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Abstract. We attach with every finite, involutive, nondegenerate set-theoretic
solution of the Yang–Baxter equation a finite group that plays for the asso-
ciated structure group the sale role as a finite Coxeter group plays for the
associated Artin–Tits group.

1. Introduction

A set-theoretic solution of the Yang–Baxter equation (YBE) is a pair (X, R)
where R is a bijection from X2 to itself satisfying R12R23R12 = R23R12R23, in
which Rij : X3 → X3 corresponds to R acting in positions i and j. Set-theoretic
solutions of YBE provide particular solutions of the (quantum) Yang–Baxter equa-
tion, and received some attention in recent years.

A set-theoretic solution (X, R) of YBE is called involutive forR2 = id, and
nondegenerate if, writing R(x, y) = (R1(x, y), R2(x, y)), the maps y 7→ R1(x, y)
and x 7→ R2(x, y) are one-to-one. In this case, the group (resp. monoid) presented
by 〈X | {xy = z, t | x, y, z, t ∈ X and R(x, y) = (z, t)}〉 is called the structure group
(resp. structure monoid) of (X, R) [5].

Such structure groups happen to admit a number of alternative definitions and
make an interesting family. Among others, every structure group is a Garside
group [1], meaning that there exists a pair (M, ∆) such that M is a cancellative
monoid in which left-divisibility—defined by g4h ⇔ ∃h′∈M(h = gh′)—is a lattice,
∆ is a Garside element in M—meaning that the left- and right-divisors coincide,
are finite in number, and generate M—and G is a group of fractions for M [3].

In the case of Artin’s braid group Bn, the seminal example of a Garside group,
the Garside structure (B+

n , ∆n) is connected with the exact sequence 1 → Pn →
Bn → Sn → 1, where Pn is the pure braid group: B+

n is the monoid of positive
braids, the lattice made by the divisors of ∆n in B+

n is isomorphic to the weak
order on Sn. A presentation of Sn is obtained by adding n− 1 relations σ2

i = 1 to
the standard presentation of Bn, and the germ derived from Sn and the transposi-
tions σi, meaning the substructure of Sn where multiplication is restricted to the
cases when lengths add, generates B+

n [4] and its Cayley graph is the Hasse diagram
of the divisors of ∆n. The results extend to all types in the Cartan classification,
connecting spherical Artin–Tits groups with the associated finite Coxeter group.

As Garside groups extend spherical type Artin–Tits groups in many respects, it
is natural to ask:

Question 1.1. Assume that G is a Garside group, with Garside structure (M, ∆).
Does there exist a finite quotient W of G such that W provides a Garside germ
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for M and the Cayley graph of W with respect to the atoms of M is isomorphic to
the lattice of divisors of ∆ in M ?

In other words, does every Garside group admit some Coxeter-like group? The
general question remains open. The aim of this note is to establish a positive answer
for structure groups of set-theoretic solutions of YBE. We attach with every such
solution a number called its class and establish:

Theorem 1.2. Assume that G (resp. M) is the structure group (resp. monoid) of
an involutive, nondegenerate solution (X, R) of YBE with X of size n and class p.
Then there exist a Garside element ∆ in M and a finite group W of order pn

entering a short exact sequence 1 → Z
n → G → W → 1 such that (W, X) provides

a germ for M whose Cayley graph is the Hasse diagram of the divisors of ∆ in M .
A presentation of W is obtained by adding n relations wx = 1 to that of G, with
wx an explicit length p word beginning with x.

Theorem 1.2 extends the results of [2], in which solutions of class 2 are addressed
by a different method. Our approach relies on the connection with the right-cyclic
law of [8] and on the existence of an I-structure [6] [7] which enables one to carry
to arbitrary structure monoids results that are trivial in the case of Z

n.

2. The class of a finite RC-quasigroup

The first step consists in switching from solutions of YBE to RC-quasigroups.

Definition 2.1. An RC-system is a pair (X, ⋆) with ⋆ a binary operation on X
that obeys the RC-law (x⋆y)⋆(x⋆z) = (y⋆x)⋆(y⋆z). An RC-quasigroup is an RC-
system in which the maps y 7→ x⋆y are bijections. An RC-quasigroup is bijective
if the map (x, y) 7→ (x⋆y, y⋆x) from X2 to X2 is bijective. The associated group
(resp. monoid) is presented by 〈X | {x(x⋆y) = y(y⋆x) | x, y ∈ X}〉.

As proved in [8], if (X, R) is an involutive, nondegenerate set-theoretic solution
of YBE, then defining x⋆y to be the (unique) z satisfying R1(x, z) = y makes X
into a bijective RC-quasigroup and the group and monoid associated with (X, ⋆)
coincide with those of (X, R). Conversely, every bijective RC-quasigroup (X, ⋆)
comes associated with a set-theoretic solution of YBE. Thus investigating structure
groups of set-theoretic solutions of YBE and groups of bijective RC-quasigroups are
equivalent tasks.

Definition 2.2. Inductively define Π1(x1) = x1 and

(1) Πn(x1, ... , xn) = Πn−1(x1, ... , xn−1)⋆Πn−1(x1, ... , xn−2, xn).

An RC-quasigroup (X, ⋆) is said to be of class p if Πp+1(x, ..., x, y) = y holds for
all x, y in X .

Lemma 2.3. Every finite RC-quasigroup is of class p for some p.

Proof. Let (X, ⋆) be a finite RC-quasigroup. First, (X, ⋆) must be bijective, that
is, the map Ψ : (x, y) 7→ (x⋆y, y⋆x) is bijective on X2 [8] (or [7] for a different
argument). Now, consider the map Φ : (x, y) 7→ (x⋆x, x⋆y) on X2. Assume
(x, y) 6= (x′, y′). For x 6= x′, Ψ(x, x) 6= Ψ(x′, x′) implies x⋆x 6= x′⋆x′; for x = x′,
we have y 6= y′, whence x⋆y 6= x⋆y′ since left-translations are injective; so Φ(x, y) 6=
Φ(x′, y′) always holds. So Φ is injective, hence bijective on X2, and Φp+1 = id holds
for some p ≥ 1. An induction gives Φr(x, y) = (Πr(x, ..., x, x), Πr(x, ..., x, y)). So
Φp+1 = id implies Πp+1(x, ..., x, y) = y for all x, y, that is, (X, ⋆) is of class p. �
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3. Using the I-structure

From now on, assume that M (resp. G) is the structure group of some finite
RC-quasigroup (X, ⋆) of size n and class p. The form of the defining relations of M
implies that the Cayley graph of M with respect to X is an n-dimensional lattice.
It was proved in [6] that M admits a (right) I-structure, defined to be a bijection
ν : N

n → M satisfying ν(1) = 1 and {ν(ux) | x ∈ X} = {ν(u)x | x ∈ X} for every u
in N

n, that is, equivalently, ν(ux) = ν(u)π(u)(x) for some permutation π(u) of X .
The monoid M is then called of right-I-type. Our point is that the I-structure
(which is unique) is connected with ⋆ . Without loss of generality, we shall assume
that X is the standard basis of N

n and that ν(x) = x holds for x in X .

Lemma 3.1. For all x1, ... , xr in X, we have ν(x1 ···xr) = Σr(x1, ... , xr), with Σr

inductively defined by Σ1(x1) = x1 and

Σr(x1, ... , xr) = Σr−1(x1, , ... , xr−1) · Πr(x1, ... , xr).

Proof. The result can be established directly by developing a convenient RC-calculus
and proving that Σr(x1, ... , xr) satisfies all properties required for an I-structure. A
shorter proof is to start from the existence of the I-structure ν and just connect it
with the values of Σr. As established in [6] (see also [7, Chapter 8, Lemma 8.2.2]),
the following inductive relations are satisfied for all u, v in N

n:

(2) ν(uv) = ν(u) ν(π(u)[v]) and π(uv) = π(π(u)[v]) ◦ π(u)

where π[u] is the result of applying π to u componentwise.
We then use induction on r. For r = 1, the result is obvious. Assume r = 2 and

x1 6= x2. By definition, we have ν(x1x2) = x1π(x1)(x2) = ν(x2x1) = x2π(x2)(x1).
This shows that ν(x1x2) must be the right-lcm (least common right-multiple) of x1

and x2 in M . On the other hand, x1(x1⋆x2) = x2(x2⋆x1) holds in M by definition,
and this must also represent the right-lcm of x1 and x2. By uniqueness of the right-
lcm and left-cancellativity, we deduce π(x1)(x2) = x1⋆x2. Next, for x1 = x2, the
value of π(x1)(x2), as well as that of x1⋆x2, must be the unique element of X
that is not of the form π(x1)(x) or x1⋆x with x 6= x1, respectively. This forces
π(x1)(x2) = x1⋆x2 in this case as well, implying ν(x1x2) = x1(x1⋆x2) = Σ2(x1, x2)
in every case. Assume now r ≥ 3. We find

ν(x1 ···xr) = x1 ν(π(x1)[x2 ···xr]) = x1 ν((x1 ⋆x2)···(x1⋆xr))

= x1 Σr−1(x1⋆x2, ... , x1⋆xr) = Σr(x1, x2, ... , xr),

the first equality by (2), the second by the case r = 2, the third by the induction
hypothesis, and the last one by expanding the terms. �

Lemma 3.2. For x ∈ X and r ≥ 0, let x[r] = ν(xr). For all x ∈ X and u ∈ N
n,

we have ν(xpu) = x[p]ν(u) in M . In particular, we have π(xp) = id and, for all x, y
in X, the elements x[p] and y[p] commute in M .

Proof. Let y1 ···yq be a decomposition of u in terms of elements of X . By Lemma 3.1,
we have

ν(xpu) = Σp+q(x, ..., x, y1, ... , yq)

= Σp(x, ..., x)Σq(Πp+1(x, ..., x, y1), ... , Πp+1(x, , ..., x, yq))

= Σp(x, ..., x)Σq(y1, ... , yq) = ν(xp)ν(y1 ···yq) = x[p]ν(u),
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in which the second equality comes from expanding the terms and the third one
from the assumption that M is of class p. Applying with u = y in X and merging
with ν(xpy) = ν(xp)π(xp)(y), we deduce π(xp) = id. On the other hand, applying
with u = y[p], we find x[p]y[p] = ν(xpyp) = ν(ypxp) = y[p]x[p]. �

Lemma 3.3. Assume p ≥ 2 and define ∆ = ν(
∏

x∈X xp−1). Then ∆ is a Garside
element in M , and its family of divisors is ν({0, ... , p−1}n), which has pn elements.
Moreover ∆p is central in M .

Proof. The map ν is compatible with 4 : for all u, v in N
n, we have u 4 v in N

n

if and only if ν(u) 4 ν(v) holds in M . Indeed, by (2), v = ux with x in X implies
ν(v) = ν(u)π(u)(x), whence ν(u) 4 ν(v) in M . Conversely, for ν(v) = ν(u)x
with x in X , as π(u) is bijective, we have π(u)(y) = x for some y in X , whence
ν(uy) = ν(u)π(u)(y) = ν(u)x = ν(v), and v = uy since ν is injective, that is, u 4 v
in N

n. Hence the left-divisors of ∆ in M are the image under ν of the pn divisors
of δp−1 in N

n, with δ =
∏

x∈X x. For right-divisors, the maps π(u) are bijective, so
every right-divisor of ∆ must be a left-divisor of ∆. Then the duality map g 7→ h
for gh = ∆ is a bijection from the left- to the right-divisors of ∆. So the left- and
right-divisors of ∆ coincide, and they are pn in number. Since every element of X
divides ∆, the latter is a Garside element in M . Finally, by Lemma 3.1, ∆p is
the product of the elements x[p] repeated p − 1 times; as σ[δ] = δ holds for every
permutation σ, we deduce x∆p = ∆px for every x. �

For u ∈ N
n and x ∈ X , write |u|x for the (well-defined) number of x in an

X-decomposition of u.

Lemma 3.4. For u, u′ in N
n, say that u ≡p u′ holds if, for every x in X, we have

|u|x = |u′|x mod p, and, for g, g′ in M , say that g ≡ g′ holds for ν−1(g) ≡p ν−1(g′).
Then ≡ is an equivalence relation on M that is compatible with left- and right-
multiplication.

Proof. As ν is bijective, carrying the equivalence relation ≡p of N
n to M yields

an equivalence relation. Assume ν(u) ≡ ν(u′). Without loss of generality, we
may assume u′ = uxp = xpu with x in X . Applying (2) and Lemma 3.2, we
deduce π(u) = π(u′) and, therefore, ν(u)π(u)(y) = ν(uy) ≡ ν(u′y) = ν(u′)π(u)(y).
As π(u)(y) takes every value in X when y varies, ≡ is compatible with right-
multiplication by X . On the other hand, u ≡p u′ implies σ[u] ≡p σ[u′] for every
permutation σ in SX , so we obtain yν(u) = ν(yπ(y)−1[u]) ≡ ν(yπ(y)−1[u′]) =
yν(u′), and ≡ is compatible with left-multiplication by X . �

Lemma 3.5. For g = ∆peh, g′ = ∆pe′

h′ in G with h, h′ ∈ M , say that g ≡ g′ holds
if h ≡ h′ does. Then ≡ is a congruence on G with pn classes, and the kernel of
G → G/≡ is the Abelian subgroup of G generated by the elements x[p] with x ∈ X.

Proof. As ∆ is a Garside element in M , every element of G admits a (non-unique)
expression ∆peh with e ∈ Z and h ∈ M . Assume g = ∆peh = ∆pe1h1 with e > e1.
As M is left-cancellative, we find h1 = ∆p(e−e1)h, whence h1 ≡ h. So, for every h′

in M , we have h ≡ h′ ⇔ h1 ≡ h′ and ≡ is well-defined on G. That ≡ is compatible
with multiplication on G follows from the compatibility on M and the fact that ∆p

lies in the centre of G. Next, by definition, every element of G is ≡-equivalent to
some element of M , so the number of ≡-classes in G equals the number of ≡-classes
in M , hence the number pn of ≡p-classes in N

n.
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Finally, u ≡p xpu holds for all x in X and u in N
n. This, together with

Lemma 3.1, implies x[p] ≡ 1. Conversely, assume g ≡ 1 in M . By definition,
ν−1(g) lies in the ≡p-class of 1, hence one can go from ν−1(g) to 1 by multiplying
or dividing by elements xp with x ∈ X . By Lemma 3.1 again, this means that one
can go from g to 1 by multiplying or dividing by elements x[p] with x ∈ X . In other
words, the latter elements generate the kernel of the projection of G to G/≡. �

Now Theorem 1.2 readily follows. Indeed, define W to be the finite quotient-
group G/≡. We saw that the kernel of the projection of G onto W is the free
Abelian group generated by the n elements x[p] with x ∈ X , thus giving an ex-
act sequence 1 → Z

n → G → W → 1. A presentation of W is obtained by
adding to the presentation of G in Definition 2.1 the n relations x[p] = 1, that
is, x(x⋆x)((x⋆x)⋆(x⋆x))... = 1. By construction, the Hasse diagram of the lat-
tice made of the pn divisors of ∆ is the image under ν of the sublattice of N

n

made of the pn divisors of δ in N
n, whereas the Cayley graph of the germ derived

from (W, X)—that is, W equipped with the partial product obtained by restricting
to the cases when the X-lengths add—is the image under ν of the Cayley graph
of the germ derived from the quotient-group Z

n/≡p: the (obvious) equality in the
case of N

n implies the equality in the case of M .

4. An example

For an RC-quasigroup of class 1, that is, satisfying x⋆y = y for all x, y, the
group G is a free Abelian group, the group W is trivial, and the short exact sequence
of Theorem 1.2 reduces to 1 → Z

n → G → 1.
Class 2, that is, when (x⋆x)⋆(x⋆y) = y holds for all x, y, is addressed in [2]

(with no connection with RC-quasigroups). The element ∆ is the right-lcm of X ,
it has 2n divisors which are the right-lcms of subsets of X , and the group W is the
order 2n quotient of G obtained by adding the relations x(x⋆x) = 1.

For one example in class 3, consider {a, b, c} with x⋆y = f(y), f : a 7→ b 7→ c 7→
a. The associated presentation is 〈a, b, c | ac = b

2, ba = c
2, cb = a

2〉. The smallest
Garside element is a3, but, here, in class 3, we consider the next one, namely ∆ = a

6.
Adding to the above presentation of G the three relations x(x⋆x)((x⋆x)⋆(x⋆x)) =
1, namely abc = bca = cab = 1, here reducing to abc = 1, one obtains for W

1

a b c

ab b
2 bc a

2
c
2 ca

ac
2

b
2
a ab

2
a
3

ba
2

a
2
b ca

2

b
2
a
2

a
4

b
4

a
2
c
2

c
4

c
2
b
2

b
5

a
5

c
5

∆

Figure 1. An example in class 3: here W has 33 = 27 elements,
and its Cayley graph is a cube with edges of length 3 − 1.
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the presentation 〈a, b, c | ac = b
2, ba = c

2, cb = a
2, abc = 1〉. The lattice Div(∆)

has 27 elements, its diagram is the cube shown on the right. The latter is also the
Cayley graph of the germ derived from (W, X).
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