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Abstract. We determine all 2- and 3-cocycles for Laver tables, an infinite
sequence of finite structures obeying the left-selfdistributivity law; in particu-
lar, we describe simple explicit bases. This provides a number of new positive
braid invariants and paves the way for further potential topological applica-
tions. An important tool for constructing a combinatorially meaningful basis
of 2-cocycles is the right-divisibility relation on Laver tables, which turns out
to be a partial ordering.

Introduced by Richard Laver in [24], the Laver tables are an infinite series of finite
structures (An, ⊲n) where An is the set {1, 2, ... , 2n} and ⊲n is a binary operation
on An that obeys the left-selfdistributivity law

(LD) x ⊲ (y ⊲ z) = (x ⊲ y) ⊲ (x ⊲ z)

and the initial condition x ⊲ 1 = x+ 1 mod 2n. According to an approach that can
be traced back to Joyce [20], Matveev [26], and Brieskorn [1], selfdistributivity is
an algebraic distillation of the Reidemeister move of type III (or, briefly, Reide-
meister III move)—see Figure 1—and, therefore, it is not surprising that structures
involving operations that obey the law (LD) can often lead to powerful topological
constructions.
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Figure 1. Translation of invariance under Reidemeister III move into the
language of selfdistributivity: when colours from a set S are put on the left
ends of the strands and then propagated so that a b-coloured strand becomes
a⊲b-coloured when it overcrosses an a-coloured arc, then the output colours
are invariant under Reidemeister III move if and only if the operation ⊲

obeys the left-selfdistributivity law.

In practice, one of the most fruitful methods so far consists in developing a
(co)homological appoach, as explained for instance in the (very accessible) sur-
veys [21, 5]. More specifically, according to schemes that will be recalled in Sec-
tion 2 below, every 2- or 3-cocycle for a selfdistributive structure S leads to a
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positive braid invariant. Inserting Reidemeister II and I moves into the picture
leads to considering particular selfdistributive structures, namely racks, which are
selfdistributive structures in which all left-translations are bijective [17], and quan-
dles, which are idempotent racks [20, 26]. Racks or quandles can thus be used to
construct not only positive braid invariants but also general braid and, respectively,
knot and link invariants.

Laver tables are selfdistributive structures that are not racks, hence a fortiori
not quandles, but techniques similar to those developed by the first author in the
case of free selfdistributive structures [9] might make it possible to use them in
topology and, due to their fundamental position among selfdistributive structures
(see [9, 14, 15] for details), it is reasonable to expect promising developments.
In such a context, the obvious first step in the direction of possible topological
applications of Laver tables is to analyze the associated 2- and 3-cocycles. What
we do in this paper is to provide an exhaustive description of all such cocycles:

Theorem A. (i) For every n > 0, the Z-valued 2-cocycles for An make a free
Z-module of rank 2n, with a basis consisting of the constant cocycle and of 2n − 1
explicit {0, 1}-valued coboundaries defined for 1 6 q < 2n by

ψq,n(x, y) =

{
1 if q can be written as p ⊲n y for some p, but not as r ⊲n (x ⊲n y),

0 otherwise.

(ii) For every n > 0, the Z-valued 3-cocycles for An make a free Z-module of
rank 22n − 2n + 1, with a basis consisting of the constant cocycle and of 22n − 2n

explicit {0,±1}-valued coboundaries indexed by pairs (p, q) with 1 6 p, q 6 2n and
p 6= 2n − 1.

Let us mention that the above results still hold without change (and at no extra
cost) when Z is replaced with any abelian group G.

Theorem A shows that the families of 2- and 3-cocycles on the Laver tables are
quite rich, being essentially indexed by the elements of An and the pairs of elements
of An, respectively. Moreover, we shall see that these cocycles capture a number of
deep phenomena connected with Laver tables, which shows that they are (highly)
nontrivial. For instance, periods and thresholds, two series of parameters that wit-
ness the combinatorial complexity of the tables, can be recovered from 2-cocycles.
Similarly, the cocycles ψq,n of Theorem A inherit the order properties provided by
the right-divisibility relation of An, a certain partial ordering whose properties re-
main at the moment largely unknown. Alltogether, these elements may appear as
a favourable sign for potential applications. In particular, having an explicit basis
of 2-cocycles made of functions with nonnegative values seems especially promising
in view of combinatorial interpretations, typically for counting arguments. Also,
independently of any further development, it should be remembered that, according
to the principles recalled in Lemmas 2.6 and 2.7 below, every explicit cocycle we
describe directly gives rise to a new positive braid invariant.

The paper is organized as follows. Section 1 contains a short, self-contained
introduction to the Laver tables. Next, we recall in Section 2 the basic notions
of rack homology as well as the principle for using 2- and 3-cocycles to construct
topological invariants. In Section 3, we construct a first basis for the 2-cocycles
for An. In Section 4, we investigate the right-divisibility relation of Laver tables,
a digression of independent interest, which is then used in Section 5 to construct
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a second basis for the 2-cocycles for An, thus completing the proof of Point (i)
in Theorem A. Finally, in Section 6, we similarly analyze 3-cocycles and establish
Point (ii) in Theorem A.

1. Laver tables: construction and properties

Laver tables are the elements of an infinite family of selfdistributive structures
discovered by Richard Laver around 1995 as a by-product of his analysis of iterations
of elementary embeddings in Set Theory [24]. Their existence and characterization
are specified in the following result. Here and everywhere in the sequel, we write
p modm for the unique integer in {1, ... ,m} that is equal to p modulo m.

Theorem 1.1 (Laver, [9]). (i) For every n > 0, there exists a unique binary
operation ⊲ on the set {1, ... , 2n} obeying the laws

x ⊲ 1 = x+ 1 mod 2n,(1.1)

x ⊲ (y ⊲ 1) = (x ⊲ y) ⊲ (x ⊲ 1);(1.2)

the operation ⊲ obeys the left-selfdistributivity law (LD).
(ii) For every p 6 2n, there exists a (unique) integer 2r satisfying

p ⊲ 1 < p ⊲ 2 < ··· < p ⊲ 2r = 2n,

and the subsequent values p ⊲ q then repeat periodically.

Definition 1.2. For n > 0, the structure with domain {1, ... , 2n} specified in
Theorem 1.1 is called the nth Laver table and it is denoted by An. The number 2r

in (ii) is called the period of p in An and it is denoted by πn(p).

To avoid ambiguity, especially when several Laver tables are considered simul-
taneously, we shall denote by ⊲n the operation of An.

Explicitly computing Laver tables is easy: identifying the structure with a table
where the (x, y)-entry contains x ⊲ y, and starting from an empty table, (1.1) pre-
scribes the values of the products in the first column and then (1.2) enables one to
inductively complete the last row from left to right, then the penultimate row, etc.,
finishing with the first, which is computed last. Theorem 1.1(ii) says that every
row in a Laver table is periodic, with a period that is a power of 2. The first tables
are displayed in Table 1.

For further reference, let us note some consequences of the facts mentioned in
Theorem 1.1. First, as the rows of An are of length 2n and every period πn(p) is a
power of 2, hence a divisor of 2n, we deduce for every p in {1, ... , 2n} the equality

(1.3) p ⊲n 2n = 2n.

We also note that p < 2n implies for every q

(1.4) p < p ⊲n q,

and that

(1.5) p ⊲n q = p ⊲n q
′ implies p ⊲n (q + 1 mod 2n) = p ⊲n (q′ + 1 mod 2n) :

by (1.1), the latter equality is p ⊲n (q ⊲n 1) = p ⊲n (q′ ⊲n 1), hence equivalently
(p ⊲n q) ⊲n (p ⊲n 1) = (p ⊲n q

′) ⊲n (p ⊲n 1) owing to (1.2).
On the other hand, a direct verification gives, for every q, the values

(1.6) (2n−1) ⊲n q = 2n and 2n ⊲n q = q :
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A0 1
1 1

A1 1 2
1 2 2
2 1 2

A2 1 2 3 4
1 2 4 2 4
2 3 4 3 4
3 4 4 4 4
4 1 2 3 4

A3 1 2 3 4 5 6 7 8
1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8

A4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 12 14 16 2 12 14 16 2 12 14 16 2 12 14 16
2 3 12 15 16 3 12 15 16 3 12 15 16 3 12 15 16
3 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16
4 5 6 7 8 13 14 15 16 5 6 7 8 13 14 15 16
5 6 8 14 16 6 8 14 16 6 8 14 16 6 8 14 16
6 7 8 15 16 7 8 15 16 7 8 15 16 7 8 15 16
7 8 16 8 16 8 16 8 16 8 16 8 16 8 16 8 16
8 9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16
9 10 12 14 16 10 12 14 16 10 12 14 16 10 12 14 16
10 11 12 15 16 11 12 15 16 11 12 15 16 11 12 15 16
11 12 16 12 16 12 16 12 16 12 16 12 16 12 16 12 16
12 13 14 15 16 13 14 15 16 13 14 15 16 13 14 15 16
13 14 16 14 16 14 16 14 16 14 16 14 16 14 16 14 16
14 15 16 15 16 15 16 15 16 15 16 15 16 15 16 15 16
15 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 1. The first five Laver tables; observe the periodic behaviour of
the rows as predicted by Theorem 1.1(ii): for instance, we read the values
π0(1) = π1(1) = 1, π2(1) = 2, π3(1) = π4(1) = 4.

in other words, we have πn(2n−1) = 1 and πn(2n) = 2n.
By construction, the Laver table An is generated by the element 1, and it is

therefore an example of a monogenerated left-selfdistributive structure. It turns
out that every monogenerated left-selfdistributive structure can be obtained from
Laver tables using some simple operations [14, 15]. Note that such structures are
very far from the most common selfdistributive structures, such as groups equipped
with the conjugacy operation x ⊲ y = xyx−1 or, more generally, x ⊲ y = xf(yx−1)
with f an endomorphism of the considered group. Contrary to the latter examples,
Laver tables (except A0) are not racks, since for most values of p the map q 7→ p ⊲n q
is not bijective. Moreover, they do not obey the law (x ⊲ x) ⊲ y = x ⊲ y, which is
obeyed in every rack.

Laver tables are strongly connected to one another. Indeed, there exists a natural
projection from An to An−1 and, in the other direction, constructing the rows of p
and p + 2n−1 in An from the row of p in An−1 requires determining one single
integer parameter.

Proposition 1.3 (Laver, [9]). (i) For every n, the map prn : p 7→ p mod 2n−1

defines a surjective homomorphism from An to An−1.
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(ii) For all n and p 6 2n−1, there exists a number r with 0 6 r 6 πn−1(p), such
that, for every q 6 πn(p), one has

(1.7) p ⊲n q =

{
p ⊲n−1 q for 1 6 q 6 r,

p ⊲n−1 q + 2n−1 for r < q 6 πn−1(p).

Definition 1.4. The number r in (ii) is called the threshold of p in An and it is
denoted by ϑn(p).

Proposition 1.3 implies that the structure An−1 and the sequence of numbers
ϑn(1), ..., ϑn(2n−1 − 1) completely determine the structure An. Indeed, Point (i)
implies that, for all p, q 6 2n, if we write p̄ for p mod 2n−1 and q̄ for q mod 2n−1,
then we have prn(p ⊲n q) = p̄ ⊲n−1 q̄, whence

p ⊲n q ∈ { p̄ ⊲n−1 q̄ , p̄ ⊲n−1 q̄ + 2n−1 }.

For 2n−1 6 p < 2n, (1.4) implies 2n−1 6 p < p ⊲n q, so the only possibility is
p ⊲n q = p̄ ⊲n−1 q̄ + 2n. By contrast, for p < 2n−1, neither value is excluded
and, assuming n > 1, we have for instance p ⊲n 1 = p ⊲n−1 1 = p + 1. What
Point (ii) of Proposition 1.3 says is that the row of p in An begins with ϑn(p) values
common with those of An−1, followed by πn(p) − ϑn(p) values that are shifted
by 2n−1. In order to better understand the situation, consider two cases: if we
have ϑn(p) < πn−1(p), then we find p ⊲n πn−1(p) = 2n, in which case we deduce
πn(p) = πn−1(p); if we have ϑn(p) = πn−1(p), then we find p ⊲n πn−1(p) = 2n−1,
and, as the values in the row of p in An must increase until the value 2n occurs, we
deduce πn(p) = 2πn−1(p), and the description of the pth row of An given in (1.7)
can be completed with

p ⊲n q = p ⊲n−1 (q−πn−1(p)) + 2n−1 for πn−1(p) < q 6 2πn−1(p).

For instance, one can check in Table 1 that the threshold ϑ3(1) is 2 whereas ϑ4(1)
is 1: in the first case, this means that the first two values in the first row of A3,
namely 2 and 4, are the first two values in the first row of A2, so, as 2 is the period
of 1 in A2, the period of 1 must jump to 4 in A3, the values necessarily being
2, 4, 6, 8; in the second case, this means that only the first value 2 occurs in A4, the
three other values being shifted by 8, so the period of 1 remains 4 in A4, the values
in the first row necessarily being 2, 12 (= 4+8), 14 (= 6+8), and 16.

Composing the projections prn provides for all n > m a surjective homomor-
phism prn,m from An to Am. Some properties can then be lifted from Am to An.
A typical example is as follows.

Corollary 1.5. For all n > 1 and p, q 6 2n, the value p ⊲n q is odd if and only if
p is even and q is odd.

Proof. Write p̄ = prn,1(p) and q̄ = prn,1(q). Proposition 1.3 implies prn,1(p ⊲n q) =
p̄ ⊲1 q̄. Now, we see on Table 1 that, for all p̄, q̄ in {1, 2}, the value p̄ ⊲1 q̄ is odd if
and only if we have p̄ = 2 and q̄ = 1, that is, if p is even and q is odd. �

Observe that the limit of the inverse system associated with the projections prn,m

consists of a selfdistributive operation on the set Z2 of 2-adic numbers.
To conclude this brief introduction to Laver tables, let us mention that some of

their combinatorial properties, such as the result that the period πn(1) tends to ∞
with n, keep so far an unusual logical status, being known to follow from some
unprovable large cardinal axiom, but remaining open when such an axiom is not
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assumed [7]. This paradoxical situation comes from the possibility of investigating
Laver tables using elementary embeddings when the latter exist. However, all
subsequent developments in the current article are independent from such issues.

2. Basics on rack homology

In order to place our two-cocycle calculations for Laver tables in an appropriate
context, we start with recalling some generalities on the rack homology of left-
selfdistributive structures, originating from [18]. Note that, working with left- and
not with right-selfdistributivity as in most topological papers, we use a symmetric
version of their constructions.

Proposition 2.1. [18] Assume that ⊲ is a binary operation on a set S that obeys
the left-selfdistributive law. For k > 1, let Ck(S) be a free Z-module based on Sk,
and put C0(S) = Z. For k > 0 and 1 6 i 6 k, let d ⊲

k;i, d
0
k;i : Ck(S) → Ck−1(S) be

linear maps defined on Sk by

d ⊲
k;i(x1, ... , xk) = (x1, ... , xi−1, x̂i, xi ⊲ xi+1, ... , xi ⊲ xk),

d 0
k;i(x1, ... , xk) = (x1, ... , xi−1, x̂i, xi+1, ... , xk).

Put ∂ ⊲
k :=

∑k

i=1(−1)i−1d ⊲
k;i, and ∂ 0

k :=
∑k

i=1(−1)i−1d0
k;i. Then (Ck(S), ∂ ⊲

k , ∂
0
k ) is

a chain bicomplex, that is, for every k > 2, we have

(2.1) ∂ ⊲
k−1 ◦ ∂

⊲
k = ∂ 0

k−1 ◦ ∂
0
k = ∂ ⊲

k−1 ◦ ∂
0
k + ∂ 0

k−1 ◦ ∂
⊲
k = 0.

Proof. The fastest and probably the most conceptual proof of the statement is
based on the (pre)cubical cohomology ideas, as developed in [29, 22, 2]. Concretely,
a direct computation shows that, for all 1 6 j < i 6 k and for every choice of ⋄
and ⋆ in {⊲, 0}, the relation

d⋄k−1;j ◦ d
⋆
k;i = d⋆

k−1;i−1 ◦ d
⋄
k;j

is satisfied. Together with a careful sign juggling, this gives (2.1). �

Corollary 2.2. Every Z-linear combination ∂k of ∂ ⊲
k and ∂ 0

k defines a chain com-
plex structure on Ck(S), that is, we have ∂k−1 ◦ ∂k = 0.

Remark 2.3. An alternative proof of the statement consists in interpreting ∂ 0 as ∂ ⊲0

for the trivial left-selfdistributive operation x ⊲0 y = y, observing that operations ⊲0
and ⊲ are mutually distributive—that is, (S, ⊲, ⊲0) is a multi-LD-system, as defined
in [8] and [23] and rediscovered—under the name of multishelf—in [27, 28], and
applying the general multi-term distributive homology theory from [27, 28].

We then follow the standard terminology and notation.

Definition 2.4. Assume that S is a set and ⊲ is a binary operation on S that
obeys the left-distributive law.

(i) For every k > 1, we put ∂R

k = ∂ ⊲
k − ∂ 0

k . Then the complex (Ck(S), ∂R

k ) is
called the rack complex of (S, ⊲), and its homology, denoted by HR

k (S), is called the
rack homology of (S, ⊲).

(ii) Assume that G is an abelian group, and consider the cochain complex
Ck(S;G) defined as the abelian group HomZ(Ck(S), G) endowed with the differen-
tial ∂k

R
induced by ∂R

k . Then the functions in the image of ∂k−1
R

are called G-valued
k-coboundaries and their set is denoted by Bk

R
(S;G), whereas those in the kernel

of ∂k
R

are called G-valued k-cocycles, and their set is denoted by Zk
R
(S;G). The
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quotient Zk
R
(S;G)/Bk

R
(S;G) is called the G-valued rack cohomology of (S, ⊲), and

denoted by Hk
R
(S;G).

Remark 2.5. In the distributive world, the rack complex can be seen as the ana-
logue of the Hochschild complex for associative algebras, whereas the complex
(Ck(S), ∂ ⊲

k ), known as the 1-term distributive complex of (S, ⊲), as the analogue of
the bar complex. This was pointed out in [27] and explained in the context of a
unifying braided homology theory in [25].

In what follows we mostly work with G = Z. However, all results extend to the
case of an arbitrary abelian group with obvious modifications.

For further reference, note the explicit values for ∂k
R

with 1 6 k 6 4:

∂1
R
φ (x) = 0,(2.2)

∂2
R
φ (x, y) = φ(x ⊲ y) − φ(y),(2.3)

∂3
R
φ (x, y, z) = φ(x ⊲ y, x ⊲ z) + φ(x, z) − φ(x, y ⊲ z) − φ(y, z),(2.4)

∂4
R
φ (x, y, z, t) = φ(x ⊲ y, x ⊲ z, x ⊲ t) + φ(x, y, z ⊲ t)(2.5)

+φ(x, z, t) − φ(x, y ⊲ z, y ⊲ t) − φ(y, z, t) − φ(x, y, t).

Below we shall specifically consider 2- and 3-cocycles. Let us briefly recall why
such cocycles are directly interesting for constructing topological invariants, more
precisely for defining quantities that are invariant under Reidemeister III moves.
Let us begin with 2-cocycles. Restarting with the colouring rule used in Figure 1,
we can use a 2-cocycle to attach an element of G to every crossing. The general
result is then

Lemma 2.6. [3] Assume that (S, ⊲) is a left-selfdistributive structure, G is an
abelian group, and φ is a G-valued 2-cocycle for S. For D a positive n-strand
braid diagram and ~a in Sn, define φ̂D(~a) =

∑
i φ(bi, ci) where bi, ci are the input

colours at the ith crossing of D when D is coloured from ~a. Then φ̂D is invariant
Reidemeister III moves.

The verification is shown in Figure 2.

a

b

c c

a ⊲ b

a a ⊲ c

a ⊲ b

a

φ(a, b) + +φ(a, c) φ(a⊲b, a⊲c)

a

b

c b

a

b⊲c a

b

φ(b, c) + φ(a, b⊲c) + φ(a, b)

Figure 2. Using a 2-cocycle to construct a positive braid invariant: one
associates with every braid diagram the sum of the values of the cocy-
cle at the successive crossings labelled by means of the reference left-
selfdistributive structure; the cocycle rule (3.1) is exactly what is needed to
guarantee invariance with respect to Reidemeister III moves.

The principle for using 3-cocycles is similar, at the expense of combining arc
colouring with region colouring, as explained in Figure 3—here we use the same
auxiliary set S to colour arcs and regions, but more general rules involving what is
called rack-sets or rack shadows are also possible, see [18, 19, 21, 4, 6].

The counterpart of Lemma 2.6 is then
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a

b

a ⊲ b

ad

b ⊲ d

a ⊲ (b ⊲ d)

a

b

a ⊲ b

ad

a ⊲ d

(a ⊲ b) ⊲ (a ⊲ d)

Figure 3. Region colouring: if the region above an a-coloured arc is
coloured with d, then the region below is coloured with a⊲d; the coherence
of this colouring rule is equivalent to the left-selfdistributivity law for the

operation ⊲.

Lemma 2.7. [19] In the settings of Lemma 2.6, assume that φ is a G-valued 3-
cocycle for S, and, together with arcs, colour the regions of the diagram D, starting
from colour d for the region on the top. Define φ̂D(~a, d) =

∑
i φ(bi, ci, di) where

bi, ci are the input colours and di is the upper region colour at the ith crossing of D.
Then φ̂D is invariant under Reidemeister III moves.

The proof is now contained in Figure 4.

a

b

c

a a ⊲ c

a ⊲ b

a
d

c ⊲ d a ⊲ d

φ(a, b, c ⊲ d) φ(a, c, d) φ(a⊲b, a⊲c, a ⊲ d)+ +

a

b

c

b⊲c a

b
d

b ⊲ d

φ(b, c, d)+φ(a, b⊲c, b ⊲ d)+ φ(a, b, d)

Figure 4. Using a 3-cocycle to construct a positive braid invariant: the
construction is similar to that using a 2-cocycle, but this time the up-
per region colour is taken into consideration at each crossing; the cocycle
rule (6.1) is exactly what is needed to guarantee invariance with respect
to Reidemeister III moves; only the colours of the regions relevant to our
construction are indicated in the figure.

In practice, the same S often admits considerably more 3-cocycles than 2-
cocycles, so the former allow to extract more invariants out of the same reference
structure. A construction of knotted surface invariants in R

4 out of 3-cocycles is
another motivation for hunting for 3-cocycles, see [21, 5] for details.

3. Two-cocycles for Laver tables

From now on, our aim is to investigate the rack cohomology of Laver tables and,
more precisely, to determine the associated cocycles. As a warm-up, we consider
the (simple) case of degree 1 rack cohomology.

Proposition 3.1. For every n > 0, the first rack cohomology group H1
R
(An; Z) is a

free 1-dimensional Z-module generated by the equivalence class of the constant map
with value 1.

Proof. According to (2.3), a Z-valued 1-cocycle on An is a map φ : An → Z that
satisfies φ(x⊲y) = φ(y) for all x, y, hence in particular φ(x⊲1) = φ(1) for every x. As
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x⊲1 ranges from 1 to 2n when x varies, we deduce that φ must be constant. On the
other hand, any constant map φ satisfies φ(x⊲y) = φ(y) and is thus a cocycle. Hence
Z1

R
(An; Z) is generated by the constant map with value 1, and it is isomorphic to Z.

Further, due to (2.2), one has B1
R
(An; Z) ∼= 0, so H1

R
(An; Z) ∼= Z1

R
(An; Z) ∼= Z. �

In fact, the argument above can be used for showing that the first rack homology
and cohomology groups of any selfdistributive structure that is monogenerated (that
is, generated by a single element) are 1-dimensional.

For the rest of this section, we consider degree 2 rack cohomology and, more
specifically, Z-valued 2-cocycles. By definition, a Z-valued 2-cocycle for An is a Z-
linear map from ZAn×An to Z, and it is fully determined by its values on An×An.
Thus, we are looking for maps φ : {1, ... , 2n} × {1, ... , 2n} → Z satisfying

(3.1) φ(x ⊲ y, x ⊲ z) + φ(x, z) = φ(x, y ⊲ z) + φ(y, z).

As in the case of the operation ⊲n itself, it is natural to represent a 2-cocycle φ
for An as a square table based on {1, ... , 2n}, with the (x, y)-entry containing the
integer φ(x, y). Therefore, we can speak of the rows and columns of a 2-cocycle.
Further, we shall omit the subscripts R and the coefficients Z for brevity, writing
for instance Z2(An) instead of Z2

R
(An; Z).

We start with an easy obervation: since every 2-coboundary is a 2-cocycle, we
can describe a number of elements in Z2(An) using the definition (2.3) of ∂2.

Lemma 3.2. For p, q in An, let δp,q be 1 for p = q and be 0 for p 6= q. For
1 6 q 6 2n, define φq,n by

(3.2) φq,n(x, y) = δy,q − δx⊲ny,q.

Then, for every q, the map φq,n defines a 2-coboundary on An.

Proof. Let θ be the 1-cochain on An defined by θ(x) = −δx,q. Then (2.3) shows
that φq,n is equal to ∂2θ. Hence φq,n belongs to B2(An). �

The table of the coboundary φq,n is easily described in terms of the occurrences
of the value q in the table of An. Namely, it consists of zeroes everywhere, except
for ones in the qth column at the positions where the value is not q in An, and
minus ones in the other columns at the positions where the value is q, see Table 2.

φ1,3 1 2 3 4 5 6 7 8

1 1 · · · · · · ·
2 1 · · · · · · ·
3 1 · · · · · · ·
4 1 · · · · · · ·
5 1 · · · · · · ·
6 1 · · · · · · ·
7 1 · · · · · · ·
8 · · · · · · · ·

φ4,3 1 2 3 4 5 6 7 8

1 · −1 · 1 · −1 · ·
2 · −1 · 1 · −1 · ·
3 −1 · −11 −1 · −1 ·
4 · · · 1 · · · ·
5 · · · 1 · · · ·
6 · · · 1 · · · ·
7 · · · 1 · · · ·
8 · · · · · · · ·

φ7,3 1 2 3 4 5 6 7 8

1 · · · · · · 1 ·
2 · · −1 · · · · ·
3 · · · · · · 1 ·
4 · · −1 · · · · ·
5 · · · · · · 1 ·
6 −1 · −1 · −1 · · ·
7 · · · · · · 1 ·
8 · · · · · · · ·

Table 2. Three 2-cocycles on A3, here φ1,3, φ4,3, and φ7,3: in each case,
the values are 0 (replaced with a dot for readability), 1, or −1, depending
on the column and the corresponding value in the considered Laver table.
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We shall now establish that the first 2n − 1 coboundaries of Lemma 3.2 make a
basis of B2(An) and that, when completed with a constant cocycle, they make a
basis of Z2(An).

Proposition 3.3. For every n, the group Z2(An) is a free abelian group of rank 2n,
with a basis consisting of the coboundaries φp,n with p < 2n and the constant 2-
cocycle cn with value 1. Every 2-cocycle φ for An admits the decomposition

(3.3) φ =

2n−1∑

q=1

(φ(2n−1, q) − φ(2n−1, 2n))φq,n + φ(2n−1, 2n)cn.

Moreover, the subfamily {φ1,n, ... , φ2n−1,n} is a basis of B2(An), and H2(An) ∼= Z

holds.

The proof, which is not difficult, relies on two auxiliary results exploiting the
(very) specific properties of Laver tables.

Lemma 3.4. Assume that φ is a 2-cocycle for An. Then, for 1 6 x 6 2n, we have
φ(x, 2n) = φ(2n−1, 2n).

Proof. Write N for 2n−1 and ⊲ for ⊲n. Applying (3.1) to (N, x, 2n) yields

(3.4) φ(N ⊲ x,N ⊲ 2n) + φ(N, 2n) = φ(N, x ⊲ 2n) + φ(x, 2n).

According to (1.3) and (1.6), for every x we have N ⊲ x = 2n and x ⊲ 2n = 2n, so
(3.4) reduces to φ(2n, 2n) = φ(x, 2n). Thus φ(x, 2n) does not depend on x. �

In other words, the last column of every 2-cocycle for An is constant. The
second auxiliary result states that a 2-cocycle with a trivial penultimate row must
be trivial.

Lemma 3.5. Assume that φ is a 2-cocycle for An and φ(2n−1, y) = 0 holds for
every y. Then φ is the zero cocycle.

Proof. Write N for 2n−1 again. Applying (3.1) to (N, x, y) yields

φ(N ⊲ x,N ⊲ y) + φ(N, y) = φ(N, x ⊲ y) + φ(x, y),

hence φ(2n, 2n) = φ(x, y), owing to (1.6) and the assumption on φ. Lemma 3.4 gives
φ(2n, 2n) = φ(N, 2n), which is zero, again by the assumption on φ. One concludes
that φ is zero on An ×An. �

We can now complete the argument.

Proof of Proposition 3.3. As usual write N for 2n−1. From the definition (3.2) and
from the values (1.6) in the penultimate row of a Laver table, we find for q < 2n

φq,n(N, y) = δy,q − δN⊲ny,q = δy,q − δ2n,q = δy,q,

that is, φq,n is a 2-cocycle whose penultimate row contains 1 in the qth column and
zeroes everywhere else. This cocycle system can be completed with the cocycle c′n
defined by

(3.5) c′n = cn −
∑N

q=1
φq,n,

whose penultimate row contains 1 in the last column and zeroes everywhere else.
These calculations show that an arbitrary 2-cocycle φ for An coincides on the penul-

timate row with the cocycle
∑N

q=1φ(N, q)φq,n + φ(N, 2n)c′n, which is precisely the

right side of (3.3). By Lemma 3.5, these cocycles must coincide and, therefore,
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Relation (3.3) holds. Consequently, the family {φ1,n, ... , φ2n−1,n, c
′
n}, and hence

{φ1,n, ... , φ2n−1,n, cn}, generates Z2(An). Let us now show that this family is free.

Suppose that
∑N

q=1 λqφq,n+λ2ncn is a zero 2-cocycle for some integer coefficients λi.

Evaluating at (N, 2n) and using the calculations above, one obtains λ2n = 0. Fur-
ther, evaluating at (N, q) with q < 2n, one obtains λq = 0 for all q. Thus Z2(An)
is a free Z-module based on {φ1,n, ... , φ2n−1,n, cn}.

It remains to prove the assertion for B2(An). According to Lemma 3.2, the maps
φ1,n, ... , φ2n−1,n lie in B2(An), and, as argued above, they form a free family. Let
us show that they generate the whole B2(An). Due to the definition (2.3) and the
property (1.3) of Laver tables, every 2-coboundary ∂2θ on An satisfies

∂2θ(N, 2n) = θ(N ⊲ 2n) − θ(2n) = θ(2n) − θ(2n) = 0,

hence the last term in the decomposition (3.3) for ∂2θ is zero, and it belongs to the
submodule of Z2(An) generated by {φ1,n, ... , φ2n−1,n}. �

Once a basis of Z2(An) is known, it becomes extremely easy to extract common
properties of its elements and thus establish general properties of the cocycles. Here
are some examples.

Proposition 3.6. Assume that φ is a 2-cocycle for An. Put u = φ(1, 2n−1) and
v = φ(2n, 2n).

(i) For all q 6 2n, we have φ(2n, q) = v, that is, the last row of φ is constant.
(ii) For all p < 2n, we have φ(p, 2n−1) = u, that is, the column of 2n−1 is con-

stant, except possibly its last element. For every q > 2n−1, we have φ(2n−1, q) = v,
that is, the second half of the row of 2n−1 is constant.

(iii) For every q < 2n−1, we have φ(p, q) = φ(p, q + 2n−1) for every p, that is,
the columns of q and q + 2n−1 coincide, if and only if φ(2n−1, q) = v holds.

Proof. All properties in (i) and (ii) are satisfied by each of the cocycles φi,n and
cn, and they are preserved under linear combination. By Proposition 3.3, they
are therefore satisfied by every cocycle. The situation with (iii) is similar, but the
preservation under linearity requires (slightly) more care. So we shall instead make
a direct verification—similar verifications are of course possible in the cases of (i)
and (ii).

Making y = 2n−1 and z = q in (3.1) yields

(3.6) φ(x, q) + φ(x ⊲ 2n−1, x ⊲ q) = φ(2n−1, q) + φ(x, 2n−1 ⊲ q).

Assume x < 2n and q < 2n−1. Then we have x⊲2n−1 = 2n and 2n−1 ⊲q = q+2n−1,
so (3.6) reduces to

φ(x, q) + φ(2n, x ⊲ q) = φ(2n−1, q) + φ(x, q + 2n−1).

It follows that the equality φ(x, q) = φ(x, q + 2n−1) is equivalent to φ(2n−1, q) =
φ(2n, x ⊲ q), that is, according to (i), to φ(2n−1, q) = v. In the remaining case
x = 2n, note that, again by (i), both φ(x, q) and φ(x, q + 2n−1) are equal to v and
thus coincide. We conclude that the equality φ(2n−1, q) = v holds if and only if
φ(x, q) = φ(x, q + 2n−1) holds for every x. �

4. A partial ordering on An

In order to subsequently continue our investigation of 2-cocycles for Laver tables,
we shall now describe a certain partial order connected with right-division in the
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structure An. Although this order seems to have never been mentioned explicitly,
most essential properties of right-division in An were established (with a different
phrasing) in a series of papers by A. Drápal, who intensively investigated Laver
tables in the 1990’s [11, 12, 13, 14, 15, 16]. Below we shall give new, self-contained
proofs of these properties which hopefully are more accessible than the original ones,
spread in several sources; at the same time, this will provide typical examples of
the delicate inductive arguments relevant in the investigation of Laver tables. From
these properties, we shall deduce the existence of the above-mentioned partial order,
finishing the section with its brief study.

Definition 4.1. For 1 6 q 6 2n, we put Coln(q) = {p ⊲n q | p = 1, ... , 2n}, and we
write q n r if Coln(q) contains r.

So Coln(q) is the family of all values that appear in the qth column of the Laver
table An. By definition, the relation q n r holds if and only if r appears in the
qth column of An, hence if and only if there exists p satisfying p ⊲n q = r, that is,
if r is what can be called a left-multiple of q (and, equivalently, q is a right-divisor
of r) in An. We shall establish below

Proposition 4.2. For every n, the relation n is a partial ordering on {1, ... , 2n}.
For every p, we have 1 n p n 2n, that is, 1 is initial and 2n is final for n .

The Hasse diagrams of the partial orders 2, 3, and 4 are displayed in Figure 5.
As can be seen there, n is not a linear order for n > 3; it is not even a lattice
order for n > 5: one can check that 18 and 19 admit no least upper bound with
respect to 5, as one has 18 5 12, 19 5 12, 18 5 14, and 19 5 14, but 18 and
19 admit no common upper bound that is a common lower bound of 12 and 14.

Proposition 4.2 is somehow surprising: in an associative context, the counterpart
of the  relation is trivially transitive since p′ ⊲ (p ⊲ q) is equal to (p′ ⊲ p) ⊲ q, so a
left-multiple of a left-multiple is still a left-multiple. But this need not be the case
in a selfdistributive context, and the relation , which makes sense in any algebraic
context, need not be an ordering. By the way, the symmetric version of n in An

is not transitive for n > 0: writing q �n r for ∃p(q ⊲n p = r), we have for instance
1 �n 2n �n 1, but not 1 �n 1—however, it can be mentioned that, in the case of
a free left-selfdistributive structure on one generator, the transitive closure of the
relation � turns out to be a linear ordering, a deep nontrivial result, see [9].

Before proving Proposition 4.2, we begin with auxiliary results (of independent
interest). The first task is to understand when the value q may appear in the
column of q. We first establish a positive result, which essentially corresponds to
Proposition 1.4 in [13].

Lemma 4.3. Assume 1 6 p 6 2n and 2d | p. Then

(4.1) p ⊲n (2n − q) = 2n − q

holds for 0 6 q < 2d.

In other words, if 2d divides p, then the last 2d values in the row of p in the table
ofAn are the consecutive numbers 2n−2d+1, 2n−2d+2, ... , 2n. For instance, the last
8 values in the rows of 8, 16, 24, and 32 in the table of A5 must be 25, 26, ... , 32.

Proof. We establish the result using induction on n. For n = 0, the result is trivial
and, for n = 1, it says that the last value of every row in A1 is 2, whereas the last
two values in the row of 2 are 1 and 2, which is true.
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1
1234

3
234

2
24

4
4

1
12345678

5
2345678

3
34678

2
2468

7
4678

6
468

4
48

8
8

1 9 5 13

3 11 7 15

14 12 8 16

2 10 6

4

Figure 5. The (Hasse diagrams of the) partial orders 2 on {1, ... , 4},
3 on {1, ... , 8}, and 4 on {1, ... , 16}; in the top two diagrams, each
node is accompanied with an enumeration of the corresponding column;
the relation 2 is a linear order, whereas 3 and 4 are not linear orders
since 2 and 3 are not comparable, but they are lattice orders since any two
elements admit a least upper bound (and a greatest lower bound).

From now on, we assume n > 2 and use induction on d increasing from 0 to n.
For d = 0, the statement says that the last value in the row of p is 2n, which is
indeed true. Assume now 1 6 d < n and 2d | p. We shall establish (4.1) using
induction on q increasing from 0 to 2d − 1. For 0 6 q < 2d−1, (4.1) follows from
the induction hypothesis on d. Assume now 2d−1 6 q < 2d. Put p̄ = p mod 2n−1.
By assumption, we have d 6 n− 1, so 2d also divides p̄, and q < 2n−1. Hence the
induction hypothesis on n implies

p̄ ⊲n−1 (2n−1 − q) = 2n−1 − q.

Lifting this equality from An−1 to An, we deduce that we have either (4.1), or

(4.2) p ⊲n (2n − q) = 2n−1 − q,

and our problem is to exclude (4.2). So assume for a contradiction that (4.2) is
true, and consider the next value in the row of p, namely p ⊲n (2n−q+1). On the
one hand, by induction hypothesis, (4.1) is true for q − 1, that is, we have

(4.3) p ⊲n (2n − q + 1) = 2n − q + 1.

On the other hand, (1.2) and (4.2) give

p ⊲n (2n−q+1) = (p ⊲n (2n−q)) ⊲n (p ⊲n 1) = (2n−1−q) ⊲n (p+ 1),

whence, merging with (4.3),

(4.4) (2n−1 − q) ⊲n (p+ 1) = 2n − q + 1.

We shall see that (4.4) is impossible because it implies contradictory constraints
for πn(2n−1 − q), the period of 2n−1 − q in An.
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Indeed, let us analyze the row of 2n−1−q in An. By (4.4), the value at p+ 1 is
2n − q + 1. As values in a row increase until 2n is reached, the smallest positive r
for which we have

(4.5) (2n−1 − q) ⊲n (p+ r) = 2n.

must satisfy r 6 q. Then the row of 2n−1−q contains at least r + 1 values, namely
the r values at p+ 1, ... , p+ r, which are above 2n−q, hence larger than 2n−1, plus
the value at 1, which is 2n−1−q+1, smaller than or equal to 2n−1 and therefore
different from the previous r values. Hence, we must have

(4.6) πn(2n−1 − q) > r + 1.

On the other hand, (4.5) implies πn(2n−1 − q) | (p + r), whence πn(2n−1 − q) | r
since we have 2d | p and r 6 q < 2d, so that every power of 2 dividing p + r also
divides r. Hence, in particular, so does πn(2n−1− q). We deduce πn(2n−1− q) 6 r,
contradicting (4.6). Thus (4.4) and, therefore, (4.2), are impossible, and (4.1) must
be true.

Finally, for d = n, the statement says that the last (and first!) 2n values in the
row of 2n are 1, 2, ... , 2n, which is indeed true. �

We now refine Lemma 4.3 by proving that q may appear in the column of q only
at the positions previously described.

Lemma 4.4. Assume 1 6 p 6 2n and 2d | p with 2d+1 6 | p. Then p ⊲n q = q holds
for 2n − 2d < q 6 2n and fails for 1 6 q 6 2n − 2d. In particular, for q 6 2n−1, the
equality p ⊲n q = q holds for p = 2n only.

Proof. First we note that the result is obvious for p = 2n, and from now we restrict
to the case p < 2n, implying d 6 n − 1. We use induction on n. The result is
true in A0 and A1. Assume n > 2 and 1 6 p < 2n with 2d | p and 2d+1 6 | p. We
inspect the pth row in the table of An, that is, the values p ⊲n q for 1 6 q 6 2n.
Let p̄ = p mod 2n−1 and q̄ = q mod 2n−1. We consider two cases.

Assume first 1 6 q̄ 6 2n−1 − 2d. This case may arise only for d < n − 1.
Consequently, we have 2d | 2d+1 | 2n−1, so the conjunction of 2d | p and 2d+1 6 | p
implies 2d | p̄ and 2d+1 6 | p̄. Then the induction hypothesis applies, thus giving
p̄ ⊲n−1 q̄ 6= q̄, which implies p ⊲n q 6= q by Proposition 1.3.

Assume now 2n−1 − 2d < q̄ 6 2n−1, that is, either (i) 2n−1 − 2d < q 6 2n−1 or
(ii) 2n−2d < q 6 2n. In case (ii), Lemma 4.3 implies p ⊲n q = q, as expected. Now,
as p is not 2n, the period πn(p) is at most 2n−1 and, therefore, in case (i), we have
p ⊲n q = p ⊲n (q + 2n−1), whence p ⊲n q = q + 2n−1 6= q by Lemma 4.3 again. Thus
p ⊲n q = q holds exactly in the expected cases. �

As we now control the occurrences of the value q in the column of q precisely,
we can easily deduce that the columns are pairwise distinct in a Laver table (The-
orem 1.8 of [13]).

Lemma 4.5. For every n, the families Coln(q) are pairwise distinct when q ranges
over {1, ... , 2n}.

Proof. We shall use induction on n. The result is true in A0 (vacuously) and A1.
Assume n > 2. We shall analyze Coln(q) ∩ {2n−1 + 1, ... , 2n}, that is, inspect the
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large values in the column of q. So, consider 1 6 p, q 6 2n. As usual, we put
p̄ = p mod2n−1 and q̄ = q mod 2n−1. By Proposition 1.3, we have

p ⊲n q = p̄ ⊲n−1 q̄ + ε2n−1

with ε in {0, 1}; moreover, we know that all values in the row of p are larger than p
for p 6= 2n, so ε must be 1 for 2n > p > 2n−1. Together with

2n−1 ⊲n q = q̄ + 2n−1 = 2n−1 ⊲n−1 q̄ + 2n−1,

this implies, with obvious notation,

(4.7) Coln(q) ∩ {2n−1 + 1, ... , 2n} = Coln−1(q̄) + 2n−1.

Now assume 1 6 q < r 6 2n. We write r̄ = r mod 2n−1, and consider two cases.
Assume first q̄ 6= r̄. Then the induction hypothesis implies Coln−1(q̄) 6= Coln−1(r̄),

and, by (4.7), we deduce Coln(q)∩{2n−1 +1, ... , 2n} 6= Coln(r)∩{2n−1 +1, ... , 2n},
whence Coln(q) 6= Coln(r) a fortiori.

Assume now q̄ = r̄. Then we necessarily have r = q + 2n−1, and (4.7) only says
that the intersections of Coln(q) and Coln(r) with {2n−1 +1, ... , 2n} coincide. Now
look at the pth row with p < 2n, (the final statement in) Lemma 4.4 tells us that
we have p ⊲n q 6= q, which also implies p ⊲n r 6= q since πn(p) divides 2n−1. In
other words, the value q cannot appear in the columns of q and r, except possibly
in the row of 2n. Now we have 2n ⊲n q = q, and 2n ⊲n r = r 6= q, so Coln(q)
and Coln(r) as distinct (and more precisely, using ⊔ for disjoint union, we have
Coln(q) = Coln(r)⊔{q} since the periods of all rows except the last one divides r−q,
which is 2n−1). �

Note that, in the proof, we have precisely determined how certain columns
differ—namely, for all q 6 2n−1, one has

(4.8) Coln(q) = Coln(q + 2n−1) ⊔ {q}.

The last preliminary result before proving Proposition 4.2 is a (nontrivial) con-
nection between the operation ⊲ and an associative operation. Well known to
R. Laver, the result is implicit in [24], and explicit for instance in [10] and [13]—see
also [9, Proposition XI.2.15], where the result comes as an application of general
facts about what is called LD-monoids.

Lemma 4.6. For every n, there exists a unique binary operation ◦ on {1, ... , 2n}
such that the law

(4.9) (x ◦ y) ⊲ z = x ⊲ (y ⊲ z),

is obeyed, namely the operation ◦n defined by

(4.10) p ◦n q =

{
p ⊲n (q + 1) − 1 for q < 2n,

p for q = 2n

The operation ◦n is associative, and it admits 2n as a neutral element.

Proof. Let us first observe that the two cases in (4.10) merge into the single formula

(4.11) p ◦n q + 1 = p ⊲n (q + 1) mod 2n,

which is equivalent to

(4.12) (p ◦n q) ⊲n 1 = p ⊲n (q ⊲n 1).
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◦0 1

1 1

◦1 1 2

1 1 1
2 1 2

◦2 1 2 3 4

1 3 1 3 1
2 3 2 3 2
3 3 3 3 3
4 1 2 3 4

◦3 1 2 3 4 5 6 7 8

1 3 5 7 1 3 5 7 1
2 3 6 7 2 3 6 7 2
3 7 3 7 3 7 3 7 3
4 5 6 7 4 5 6 7 4
5 7 5 7 5 7 5 7 5
6 7 6 7 6 7 6 7 6
7 7 7 7 7 7 7 7 7
8 1 2 3 4 5 6 7 8

Table 3. The associative operation ◦n on An. The columns in the table
of ◦n are obtained by shifting the columns of ⊲n by one unit to the left, and
substracting 1 mod 2n. In particular, the bottom row and the last column
are identities, while the next to last row and column are constant with

value 2n−1.

As (4.12) is a particular case of (4.9), we deduce that ◦n is the unique operation
possibly obeying (4.9).

Next, for 1 6 p 6 2n, let adp be the left-translation of An associated with p,
that is, the function y 7→ p ⊲n y. The form of the left-selfdistributivity law implies
that every map adp is an endomorphism of An as we have

adp(x ⊲n y) = p ⊲n (x ⊲n y) = (p ⊲n x) ⊲n (p ⊲n y) = adp(x) ⊲n adp(y)

(a property that is not specific to Laver tables).
Now, (4.12) rewrites into adp◦nq(1) = adp(adq(1)). As each of adp◦nq, adp, and

adq is an endomorphism of An and 1 generates An, the equality of adp◦nq and
adp ◦ adq on 1 implies their equality everywhere, that is, for all p, q, we have

(4.13) adp◦nq = adp ◦ adq.

This means that (p ◦n q) ⊲n r = p ⊲n (q ⊲n r) holds for all p, q, r, that is, the
operations ⊲n and ◦n obey the law (4.9). Thus the existence part of the result is
also established.

We turn to the associativity of ◦n, which follows from that of composition. In-
deed, for all p, q, r, (4.13) gives

adp◦n(q◦nr) = adp ◦ (adq ◦ adr) = (adp ◦ adq) ◦ adr = ad(p◦nq)◦nr.

We deduce in particular adp◦n(q◦nr)(1) = ad(p◦nq)◦nr(1), which implies p◦n (q◦nr) =
(p ◦n q) ◦n r since the function x 7→ x ⊲n 1 is injective on An.

Finally, Relations (4.10) and (1.6) imply that 2n is a neutral element in (An, ◦n).
�

We refer to Table 3 for some examples of the associative operations ◦n. All
periodicity phenomena involving the operation ⊲n also appear in the table of ◦n.
Observe that the monoid (An, ◦n) is not monogenerated for n > 2. It can be
mentioned that two other laws connect the operations ⊲n and ◦n, namely

x ◦n y = (x ⊲n y) ◦n x and x ⊲n (y ◦n z) = (x ⊲n y) ◦n (x ⊲n z),

but these relations will not be used here. Because the operation ◦n is directly
defined from the selfdistributive operation ⊲n, it adds nothing really new to the
structure of Laver tables.
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We are now ready to establish the existence of the expected ordering.

Proof of Proposition 4.2. We first show that the relation n is transitive. So as-
sume p n q n r. By definition, there exist q′, r′ satisfying q′ ⊲n p = q and
r′ ⊲n q = r. Now, applying Lemma 4.6, we obtain

(r′ ◦n q
′) ⊲n p = r′ ⊲n (q′ ⊲n p) = r,

whence p n r.
Once we know that n is transitive, we deduce the equivalence

(4.14) p n q ⇔ Coln(p) ⊇ Coln(q).

Indeed, assume p n q, and r ∈ Coln(q): by definition, we have q n r, whence
p n r by transitivity, and therefore Coln(p) contains r. So the relation p n q
implies Coln(p) ⊇ Coln(q). Conversely, we know that q always belongs to Coln(q),
so Coln(p) ⊇ Coln(q) implies that Coln(p) contains q, which is p n q.

We now deduce that the relation n is antisymmetric. Indeed, assume p n q
and q n p. Applying (4.14), we deduce Coln(p) = Coln(q), whence p = q by
Lemma 4.5. So n is a partial ordering on {1, ... , n}.

Next, we have Coln(1) = {1, ... , 2n}, hence 1 n p is always satisfied. On the
other hand, for every p, we have (2n−1) ⊲n p = 2n due to (1.6), and Coln(2n) = {2n}
due to (1.3), hence Coln(p) ⊇ Coln(2n) for every p, meaning that p n 2n is always
satisfied. �

For every n > 1, the partial order n−1 can be obtained from n easily: indeed
Relation (4.7) implies that, for q, r 6 2n−1, we have

(4.15) r n−1 q ⇔ (r + 2n−1) n (q + 2n−1).

In the other direction, recovering n from n−1 is more problematic: (4.15) deter-
mines n on {2n−1 + 1, ... , 2n}, and Relation (4.8) implies that, for q 6 2n−1,

(4.16) q n q + 2n−1

holds and, more precisely, that q is an immediate predecessor of q + 2n−1, but this
says nothing about the way the predecessors of q+ 2n−1 lying in {2n−1 + 1, ... , 2n}
connect with q. Figure 5 shows that these connections can take very different forms.
However, the analysis can be completed in the particular case of the final elements
of (An, n ):

Proposition 4.7. For n > 2 and 1 6 p < 2n with p 6= 2n−1, we have

(4.17) p n 2n − 2n−2 n 2n−1 n 2n.

Proof. We use induction on n > 2. For n = 2, we have 1 2 3 2 2 2 4, and
the result is true. Assume n > 3. First, we know already that 2n−1 n 2n holds.
Next, consider the row of 2n−2 in An. By Lemma 4.4, the last values are 2n−2

consecutive numbers increasing from 2n − 2n−2 + 1 to 2n, whereas the first value
is 2n−2 + 1: hence, at least 2n−2 + 1 different values appear on this row, and we
deduce πn(2n−2) > 2n−1, whence πn(2n−2) = 2n−1 since πn(2n−2) = 2n would
require 2n−2 ⊲n 1 = 1. We deduce 2n−2 ⊲n (2n − 2n−2) < 2n, which, owing to the
obvious equality 2n−2 ⊲n−1 2n−2 = 2n−1, implies

(4.18) 2n−2 ⊲n (2n − 2n−2) = 2n−1.

So 2n−1 appears in the column of 2n − 2n−2, and the relation 2n − 2n−2 n 2n−1

is satisfied.
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Now consider p < 2n, p 6= 2n−1. Assume first p > 2n−1, and let p̄ = p mod 2n−1.
Then p̄ is not 2n−1 so, by induction hypothesis, we have p̄ n−1 2n−2. By (4.15),
we deduce p̄ + 2n−1 n 2n−2 + 2n−1, which is also p n 2n − 2n−2, as expected.
Assume now p < 2n−1. Then (4.16) implies p n p + 2n−1. We proved above
p+ 2n−1 n 2n−2 + 2n−1. Using the transitivity of n , we deduce p n 2n − 2n−2

again. �

The previous result is, in a sense, optimal. Indeed, Proposition 4.7 says that the
relation n always admits a length 3 tail made of 2n − 2n−2, 2n−1, and 2n, but we
cannot expect more: with respect to 3, the last three elements are 6, 4, and 8,
but 6 has two incomparable immediate predecessors, namely 2 and 7.

Finally, at the other end, the fact that every period but the last one in An di-
vides 2n−1 implies that Coln(2n−1+1) is {2, ... , 2n}, hence it contains every element
but 1. Thus 2n−1+1 n p holds for 2 6 p 6 2n, again an optimal result as, in A3,
the element 5 admits two incomparable immediate successors, namely 2 and 3 (as
can be seen in Figure 5).

To conclude the section, we point out another application of Relations (4.7)
and (4.15).

Corollary 4.8. Assume m 6 n, 1 6 q 6 2n, and 1 6 r < 2m. Then 2n− r appears
in the qth column of An if and only if 2m − r appears in the q̄th column of Am,
with q̄ = q mod 2m.

Proof. Owing to (4.15), the result follows from a straightforward induction on n−m.
�

Example 4.9. As 1 occurs in the first column of A1 and not in the second one,
we deduce that

(4.19) 2n − 1 occurs in the qth column of An exactly for q = 1 mod 2.

Similarly looking at the occurrences of 4−r in A2, at those of 8−r in A3, etc. leads
to the constraints indicated in the following array, where we use q [m] for q modm,
the meaning being that 2n − r occurs in the qth column of An if and only if the
corresponding constraint is satisfied by q:

r 1 2 3 4 5 6 7 8

q = 1 [2] 6= 4 [4] = 1 [4] 6= 8 [8] = 1, 3, 5 [8] = 1, 2, 5 [8] = 1 [8] 6= 16 [16]

Another way of stating (4.19) is the equivalence

(4.20) q n 2n − 1 ⇐⇒ q = 1 mod 2

(and similarly for every value of r); in this equivalence, the left-to-right implication
follows from Corollary 1.5, but the converse implication is less trivial. In particular,
we note that the map p 7→ 2p − 1 need not be increasing from (An−1, n−1 )
to (An, n ): for instance, 3 3 2 fails (as does 2 3 3) but 5 4 3 holds. This
illustrates the fact that the restriction of the partial ordering n to {1, ... , 2n−1}
does not follow from the partial ordering n−1 simply.

5. An enhanced basis for 2-cocycles

We now return to the investigation of 2-cocycles for Laver tables, and use
the partial ordering of Section 4 to exhibit an alternative basis for the abelian
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group Z2(An). From a combinatorial point of view, this new basis seems more in-
teresting in that it consists of cocycles that only take values 0 and 1 on A2

n, contrary
to the basis of Proposition 3.3 in which negative values appear.

Proposition 5.1. For 1 6 q 6 2n define ψq,n =
∑

r n q φr,n. Then the family

{ψ1,n, ... , ψ2n−1,n, cn} is a basis of Z2(An), and we have

(5.1) ψq,n(x, y) =

{
1 if q belongs to Coln(y) but not to Coln(x ⊲n y),

0 otherwise.

Proof. By Proposition 3.3, {φ1,n, ... , φ2n−1,n, cn} is a basis of Z2(An). Now, the fact
that, according to Proposition 4.2, the relation n is a partial order on {1, ... , 2n}
implies that the families {φ1,n, ... , φ2n−1,n, cn} and {ψ1,n, ... , ψ2n−1,n, cn} are con-
nected by a triangular matrix with diagonal entries equal to 1 (and all entries equal
to 0 or 1): indeed, such a matrix arises whenever {1, ... , 2n} is re-ordered according
to any linear ordering that extends n . Hence {ψ1,n, ... , ψ2n−1,n, cn} is a basis
of Z2(An)—and {ψ1,n, ... , ψ2n−1,n} is a basis of B2(An).

Let us turn to the values of the cocycles ψq,n. For every q, we have by definition

(5.2) ψq,n(x, y) =
∑

r n q

δr,y −
∑

r n q

δr,x⊲y.

Clearly, at most one value of r may contribute to each sum in (5.2), so the value
can only be −1, 0, or 1. Now, assume that the contribution of the second sum
is −1. This means that we have x ⊲n y = r for some r satisfying r n q, hence
that x ⊲n y n q holds. By definition, we have y n x ⊲n y. Since n is transitive,
we deduce y n q, implying that the contribution of the first sum is +1. So, the
global value of ψq,n(x, y) cannot be negative.

Now, Relation (5.1) is clear since ψq,n(x, y) is 1 exactly when the contribution
of the first sum in (5.2) is 1, that is, when y n q is true, and that of the second
sum is 0, that is, when x ⊲n y n q is false. �

Note that, because r n 2n is true for every r, (5.2) implies that ψ2n,n is the
zero cocycle. We refer to Table 4 for a list of the seven nontrivial cocycles ψq,3

corresponding to A3.
By construction, the cocycles ψq,n are coboundaries. Relation (5.2) makes it

straighforward that we have ψq,n = −∂2γq,n, where γq,n is the 1-cochain defined
on An by γq,n(x) = 1 if x n q is true, and γq,n(x) = 0 otherwise.

It turns out that 2-cocycles contain a lot of information about the structure of
Laver tables—certainly a promising point in view of potential applications.

Proposition 5.2. For every n, the 2-cocycle ψ2n−1,n, which is also −φ2n,n, encodes
periods in An in the sense that, for every p < 2n, the value of πn(p) is the smallest y
satisfying ψ2n−1,n(p, y) = 1.

Proof. By definition, we have ψ2n−1,n =
∑

r n 2n−1 φr,n, whence, by Proposition 4.7,

(5.3) ψ2n−1,n =
∑

16r<2n

φr,n.

On the other hand, we noted just after the proof of Proposition 5.1 that ψ2n,n,
which is the sum of all cocycles φp,n, is the zero cocycle. Comparing with (5.3),
we deduce ψ2n−1,n = −φ2n,n. Now, by definition of φp,n, we see that the equality
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ψ1,3 1 2 3 4 5 6 7 8

1 1 · · · · · · ·
2 1 · · · · · · ·
3 1 · · · · · · ·
4 1 · · · · · · ·
5 1 · · · · · · ·
6 1 · · · · · · ·
7 1 · · · · · · ·
8 · · · · · · · ·

ψ2,3 1 2 3 4 5 6 7 8

1 · 1 · · · · · ·
2 1 1 · · 1 · · ·
3 1 1 · · 1 · · ·
4 · 1 · · · · · ·
5 1 1 · · 1 · · ·
6 1 1 · · 1 · · ·
7 1 1 · · 1 · · ·
8 · · · · · · · ·

ψ3,3 1 2 3 4 5 6 7 8

1 1 · 1 · 1 · · ·
2 · · 1 · · · · ·
3 1 · 1 · 1 · · ·
4 · · 1 · · · · ·
5 1 · 1 · 1 · · ·
6 1 · 1 · 1 · · ·
7 1 · 1 · 1 · · ·
8 · · · · · · · ·

ψ4,3 1 2 3 4 5 6 7 8

1 · · · 1 · · · ·
2 · · · 1 · · · ·
3 · 1 · 1 · 1 · ·
4 · · · 1 · · · ·
5 · 1 · 1 · 1 · ·
6 · 1 · 1 · 1 · ·
7 1 1 1 1 1 1 1 ·
8 · · · · · · · ·

ψ5,3 1 2 3 4 5 6 7 8

1 1 · · · 1 · · ·
2 1 · · · 1 · · ·
3 1 · · · 1 · · ·
4 · · · · · · · ·
5 1 · · · 1 · · ·
6 1 · · · 1 · · ·
7 1 · · · 1 · · ·
8 · · · · · · · ·

ψ6,3 1 2 3 4 5 6 7 8

1 · 1 · · · 1 · ·
2 · 1 · · · 1 · ·
3 1 1 1 · 1 1 1 ·
4 · · · · · · · ·
5 · 1 · · · 1 · ·
6 · 1 · · · 1 · ·
7 1 1 1 · 1 1 1 ·
8 · · · · · · · ·

ψ7,3 1 2 3 4 5 6 7 8

1 1 · 1 · 1 · 1 ·
2 · · · · · · · ·
3 1 · 1 · 1 · 1 ·
4 · · · · · · · ·
5 1 · 1 · 1 · 1 ·
6 · · · · · · · ·
7 1 · 1 · 1 · 1 ·
8 · · · · · · · ·

Table 4. A basis of B2(A3) consisting of seven {0, 1}-valued 2-cocycles;
completing with the constant cocycle c3, we obtain a basis of Z2(A3). Note
that, according to Lemma 3.5, the 7th rows of the above cocycles must be
pairwise distinct.

φ2n,n(p, y) = −1, that is, ψ2n−1,n(p, y) = 1, is equivalent, for y < 2n, to p ⊲n y = 2n,
hence to πn(p) | y. �

Proposition 5.3. For every n, let θn =
∑r=2n−1

r=1 φr,n. Then the 2-cocycle θn en-
codes theresholds in An in the sense that, for every p < 2n−1, the value of ϑn(p)+1
is the smallest integer y satisfying θn(p, y) = 1.

Proof. Assume p < 2n−1. By definition, the threshold ϑn(p) is the largest integer q
such that, for all q′ 6 q, one has p ⊲n q

′ = p ⊲n−1 q
′, or, equivalently, p ⊲n q

′ 6 2n−1,
if such a q exists, and 0 otherwise. In other words, ϑn(p)+1 is the smallest integer y
satisfying p ⊲n y > 2n−1.

On the other hand, for y 6 2n−1, we find

θn(p, y) =

2n−1∑

r=1

δy,r −

2n−1∑

r=1

δp⊲ny,r =

{
0 for p ⊲n y 6 2n−1,

1 for p ⊲n y > 2n−1,

whence the result by merging the values and noting that ϑn(p) + 1 6 2n−1 holds
for every p < 2n−1, since one has p ⊲n 2n−1 = 2n > 2n−1. �

The next easy observation is that the existence of the canonical projection prn

from An to An−1 enables one to lift every 2-cocycle on An−1 into a 2-cocycle on An:

Lemma 5.4. For every 2-cocycle φ on An−1, define

(5.4) pr∗n(φ)(x, y) = φ(x mod 2n−1, y mod2n−1).

Then pr∗n(φ) is a 2-cocycle on An.
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The result is clear, as the projection prn is a homomophism with respect to the
operations ⊲n and ⊲n−1. Note that the table of pr∗n(φ) is a 2n × 2n square paved by
four copies of the table of φ.

We should therefore be able to express in our distinguished bases of Z2(An) the
lifted images of the cocycles of the corresponding distinguished bases of Z2(An−1).
This is indeed easy in the case of the two families considered so far.

Proposition 5.5. For n > 1 and 1 6 p 6 2n−1, we have

pr∗n(φp,n−1) = φp,n + φp+2n−1,n,(5.5)

pr∗n(ψp,n−1) = ψp+2n−1,n.(5.6)

Proof. Since the cocycles φp,n are defined in terms of the maps x 7→ δx,p, let us
describe the behaviour of the latter with respect to lifting. For 1 6 p 6 2n−1 and
1 6 x, y 6 2n, we have (putting as usual x̄ = x mod 2n−1) δx̄,p = δx,p + δx,p+2n−1,
therefore,

pr∗n(φp,n−1)(x, y) = δȳ,p − δx̄⊲n−1ȳ,p

= δy,p + δy,p+2n−1 − δx̄⊲n−1ȳ,p − δx̄⊲n−1ȳ,p+2n−1

= δy,p + δy,p+2n−1 − δx⊲ny,p − δx⊲ny,p+2n−1

= φp,n(x, y) + φp+2n−1,n(x, y),

since x ⊲n y is either x̄ ⊲n−1 ȳ or x̄ ⊲n−1 ȳ + 2n−1.
The liftings of the cocycles ψq,n are now calculated using those of the the cocy-

cles φp,n. First, we find

pr∗n(ψp,n−1) =
∑

r62n−1,r n−1 p

pr∗n(φr,n−1) =
∑

r62n−1,r n−1 p

(φr,n + φr+2n−1,n)

On the other hand, we have

ψp+2n−1,n =
∑

r62n,r n p+2n−1

φr,n.

To conclude, it is sufficient to show that, for all r 6 2n and p 6 2n−1, the condition
r n p+2n−1 is equivalent to r̄ n−1 p. Now, due to (4.15), the latter is the same as
r̄+2n−1 n p+2n−1. On the other hand, due to (4.8), the element p+2n−1, which
is larger than 2n−1, belongs either to the columns of both r̄ and r̄+ 2n−1 in An, or
to neither of them. Thus r̄ + 2n−1 n p+ 2n−1 is equivalent to r n p+ 2n−1, as
desired. �

So we see in particular that the family {ψ1,n, ... , ψ2n−1,n} consists of 2n−1 “really
new” cocycles, plus 2n−1 − 1 cocycles that are liftings of cocycles on An−1.

Of course, we can compose projections. For all m 6 n, writing prn,m for the

projection x 7→ x mod 2m from An to Am, we obtain a lifting pr∗m,n from Z2(Am)

to Z2(An). Thus, for instance, among the 2n−1 cocycles ψp,n, the last 2n−1−1 ones
come from Z2(An−1), among which the last 2n−2−1 ones come from Z2(An−2), etc.
Also note that, trivially, the constant cocycles cn are liftings of one another: for all
m 6 n, we have cn = pr∗n,m(cm).

Example 5.6. Up to a multiplicative constant, there exists only one non-constant
2-cocycle on A1, namely the cocycle ψ1,1. It takes the value 1 for x = y = 1 only.
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Using Proposition 5.5 repeatedly, we deduce for every n > 1

(5.7) pr∗n,1(ψ1,1) = ψ2n−1,n.

By construction, this cocycle detects parity, in the sense that φ(x, y) = 1 holds if
and only if both x and y are odd.

We showed above in Lemma 3.5 that a 2-cocycle for An is determined by its
penultimate row. As a last observation, let us mention that it is also determined by
its first column. Indeed, it is not hard to check that a 2-cocycle whose first column
is trivial must be the zero cocycle. For instance, the reader can check in Table 4
that the first columns of the cocycles ψq,3 with 1 6 q 6 7 are linearly independent
over Z.

6. Three-cocycles for Laver tables

We conclude the paper with a study of 3-cocycles and degree 3 rack cohomology
for Laver tables. According to (2.5), describing the Z-valued 3-cocycles for An

amounts to searching for maps φ : {1, ... , 2n}3 → Z that satisfy

φ(x ⊲ y, x ⊲ z, x ⊲ t)+φ(x, y, z ⊲ t) + φ(x, z, t)(6.1)

= φ(x, y ⊲ z, y ⊲ t) + φ(y, z, t) + φ(x, y, t).

We keep omitting subscripts R and coefficients Z for brevity.
We follow the same scheme as for 2-cocycles, omitting the details of the proofs

when they are analogous to the 2-cocycle case. First, let us describe basic 3-
coboundaries.

Lemma 6.1. For 1 6 p, q 6 2n, define φp,q,n by

(6.2) φp,q,n(x, y, z) = δp,yδq,z − δp,x⊲nyδq,x⊲nz − δp,xδq,z + δp,xδq,y⊲nz.

Then, for all p, q, the map φp,q,n defines a 3-coboundary on An.

Proof. Let θ be the 2-cochain on An defined by θ(x, y) = −δp,xδq,y. Then (2.4)
shows that φp,q,n is equal to ∂3θ. Hence φp,q,n belongs to B3(An). �

Our next goal is to choose a subfamily of coboundaries from Lemma 6.1 which
would form a basis of B3(An), completed into abasis of Z3(An) when a constant
cocycle is added.

Proposition 6.2. For every n, the group Z3(An) is a free abelian group of rank
2n(2n−1)+1, with a basis consisting of the coboundaries φp,q,n with p 6= 2n−1 and
the constant 3-cocycle cn with value 1. Omitting the constant cocycle, one obtains
a basis of B3(An). Moreover, H3(An) ∼= Z holds.

As in the case of 2-cocycles, the proof is based on several auxiliary results.

Lemma 6.3. Assume that φ is a 3-cocycle for An. Then, for 1 6 x 6 2n, we have
φ(x, 2n, 2n) = φ(2n−1, 2n, 2n).

Proof. As before, we write N for 2n−1 and ⊲ for ⊲n. Applying (6.1) to (N, x, 2n, 2n)
yields

φ(N ⊲ x,N ⊲ 2n, N ⊲ 2n)+φ(N, x, 2n ⊲ 2n) + φ(N, 2n, 2n)

= φ(N, x ⊲ 2n, x ⊲ 2n) + φ(x, 2n, 2n) + φ(N, x, 2n).

Using the relations N ⊲ x = 2n and x ⊲ 2n = 2n, four terms disappear and it just
remains φ(2n, 2n, 2n) = φ(x, 2n, 2n). �
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Lemma 6.4. Assume that φ is a 3-cocycle for An. Then, for 1 6 z 6 2n, we have
φ(2n−1, 2n−1, z) = φ(2n−1, 2n−1, 2n−1).

Proof. As usual, put N = 2n−1. Applying (6.1) to (N,N,N, z) yields

φ(N ⊲ N,N ⊲ N,N ⊲ z)+φ(N,N,N ⊲ z) + φ(N,N, z)

= φ(N,N ⊲ N,N ⊲ z) + φ(N,N, z) + φ(N,N, z),

leaving

φ(2n, 2n, 2n) + φ(N,N, 2n) = φ(N, 2n, 2n) + φ(N,N, z).

According to Lemma 6.3, one has φ(2n, 2n, 2n) = φ(N, 2n, 2n), and we deduce
φ(N,N, z) = φ(N,N, 2n). �

In other words, the values of a 3-cocycle for An on the triples (x, 2n, 2n) and
(2n−1, 2n−1, z) do not depend on x and z. We now establish that a 3-cocycle that
vanishes on triples starting with 2n−1 must be trivial.

Lemma 6.5. Assume that φ is a 3-cocycle for An and φ(2n−1, y, z) = 0 holds for
all y, z with 1 6 y, z 6 2n. Then φ is the zero cocycle.

Proof. Applying (6.1) to (N, x, y, z) (with N = 2n−1) yields

φ(N ⊲ x,N ⊲ y,N ⊲ z)+φ(N, x, y ⊲ z) + φ(N, y, z)

= φ(N, x ⊲ y, x ⊲ z) + φ(x, y, z) + φ(N, x, z),

hence φ(2n, 2n, 2n) = φ(x, y, z), owing to (1.6) and the assumption on φ. Lemma 3.4
gives φ(2n, 2n, 2n) = φ(N, 2n, 2n), which is zero, again by the assumption on φ. One
concludes that φ is zero on An ×An ×An. �

The argument can now be completed.

Proof of Proposition 6.2. We once more put N = 2n−1. We start with evaluating
the 3-coboundaries φp,q,n on triples (N, y, z).By definition, we have

φp,q,n(N, y, z) = δp,yδq,z − δp,N⊲yδq,N⊲z − δp,Nδq,z + δp,Nδq,y⊲z

= δp,yδq,z − δp,2nδq,2n − δp,Nδq,z + δp,Nδq,y⊲z.

For p < N , most terms vanish, and there remains

φp,q,n(N, y, z) = δp,yδq,z.

For p = 2n, we find

φ2n,q,n(N, y, z) = δ2n,yδq,z − δq,2n ,

which again simplifies into δp,yδq,z for q 6= 2n. In order to treat the case q = 2n in
a similar way, we define for 1 6 p, q 6 2n and p 6= N new cocycles φ′p,q,n by

φ′p,q,n =

{
φp,q,n for (p, q) 6= (2n, 2n),

φ2n,2n,n + cn for (p, q) = (2n, 2n).

Then one easily checks that the equality

(6.3) φ′p,q,n(N, y, z) = δp,yδq,z

is valid for all p, q with p 6= N .
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Now take an arbitrary 3-cocycle φ. Trying to approximate it with the cocycles
we are interested in, put

φ̃ =
∑

p6=N

∑

q

(φ(N, p, q) − φ(N,N,N))φ′p,q,n + φ(N,N,N)cn.

Using (6.3), we see that the cocycle φ−φ̃ vanishes on all triples (N, y, z) with y 6= N
and on (N,N,N). On the other hand, Lemma 6.4 asserts that φ − φ̃ vanishes on
all triples (N,N, z). Merging the results, we deduce that φ − φ̃ vanishes on all
triples (N, y, z), hence, according to Lemma 6.5, it is the zero cocycle. This proves
that the coboundaries φp,q,n with p 6= N together with the constant 3-cocycle cn
generate Z3(An).

The freeness of the above family is established exactly as in the case of 2-cocycles,
and so are the assertions for B3(An). The only difficulty consists in showing that
the coboundaries φp,q,n with p 6= N generate B3(An). For this, we observe that all
coboundaries vanish on the triple (N, 2n, 2n), whereas the constant 3-cocycle does
not. �

We conclude with some observations about the values taken by the cocycles φp,q,n

and, more generally, by the cocycles occurring in a basis of Z3(An).

Proposition 6.6. For all n, p, q, the 3-cocycle φp,q,n evaluated on a triple from A3
n

can only take the value 0, +1, or −1.

Proof. First, by the definition of (6.2), the value of φp,q,n(x, y, z) for x, y, z in An

must lie in {0,±1,±2}. We shall prove that ±2 is impossible.
Indeed, φp,q,n(x, y, z) = 2 would require

δp,yδq,z = δp,xδq,y⊲z = 1 and δp,x⊲yδq,x⊲z = δp,xδq,z = 0.

The first two equalities imply y = p = x and z = q, whence δp,xδq,z = 1, which
contradicts the last equality.

Similarly, φp,q,n(x, y, z) = −2 would require

δp,yδq,z = δp,xδq,y⊲z = 0 and δp,x⊲yδq,x⊲z = δp,xδq,z = 1.

The last two equalities imply x⊲y = p = x and z = q, which, by (1.4) and (1.6), can
occur only for x = y = 2n, in which case we deduce δp,yδq,z = 1, which contradicts
the first equality. �

However, contrary to the case of Z2(An), we cannot expect to find for every n a
basis of Z3(An) consisting of {0, 1}-valued cocycles.

Proposition 6.7. There is no basis of Z3(A1) consisting of cocycles whose values
on A1 ×A1 ×A1 lie in {0, 1}.

Proof. Put φ̃2,2,1 = −φ2,2,1−φ2,1,1. By Proposition 6.2, {φ2,1,1, φ2,2,1, c1} is a basis

of Z3(A1), hence so is {φ2,1,1, φ̃2,2,1, c1}. Now, direct computations give

(6.4) φ2,1,1






= 1 on (1, 2, 1),

= −1 on (2, 1, 1),

= 0 elsewhere,

φ̃2,2,1

{
= 1 on (1, 1, 1) and (1, 1, 2),

= 0 elsewhere.

Let {ζ1, ζ2, ζ3} be an arbitrary basis of Z3(A1). For every i, there exist inte-
gers λi, µi, νi satisfying ζi = λiφ2,1,1 + µiφ̃2,2,1 + νic1, and λi 6= 0 holds for at least
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one i. For such an index i, (6.4) gives ζi(1, 2, 1)− ζi(2, 1, 1) = 2λi, which is possible
only if ζi(1, 2, 1) or ζi(2, 1, 1) does not lie in {0, 1}. �

We shall not go further here. Most steps in the proof of Proposition 6.2 can be
extended to the case of k-cocycles with k > 4. However, finding minimal vanishing
conditions for k-cocycles seems to be a bottleneck. Extending Lemma 6.5, one can
check that a k-cocycle for An that is zero on all k-tuples starting with 2n−1 must be
trivial, but this condition is not minimal: for instance, in the case k = 3, for a cocy-
cle to be zero on the triples (2n−1, y, z) with y 6= 2n−1 and on (2n−1, 2n−1, 2n−1)
is sufficient to deduce that it is zero everywhere, and this is what results in the
rank 22n − 2n + 1 for Z3(An). A similar analysis is possible for k = 4, resulting in
the rank 23n − 22n + 2n for Z4(An), but the general case remains unclear at the
moment.
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[11] A.Drápal, Homomorphisms of primitive left distributive groupoids, Comm. in Algebra 22-7
(1994) 2579–2592.
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