocode in Aljori 3.18 and the definitions.
The sequencé’ constructed in the functioionAscending is non-ascending at any time by
induction: If there is na satisfyingS’[K] <s s, the induction step is trivial. Otherwise, one has
S'[]] £s sforall j < i by the choice of, ands £s S’[j] for j > i, asS’[K] <s s <s S'[j] would
contradict the induction hypothesis. It is clear from theyocode that the time complexity is
O(n?), so claim (iii) holds.
The functionJHasGreatestElement tests the elements & for membership in7s(s:, S)
in non-ascending order. Moreover, the $gi(si, &) is hon-empty, as it contains;, wherex
is the target ofs;. Hence, the seffs(s1, ) has a<s-greatest element if and only if tHest
encountered element is an upper bound; this is what theitimiflasGreatestElement tests.
It is clear from the pseudocode that the time complexi(is), so claim (iv) holds.
Claim (v) then follows with Proposition 3.16. O

Example 3.20. We apply Algorithm 3.18 to the second germ of Example 3.14t iy we have
S ={1,a,b,ab,ba, A} and . is the partial binary operation a% induced by the multiplication
in BZ.

8ne readily verifies that the germ is left-associative aftddancellative, and computes the
left-divisibility relation s which is given in the left table below.

We obtainS’ = (A,ab,ba,b,a, 1) and the non-ascending sequences describing the sets
Js(s1, %) given in the right table. For each s8is(s1, S2), the first listed element is a maxi-
mum, showing thal is a Garside germ.
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<s |1 a b ab ba A JIs| 1 a b ab ba A

1 | << <5 =< < 1|1 @1 b,1) (@b,a, 1) (ba,b,1) &

a < S < a (1) 1) ®b1) @) (@abl)(babl)
b < < < b | (1) (@1 (1) (@b,a,1) (1) (@b,a,1)
ab < < ab | (1) 1) 1) @1 Q) @@1)
ba < < ba | (1) (1) b.1) (1) ®b.1)  (®.1)
A < AT@® @O @O @ ) @

Example 3.21. Consider again the wreathed

shown on the right.
The category (here the monoidt(S*) is

Ae
e be ae Ae 1 b a A

free Abelian monoid/” from Example 1.11, = | 1 a b A e ae be Ae
the familyS = {a,b, A} in 7, whereA = ab, 1 1 a b A e ae be Ae
and the gernss* which is induced onthe set a | a A ae Ae
S ={1,a,b,A, e, ae,be, Ae}. The germS! is bl b A be Ae

A A

e

(isomorphic to)7, as the relationalb = A = ae | ae Ae a A
bla, ela = be = ble ande|e = 1 belongtothe be | be Ae b A
family R,. We apply Algorithm 3.18. Ae | Ae A

One readily verifies that the germ is left-associative afteci@ncellative, computes the left-
divisibility relation < as well as the Setg-sﬁ(S:L, $) for 51, 5 in S*, and verifies that each set
J & (s1, 52) has a maximal element. The left divisibility relation isen in the left table below.
The entry in rows; and columns; of the right table shows a maximal element‘of; (s, ).
(The maximal elements are only unique up to multiplicatigrite invertible elemeng.)

<Sﬁ1abAeaebeAe maxjsﬁlabAeaebeAe
1 T s << < =< < 1 labAla b A
a < < < < a 11bb1l1l 1 b b
b < < < < b lalala 1 a
A < < A 111111 1 1
e T s << < =< < e labAla b A
ae < < < < ae lalala 1 a
be < < < < be 11bbl 1 b b
Ae < < Ae 111111 1 1

In particular,S* is a Garside germ, that i$f is a Garside family i7". By Lemma 3.1,S is
a Garside family if and only ifS* is, so we can conclude th&t = {a,b, A} is a Garside family
in7.

3.4. Further questions

From that point, results are similar to those of Subsectidn @ce a germ has been shown
to be a Garside germ, it is known to be a Garside family in itbiamt category, and, for instance,
Propositions 2.30 and 2.31 directly apply for the existesfammmon multiples. The only point
worth mentioning here is right-cancellativity: let us obsethat a germ is a symmetric structure,
so applying the method of Subsection 3.3 to the oppositesatdimsidered geri§, that is, S, )
with ¢ defined bys s t = t. s, directly leads to a right-cancellativity criterion.
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4. Computing with a Garside family, positive case

We now turn to a dterent series of questions: here we no longer aim at decidiregher
the ambient category and a candidate family are relevarthtoGarside approach, but we as-
sume that they are and we aim at computing in the context sainast. In this section, we
consider computations that take place inside the congldeategory, and postpone to the next
section the computations that take place in the groupoidcastibns. We shall successively con-
sider computing normal decompositions (Subsections 4d14a?), solving the Word Problem
(Subsection 4.3) and computing least common multiplesg{&ctinn 4.4).

4.1. Computing normal decompositions from the left

By definition, a Garside family gives rise to distinguishe@ddmpositions for the elements of
the ambient category, name$ynormal decompositions. The first natural algorithmic goess
to determine ar$-normal decomposition of an elemayspecified by an arbitrary decomposition
in terms ofS*. So the question is, starting from &i-pathw, to find an equivalens-normal
path. Here we shall use an incremental approach, startimg & solution in the case of length
two paths.

Definition 4.1. A subfamily A of a left-cancellative category satisfies tl&
Property[1 if, for every s;|s; in AP, there exists arA-greedy decomposi- e
tion ty|ty of 15, with t; andt; in A. In this case, a may/ that chooses, for v 2
everysi|s; in AP, a pair €1, 1) as above is called @-witnesson A. 5,

If Sis a Garside family, then one easily shows that there exiSisnitness onS#, that is,
every element of$*)? admits anS-normal decomposition of length 2. Moreover, if the ambient
category admits no nontrivial invertible element, thenPogposition 1.12, th&-witness onS*
is unigue. Note that, if the Garside family was initially spged as a germ, then Corollary 3.17
directly provides @ l-witness; see Table 1 for an example.

& a b ab ba A

e | L) (1) (@1 (ab,1) (ba,1) (A1)
(a,1) (a,a) (ab,1) (a,ab) (A,1) (A,b)
b | (b,1) (ba,1) (b,b) (A,1) (b,ba) (A,a)
ab | (ab,1) (A) (ab,b) (A,b) (ab,ba) (A,ba)
ba | (ba,1) (ba,a) (A,1) (ba,ab) (A,a) (A, ab)
Al (A1) (Aa) (AD) (A,ab) (A,ba) (A,A)

s3]

Table 1: The O-witness on the Garside family {1, a,b, ab,ba, A} in the braid monoid Bg: for every pair of ele-
ments (s, S), it specifies the unique normal decomposition of s1S, of length 2. The values directly follow from
considering S as a germ and using the maximal J-function of Example 3.20.

Example 4.2. Consider the Garside gersf for the wreathed free Abelian monoid from
Example 3.21. By the calculations done thergl-aitness onS* is given by Table 2.

Algorithm 4.3 (Left-multiplication—see Figure 7).

Context: A Garside familyS in a left-cancellative categoxy, aCJ-witnessW for S*
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1 a b A e ae be Ae

11 @) @1 ®&I1) A1) @Le (ae) (be) (Ae
a (a,1) (@,a) (A1) (A,a) (a,e) (a,ae)  (A,e) (A ae)
b | (b,1) (A1) (b,b) (Ab) (b,e) (Ae) (b,be) (A be)
A | (A1) (Aa) (Ab) (AA) (Ae) (A,ae) (A,be) (A, Ae)
e (e,1) (be,1) (ae,1l) (Ae,1) (e,e) (be,e) (ae,e) (Ae,e)
ae | (ae,1) (Ae,1) (ae,b) (Ae,b) (ae,e) (Ae,e) (ae,be) (Ae,be)
be | (be,1) (be,a) (Ae,1) (Ae,a) (be,e) (be,ae) (Ae,e) (Ae,ae)
Ae | (Ae,1) (Ae,a) (Ae,b) (Ae,A) (Ae,e) (Ae,ae) (Ae,be) (Ae,Ae)

Table 2:The O-witness on the Garside family {1, a,b, A, e, ae, be, Ae} in the wreathed free Abelian monoid 7°: for
every pair of elements (s1, S), it specifies the unique normal decomposition of 1S, of length 2. The values directly

follow from considering S as a germ and using the maximal J-function of Example 3.21.

Input: An element of S* and anS-normal decompositios|---|s, of an elemeny of C such
thattg exists
Output: An S-normal decomposition df
1. =t
2: for i increasing from 1 t@ do
3 (8,t) = W(ti-1, 8)
4: return s, |-|spltp

5 % %
T
T b

Figure 7 Algorithm 4.3: starting from t in S* and an S-normal decomposition of g, it returns an S-normal decom-
position of tg.

Proposition 4.4. Assume thal is a Garside family in a left-cancellative categatyand W is
a O-witness forS*. Then Algorithm 4.3 running on t and @tnormal decomposition - |sp
of g returns anS-normal decomposition of tg. The function W is called p times

Proof. By construction, the diagram of Figure 7 is commutative. Bguanptions|s.; is S-
greedy for every, and, by the defining property of(@-witness,s/|t; is S-normal for everyi.
Then the first domino rule (Lemma 1.17) implies tisgs, is S-normal. It is obvious from
Algorithm 4.3 that the functiolV is invokedp times. O

We can now comput8-normal decompositions for an arbitrary elemenCapecified by an
arbitraryS*-decomposition by iterating Algorithm 4.3.
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Algorithm 4.5 (Normal decomposition).

Context: A Garside familyS in a left-cancellative categoxy, aCJ-witnessw for S*
Input: An S#-decompositiorty|--- |t, of an elemeny of C
Output: An S-normal decomposition af

Lfyi:=tforl<i<p

2: for j decreasing fronp to 1do

3 for i increasing from 1 tg — j (if any) do

4: (Sj-1. ti,j) = W(ti-vj, 55)

5 Spjrij-1 =t

6: return sy ol--|Spo

Proposition 4.6. Assume thas is a Garside family in a left-cancellative categayand W is a
O-witness forS*. Then Algorithm 4.5 running on a.li]’i-decompositionlt~-~|tp of an element g
of C returns anS-normal decomposition of g. The map W is appealed fw1)/2 times.

Proof. Consider thdor-loop for j and assume that before the execution of its bedy; - |Sp-j ;
is anS-normal decomposition atf j.1 -+ to,p, Which is alsotj.1--t,; this condition is trivially
satisfied forj = p.

According to Proposition 4.4, the execution of lines 3-5oies p — j invocations of the
mapW and produces af-normal decompositiosy j_1|--+Sp-j+1,j-1 Of tg j - tg p that is, oft;---t,.
The claim then follows by induction. O

Example 4.7. Consider the Garside famil§ = {1, a, b, ab, ba, A} and the elemerg = bab?.
We begin with the empty word$-normal decomposition of 1, and, starting from the right, we
multiply by the successive letters on the left using Aldurit4.3 and théJ-witness of Table 1,
removing factors equal to 1 after every step, thus finding|b, ablb and, finally,A|b for the
(unique)S-normal decompositions d&f, b2, ab?, andg.

Example 4.8. In the wreathed free Abelian monoid, consider the Garside familg* from
Example 3.21 and the-witness from Example 4.2. In order to compute$&normal decompo-
sition of the elemeny = be ae e b, we begin with the empty word as &normal decomposition
of the element 1 and repeatedly use Algorithm 4.3 to com@Stt@rmal decompositions of the
elementd, e b, ae e b andg, removing factors equal to 1 after every step. We olitaire, Aele
andAelaele.

4.2. Computing normal decompositions using right-mdittation

Algorithm 4.3 is not symmetric: the construction startaffirthe left and moves to the right.
It is natural to wonder whether a symmetric right—to—leftsien exists. The answer depends on
the considered Garside famiy; if the latter satisfies the second domino rule (Lemma 11B2),
previous constructions have counterparts based on riglhttpiication.

Algorithm 4.9 (Right-multiplication—see Figure 8).

Context: A Garside familyS satisfying the second domino rule in a left-cancellativegaryC,
ad-witnessWw for S*
Input: An element of S*, anS-normal decompositios | -+|sp of an elemeng of C such that
gtis defined
Output: An S-normal decomposition ajt
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1ty =t

2: for i decreasing fronp to 1 do
3 (ti-1,9) == W(s, 1)

4: return to|sy|--|s;

SN NP t
k) L&_ ‘tz tp1 ‘tp J
5 g l—)s'p

Figure 8:Algorithm 4.9: starting from an S-normal decomposition of g and t, it returns an S-normal decomposition
of gt.

Proposition 4.10(right-multiplication). Assume thas is a Garside family satisfying the sec-
ond domino rule in a left-cancellative categagyand W is alJ-witness forS#. Then Algo-
rithm 4.9 running on t inS* and anS-normal decompositionif--|s, of g in C returns an
S-normal decomposition of gt, if the latter is defined. Thecfiom W is invoked p times.

Proof. The commutativity of the diagram givess, - s, = s; - Spt. Applying the second domino
rule to each two-square subdiagram of the diagram of Figusiing from the right, we see
that the sequendegs; |- s is S-greedy. As all entries lie i8¥, the sequence iS-normal. O

By iterating Algorithm 4.9 (when applicable), we easily aiota symmetric version of Algo-
rithm 4.5 and Proposition 4.6, that we shall not explicitigts.

Remark 4.11. The dfect of the second domino rule is to shorten the computatioredfin
normal decompositions. Indeed, assume thiat |ty ands,|--|S, are S-normal paths anths;
is defined. By applying Proposition 4.10, we can comput&arormal decomposition of the
productt; - t4s; -+ Sp by filling a diagram as in Figure 9. When valid, the second dwmiile
guarantees that the path consisting of the firsbp edges followed by vertical edges isS-
normal, that is, the triangular part of the diagram may bgdtten.

We conclude with an example of a Garside family that does ati¢fg the second domino
rule: its existence shows that no uniform result for muiktiglion on the right is possible.

Example 4.12. Forn > 2, letM, = (a,b|ab" = b™!). The method of Subsection 2.2 shows
thatM, is left-cancellative, and that any two elementdwfthat admit a common right-multiple
admit a right-lcm. On the other hanhl,, is not right-cancellative since we hask"* £ b" and
ab" = b™1 LetS, = {1, a,b,b? ..., b™1}, a subset oM, with n+3 elements. Using Lemma 3.1,

one can check th&, is a Garside family irM;,. a /™ b

Now the second domino rule is not valid f&, in M.
Indeed, the diagram aside is commutative, the pathsand ‘bml p"+t lbml
b™b are S,-greedy, and all edges corresponds to elements

of S,,. Howeverb|b is notS,-greedy sinc®? lies in Sp,. b b

4.3. Solving the Word Problem
We shall describe two solutions of the Word Problem for adafticellative category equipped

with a Garside family, one based on normal decompositiordpame based on reversing.
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Figure 9: Finding an S-normal decomposition of ty--tgSy--Sp when ty|-|tq and s1|--|Sp are S-normal: using
Proposition 4.4, hence the first domino rule only, one determines the S-normal sequence s, ||, in pa+q(q—1)/2
steps; if the second domino rule is valid, the sequence t’1|-~-|tgI is already S-normal, and s’1|~--|s’p|t’1|~-~|t{] is an S-
normal decomposition of ty --tqSy -+ Sp.

UsingS-normal decompositions

Whenever an fective method determining af-normal decomposition is available, a so-
lution to the Word Problem is very close. However, due to thesible existence of nontrivial
invertible elementsS-normal decompositions need not be readily unique, so adoraparison
step is needed.

Definition 4.13. Assume tha€ is a left-cancellative category arlis included inC. An =-test
on A is a mapE of A? to C U {L} satisfyingsE(s t) = t whenevers t are="-equivalent, and
E(s t) = L otherwise.

Algorithm 4.14 (Word Problem, positive case I).

Context: A left-cancellative categorg, a Garside subfamil of C, aJ-witnessW on S, an
=-testE on S*
Input: Two S*-pathsu, v
Output: trueif u,vrepresent the same elementhfandfalse otherwise
1: if srcu) # src) or trg(u) # trg(v) then

2: return false

3: else

4: use Algorithm 4.5 withW to find anS-normal paths, |- |s, representingd]
5: use Algorithm 4.5 withW to find anS-normal patht; |- |tq representingy]
6: return the value of ©@MPARENORMALPATHS(S1| [ Sp, t1] -+ |tg)

~

: function ComPARENORMALPATHS(S1 || Sp, t1] - Itg)
> the paths should have the same source and the same target
8: X := source oty ; y := target ofty
9 e =1yt == 1y forg <i < max@, p); sj := 1, for p < j < max@, p)
10: for k := 1 to maxg, p) do

11 if E(ti,&-15) # L then
12: & = E(ti,e-18)
13: else

14: return false

15: return [e = 1,]
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Proposition 4.15. Assume thaB is a Garside family in a left-cancellative categaty W is a
O-witness onS*, and E is an=-test onsS?*.

(i) Given twaS-normal paths u and v of length at mdsthe functionrCompaRENORMALPATHS
in Algorithm 4.14 decides in time(@ whetheru] = [v] holds.

(ii) Given twoS*-paths u and v of length at moét Algorithm 4.14 decides in time (&)
whether{u] = [v] holds.

Proof. (i) By Proposition 1.12, twd-normal pathsi andv satisfy [u] = [V] if and only if they are
C-deformations of one another. The latter in turn is the ckaed only ifE(ti, e-15) # L for all

i =1,..,max(p,d) andemaxpg = 1y hold in lines 10-14 of the function & PaRENORMALPATHS.
It is obvious that this test takes tin@¢).

(i) If uandv have diferent sources or flerent targets, clearly we havd [# [v]. Otherwise,
one has(] = [Vv] if and only if the paths computed in lines 4 and 5 of Algoritdmi4 represent
the same element. By Proposition 4.6, lines 4 and 5 of Algori#.14 have a cost @(¢?) and
the lengths of the produced paths is at nfosthe claim then follows with (i). O

Example 4.16. Consider once again the 3-strand braid morjdLet S be{1,a, b, ab, ba, A}.
We saw in Example 2.27 thatis a (minimal) Garside family i85 containing 1, and determined
in Table 1 alJ-witness onS. As Bj; contains no nontrivial invertible element, testing ter
reduces to testing equality.

As in Figure 6, considen = a|blb andv = b|a|blb. Applying Algorithm 4.5, we obtain the
normal decompositioab|b of [u] and the normal decompositiasib of [V]. As ab andA are not
equal, hence net-equivalent, Algorithm 4.14 returnalse, that is, one haaJ] # [v].

Example 4.17. Consider again the wreathed free Abelian monBittom Example 4.8. Ar=-
test onS? is given by the maj defined on§%)? by E(s, 5) = 1 for sin S*, E(se, s) = E(s, se) =
e for sin {1,a,b, A}, andE(s, t) = L for all other pairs § t) in (S%)2.

In Example 4.8, we obtained th8-normal decompositio\e|aele of the elementg =
beaeeb. Similarly, Algorithm 4.5 yields theS-normal decompositioi|be of the element
g =abea.

Using the function GmprareNorMALPaTHS in Algorithm 4.14, we obtaie; = E(A, Ae) = e,
e = E(be, eae) = E(be,b) = e, ande; = E(1, ee) = 1, and thus conclude thai][= [g'] holds.

Using reversing

An alternative solution of the Word Problem that does noumegcomputing a normal form
can be given using the reversing method of Subsection 2.1ddipition, if the investigated
categonC is specified using a right-complemented presentati@rR) for which right-reversing
is complete, then twoA-pathsu, v represent the same element®if and only if the signed
pathu|v reverses to an empty path, that is, if and only if Algorithré Bunning onulv returns
an empty path. This however provides a solution to the Woablem only if right-reversing
is known to terminate in finite time. By Lemma 2.10, this happehenever any two elements
with the same source admit a common right-multiple in thes@ered category, but nothing can
be said in more general cases.

Now the termination problem does not arise when one corsiggresentation that is as-
sociated with a short right-complement, in which case thedMRroblem can be solved using
reversing. The point here is that every Garside family gissto such a presentation:
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Lemma 4.18. Under the assumptions of Proposition 1.16, the obtainedgreationS; R) of C
is associated with a short right-complement, and rightersing is complete for this presenta-
tion.

Proof. Let 6 be the partial map defined a# by 6(s,t) = s\t. By definition, ¢ is a right-
complement orS and, by Lemma 1.15, it is short. Next, the associativity & tight-lcm
operation implies tha# satisfies the cube condition for every triple of elementsSof Then
Proposition 2.19, implies that right-reversing is comglietr (S; R). O

It follows that the presentatioiS(R) is eligible for right-reversing and that the latter solves
the Word Problem.

Algorithm 4.19 (Word Problem, positive case ).

Context: A Garside familyS in a left-cancellative category that admits unique local right-
Icms, the right-lcm select@ron S U 1¢
Input: Two S-pathsu, v
Output: trueif u,vrepresent the same elementhfandfalse otherwise
1: ret := the return value of Algorithm 2.3 for right-complemerand inputulv
2: return [ret = &-] > ret is either a positive—negative path or equatsd 1

Lemmas 4.18 and 2.4 immediately imply:

Proposition 4.20. Assume tha$ is a Garside family in a left-cancellative categ@ryhat admits
unique local right-lcms.

(i) Algorithm 4.19 solves the Word Problem®¥vith respect taS.

(i) If Sis finite, the complexity of Algorithm 4.19 is quadratic ie fength of the input paths.

Example 4.21. Consider once again the 3-strand braid morigjd As seen in Example 2.27,
the five elements familya, b, ab,ba, A} is a (minimal) Garside family irB;. The resulting

presentation oBj is (a,b, ab, ba, A;R), whereR consists of(g) relations (in which we leave
the concatenation sign to avoid ambiguitiaf)a = blab, alb = ab, alba = balb, ajba = A,
blab = abla, bla = ba, blab = A, abla = ba|b, abla = A, ba|b = A. Starting, as in Example 4.16,
from the wordsu = a|b|b andv = blalblb, we apply Algorithm 2.3 for the inpui|v, obtaining
w = abl|a (see Figure 10) and thus, asis not empty, we conclude once again thandv are
not equivalent.

One of the benefits of the reversing approach is to providesssame time a decision method
for the left-divisibility relation, as Lemma 4.18 also ings:

Proposition 4.22. If line 2 of Algorithm 4.19 is modified so that the algorithnumas true if
ret is a positive path, andalse otherwise, the modified algorithm returmsue if and only if
[u] left-divideg[v] in C.

Remark 4.23. The above results extend to every left-cancellative cajegossibly containing
nontrivial invertible elements and not admitting localhigcms, at the expense of considering
a more general, non-deterministic version of reversingt, Bsi said in Remark 2.8, we do not
consider such extensions here.
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ba b
a b
b ba ba ba a
ab

Figure 10:The grid associated with the right-reversing of ulv in Example 4.21; compare with the grid
of Figure 6: the final paths are equivalent, but not equal, which is not contradictory as they are obtained
in different ways.

4.4. Computing Icms
Right-lcms

It follows from Lemma 2.24 that, whenever a right-completeenpresentation4; R) is
given for a left-cancellative catego€and right-reversing is complete for that presentatiom the
right-reversing provides a direct algorithm for computiight-lcms when they exist.

Example 4.24. Consider again the presentatianlf; aba = bab) of the braid monoid3; and
the elementab? andbab?. We saw in Example 2.21 that right-reversing is completettics
presentation. Now, we saw in Figure 6 that the wbfieajblalblb is right-reversible taa|bla
and, therefore, we conclude that the right-lcnabf andbab? is ab?- ab (which is alsdbab?- a).

Now, independently of the way the considered categdnyas initially specified, if one
happens to know a right-lcm selectbon a generating subfamili, we can use the latter, which
by definition is a right-complement, to right-revergepaths. If the right-selector is not short,
termination is not guaranteed but, if it is short, we immésliaobtain:

Proposition 4.25. Assume thaf is a short right-lcm selector on some generating fanfilyn a
left-cancellative categorg that admits local right-lcms. For aliA-paths yv, if Algorithm 2.3
running onulv returns a positive—negative pathw, then[u|Vv'] is a right-lcm of{u] and[v] in C;

if it returns fail, then[u] and[v] admit no right-lcm inC. The complexity of the computation is
in O((ull + IVI)?)

Proof. As observed in the proof of Lemma 4.18, righteversing must be complete in this case,
and Lemma 2.24 then gives the expected result. Alterngfived can directly observe that, if
0:1f” is aright-lcm of f andg; andg,f” is a right-lcm off’ andg, theng;g,f” is a right-lcm

of f andgigy, which inductively implies that the diagonal of every rewe in a right-reversing
grid represents the right-lcm of the left and top edges. O

The point here is that, by Lemma 4.18, every Garside family left-cancellative category
that admits right-lcms and does not contain any nontrimiartible elements, gives rise to a short
right-lcm selector, and therefore is eligible for Propiasit4.25. Moreover, by Proposition 2.32,
the existence of right-lcms i@ reduces to the existence of right-lcms insiglelt follows that,
whenS¥ is finite, one can ectively decide the existence of right-lcms for the eleraeritS*
and, in addition, obtain a right-lcm selector.
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Example 4.26. Starting with the Garside famila, b, ab, ba, A} in Bj, the right-lcm selecto
on S leads to the presentation of Example 4.21. Considering &@mple 4.24 the elements
ab? andbab?, we find their right-lcm by righ#-reversingb|blalbla|blb. As seen in Figure 10,
the latter word reverses thb|a, and we conclude once again that the right-lcnalot andbab?

is ab? - ab.

Remark 4.27. The above approach consisting in using the right-reversargsformation asso-
ciated with a (short or non-short) right-lcm seleai@an some subfamilyd may work even when
A is not a Garside family, providedl generates the ambient categahand the family of all
relationssi(s t) = to(t, s) with st in A makes a presentation 6f Interestingly, this is always
the case wheg is right-Noetherian, but the example of the Dubrovina-[wim 4-strand braid
monoid (Dehornoy, 2012) shows that the property may faihingeneral case.

Left-lcms

The case of left-lcms is symmetric, and we shall not say mbgtihe counterpart of Proposi-
tion 4.25, if there exists a short left-lcm-select@n a generating familyd, then lefté-reversing
a positive—negative patliu possibly leads to a negative—positive pati’ such that/|vandv’|u
represent the left-lcm of] and [v].

Remark 4.28. Even in the presence of nontrivial invertible elements,airbe possible to apply
Proposition 4.25, respectively its counterpart, and campight-lcms by right-reversing and
left-lcms by left-reversing. We illustrate this remark Imetfollowing example.

Example 4.29. Recall the wreathed free Abelian monoid defined in Exampé.1lt is easily
verified from the multiplication table (cf. Example 3.213tta short right-lcm selectéron S* is
given by the left hand table below, and that a short left-lefiestors on St is given by the right
hand table below.

6 |1 a b A e ae be Ae 0|1 abA e ae be Ae
1|1 a b A 1 a b A 1 |]1111e e e e
a|{l1 1 b b 1l 1 b b a|alalae ae e e
b1 a 1 ala 1 a b |bb1l1be e be e
Al1l1 1 1 1 11 1 1 A |ADbal Ae ae be e
e | e be ae Ae e be ae Ae e 1111 e e e e
ae | e e ae ae e e ae ae ae | b b1 1 be e be e
be | e be e be e be e be be|alal ae ae e e
Ae|e e e e e e e e Ae | A b a1l Ae ae be e

Algorithm 2.3, respectively its counterpart, can be usambtopute right-lcms and left-lcms A.
For example, using to right-reverse the negative-positive paifbe|be|aelalAe|a, removing
trivial factors when they occur, yields the positive-négmpathe|aelaele. Hence, a right-lcm
of u=aeaAeaandv = bebeais represented by botlle andv|e|ae|ae. In fact, as the element
e is invertible, we have < u.

5. Computing with a strong Garside family, signed case

In this final section, we show how to use (strong) Garside liamio compute in groupoids
of fractions. The successive problems we address are fiisgimgnetric normal decompositions
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(Subsection 5.1), finding-normal decompositions (Subsection 5.2), solving the Wnablem
(Subsection 5.3), computing inverses (Subsection 5.4) famally, computing lower and upper
bounds (Subsection 5.5).

5.1. Computing symmetric normal decompositions

According to Proposition 1.22, § is a Garside family in a left-Ore categoty then every
element ofénv(C), the groupoid of fractions of, that can be represented as a right-fraction
admits a symmetriS-normal decomposition. Here we address the question ofitligacally
computing such a decomposition.

Starting from a right fraction

Owing to the above recalled restriction on the considerethehts (namely that of being
expressible as a right-fraction), it is natural to first steith a positive—negative path. Then,
Lemma 1.21 reduces the computation of a symmetric normaldposition to the determination
of a left-lcm:

Algorithm 5.1 (Symmetric normal decomposition, positive-aegative input).

Context: A Garside familyS in a left-Ore category that admits left-lcms, &l-witnessW
onS*, a procedure computing left-lcms ¢h
Input: A positive—negatives*-pathviu
Output: A symmetricS-normal decomposition of the elemeri[ju] * of &v(C)
1: find v, v’ such that/|v andv’|u represent a left-lcm ofu] and [v]
2: find anS-normal patht,| - |ty equivalent tau” using Algorithm 4.5 withw
3: find anS-normal paths|--|s, equivalent tos’ using Algorithm 4.5 withw
4: return tgl - [t1/s1] -+ 1Sp

Proposition 5.2. Assume thaC is a left-Ore category that admits left-lcmS, is a Garside
family inC, W is aC)-witness onS*, and that left-lcms irC can be computedfectively. Then
Algorithm 5.1 returns a symmetri§-normal decomposition ¢f/][u] 2.

Proof. By construction, the paths|-|s, andty| |ty areS-normal, and; - tqv, which is also
s1-- Spu, is @ left-lcm ofu andv. By Lemma 1.21, this implies th&]|-- [t1|s1| -+ |Sp is symmetric
S-normal. O

Example 5.3. Again in the case of the braid monoi}, given by the presentatiora,(b; aba =
bab) and the Garside famil$ = {a, b, ab, ba, A}, let us consider the elemegt= a’ba‘b~2.

A decomposition ofy as a right-fraction is the signedl-pathalalb|alb. By a symmetric argu-
ment to that used in Example 2.21, the presentatioh;@ba = bab) is left-complemented and
left-reversing is complete for it. Hence left-reversingrquutes left-lcms. Here, left-reversing
alalblalb leads tob|alblala (see Figure 11, left), sab - a%b, which is alsda? - ba, is a left-lcm
of a®b andba. TheS-normal decompositions afb andba? respectively arab andbala. We
conclude thaablbala is a symmetricS-normal decomposition af.

Algorithm 5.1 is not fully satisfactory in that, as explathia Subsection 4.4, there exists no
general solution to the question of computing left-lcmsnéty be that the ambient category has
been specified by a left-complemented presentati@R) for which left-reversing is complete,
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in which case left-reversingfectively computes left-lcms, but this need not be the cageim
eral. Now, by (the counterpart of) Proposition 4.25, thauradtcontext for computing left-lcms
effectively is when a short left-lcm selector exists.

Lemma 5.4. Assume thaS is a Garside family in a left-Ore categoty that admits left-lcms.
Then there exists a short left-lcm selector$frif and only ifS is strong.

Proof. ForS to be strong means that, for alit with the same target i§*, there exist, t’ in S*
satisfyings't = t’sand such thag' andt’ are left-disjoint. By Lemma 1.2K't is a left-lcm ofs
andt. O

We are thus led to restate Algorithm 5.1 in the case of a st@agide family.

Algorithm 5.5 (Symmetric normal decomposition, positive-aegative input).

Context: A strong Garside familyS in a left-Ore categorg that admits left-lcms, a short Icm-
selectord and alJ-witnessw on S*
Input: A positive—negatives*-pathviu
Output: A symmetricS-normal decomposition of the elemeni{ju] ~* of &nv(C)
1: left-6-reversev|u into a negative—positive path|v’
2: find anS-normal patht,| - |ty equivalent tar using Algorithm 4.5 withw
3: find anS-normal paths|--|s, equivalent tos’ using Algorithm 4.5 withw
4: return tql - [t1]s1] -+ 1Sp

Proposition 5.6. Assume thas is a strong Garside family in a left-Ore categagythat admits

left-lcms, W is @J-witness onS*, and@ is a short left-lcm selector o*. Then Algorithm 5.5
running on a positive—negativ8-path Ju returns a symmetricS-normal decomposition of
[VI[u] = in time Q((llull + IvI1)?)-

We skip the proof, which is similar to that of Proposition.5.2

Example 5.7. With the notation of Example 5.3, theftérence is that, in Algorithm 5.5, we use
the left-reversing associated with the presentati$iR) deduced fron® rather than the initial
presentation; R). The result of left-reversingla|blalb is now the length 3 wordb|bala (see
Figure 11, right), which is equivalent tdalblaja as obtained previously (see Figure 11, left). As
ab andbala areS-normal, the subsequent normalization steps change npthimd we conclude
again thaiblbala is a symmetricS-normal decomposition a.

Example 5.8. Consider again the wreathed free Abelian morbid/NVe found &J-witnessw in

Example 4.2 and a short left-lcm selectan Example 4.29. We apply Algorithm 5.5 to compute

a symmetricS-normal decomposition of the positive-negative pata aelalAlalabe|be.
Left-6-reversing ofv and removing trivial factors yields the negative-posifrathu’|v' with

U = e andV = blale|e, and applying Algorithm 4.5 with thEl-witnessW to U’ andVv’, again

removing trivial factors, we obtain th®-normal decompositionsof U’ respectively\|e|e of V',

Thus,e|Ale|e is a symmetricS-normal decomposition afr.

Remark 5.9. Algorithm 5.5 (as well as Algorithm 5.1) obeys the schemédt-teverse, then
normalize”. We could as well use switch the operations imorfnalize, then left-reverse”, as
suggested in Figure 12. The property that guarantees theatoess of the switched version is
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boa_ a_ ba  __a
b _b) ba ab

e S S I O

a a b a a b

a

Figure 11:Left-reversing of the word alalb|a|b using the left-complement on {a, b} (left) and the left-lcm selector
on the Garside family {a, b, ab, ba, A} (right). Here the right diagram corresponds to gathering pieces of the left
diagram, but this would not necessarily be the case for more complicated examples.

the third domino rule (Lemma 1.26): left-reversiSgnormal paths always produc&snormal
paths.

For instance, in the context of Example 5.7, we could first ba a
find S-normal words equivalent talalb andbla, namelya|ab
andba, and then left-reverse the (length 3) signed wajeb|ba.  ab b ba
Of course, the result isb|bala once more, but the involved grid
is now the one given on the right. a ab
Vv’ v’
L/ 10
( ’ Algorithm 4.5 ’ <
S
un Y u/ 4'C—a u
< =)
S <
u// g ul /\_/ u V’ —_—
S .
k=) Algorithm 4.5 ’
< ’ -
v v

Figure 12:switching normalization and left-reversing in Algorithm 5.5: on the left, we first left-reverse viuinto u'|v’

and then normalize U’ into u” and V' into V’; on the right, we first normalize u into U’ and v into V' and then left-
reverse V' |U into u”’|Vv”.

Starting from an arbitrary path

Extending Algorithm 5.5 to start with an arbitrary path mtlthan with a positive—negative
path is easy. Indeed, we saw that every Garside family pesvédshort right-lcm selector and

using the associated right-reversing transforms an arifpath into an equivalent positive—
negative path, if some exists.
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Algorithm 5.10 (Symmetric normal decomposition, generalmput).

Context: A strong Garside familys in a left-Ore categorg that admits left-lcms, a short right-
lcm selectow, alJ-witnessW, and a short left-lcm selectéron S*
Input: A signedS*-pathw
Output: A symmetricS*-normal decomposition of]
O :=the return value of Algorithm 2.6 with running onw
if Ois a positive—negative pathu then
compute a symmetriS-normal decompositiorr |V’ of v{u (Algorithm 5.5)
return w|v
. else >Olis fail
return fail > [w] has no symmetriS-normal decomposition

@9 hwbdhR

Proposition 5.11. Assume thas is a strong Garside family in an Ore categaty W is alJ-
witness,d is a short right-lcm selector o%*, and# is a short left-lcm selector o8*. Then
Algorithm 5.10 running on a signef*-path w returns a symmetriS-normal decomposition
of [w] in time Q(|\w][?).

Proof. By Proposition 5.6, the final sequengév’ is a symmetricS-normal decomposition of
the elementy|u] of &nv(C). Now, by constructiony|u represents the same elemen&o¥(C) as
the initial pathw.

The complexity follows from Lemma 2.10 and Propositionsahé 5.6. O

Example 5.12. Again in the B; context, letw be the signed worav = blalblaja. Right-
reversingw using the right-lcm selector ofi, a, b, ab, ba, A} yields the positive—negative word
alablba. Left-reversing the latter using the left-lcm selectorlgseablbaja. Normalizingab
respectivelybala do not change these words, and we conclude (once againy fekaymmetric
normal.

Example 5.13. Consider again the wreathed free Abelian mongidvith the O-withessW
from Example 4.2 and the short right-lcm seleatas well as the short left-lcm select@from
Example 4.29. We use Algorithm 5.10 to compute a symmeéimrmal decomposition of the
signed pattw = Alae|belae|blAla, removing trivial factors in every step.

Right-6-reversing of the pattv using Algorithm 2.6 yields the positive-negative pafilawith
u = a andv = ae|bele. Subsequent application of Algorithm 5.5 to the positiegative pativiu
yields the symmetri$S-normal decompositiot’|V' of w with U’ = ae andv’ = be|ae.

Remark 5.14. The Baumslag—Solitar presentatianlf; a = b2ab) gives an example of a monoid
that is left-Ore with left-lcms but not Ore. For instance faltows from Example 2.9, the ele-
mentsa andba admit no common right-multiple. As a consequence, the et¢aiéba of the
group{a,b|a = b?ab) admits no expression as a right-fraction, and no expresssoa left-
fraction f~1g wheref, g are left-disjoint.

Incremental method

Besides Algorithms 5.5 and 5.10, which are global, we caa laisk for local methods in
the spirit of Algorithms 4.3 and 4.5, that is, methods for poting, say, a symmetric normal
decomposition ofg from a symmetric normal decomposition @fvhenr lies in the reference
Garside family. This is easy.
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Algorithm 5.15 (Left-multiplication—see Figure 13).

Context: A strong Garside familys in a left-Ore categorg that admits left-lcms, a short left-
lcm selecto and alJ-witnessWon S
Input: A symmetricS-normal decompositiofy| -+ [t1|s1| | s, of an elemeng of &nv(C) and an
element of S*
Output: A symmetricS-normal decomposition af, if the latter is defined
Lrg:=r
2: fo? i decreasing frong to 1do
3 =00 ) riv =06, 1)
4: for i increasing from 1 t@ do
5 (5, 1i) == W(ri_1, s)
6: return tg|--[t;[s]| IS, rp

t b S s
r tq u ........... U tl \_/ Sl v ........... Sp

Figure 13:Aigorithm 5.15: starting from r in S* and a symmetric S-normal decomposition tq| |ty |S1|-|Sp of g,
one obtains a symmetric S-normal decomposition of rg.

Example 5.16. Consider again the wreathed free Abelian moribidwe saw in Example 5.13

that the pattw = aelbe|ae is a symmetricS-normal decomposition of the elememnt [w].
Applying Algorithm 5.15 with théJ-witnessW from Example 4.2 and the short left-lcm se-

lectord from Example 4.29, we can conclude that$amormal decomposition of the elemert

is given byb|ae|belae.

Proposition 5.17. Assume thas is a strong Garside family in a left-Ore categagythat admits
left-lcms, W is dJ-witness onS*, and@ is a short left-lcm selector o8*. Then Algorithm 5.15
running on a symmetriS-normal decomposition of an element gé#(C) and r in S* returns

a symmetricS-normal decomposition of rg if the latter is defined. The mépinvoked2q times

and the map W is invoked p times.

Proof. The third domino rule (Lemma 1.26) implies thgt- |t is S-greedy. The fourth domino
rule implies that; ands, are left-disjoint. Next, the first domino rule implies thgt--|s; is
S-normal. Finally,s;|rp is S-normal by construction. Hend:_g~-~|ﬁ|s’l| ~|SpIrp Is symmetricS-
normal. The commutativity of the diagram in Figure 13 thearmguntees that the latter sequence
is a decomposition aft;*---t;'s; - 5, hence ofg. O

The symmetry of the definition of symmetric normal paths iepthat there exists a coun-
terpart of Algorithm 5.15 computing a symmetric normal deposition ofgr-* from one ofg
for r in the reference Garside family. By contrast, there exists no simple general method for
left-division (or right-multiplication). However, wheS happens to be bounded, such a method
exists, because left-dividing by an elemalix) is easy. Now, ifS is bounded by andsbelongs
to S(x, -), thensa(s) = A(X) holds, so that left-dividing bg can be decomposed into left-dividing
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by A(X) and then left-multiplying by)(s). Hereafter, in order to simplify notation, we shall often
skip the source of the consideraeelement, thus writing\(-) instead ofA(X) when mentioning
explicitly is not necessary.

Algorithm 5.18 (Left-division—see Figure 14).

Context: A Garside familyS bounded by a map in an Ore categorg, a[J-witnessw for S*
Input: A symmetricS-normal decompositiofy| -+ [t1|sy| -+ |Sp of g in E&V(C), an element of St
Output: A symmetricS-normal decomposition af g, if the latter is defined
Clgi=T
. for i decreasing frongto 1do
(roiv tl/) = W(t,r)
ry := d(ro)
. for i increasing from 1 t@ do
(q’ r.|/) = W(ri,_]_9 s)
cth = 0(s)
: return t' |t’ |t’ WEAR |s'p|r;)

N 2O R N

..............

¢(t)
g [k k¥
r LI W2 > N4 AN Ve AN 0 W

Figure 14:Left-division by an element of S* starting from a symmetric S-normal path tq| - [tz|s1] - Sp

Proposition 5.19. Assume thas is a Garside family that is bounded by a m&jn an Ore cat-
egoryC. Then Algorithm 5.18 running on a symmetSenormal decomposition of an element g
of v(C) and r in S* returns a symmetriS-normal decomposition of tg if the latter is defined.

Proof. By construction, the diagram of Figure 14 is commutativehsoreturned path is equiv-
alent tortg| - [t1]s1] -+ |Sp, hence it is a decomposition of'g, and its entries are elements$f.
So the pointis to check that the path is symmefigreedy.

First, agti|t;,1 is S-normal fori = 1, ...,q - 1, the second domino rule (Lemma 1.32) implies
thatt/|t/,, is S-normal as well. Similarly, ag|s.1 is S-normal fori = 1,..., p - 1, the first
domino rule (Lemma 1.17) implies thgls, , is S-normal as well.

So it remains to check thgfit] is S-normal and thatf, ands, are left-disjoint. Considet|t; .
Assume thats is an element ofS* satisfyings < 1(t ) ands < s;. A fortiori, we have

l(t’)a(r 1) ands < sjry, thatis,s < rgty ands rosi. By assumptiont; ands, are left-
dISjOInt hence we deducex ry. Now, by assumptlorro|t’1 is S-normal, hence, by Lemma 1.31,
d(ro) andt; have no nontrivial common left-divisor. Asand, thereforep is an automorphism
(Lemma 1.30), it follows thap~1(d(ro)) and ¢*1(t’) have no nontrivial common left-divisor.
Now, by definition,¢=(d(ro)) is ro- As we haves < ¢~ l(t ) ands < ry, we deduce thas is
invertible and, thereforey™(t;) ands’1 have no nontrivial common Ieft divisor. Applying the
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automorphisny, we deduce that and¢(s)), that is,t; andd(ty), have no nontrivial common
left-divisor. By Lemma 1.31 again, this implies thgit’ is S-normal.

Finally, again by Lemma 1.31, the assumption tias, is S-normal implies thad(s;) and
s, are left-disjoint: by definition(s;) is t;, sot; ands, are left-disjoint. Sdg|--[t; [ty] 5|+ [spIr,
is indeed a symmetri§-normal path. O

Example 5.20. Consider 4b)~*(ba?) in B; once more.
Suppose that we found thiad|a is anS-normal decompo-

b ba
sition ofba?, and we wish to find a (the§-normal decom- bj ba \la
ab ba a
ab

position of @b)~Y(ba?). Then applying Algorithm 5.18

amounts to completing the diagram on the right, in whic ab
of course we read the expected symmetric normal deco

positionab|bala.

Example 5.21. Consider again the wreathed free Abelian moribidwWe saw in Example 5.13
that the patlw = ae|be|ae is a symmetricS-normal decomposition of the elemeant [w].

Applying Algorithm 5.18 with théJ-witnesswW from Example 4.2 and noting(Ae) = e and
d(ae) = ae, we can conclude that a symmetSenormal decomposition of the elementg is
given byae|bele.

If, in Algorithm 5.18,r is A(X), then each elemenmt; is of the formA(-), so thatt] is sim-
ply ¢(ti), so thatrj is trivial, and so are all elementswith i > 0. We immediately deduce

Corollary 5.22. Assume thatS is a Garside family that is bounded by a mapin an Ore
categoryC. If tgl-[t1lsi|-|Sp is @ symmetricS-normal decomposition of g, then a symmetric

S-normal decomposition af(x)~1g (where x is the source of g) ¢gtq)| - [4(t1)|(S1) IS - Sp.

5.2. Computing\-normal decompositions

When a Garside family is bounded, alternative distinguisterompositions for the elements
of the ambient category and its groupoid of fractions ariseely theA-normal decompositions.
We now describe incremental methods for computing suchrdpositions, namely algorithms
that, when starting from a-normal decomposition of an elemegtand an element of the
considered Garside family, retumanormal decompositions o) andr g, respectively.

Algorithm 5.23 (Left-multiplication for A-normal—see Figure 15).

Context: A Garside familysS that is bounded by a mapin an Ore categorg, ad-witnesswW
for ¥, an=-testE in C

Input: A A-normal decomposition™ (x)|sy| - |s, of an elemeng of &v(C), an element of S

Output: A A-normal decomposition afy, if the latter is defined

1: ro = ¢"(r)

2: for i increasing from 1 tg do

3 (8,1) = W(ri-1, S)

4: if E(A(-),s)) # L then > S is A-like
5: s, .= E(A(5). 8))S,

6: return A™H(-)[s)|-|spIrp

7: else > 8, is notA-like
8:

return AM(-)[s;|-[s;lrp
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Figure 15:Computing a A-normal decomposition of rg starting from a A-normal decomposition of g: the |n| entries
of the type A(-) are treated directly using ¢", and then it just remains to left-multiply a (positive) A-normal sequence
by an element of S using the standard method. Note that, depending on the sign of n, the diagrams for AM(-)
consists either of n right-oriented arrows (case n > 0) or of |n| left-oriented arrows (case n < 0).

Example 5.24. Consider again the wreathed free Abelian morpid If follows from Exam-
ple 5.13 that the pativ = be|ae is aA-normal decomposition of the element [w].

Applying Algorithm 5.23 with theZJ-witnessW from Example 4.2 and the*-testE on S*
from Example 4.17, we can conclude tiAdite|e is aA-normal decomposition of the elemexg.

Algorithm 5.25 (Left-division for A-normal—see Figure 16).

Context: A Garside familyS that is bounded by a mapin an Ore categorg, aJ-withesswW
for S¥, an=-testE in C

Input: A A-normal decomposition™ (x)|s;|-+|s, for an element of &v(C) and an element
of S* with sourcex

Output: An A-normal decomposition af g

ro = ¢"(a(r))

: for i increasing from 1t do
(§,ri) == W(ri-1, s)

if E(A(-),s;) # L then > S, is A-like
S, == E(A(). s)s,
return AM()[S)]--[splrp

else > 8 is notA-like
return A™H(-)[s) |- |spIrp

NGO R wbdhRe

AN(-)E(A(-), s) if s is A-like

oo mmmmm o mm oo eeeee-o--oeeoooooeooe )

An-1(.)
LA A s s
H E(V)‘ ‘ro \[H lrpl Mp
g A[n] (X) 5 T Tp)

Figure 16:Algorithm 5.25 : Computing a A-normal decomposition for r~1g from a A-normal decomposition of g.

Proposition 5.26. Assume thafS is a Garside family that is bounded by a mapn an Ore
categoryC, W is alJ-witness onS, and E is an=-test inC. Then Algorithm 5.23 (resp. Algo-
rithm 5.25) running on a\-normal decomposition of an element g&f(C) and r in S* returns
a A-normal decomposition of rg (resp:g) (when the latter is defined).
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Proof. Consider first Algorithm 5.23. Then the diagram of Figure 45commutative as, in
particular,r A"V (-) = AW (u)¢"(r) holds whenever defined. As usual, the first domino rule iespli
thats’,1|~-~|s’p is S-normal and, by constructi0|?.’p|rp is S-normal. So it just remains to consider
the relation betweed"(-) ands;. Now, if s is not A-like, A"(-)|s] is A-normal. On the
other hand, ifs, is A-like, then, by definition, we have, = A(-)E(A(-), ), so thatA(-) can
be incorporated ta" () to form A™(-) and E(A(-), ;) can be incorporated ts, to form a
new element of$* asC'S* ¢ S* holds. ThenA™1(-)|s, must beA-normal because the new
elements, cannot beA-like. Indeed A(-) < s, would imply A?(-) < ss,, whenceA?(-) <
SSr = rosis. Now, asro lies in S*, we can writeA?(-) = rod(ro)A(-) = roA(-)¢(d(ro)),
S0 A(-) < ros s, implies roA(-)é(d(ro)) < rostS2, WhenceA(-) < s, contradicting the
assumption that"l(-)|s; is A-normal. So no cascade may occur here.

The argument for Algorithm 5.25 is entirely similar. The pmew point is that, in the
diagﬁram of Figure 16, the left square is commutative becd@ge = A(-) holds for everyr
in S*. |

Example 5.27. As in Example 5.20, we assume that we
know theA-normal decompositiobala of b%a, and that

A b ba
we would like to find a (the-normal decomposition of ’ Jb \'ba \'a
ab ba \/ a

(ab)~Y(b%a). Applying Algorithm 5.25 amounts to com-
pleting the diagram on the right, and we read that the ex-
pected decomposition -|bbala.

Example 5.28. Consider again the wreathed free Abelian moripid If follows from Exam-
ple 5.13 that the pativ = be|ae is aA-normal decomposition of the element [w].

Applying Algorithm 5.23 with thedJ-witnessW from Example 4.2 and the‘-testE on S*
from Example 4.17, we can conclude that-aormal decomposition of the elementgis given
by A-Ub|be|ae.

5.3. Solving the Word Problem

As in the positive case, we shall describe several solutionshe Word Problem in the
involved groupoid of fractions

Using symmetric normal decompositions
First, symmetric normal decompositions give a direct soluextending Algorithm 4.14 to
the signed case.

Algorithm 5.29 (Word Problem, general case 1).

Context: A strong Garside familys in an Ore categorg that admits left-lcms, &-witnessw,
a short left-lcm selectat, and an=-testE on S*
Input: A signedS#-pathw
Output: true if wrepresents an elementih &hv(C), andfalse otherwise
X 1= srcw) ; y := trg(w)
if x# ythen
returnfalse
. else
use Algorithm 5.10 to find a symmetri&normal pathu|v that representsij]
return the value of GmpareNorMaLPaTHS(U, V)  (Algorithm 4.14)
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Proposition 5.30. Assume thas is a strong Garside familys in an Ore category that admits
left-lcms, W is d@J-witness onsS, ¢ is a short left-lcm selector o8*, and E is an="-test onS*.
Then Algorithm 5.29 running on a signéi-path w of length at most decides in time @?)
whether{w] is an identity-element i6hv(C).

Proof. By Proposition 5.11, line 5 of Algorithm 5.29 computes a syetric S-normal pathulv
representingy] in time O(¢?). The signed pattw represents an identity-elemeni@inv(C) if and
only if the (positive) pathsl andv represent the same (invertible) elemen€inThe claim then
follows with Proposition 4.15. O

Example 5.31. Consider again the wreathed free Abelian morBidith theJ-witnessw from
Example 4.2, the=-testE on S from Example 4.17, and the short right-lcm selectas well
as the short left-lcm selectérfrom Example 4.29.

Running Algorithm 5.10 withJ, # andé on the signedS*-pathw = Alalb|alae|b|Alae, and
removing trivial factors in every step, yields the symneSinormal decomposition|v of [w]
with u = ele andv = . Subsequent application of the functiolrxEareENorMALPaTHS from
Algorithm 4.14 usinge establishes that andv are equivalent, so we concludg][= 1.

Using A-normal decompositions

According to Proposition 1.36, when they exidtnormal decompositions enjoy the same
unigueness property as symmetric normal decompositiomstefore, in the case when the ref-
erence Garside family is not only strong but even boundegipthm 5.29 and Proposition 5.30
admit exact counterparts where symmetric normal is repladth A-normal. We skip the details.

Using reversing

As in the positive case, at least when the ambient categoraits no nontrivial invertible
element and admits lcms, we can also solve the Word Problamsihyg reversing and thus avoid-
ing to compute distinguished decompositions. To stick ¢ocibntext described in Subsection 2.1
we assume here that the ambient category admits left- ahtildgs and contains no nontrivial
invertible element, which amounts to requiring that thedare unique.

Algorithm 5.32 (Word Problem, general case II).

Context: A strong Garside familys in an Ore categorg that admits unique right- and left-lcms,
the right-lcm selectof on S U 1; and the left-lcm selectaron S U 1¢
Input: A signedS-pathw
Output: true if wrepresents an elementih &hv(C), andfalse otherwise
1: right-g-reversew into a positive—negative pathv using Algorithm 2.6
2: left-6-reverseu|v into a negative—positive patl|v’ using (the left counterpart of) Algo-
rithm 2.3
3 return U =V =&]

Lemma 2.10, Proposition 1.16, and their left counterpantdy:

Proposition 5.33. Assume thas is a strong Garside familys in an Ore category that admits
unigue right- and left-lcms.
(i) Algorithm 5.32 solves the Word Problemé&if/(C) with respect taS.
(i) If Sis finite, the complexity of Algorithm 5.32 is quadratic il fength of the input path.
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Appealing to a right- and a left-reversing, Algorithm 5.32iicely symmetric. However, it
requires the existence of right-lcms, which is not guareahia every Ore category that admits a
strong Garside family. Actually, this assumption is supendis, since a double left-reversing can
be used instead.

Algorithm 5.34 (Word Problem, general case IlI).

Context: A strong Garside familyS in an Ore category that admits unique left-lcms, the
left-lcm selectow onS U 1¢
Input: A signedS-pathw
Output: true if wrepresent an elemeng ih &nv(C), andfalse otherwise
1: left-6-reversew into a negative—positivelv using (the left counterpart of) Algorithm 2.6
2: left-6-reversev|u into a negative—positive pailf|v' using (the left counterpart of) Algo-
rithm 2.3
3 return U =V =&]

Proposition 5.35. Assume thas is a strong Garside family in an Ore categagythat admits
unique left-lcms.

(i) Algorithm 5.34 solves the Word Probleméifi(C) with respect taS.

(i) If Sis finite, the complexity of Algorithm 5.34 is quadratic il fength of the input path.

Proof. The signed pathv represents an identity-element&nv(C) if and only if the pathau
andv represent the same elementdn By the counterpart of Proposition 1.16, léfreversing
is complete and terminating, scandv represent the same elementif and only if viuiis left-
6-reversible to an empty path. By Lemma 2.10, the complexXi#lgorithm 5.34 is inO(||w|?).
O

Example 5.36. Running on the signed word = ab|bala, Algorithm 5.32 right-reverses into
ajablba, and then left-reverses the latter words backlitbala. The final word is not empty,
hencew does not represent 1 in the groBgp.

Running orw, Algorithm 5.34 first left-reverses into itself (sincew is a negative—positive
word), then switches the numerator and the denominatomiatab, and finally left-reverses
the latter word. One finds noajb|b, a nonempty word, and one concludes againthdbes not
represent 1.

Remark 5.37. As in Section 4, we could also state a result referring to &itrary generating
family A that satisfies convenient properties but that is not nedgsaastrong Garside family.

5.4. Computing decompositions for an inverse

We complete the analysis of our distinguished decompasitisith explicit methods for
finding a decomposition aj* from one ofg.
In the case of symmetric normal decompositions, the restiivial:

Proposition 5.38. Assume that is a left-Ore category and tha$ is a Garside family inC.
If Tl [tals1|--|Sp is @ symmetricS-normal decomposition for an element g &\(C), then
Spl -+ [Stlta] - [tq is @ symmetricS-normal decomposition forg.

Proof. The definition makes it obvious thap|--[s;|ti|--|tq is SymmetricS-normal whenever
E| |E|51| |Sp is. Onthe other han@’ = tal "'tllsl - Sp imp"esg*l = 551 Slltl “'tq in a']v(c)
O
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The case oA-normal decompositions is more complicated, as the defimis not symmetric.
However, finding an explicit formula is notfticult. The following result is an adaptation of the
well known analogous result for braid groups respectivetysigle groups (see, for instance,
El-Rifai and Morton, 1994, proof of Proposition 4.5).

Proposition 5.39. Assume thasS is a Garside family that is bounded lyin a cancellative
categoryC. |If A(”)|si|---|sp is a A-normal decomposition for an element g &W(C), then
AP (7" P(sp))| -+ 10(¢~"Y(s1)) is @ A-normal decomposition forg.

Proof. We first check that the sequence mentioned in the statemanb@mal. So lei < p.
By hypothesiss|s.1 is S-normal. As¢ is an automorphism a8, the pathy™""(s)|¢""(S41)
is alsoS-normal. By Lemma 1.31, this implies thagp""'(s)) and¢""'(s.1) are left-disjoint.
The latter element ig(¢""'1(s+1)), hence it isd(3(¢™""*(s;1))). Reading the above dis-
jointness result in a symmetric way and applying Lemma 1:13deanore, we can deduce that
(¢ Y(541))10(¢"'(s)) is S-normal. Henc@ (¢ "P(sp))| - 18(¢""(s1)) is S-normal.
Moreover, the hypothesis that is notA-like implies thatp™""(s,) is notA-like either, and,
therefored(¢~""*(s1)) is not invertible. On the other hand, the hypothesis g not invertible
implies thatp~""P(sp) is not invertible either, and, therefor@g""P(sp)) is notA-like. Hence,
we conclude that the path™"-P|a(¢"P(sp))| - 10(¢™""Y(s1)) is A-normal.
It remains to check that the latt&rnormal path is a decomposition@f’. Now, by construc-
tion, the map® andd commute and, pushing the fact§P) to the left, we obtain the equality

AN-p) ¢) 3(¢—n—p(3p)) 3(¢—n—1(51)) . A(n)(_) 1+ Sp
= AP AV () d(pP(sp)) B¢ (1)) S1+Sp. (5.40)

and our goal is to prove that this elementys [let us call the right term of (5.4®(n, s, ..., Sp).
We shall prove using induction gn>> 0 that an expression of the for(n, s, ..., Sp) equals J,
wherey is the target of;.

Assume firstp = 0. What remains foE(n) is thenA="(-) A"(-), which, by the remark
following Notation 1.33, is L. Assumep > 1. The above result enables us to gather the first two
entries ofE into A=P)(-). Thend(¢~(s1)) s1, which is alsog(sl) S1, equalsA(z), wherezis the
source of)(s;). But, then, we can push this(-)-factor to the left through thé(¢~'(s)) factors
with the efect of diminishing the exponents #fby one. In this wayE(n, s, ..., sp) becomes

AP AR) 8(p P (sp)) (6 (S2)) B2+ S

whichisE(L, s, ..., Sp). By the induction hypothesis, its value ig 1 O

5.5. Computing upper and lower bounds

If C is an Ore category, the left-divisibility relation @f naturally extends into a relation
on &v(C), namely the relation, still denoted by, such thatf < g holds if there existh in C
satisfyingfh = g. This relation is a partial preordering éhv(C), and it is a partial ordering if
C admits no nontrivial invertible element. It directly folis from the definition that, if, g are
elements ofC, then a least common upper boumdsp a greatest common lower bound) bf
andg with respect tox is (when it exists) a right-lcnrésp a left-gcd) off andg.

Lemma 5.41. Assume thaf is an Ore category. Then any two element&o{C) with the same

source admit a least common upper bound (resp. a greatesncortower bound) with respect

to < if and only if any two elements Gfwith the same source admit a right-lcm (resp. a left-gcd).
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We skip the easy proof. Then a natural computation problésesiwhenever the above
bounds exist. The solution is easy.

Algorithm 5.42 (Least common upper bound with respect to<).

Context: A strong Garside familys in an Ore categorg that admits unique left- and right-lcms,
the right-lcm selectof on S U 1; and the left-lcm selectaronS U 1o
Input: Two signedS-pathsw;, w, with the same source
Output: A signedS-path representing the least common upper boundigdfdnd [w;]
1: left-f-reversew; W into a negative—positive pailiv using (the left counterpart of) Algo-
rithm 2.6
2: right-6-reversai|v into a positive—negative pathjw’ using Algorithm 2.3
3: return wy|V/

The solution for greatest lower bound is entirely symmetric

Algorithm 5.43 (Greatest lower bound with respect to<).

Context: A strong Garside familys in an Ore categorg that admits unique left- and right-lcms,
the right-lcm selectof onS U 1. and the left-lcm selectatron S U 1¢
Input: Two signedS-pathsw;, w, with the same source
Output: A signedS-path representing the greatest lower boundwaf pnd [w;]
1: right-6-reversew; |w into a positive—negative pathv using Algorithm 2.6
2: left-6-reverseulv into a negative—positive patVi|u’ using (the left counterpart of) Algo-
rithm 2.3
3: return wy|v’

Proposition 5.44. Assume tha8 is a strong Garside family in an Ore categatythat admits
unique left- and right-lcms. Then Algorithm 5.42 (resp.akithm 5.43) running on two signed
S-paths w and w of length at most returns the least upper bound (resp. the greatest lower
bound) offws] and[w,] with respect tox in time Q(£?).

Proof. First consider Algorithm 5.42. By the left counterpart ohma 2.10, the lefé-reversing
in line 1 takes timeD(£?) and produces twé*-pathsu, v of lengthO(¢) such that, irfehv(C), we
have [iV] = [wi|ws], hence 1] = g[u] and [w,] = g[Vv] for someg, namely the common class
of the signed patha |u andw,|v. By Proposition 4.25, the right-reversing in line 2 takes time
O(¢?) and produces tws-pathsu’, v’ such thau|v' andv|u’ both represent the right-lcm ofi
and )], hence their least upper bound with respecktoAs the partial orderings is invariant
under left-multiplication, the claim follows.

The claim for Algorithm 5.43 follows in an analogous way freitemma 2.10 and the left
counterpart of Proposition 4.25, noting that, for &lg in &wvC) andh in C, the conditions
fh=gandf~! = hg? are equivalent. O

When we apply Algorithms 5.42 and 5.43 to a pair of positivethpawe obtain algorithms
that determine right-lcms and left-gcds. In this case, At 5.42 is simply Algorithm 2.3,
since the left-reversing step is trivial: the initial pathjw, is directly negative—positive. Algo-
rithm 5.43, however, has no equivalent in Section 4. Its otitpa path representing the left-gcd
but, in general, it need not be a positive path, although #trba equivalent to a positive path. In
order to obtain a positive output, a third reversing steplmadded.
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Algorithm 5.45 (Left-gcd).

Context: A strong Garside familys in an Ore categorg that admits unique left- and right-lcms,
the right-lcm selectof onS U 1. and the left-lcm selectaron S U 1¢
Input: Two S-pathsu, v with the same source
Output: An S-path that represents the left-gcd of énd [v] in C
1: right-6-reversaulv into a positive—negative pathjw’ using Algorithm 2.3
2: left-g-reversev’|U into a negative—positive pat’|v” using (the left counterpart of) Algo-
rithm 2.3
3: left-6-reverseu|u” into a positive pathv using (the left counterpart of) Algorithm 2.3
4: return w

Proposition 5.46. Assume thatS is a strong Garside family in an Ore-category that admits
unique left- and right-lcms. Then Algorithm 5.45 runningtao S-paths yv of length at most
returns the left-gcd dfu] and[v] in time Q(£?).

Proof. It follows from Proposition 5.44 that, far’ as computed in line 2, the patifu” repre-
sents the left-gcd off and [v]. As u andv are both positive, this patiju” must be equivalent to
some positive path, say. Then the signed pathu”|ug represents an identity-elemen&imv(C),
so the positive paths andugu” are equivalent. Since, by the counterpart of Propositid®,1.
left-reversing is complete for the considered presematioe pathulu”’|ug is left-reversible to
an empty path, that is, the left-reversing grid construdtech uju”|uy has empty arrows ev-
erywhere on the left and on the top. This implies in particthat the subgrid corresponding to
left-reversingu/u” has empty arrows on the left, that is, with our current notatihat the wordv
computed at line 5 is positive (and equivalentig).

By Proposition 5.44, the computation timewfies in O(¢?) since, by the left counterpart of
Lemma 2.4, the left-reversing in line 3 takes tim@(¢?). O

Example 5.47. Let us consider a last time the mondig and the elements representeduoy
alblb andv = blalb/b. As seen in Figure 10, right-reversingy using the right-lcm selector
leads to the positive—negative woatl|a. Then left-reversing the latter word using the left-lcm
selector leads to the negative—positive whjiab. Finally, left-reversing|b|b|b gives the positive
word a|b, and we conclude that the left-gcd o fnd [v] in Bj is ab. Note that, instead of using
S-words and the associated Icm selector, we could insteadAua®erds and the initial right-
complement associated with the Artin presentation: thquemess of the final result guarantees
that the successive involved words must be pairwise earival
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