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Abstract. Building on a result by W. Rump, we show how to exploit the
right-cyclic law (xy)(xz) = (yx)(yz) in order to investigate the structure
groups and monoids attached with (involutive nondegenerate) set-theoretic
solutions of the Yang–Baxter equation. We develop a sort of right-cyclic cal-
culus, and use it to obtain short proofs for the existence both of the Garside
structure and of the I-structure of such groups. We describe finite quotients
that play for the considered groups the role that Coxeter groups play for Artin–
Tits groups.

The Yang–Baxter equation (YBE) is a fundamental equation occurring in inte-
grable models in statistical mechanics and quantum field theory [26]. Among its
many solutions, some simple ones called set-theoretic turn out to be connected with
several interesting algebraic structures. In particular, a group and a monoid are
attached with every set-theoretic solution of YBE [16], and the family of all groups
and monoids arising in this way is known to have rich properties: as shown by
T.Gateva–Ivanova and M. Van den Bergh in [20] and by E. Jespers and J.Okniński
in [24], they admit an I-structure, meaning that their Cayley graph is isometric to
that of a free Abelian group, and, as shown by F. Chouraqui in [5], they admit a
Garside structure, (roughly) meaning that they are groups of fractions of monoids
in which divisibility relations are lattice orders.

It was shown by W. Rump in [27] that (involutive nondegenerate) set-theoretic
solutions of YBE are in one-to-one correspondence with algebraic structures con-
sisting of a set equipped with a binary operation ∗ that obeys the right-cyclic law
(xy)(xz) = (yx)(yz) and has bijective left-translations. In this paper, we merge
the ideas stemming from the right-cyclic law (RC-law) and those coming from Gar-
side theory to give easy alternative proofs of earlier results and derive new results.
The key technical point is the connection between the RC-law and the least com-
mon right-multiple operation. A nice point is that one never needs to restrict to
squarefree solutions of YBE, that is, those satisfying ρ(s, s) = (s, s).

The main benefit of the current approach is to provide a simple and complete
solution to the problem of finding a Garside germ for every group associated with
a set-theoretic solution of YBE, namely finding a finite quotient of the group that
encodes the whole structure in the way a finite Coxeter group encodes the associ-
ated Artin–Tits group. The precise statement (Proposition 5.2) says that, if (S, ∗)
is an RC-quasigroup with cardinality n and class d (a certain numerical param-
eter attached with every finite RC-quasigroup), then starting from the canonical
presentation of the associated group and adding the RC-torsion relations s[d] = 1
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with s in S (where s[d] is a sort of twisted dth power) provides a finite group G
of order dn from which the Garside structure of G can be retrieved. Partial re-
sults corresponding to class 2, namely RC-quasigroups satisfying (xx)(xy) = y, are
established by hand in [6]. Our current approach based on RC-calculus and the
I-structure enables one to address the general case directly.

The above finite “Coxeter-like” group G does not coincide (in general) with the
finite quotientG0

X considered in [16] and called involutive Yang–Baxter group (IYB)

in [3, 4]: the latter is a (proper) quotient of the group G (see Remark 5.9(ii)) and,
contrary to G, it does not fully encode the situation since many different solutions
may be associated with the same IYB group [3].

No exhaustive description of Coxeter-like groups is known so far, but it is easy
to characterize them as those finite groups that admit a “modular I-structure”,
namely the counterpart of an I-structure where the free Abelian group Z is replaced
with a cyclic group Z/dZ (Proposition 5.10), a special case of the notion of IG-
structure considered in [23]. If G is associated with a cardinal n RC-quasigroup, its
Cayley graph is naturally drawn on an n-torus, and G can be realized as a group
of isometries in an n-dimensional Hermitian space (Corollary 5.15). We hope that
further properties will be discovered soon.

The paper is organized as follows. In Section 1, we recall the connection between
set-theoretic solutions of the Yang–Baxter equation and algebraic systems that
obey the RC-law and introduce the derived structure monoids and groups. In
Section 2, we establish various consequences of the RC-law which altogether make
a sort of right-cyclic calculus. In Section 3, this calculus is used to investigate
the divisibility relations of the monoids associated with RC-quasigroups and their
Garside structure. Then, in Section 4 (which is mostly independent from Section 3),
we use the RC-calculus to similarly investigate the I-structure. Finally, in Section 5,
we merge the results to construct a finite quotient that encodes the whole structure
and give several descriptions of this “Coxeter-like” group, in particular as a group
of isometries of an Hermitian space.
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1. Several equivalent frameworks

In this introductory section, we recall the definition of set-theoretic solutions of
the Yang–Baxter equation [16] and their connection with what we shall call RC-
quasigroups, which are sets equipped with a binary operation obeying the right-
cyclic law (x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z), as established by W. Rump in [27].

Definition 1.1. [15, 16] A set-theoretic solution of YBE (or braided quadratic set)
is a pair (S, ρ) where S is a set and ρ is a bijection of S×S into itself that satisfies

(1.1) ρ12ρ23ρ12 = ρ23ρ12ρ23.

where ρij is the map of S3 to itself obtained when ρ acts on the ith and jth entries.
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If (S, ρ) is a set-theoretic solution of YBE and V is a vector space based on S, then
the (unique) linear operator R on V ⊗ V that extends ρ is a solution of the (non-
parametric, braid form of) the Yang–Baxter equation R12R23R12 = R23R12R23,
and, conversely, every solution of YBE such that there exists a basis S of the
ambient vector space such that S⊗2 is globally preserved is of this type.

A set-theoretic solution (S, ρ) of YBE is called nondegenerate if, writing ρ1(s, t)
and ρ2(s, t) for the first and second entries of ρ(s, t), the left-translation y 7→ ρ1(s, y)
is one-to-one for every s in S and the right-translation x 7→ ρ2(x, t) is one-to-one
for every t in S. A solution (S, ρ) is called involutive if ρ ◦ρ is the identity of S×S.

A map from S × S to itself is a pair of maps from S × S to S, hence a pair
of binary operations on S. Translating into the language of binary operations the
constraints that define set-theoretic solutions of YBE is straightforward.

Lemma 1.2. Define a birack to be an algebraic system (S, ⌉, ⌈) consisting of a
set S equipped with two binary operations ⌉ and ⌈ that satisfy

(a⌉b)⌉((a⌈b)⌉c) = a⌉(b⌉c),(1.2)

(a⌉b)⌈((a⌈b)⌉c) = (a⌈(b⌉c))⌉(b⌈c),(1.3)

(a⌈b)⌈c = (a⌈(b⌉c))⌈(b⌈c),(1.4)

and are such that the left-translations of ⌉ and the right-translations of ⌈ are one-
to-one, and call a birack involutive if it satisfies in addition

(1.5) (a⌉b)⌉(a⌈b) = a and (a⌉b)⌈(a⌈b) = b.

(i) If (S, ρ) is a nondegenerate set-theoretic solution of YBE, then defining a⌉b =
ρ1(a, b) and a⌈b = ρ2(a, b) yields a birack (S, ⌉, ⌈). If (S, ρ) is involutive, then the
birack (S, ⌉, ⌈) is involutive.

(ii) Conversely, if (S, ⌉, ⌈) is a birack, then defining ρ(a, b) = (a⌉b, a⌈b) yields a
nondegenerate set-theoretic solution (S, ρ) of YBE. If the birack (S, ⌉, ⌈) is involu-
tive, then (S, ρ) is involutive.

Lemma 1.2 appears as Remark 1.6 in [21], using the notation (ab, ab) for (a⌉b, a⌈b).
Biracks appeared in low-dimensional topology as a natural algebraic counterpart of
Reidemeister move III [17]. If a⌈b = a always holds, (1.2)–(1.4) reduce to the left-
selfdistributivity law (a⌉b)⌉(a⌉c) = a⌉(b⌉c), corresponding, when left-translations
are bijective, to (S, ⌉) being a rack [18]. Note that a birack obtained from a rack
is involutive only if s⌉t = t holds for all s, t (trivial birack).

Thus, investigating involutive nondegenerate set-theoretic solutions of YBE and
involutive biracks are equivalent tasks. We now make a second step following [27].
If ⌉ is a binary operation on S and its left-translations are one-to-one, defining
a ∗ b to be the unique c satisfying a⌉c = b provides a well-defined binary operation
on S, which can be viewed as a left-inverse of ⌉. The seminal observation of [27] is
that, if (S, ⌉, ⌈) is a birack, then the left-inverse ∗ of the operation ⌉ obeys a simple
algebraic law and the whole structure can be recovered from that operation ∗.

Definition 1.3 (Rump [27]). A right-cyclic system, or RC-system, is a pair (S, ∗)
where ∗ is a binary operation on the set S that obeys the right-cyclic law RC

(1.6) (x ∗ y) ∗ (x ∗ z) = (y ∗ x) ∗ (y ∗ z).

An RC-quasigroup is an RC-system whose left-translations are one-to-one, that is,
for every s in S, the map t 7→ s ∗ t is one-to-one. An RC-system is called bijective
if the map (s, t) 7→ (s ∗ t, t ∗ s) is a bijection of S × S to itself.
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In [27], RC-systems are called “cycloids” and RC-quasigroups are called “cycle
sets”; the current terminology may seem convenient in view of subsequent variants
(and the widely used convention that “quasigroup” refers to bijective translations).

Example 1.4. Every operation s ∗ t = f(t) with f a permutation of S provides
a (semi-trivial) bijective RC-quasigroup. Another example (important in Section 3
below) is the right-complement operation in a monoid: if M is a left-cancellative
monoid in which any two elements admit a unique least common right-multiples,
then the operation \ such that f(f\g) is the least common right-multiple of f
and g obeys (1.6), as easily follows from the commutativity and associativity of the
right-lcm. So (M, \) is an RC-system (but, in general, not an RC-quasigroup).

The following result, which is essentially [27, Prop. 1] shows that the context of a
bijective RC-quasigroup is entirely equivalent to that of an involutive nondegenerate
set-theoretic solution of the YBE.

Proposition 1.5. (i) Assume that (S, ρ) is an involutive nondegenerate set-theoretic
solution of YBE. For s, t in S, define s ∗ t to be the unique r satisfying ρ1(s, r) = t.
Then (S, ∗) is a bijective RC-quasigroup.

(ii) Conversely, assume that (S, ∗) is a bijective RC-quasigroup. For a, b in S,
define ρ(a, b) to be the unique pair (a′, b′) satisfying a ∗ a′ = b and a′ ∗ a = b′. Then
(S, ρ) is an involutive nondegenerate set-theoretic solution of YBE.

As the result essentially appears in [27], we shall not go into the details of the
proof, whose principle is clear: according to Lemma 1.2, the point is to go from the
birack laws to the RC-law and vice versa, and it consists in repeatedly using the
fact that, for all x, y, z in the considered set S, the relation y = x⌉z is equivalent
to x ∗ y = z and it implies y ∗ x = x⌈z (for (i)) and, symmetrically, that z = x ∗ y
is equivalent to x⌉z = y and it implies x⌈z = y ∗ x (for (ii)). The argument then
amounts to completing the cube displayed in Figure 3, where a square diagram

a′

b

a b′ means that we have a′ = a⌉b and b′ = a⌈b, that is, equivalently,

b = a ∗ a′ and b′ = a′ ∗ a. As observed by W. Rump, this picture illustrates the
nature of (1.6) as a (discrete form of) an integrability condition.

The (small) miracle in Proposition 1.5 is that it reduces the constraints of a
birack, which involve two operations and three laws, to those of an RC-quasigroup,
which only involves one operation and one law. Actually, a second, symmetric
operation is also present in every bijective RC-quasigroup.

Definition 1.6. An RLC-system is a triple (S, ∗, ∗̃) such that (S, ∗) is an RC-
system, ∗̃ is a second binary operation on S that obeys the left-cyclic law LC

(1.7) (z ∗̃ x) ∗̃ (y ∗̃ x) = (z ∗̃ y) ∗̃ (x ∗̃ y),

and both operations are connected by

(1.8) (y ∗ x) ∗̃ (x ∗ y) = x = (y ∗̃ x) ∗ (x ∗̃ y).

An RLC-quasigroup is an RLC-system (S, ∗, ∗̃) such that the left-translations of ∗
and the right-translations of ∗̃ are one-to-one.

Then RLC-quasigroups and bijective RC-quasigroups are equivalent structures.
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t = a

r = a⌉(
b⌉c)

= (a⌉
b)⌉(

(a⌈
b)⌉c

)

r∗s = (a⌉b)⌈((a⌈b)⌉c)

= ((a⌈(b⌉c))⌉(b⌈c)

s = a⌉b

r∗t = (a⌈b)⌉c

s∗r
= (a⌈

b)⌉c

(s∗r)∗(s∗t) = (a⌈b)⌈c

(r∗s)∗(r∗t) = (a⌈(b⌉c))⌈(b⌈c)

= (a⌈b)⌈c

(r∗t)∗(r∗s)

= b⌈c

(t∗r)∗(t∗s)

= b⌈c

t∗s = b
t∗r

= b⌉c

s∗t = a⌈b

(s∗
t)∗

(s∗
r)

=
c(t∗s

)∗(t
∗r)

= c

Figure 1. Proof of Proposition 1.5(i): one successively evaluates the
edges of the cube in terms of a, b, c and the relations (1.2)–(1.4) guarantee
that the cube closes. The same diagram can be used for the proof of (ii)
below, except that one starts with a closed cube and evaluates some edges
in two different ways to establish (1.2)–(1.4).

Lemma 1.7. For all binary operations ∗, ∗̃ on a set S, the following are equivalent:
(i) The system (S, ∗, ∗̃) obeys the involutivity laws (1.8).
(ii) The map Ψ : (s, t) 7→ (s ∗ t, t ∗ s) is a bijection of S × S to itself and ∗̃ is the

unique operation on S such that the map (s, t) 7→ (s ∗̃ t, t ∗̃ s) is the inverse of Ψ

Proof. Assume that (S, ∗, ∗̃) satisfies (1.8). Let (s′, t′) belong to S×S. Put s = t′ ∗̃s′

and t = s′ ∗̃t′. By (1.8), we have s∗ t = s′ and t∗s = t′, whence Ψ(s, t) = (s′, t′). So
Ψ is surjective. Conversely, assume Ψ(s, t) = (s′, t′). Then the left-hand equality
in (1.8) gives s = t′ ∗ s′ and t = s′ ∗ t′. So Ψ is injective. Moreover, the equalities
show that the map (s, t) 7→ (s ∗̃ t, t ∗̃ s) is Ψ−1. So (i) implies (ii).

Conversely, if Ψ is a bijection from S×S to itself, defining s′ ∗̃t′ to be the unique t
satisfying s ∗ t = s′ and t ∗ s = t′ for some s guarantees that (s, t) 7→ (s ∗̃ t, t ∗̃ s)
is Ψ−1. Then (1.8) is satisfied by definition, that is, (ii) implies (i). �

Summarizing, we see that nondegenerate involutive set-theoretic solutions of
the Yang–Baxter equation, involutive biracks, bijective RC-quasigroups, and RLC-
quasigroups are entirely equivalent frameworks.

Convention 1.8. From now on, we write “solution of YBE” for “involutive non-
degenerate set-theoretic solution of YBE”.

According to [16], a group and a monoid are associated with every solution of
YBE, hence, equivalently, with every (bijective) RC-quasigroup.

Definition 1.9. The structure group (resp. monoid) associated with a solution (S, ρ)
of YBE is the group (resp. monoid) defined by the presentation

(1.9) 〈S | {ab = a′b′ | a, b, a′, b′ ∈ S satisfying ρ(a, b) = (a′, b′)}〉.

The structure group (resp. monoid) associated with an RC-quasigroup (S, ∗) is the
group (resp. monoid) defined by the presentation

(1.10) 〈S | {s(s ∗ t) = t(t ∗ s) | s 6= t ∈ S}〉.
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Such monoids and groups will be the main subject of investigation in this paper.
The first observation is that, as can be expected, the monoids and groups associated
with solutions of YBE and with bijective RC-quasigroups coincide.

Lemma 1.10. If a solution (S, ρ) of YBE and a bijective RC-quasigroup (S, ∗)
are connected as in Proposition 1.5, then the structure monoids of (S, ρ) and (S, ∗)
coincide, and so do the corresponding groups.

The result directly follows from the connection of Proposition 1.5, which shows
that the relations of (1.9) and (1.10) coincide, up to some repetitions and adding
trivial relations ab = ab in (1.9).

Thus investigating structure monoids of solutions of YBE and of bijective RC-
quasigroups are equivalent tasks. The goal of this paper is to show the advantages
of the second approach.

2. RC-calculus

In order to exploit the RC-law, we introduce sorts of polynomials involving the
RC-operation and establish various algebraic relations that will be heavily used
in the sequel. Most verifications are easy, but introducing convenient notation is
important to obtain simple formulas and perform computations that, otherwise,
would require tedious developments. It should be mentioned that some formulas
admit counterparts in the world of braces [28, 29], which are equivalent to lin-
ear RC-systems, defined to be RC-systems equipped with a compatible abelian
group operation (by [27, Prop. 6], the group G associated with a bijective RC-
quasigroup (S, ∗) is the brace Z(S) with the Jacobson circle operation).

Everywhere in the sequel, ∗̃, ∗, and · refer to binary operations.

Definition 2.1. For n > 1, we inductively define formal expressions Ωn(x1, ... , xn)

and Ω̃n(xn, ... , x1) by Ω1(x1) = Ω̃1(x1) = x1 and

Ωn(x1, ... , xn) = Ωn−1(x1, ... , xn−1) ∗ Ωn−1(x1, ... , xn−2, xn),(2.1)

Ω̃n(x1, ... , xn) = Ω̃n−1(x1, x3, ... , xn) ∗̃ Ω̃n−1(x2, ... , xn).(2.2)

The expression Ωn(x1, ... , xn) is a sort of n-variable monomial involving ∗. We
find Ω2(x1, x2) = x1 ∗ x2, then Ω3(x1, x2, x3) = (x1 ∗ x2) ∗ (x1 ∗ x3), etc. Clearly,
2n−1 variables xi occur in Ωn(x1, ... , xn), with brackets as in a balanced binary tree.
In the language of braces, Ωn(x1, ... , xn) would correspond to (x1 + ··· + xn) ∗ xn

If (S, ∗̃) is an algebraic system, Ωn(s1, ... , sn) is the evaluation of Ωn(x1, ... , xn)
when xi is given the value sn. The next result is an iterated version of the RC-law.

Lemma 2.2. Assume that (S, ∗) is an RC-system. Then, for all s1, ... , sn in S
and π in Sn−1, we have Ωn(sπ(1), ... , sπ(n−1), sn) = Ωn(s1, ... , sn).

It suffices to verify the result when π is a transposition of adjacent entries, and
then the result follows from an obvious induction on n > 3, the case n = 3 precisely
corresponding to the RC-law.

Of course, the counterpart of Lemma 2.2 involving Ω̃n is valid when ∗̃ satisfies
the LC-law (1.7). Further results appear when the monomials Ωn are evaluated in
an RC-quasigroup, that is, when left-translations are one-to-one.

Lemma 2.3. Assume that (S, ∗) is an RC-quasigroup and s1, ... , sn lie in S.
(i) The map s 7→ Ωn+1(s1, ... , sn, s) is a bijection of S into itself.
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(ii) There exist r1, ... , rn in S satisfying Ωi(r1, ... , ri) = si for 1 6 i 6 n.
(iii) Put s̃i = Ωn(s1, ... , ŝi, , ... , sn, si) for 1 6 i 6 n. Then, for all i, j, the

relations si = sj and s̃i = s̃j are equivalent.

Proof. (i) Use induction on n. For n = 1, the result directly follows from the
assumption. For n > 2, we have Ωn+1(s1, ... , sn, s) = t ∗ Ωn(s1, ... , sn−1, s) with
t = Ωn(s1, ... , sn−1). By induction hypothesis, s 7→ Ωn(s1, ... , sn−1, s) is bijective.
Composing with the left-translation by t yields a bijection.

(ii) Use induction on n. For n = 1, take t1 = s1. Assume n > 2. By induction
hypothesis, there exist r1, ... , rn−1 satisfying Ωi(r1, ... , ri) = si for 1 6 i 6 n −
1. Then, by definition of Ωn and owing to Ωn−1(r1, ... , rn−1) = sn−1, we have
Ωn(r1, ... , rn−1, x) = sn−1 ∗ Ωn−1(r1, ... , rn−2, x). As the left-translation by sn−1

is surjective, there exists s satisfying sn−1 ∗ s = sn. Then, by (i), there exists rn
satisfying Ωn−1(r1, ... , rn−2, rn) = s, whence Ωn(r1, ... , rn) = sn.

(iii) Again an induction on n. For n = 1 there is nothing to prove. For n = 2,
we find s̃1 = s2 ∗ s1 and s̃2 = s1 ∗ s1, and s1 = s2 implies s̃1 = s̃2. Conversely,
assume s1 ∗ s2 = s2 ∗ s1. Using the assumption twice and the RC-law, we obtain
(s1 ∗s2)∗ (s2 ∗s2) = (s2 ∗s1)∗ (s2 ∗s2) = (s1 ∗s2)∗ (s1 ∗s2) = (s1 ∗s2)∗ (s2 ∗s1). As
left-translations are injective, we deduce s2 ∗s2 = s2 ∗s1, and s2 = s1. Assume now
n > 3. Fix i, j, write ~s for s1, ... , ŝi, ... , ŝj , ... , sn and put tk = Ωn−1(~s, sk). Then,
by (i) and by definition, we have s̃i = Ωn(~s, sj , si) = Ωn−1(~s, sj) ∗ Ωn−1(~s, si) =
tj ∗ ti, and, similarly, s̃j = ti ∗ tj . If si = sj holds, we have ti = tj , whence s̃i = s̃j .
Conversely, assume s̃i = s̃j, that is, tj ∗ ti = ti ∗ tj . By the result for n = 2, we
deduce ti = tj , that is, Ωn−1(~s, si) = Ωn−1(~s, sj), which is an equality of the form
r1 ∗ (... ∗ (rn−2 ∗ si)...) = r1 ∗ (... ∗ (rn−2 ∗ sj)...). Repeatedly using the injectivity
of left-translations, we deduce si = sj . �

Further results appear when two operations connected by (1.8) are involved. In
terms of Ω1 and Ω2, (1.8) says that s̃1 = Ω2(s1, s2) and s̃2 = Ω2(s2, s1) imply

s1 = Ω̃2(s̃1, s̃2) and s2 = Ω̃2(s̃2, s̃1): two elements can be retrieved from their Ω2

images using the monomial Ω̃2. Here is an n-variable version of this result.

Lemma 2.4. Assume that (S, ∗, ∗̃) is an RLC-system and s1, ... , sn belong to S.
For 1 6 i 6 n, put s̃i = Ωn(s1, ... , ŝi, , ... , sn, si). Then, for 1 6 i 6 n, and for
every permutation π in Sn, we have

(2.3) Ωi(sπ(1), ... , sπ(i)) = Ω̃n+1−i(s̃π(i), ... , s̃π(n)).

Proof. For n = 1, (2.3) reduces to sπ(1) = sπ(1). Fix n > 2 and use induction

on i decreasing from n to 1. For i = n, (2.3) is Ωn(sπ(1), ... , sπ(i)) = Ω̃1(s̃π(i)). By
Lemma 2.2, the left term is Ωn(s1, ... , ŝi, ... , sn−1, sπ(i)), hence s̃π(i)), ¡hence (2.3).
Assume now i < n. Put s = Ωi(sπ(1), ... , sπ(i)), s

′ = Ωi(sπ(1), ... , sπ(i−1), sπ(i+1)),
t = Ωi+1(sπ(1), ... , sπ(i), sπ(i+1)), and t′ = Ωi+1(sπ(1), ... , sπ(i−1), sπ(i+1), sπ(i)). Us-
ing the definition of Ωi+1 from Ωi, we find t = s∗ s′ and t′ = s′ ∗ s, whence s = t′ ∗̃ t
and s′ = t ∗̃ t by the involutivity law. Now the induction hypothesis gives

t = Ω̃n−i(s̃π(i+1), ... , s̃π(n)), t′ = Ω̃n−i(s̃π(i), s̃π(i+2), ... , s̃π(n)).

Using the definition of Πn+1−i from Πn−i, we find s = t′ ∗̃t = Ω̃n+1−i(s̃π(i), ... , s̃π(n))

(and s′ = t ∗̃ t = Ω̃n+1−i(s̃π(i+1), s̃π(i), s̃π(i+2), ... , s̃π(n))), which is (2.3). �



8 PATRICK DEHORNOY

We now introduce terms that involve, in addition to ∗ and ∗̃, a third operation ·
that will be evaluated into an associative product.

Definition 2.5. For n > 1, we introduce the formal expressions

Πn(x1, ... , xn) = Ω1(x1) · Ω2(x1, x2) · ··· · Ωn(x1, ... , xn)(2.4)

Π̃n(x1, ... , xn) = Ω̃n(x1, ... , xn) · Ω̃n−1(x2, ... , xn) · ··· · Ω̃1(xn).(2.5)

For n > 2, (2.4) implies Πn(x1, ... , xn) = Πn−1(x1, ... , xn−1) ·Ωn(x1, ... , xn). We
shall consider below a monoid generated by S satisfying s(s ∗ t) = t(t ∗ s), that is,
Π2(s, t) = Π2(t, s). Then we have the following iterated version.

Lemma 2.6. Assume that (S, ∗) is an RC-system and M is a monoid including S
in which Π2(s, t) = Π2(t, s) holds for all s, t in S. Then the evaluation of Πn in M
is a symmetric function on Sn.

Proof. We use induction on n. For n = 1, there is nothing to prove. For n = 2,
the result is the equality s1(s1 ∗ s2) = s2(s2 ∗ s1), which is valid in M by assump-
tion. Assume n > 3. As in Lemma 2.2, it is sufficient to consider transpositions
(i, i+1), that is, to compare Πn(s1, ... , sn) and Πn(s1, ... , si+1, si, ... , sn). By defini-
tion, Πn(s1, ... , sn) is the product of the values Ωj(s1, ... , sj) for j increasing from 1
to n, whereas Πn(s1, ... , si+1, si, ... , sn) is a similar product of Ωj(s

′
1, ... , s

′
j) with

s′i = si+1, s
′
i+1 = si, and s′k = sk for k 6= i, i+1. For j < i, the entries si and si+1 do

not occur in Ωj(s1, ... , sj) and Ωj(s
′
1, ... , s

′
j), which are therefore equal. For j > i+1,

the expressions Ωj(s1, ... , sj) and Ωj(s
′
1, ... , s

′
j) differ by the permutation of two non-

final entries, so they are equal by Lemma 2.2. There remains to compare the central
entries t = Ωi(s1, ... , si) ·Ωi+1(s1, ... , si+1) and t′ = Ωi(s

′
1, ... , s

′
i) ·Ωi+1(s

′
1, ... , s

′
i+1).

Put r = Ωi(s1, ... , si) and r′ = Ωi(s1, ... , si−1, si+1). By definition of s′k, we have
also r = Ωi(s

′
1, ... , s

′
i−1, s

′
i+1) and r′ = Ωi(s

′
1, ... , s

′
i). Then, by definition of Ωi

and Ωi+1, we have t = r(r ∗ r′) and t′ = r′(r′ ∗ r), whence t = t′ in M . �

Lemma 2.6 says in particular that, when we start with n elements s1, ... , sn and
construct in the Cayley graph of M the n-cube displayed in Figure 2, then the cube
converges to a unique final vertex and all maximal paths represent Π(s1, ... , sn).

Ω1(s1)

Ω1(s3)

Ω1(s2)

Ω2(s1, s2)

Ω2(s2, s1) Ω2(s1, s3)

Ω2(s3, s1)Ω2(s2, s3)

Ω2(s3, s2)

Ω3(s1, s2, s3)

Ω3(s1, s3, s2)

Ω3(s2, s3, s1)

Figure 2. The monomials Ωi occur at the ith level in an n-cube built
from s1, ... , sn using ∗ to form elementary squares (here n = 3).

Lemma 2.7. Assume that (S, ∗, ∗̃) is an RLC-system and M is a monoid includ-
ing S in which Π(s, t) = Π2(t, s) holds for all s, t in S. Then, for all s1, ... , sn in S,

the equality Πn(s1, ... , sn) = Π̃n(s̃1, ... , s̃n) holds for s̃i = Ωn(s1, ... , ŝi, , ... , sn, si).
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Proof. Using (2.3) and the definitions of Πn and Π̃n, we obtain

Πn(s1, ... , sn) = Ω1(s1) · Ω2(s1, s2) · ··· · Ωn(s1, ... , sn)

= Ω̃n(s̃1, ... , s̃n) · Ω̃n−1(s̃2, ... , s̃n) · ··· · Ω̃1(s̃n) = Π̃n(s̃1, ... , s̃n). �

3. The Garside structure

It was proved by F. Chouraqui [5] that the monoids associated with solutions
of YBE (hence with bijective RC-quasigroups) are Garside monoids [9] and that,
conversely, every Garside monoid with a certain type of presentation arises in this
way—see also [19]. Here we show how to easily derive such results from the com-
putations of Section 2.

Let us first recall some terminology about divisibility relations in monoids. If M
is a (left)-cancellative monoid and f, g belong to M , we say that f left-divides g
or, equivalently, that g is a right-multiple of g, denoted f 4 g, if fg′ = g holds for
some g′ in M . If 1 is the only invertible element in M , the relation 4 is a partial
ordering on M . We say that h is a least common right-multiple, or right-lcm, of f
and g if h is a least upper bound of f and g with respect to 4. Provided 1 is the only
invertible element in M , the right-lcm is unique when it exists. If f and g admit
a right-lcm, the right-complement f\g of f in g is the unique element g′ such that
fg′ is the right-lcm of f and g. As mentioned in Example 1.4, \ obeys the RC-law
(whenever defined). Of course, symmetric counterparts involve the right-divisibility
relation, where f right-divides g if g = g′f holds for some g′.

If M is a monoid, a length function on M is a map λ : M → N such that g 6= 1
implies λ(g) > 1 and λ(gh) = λ(g)+λ(h) always holds (we say pseudolength when =
is relaxed into > in the last formula). Note that the existence of a (pseudo)-length
function on M implies that 1 is the only invertible element in M .

Our first (new) observation is that the connection between the RC-law and the
so-called cube condition in Garside theory makes it extremely easy to establish the
basic properties of the monoid associated with an RC-quasigroup.

Proposition 3.1. Assume that (S, ∗) is an RC-quasigroup and M is the associated
monoid. Then the monoid M admits a length function, it is left-cancellative, and
any two elements of M admit a unique right-lcm and a unique left-gcd. Moreover,
(S, ∗) can be retrieved from M : the set S is the set of atoms of M and, for s 6= t,
the value of s ∗ t is the right-complement s\t in M and the value of s ∗ s is the
unique element of S \ {s\t | t 6= s ∈ S}.

Proof. The relations of (1.10) preserve the length, so the length of S-words induces
a length function on M .

Next, the presentation (1.10) contains exactly one relation of the form s... = t...
for each pair of generators s, t in S. There exists for such presentations, which are
called right-complemented, a general approach that enables one to easily establish
properties of the associated monoid. Assume we consider a monoid generated by a
set S and relations of the form sθ(s, t) = tθ(t, s) where θ maps S × S to S. Then
[10, Prop. 6.1 and 6.9] (or [12, Prop. II.4.16]) says that, when the “cube condition”

(3.1) θ(θ(r, s), θ(r, t)) = θ(θ(s, r), θ(s, t))

holds for all r, s, t in S, the involved monoid is left-cancellative, any two of its
elements admit a right-lcm, and the right-lcm of distinct elements s, t of S is s(s∗ t)
(and t(t ∗ s)). In the current case of M , the map θ coincides with the operation ∗,
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and the assumption that (S, ∗) obeys the RC-law guarantees that (3.1) is satisfied.
HenceM is left-cancellative and any two elements ofM admit a right-lcm. Standard
general arguments then show that any two elements also admit a left-gcd, that is,
a greatest lower bound with respect to the left-divisibility relation.

Finally, as there is no relation involving a word of length one in (1.10), the
elements of S are atoms, and every element not lying in S ∪ {1} is not an atom.
So S is the atom set of M . Next, for distinct s, t in S, the right-lcm of s and t is
s(s ∗ t), so, by definition, s\t is equal to s ∗ t. Thus all nondiagonal values s ∗ t
can be retrieved from M . Finally, all left-translations of (S, ∗) are one-to-one,
so s ∗ s must be the unique element of S \ {s ∗ t | s, t ∈ S, s 6= t}, that is, of
S \ {s\t | t 6= s ∈ S}. �

Corollary 3.2. Assume that (S, ∗) is a bijective RC-quasigroup and M,G are the
associated structure monoid and group. Then M admits unique left- and right-
lcms and left- and right-gcds, it is a Ore monoid, and G is a group of left- and
right-fractions for M ; this group is torsion-free.

Proof. Proposition 3.1 guarantees left-cancellativity and existence of right-lcms and
left-gcds in M . Now, by Lemma 1.7, there exists a second operation ∗̃ on S such
that (S, ∗, ∗̃) is an RLC-quasigroup. By construction, the presentation

(3.2) 〈S | {(s ∗̃ t)t = (t ∗̃ s)s | s 6= t ∈ S}〉+,

coincides with the one of (1.10). Proposition 3.1 applied to the opposed monoidM opp

and to the RC-quasigroup (S, ∗̃opp) implies that M opp is left-cancellative and ad-
mits right-lcms and left-gcds, henceM is right-cancellative and admits left-lcms and
right-gcds. Hence M is in particular a Ore monoid (that is, a cancellative monoid
where any two elements admit common left- and right-multiples). By a classical
theorem of Ore [7], its enveloping group G, which admits as a group the presenta-
tion (1.10), is a group of left- and right-fractions for M . It is then known [11] that
the group of fractions of a torsion-free monoid is torsion-free. �

We can now use the RC-calculus of Section 2 to easily describe the right-lcms of
atoms in terms of the “polynomials” Πn, thus avoiding the developments of [5].

Lemma 3.3. Assume that (S, ∗) is an RC-quasigroup and M is the associated
monoid. Then elements s1, ... , sn of S are pairwise distinct if and only if the element
Πn(s1, ... , sn) is the right-lcm of s1, ... , sn in M . In this case, if, in addition, (S, ∗)
is bijective, Πn(s1, ... , sn) is also the left-lcm of the elements s̃1, ... , s̃n defined by
s̃i = Ωn(s1, ... , ŝi, ... , sn, si).

Proof. Assume that s1, ... , sn are pairwise distinct in S. Let Ω′
n and Π′

n be the
counterparts of Ωn and Πn respectively where the right-complement operation \
replaces ∗. We first prove using induction on i the equality

(3.3) Ωi(sπ(1), ... , sπ(i)) = Ω′

i(sπ(1), ... , sπ(i))

for every i and every permutation π in Si. For i = 1, we have Ω1(sπ(1)) =
sπ(1) = Ω′

1(sπ(1)), and the result is straightforward. Assume i > 2. Put s =
Ωi(sπ(1), ... , sπ(i)), s

′ = Ωi(sπ(1), ... , sπ(i−2), sπ(i), sπ(i−1)), t = Ωi(sπ(1), ... , sπ(i)),
and t′ = Ωi−1(sπ(1), ... , sπ(i−2), sπ(i)). By definition of Ωi from Ωi−1, we have
s = t ∗ t′ and s′ = t′ ∗ t. By Lemma 2.3 applied to (sπ(1), ... , sπ(i)), the assumption
sπ(i−1) 6= sπ(i) implies s 6= s′, which implies t ∗ t′ 6= t′ ∗ t. By Proposition 3.1,
the latter relation implies t ∗ t′ = t\t′ and t′ ∗ t = t′\t in M . The induction
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hypothesis implies t = Ω′
i(sπ(1), ... , sπ(i)) and t′ = Ω′

i−1(sπ(1), ... , sπ(i−2), sπ(i)), so
we deduce s = t\t′ = (Ω′

i(sπ(1), ... , sπ(i)))\(Ω
′
i−1(sπ(1), ... , sπ(i−2), sπ(i))), that is,

s = Ω′
i(sπ(1), ... , sπ(i)). Then (3.3) implies Πn(s1, ... , sn) = Π′

n(s1, ... , sn), meaning
that Πn(s1, ... , sn) is the right-lcm of s1, ... , sn since a trivial induction shows that
Π′
n(s1, ... , sn) is the right-lcm of s1, ... , sn for every n.
For the other direction, let n′ be the cardinal of {s1, ... , sn}. The result above

implies that, if I is a cardinal n′ subset of S, then the right-lcm ∆I of I has length n′

in M . So, if n′ < n holds, the right-lcm of {s1, ... , sn} is an element of M that has
length n′, and it cannot be Πn(s1, ... , sn) which, by definition, has length n.

Finally, assume that (S, ∗) is bijective and s1, ... , sn are pairwise distinct. Let ∗̃ be
the second operation provided by Lemma 1.7. Then (S, ∗, ∗̃) is an RLC-quasigroup.
By Lemma 2.3, s̃1, ... , s̃n are pairwise distinct. Then (S, ∗̃) is an LC-quasigroup,

so the counterpart of the above results implies that Π̃n(s̃1, ... , s̃n) is a left-lcm of

s̃1, ... , s̃n in M . Now, by Lemma 2.7, Π̃n(s̃1, ... , s̃n) is equal to Πn(s1, ... , sn). �

A Garside family [13] in a monoid M is a generating family Σ such that every
element g of M admits a (unique) Σ-normal decomposition, meaning a sequence
(s1, ... , sp) such that g = s1 ···sp holds and si is the greatest left-divisor of si ···sp
lying in Σ for every i.

Proposition 3.4. Assume that (S, ∗) is a bijective RC-quasigroup and M,G are the
associated monoid and group. Then the right-lcm ∆I of a cardinal n subset I of S
belongs to Sn, it is the left-lcm of (another) cardinal n subset of S, the map I 7→ ∆I

is injective, and its image is the smallest Garside family of M that contains 1.

Proof. By Proposition 3.1, M admits a length function, it is left-cancellative, and
that any two elements of M admit a right-lcm. Hence, by [13, Prop. 3.25] (or [12,
Prop. IV.2.46]), M admits a smallest Garside family Σ, namely the closure of the
atoms, that is, of S, under the right-lcm and right-complement operations. We
claim that Σ is the closure Σ′ of S under the sole right-lcm operation.

By definition, Σ′ is included in Σ, and the point is to prove that Σ′ is closed
under the right-complement operation. This follows from the formula

(3.4) f\lcm(g1, ..., gn) = lcm(f\g1, ..., f\gn),

which is valid in every monoid that admits unique right-lcms as shows an easy
induction on n. So assume that g belongs to Σ′, that is, g is a right-lcm of elements
t1, ... , tn of S. If f lies in S, then, for every i, the element f\ti belongs to S ∪ {1}
since it is either f ∗ ti, if f and ti are distinct, or 1, if f and ti coincide. Then (3.4)
shows that f\g belongs to Σ′ for every f in S. Using induction on the length of f ,
we deduce a similar result for every f in M from the formula (f1f2)\g = f2\(f1\g).
So Σ′ is closed under \ and it coincides with Σ.

For I a finite subset of S, write ∆I for the right-lcm of I. Lemma 3.3 shows
that ∆I has length #I. Now, assume that I, J are finite subsets of S and ∆I = ∆J

holds. As every element of I ∪ J left-divides ∆I , we must have ∆I∪J = ∆I = ∆J .
This implies #(I ∪ J) = #I = #J , whence I = I ∪ J = J . So the map I 7→ ∆I is
a bijection of Pfin(S) to Σ.

Finally, if s1, ... , sn are pairwise distinct elements of S, then Πn(s1, ... , sn) is
the right-lcm of s1, ... , sn and, by Lemma 3.3, the latter is also the left-lcm of the
elements s̃1, ... , s̃n defined by s̃i = Ωn(s1, ... , ŝi, ... , sn, si). �
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We turn to Garside monoids [9]. A pair (M,∆) is a Garside monoid if M is a
cancellative monoid, it admits a weak length function, every two elements admit
left- and right-lcms and gcds, and ∆ is a Garside element in M , meaning that the
left- and right-divisors of ∆ coincide, generate M , and are finite in number. We
often say that a monoid M is a Garside monoid if there exists ∆ in M such that
(M,∆) satisfies the above conditions.

Proposition 3.5. Assume that (S, ∗) is a bijective RC-quasigroup of cardinal n
and M is the associated monoid. Then the right-lcm ∆ of S is a Garside element
in M , it admits 2n (left- or right-) divisors, and (M,∆) is a Garside monoid.

Proof. As above, write ∆I for the right-lcm of I for I ⊆ S, and write ∆ for ∆S .
By Proposition 3.4, the family Σ of all elements ∆I is the smallest Garside family
containing 1 in M , and it has 2n elements. By definition, ∆I left-divides ∆S , that
is, every element of Σ left-divides ∆, and, moreover, ∆ lies in Σ. This means that
the Garside family Σ is what is called right-bounded by ∆ [12, Def. VI.1.1], and
∆ is a right-Garside element in M . Moreover, by Corollary 3.2, M is also right-
cancellative, and Σ is a finite subset of M that generates M and is closed under
the right-complement operation. By [9, Prop. 2.1], ∆ is a Garside element in M ,
and (M,∆) is a Garside monoid. �

Example 3.6. Let S = {a, b, c}, and let ∗ be determined
by x ∗ y = f(y) where f is the cycle a 7→ b 7→ c 7→ a. Then,
as seen in Example 1.4, (S, ∗) is a bijective RC-quasigroup,
and it is eligible for the above results. The associated monoid
admits the presentation

〈a, b, c | ac = b
2, a2 = cb, ba = c

2〉+.

The right-lcm ∆ of S is then a
3, which is also b

3 and c
3,

and the lattice of the 8 divisors of ∆ is shown on the right.
1

a b c

b
2

a
2

c
2

∆

We conclude the section with a result in the other direction. If (S, ρ) is a solution
of the YBE or, equivalently, if (S, ∗) is a finite bijective RC-quasigroup, then the
associated monoid is a Garside monoid and, moreover, its definition implies that
the latter admits a presentation of a certain form. We see now is that, conversely,
every Garside monoid with the above properties is associated with a (bijective) RC-
quasigroup. Once again, a YBE version appears in [5] and the point here is to show
that using the RC-law provides alternative and hopefully more simple arguments.

Proposition 3.7. Assume that M is a monoid with atom set S of cardinal n.
Then the following are equivalent:

(i) There exists an operation ∗ such that (S, ∗) is a bijective RC-quasigroup and
M is associated with (S, ∗)—or, equivalently, there exists ρ such that (S, ρ) is a
solution of YBE and M is associated with (S, ρ);

(ii) The monoid M is a Garside monoid admitting a presentation in terms of S
that consists of one relation sθ(s, t) = tθ(t, s) for s 6= t in S with θ : S × S → S
such that t 7→ θ(s, t) is injective for every s.

(iii) The monoid M is a Garside monoid admitting a presentation in terms of S
consisting of

(
n
2

)
relations u = v with u, v of length two such that every length two

S-word appears in at most one relation.
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It follows from Definition 1.9 and Proposition 3.5 that (i) implies (ii); on the other
hand, a presentation satisfying the conditions of (ii) necessarily satisfies those of (iii)
since a length two S-word ss′ may appear in a relation s... = t... only if s′ = θ(s, t)
holds, which happens for at most one t. So we are left with proving that (iii)
implies (ii) and that (ii) implies (i).

Proof of (iii)⇒(ii) in Proposition 3.7. Let R be the considered list of relations. As-
sume that s, t are distinct elements of S and R contains at least two relations
s... = t..., say st′ = ts′ and st′′ = ts′′ with (s′, t′) 6= (s′′, t′′). As M is cancellative,
we have st′ 6= st′′, so st′ and st′′ are two common right-multiples of s and t of
length 2: this contradicts the existence of a right-lcm for s and t, as the latter
can have neither length 1 nor length 2. Hence R contains at most one relation
s... = t... for s 6= t. On the other hand, R contains no relation s... = s... since M is
left-cancellative and st = st′ would imply t = t′. As there are

(
n
2

)
pairs of distinct

elements of S, we deduce that R contains exactly one relation s... = t... for s 6= t
in S. We can then write the latter relation as sθ(s, t) = tθ(t, s) for some map θ
from S2 to S. The assumption that no word appears in two relations then implies
that every map t 7→ θ(s, t) is injective. �

We recall that, if M is a cancellative monoid in which any two elements ad-
mit a unique right-lcm, then, for f, g in M , the right-complement of f in g is the
element f\g such that f(f\g) is the right-lcm of f and g. Under symmetric as-
sumptions, the left-commplement f/g is the element such that (f/g)g is the left-lcm
of f and g. The operation \ obeys the RC-law, whereas / obeys the LC-law.

Proof of (ii)⇒(i) in Proposition 3.7. By assumption, sθ(s, t) is the right-lcm of s
and t (which exists since M is a Garside monoid) for s 6= t in S, so s\t = θ(s, t)
holds. We define a binary operation ∗ on S. First, we put s ∗ t = s\t for s 6= t.
As t 6= t′ implies θ(s, t) 6= θ(s, t′), the map x 7→ s ∗ x is injective on S \ {s}, so the
complement of {s ∗x | x 6= s} in S consists of a unique element, which we define to
be s ∗ s. We thus obtain an operation ∗ whose left-translations are one-to-one.

Next, we know that (ii) implies (iii). Now, in (iii), the left and the right sides
play symmetric roles. Hence the symmetric counterpart of (ii) is true and, by (the
counterpart of) the above argument, we obtain a binary operation ∗̃ on S connected
with the left-complement operation / and such that the right-translations ∗̃ are
one-to-one. We claim that ∗ and ∗̃ satisfy (1.8). First, assume s 6= t. Then
s(s ∗ t) = t(t ∗ s) lies in R (the considered set of relations), implying s ∗ t 6= t ∗ s.
Next, s(s ∗ t) is the right-lcm of s and t, and, as s ∗ t and t ∗ s are distinct, s(s ∗ t)
is the left-lcm of s ∗ t and t ∗ s, which implies (s ∗ t) ∗̃ (t ∗ s) = t. Now, put
s′ = s ∗ s and r = s′ ∗̃ s′. For t 6= s, we have s ∗ t 6= s′, whence r = s′/(s\t). Then
r(s\t) = ((s\t)/s′)s′ is a relation of R, which implies (s\t)/s′ 6= s since R contains
no relation ss′ = .... Since (s\t)/s′ 6= s holds for every t distinct of s, we deduce
s′ ∗̃ s′ = s since s′ ∗̃ s′ is the only element of S that is not of the form (s\t) ∗̃ s′

with t 6= s. Hence (s∗ s) ∗̃ (s∗ s) = s holds, and the first involutivity law is satisfied
in (S, ∗, ∗̃). By a symmetric argument, the second involutivity law holds as well.

Finally, we claim that (S, ∗) satisfies the RC-law. Let r, s, t lie in S. Assume
first that r, s, t are pairwise distinct. Then we have r ∗ s 6= r ∗ t and s ∗ r 6= s ∗ t,
whence (r ∗ s) ∗ (r ∗ t) = (r\s)\(r\t) = (s\r)\(s\t) = (s ∗ r) ∗ (s ∗ t), since the
right-complement operation \ satisfies the RC-law. Next, for r = s, the RC-law
tautologically holds for r, s, t. So there only remain the cases when r 6= s and t is
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either r or s, that is, we have to establish (r ∗ s) ∗ (r ∗ s) = (s ∗ r) ∗ (s ∗ s) and
(s ∗ r) ∗ (s ∗ r) = (r ∗ s) ∗ (r ∗ r), that is, owing to r 6= s,

(3.5) (r\s) ∗ (r\s) = (s\r)\(s ∗ s) and (s\r) ∗ (s\r) = (r\s)\(r ∗ r).

Assume z 6= r, s and put z′ = (r\s)\(r\z), which is also z′ = (s\r)\(s\z) since \
satisfies the RC-law. Then we have r\z 6= r\s, whence z′ 6= (r\s) ∗ (r\s). Also,
we have s\z 6= s ∗ s, whence z′ 6= (s\r)\(s ∗ s). Arguing similarly with r and s
exchanged, we find z′ 6= (s\r)∗(s\r) and z′ 6= (r\s)\(r∗r). So, z′ is distinct from the
four expressions occurring in (3.5) and, therefore, the only possible values for the
latter are the two elements of S that are not of the form (r\s)\(r\z) with z 6= r, s.
As left-translations of ∗ are injective, we must have (r\s)∗ (r\s) 6= (r\s)\(r∗r) and
(s\r)\(s ∗ s) 6= (s\r) ∗ (s\r). So, in order to establish (3.5), it suffices to show that
(r\s) ∗ (r\s) = (s\r) ∗ (s\r) is impossible. Now r 6= s implies r ∗ s 6= s ∗ s, so it is
enough to prove that x 6= y implies x ∗ x 6= y ∗ y: this follows from the involutivity
relation (x ∗ x) ∗̃ (x ∗ x) = x established above.

So (S, ∗) is an RC-quasigroup. By [27, Theorem 2], it is necessarily bijective
since S is finite—alternatively, one can check that (S, ∗, ∗̃) is an RLC-quasigroup
and (S, ∗) is bijective by Lemma 1.7. By construction, M admits the presentation
(S,R), so it is (isomorphic to) the monoid associated with (S, ∗). �

Remark 3.8. The injectivity condition for left-translations associated with θ is
necessary in Proposition 3.7(ii): the dual braid monoid 〈a, b, c | ab = bc = ca〉+ is
a Garside monoid that admits a presentation of the considered type but it is not
associated with an RC-quasigroup since (for instance) the right-lcm of the atoms
has 5 divisors. Now, in this case, we have θ(a, b) = θ(a, c) = b.

4. The I-structure

It has been known since [20] and [24] that the monoids associated with solutions
of YBE admit a nice geometric characterization as those monoids that admit an
I-structure, meaning that their Cayley graph is a twisted copy of that of a free
abelian monoid. These results can be easily established using the framework of RC-
quasigroups and the computational formulas of Section 2. In particular, we shall
see that the I-structure can be explicitly determined using the polynomials Πn.

In view of the final results in Section 5, it is convenient to start with a slightly
extended definition in which the reference monoid need not be free Abelian.

Definition 4.1. Assume that M
•

and M are monoids generated by a set S. A
right-I-structure of shape (M

•
, S) for M is a bijective map ν : M

•
→ M satisfying

ν(1) = 1, ν(s) = s for s in S and, for every a in M
•
,

(4.1) {ν(as) | s ∈ S} = {ν(a)s | s ∈ S}.

When the reference monoid M
•

is the S-power of a monoid, we skip S and
just say “right-I-structure of shape M

•
”; if M

•
is a free Abelian monoid, we also

skip M
•

and—as is usual—say “right-I-structure”. A monoid is said to be of right-
I-type [20, 24] if it admits a right I-structure.

The existence of a right-I-structure of shape (M
•
, S) on a monoid M provides a

bijection from the Cayley graph of M
•

relative to S onto that of M that preserves
the path length but changes labels. Note that (4.1) is equivalent to the existence,
for every a in M

•
, of a permutation ψ(a) of S satisfying, for every s in S,

(4.2) ν(as) = ν(a) · ψ(a)(s).
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We shall use ψ with this meaning everywhere in the sequel.
If M

•
is a free Abelian monoid based on S and, more generally, if every permu-

tation of S induces an automorphism of M
•
, then the condition ν(s) = s for s in S,

which amounts to ψ(1) being the identity of S, can be ensured by precomposing ν
with the automorphism induced by ψ(1)−1 and, therefore, it could be removed from
the definition without changing the range of the latter.

Hereafter we denote by N(S) the free Abelian monoid based on a (finite or infinite)
set S, identified with the set of all finite support S-indexed sequences of elements
of N (we use NS when S is finite); an element s of S is identified with the sequence
whose only non-zero entry is the s-entry, which is 1.

We first establish the following explicit “RC-version” of the result of [20, 24]:

Proposition 4.2. Assume that (S, ∗) is an RC-quasigroup and M is the associated
monoid. Then the map ν defined from ∗ by ν(s1 ···sn) = Πn(s1, ... , sn) is a right
I-structure on M .

Proof. We first define a map ν∗ from the free monoid S∗ based on S toM by ν∗(ε) =
1 and ν∗(s1| ··· |sn) = Πn(s1, ... , sn) for n > 1, where s1| ··· |sn is the length n word
with letters s1, ... , sn. By Lemma 2.6, ν∗(s1| ··· |sn) does not depend on the order of
the entries, so ν∗ induces a well-defined map ν from the free Abelian monoid N(S)

to M . We claim that the latter provides the expected right-I-structure onM . First,
the equalities ν(1) = 1 and ν(s) = s for s in S are obvious. Next, let a belong
to N(S), say a = s1 ···sn. Then the definition of ν gives ν(as) = Πn+1(s1, ... , sn, s),
whence ν(as) = Πn(s1, ... , sn) · Ωn+1(s1, ... , sn, s). By Lemma 2.3(i), the map s 7→
ν(as) is a bijection of S into itself, hence (4.1) holds.

It remains to show that ν is a bijection from N(S) to M . Let g belong to M , say
g = s1 ···sn with s1, ... , sn in S. By Lemma 2.3(ii), there exist r1, ... , rn in S satis-
fying Ωi(r1, ... , ri) = (s1, ... , si) for 1 6 i 6 n, whence Πn(r1, ... , rn) = s1 ···sn = g.
By definition, this means that ν(r1 ···rn) = g holds, and ν is surjective.

Finally, assume that a, a′ belong to N(S) and ν(a) = ν(a′) holds. As the elements
of M have a well-defined length, the length of a and a′ must be the same. Write
a = r1 ···rn, a

′ = r′1 ···r
′
n with r1, ... , r

′
n in S. Define si = Ωi(r1, ... , ri) and s′i =

Ωi(r
′
1, ... , r

′
i). By definition, ν(a) is the class of s1| ··· |sn in M , and ν(a′) is the class

of s′1| ··· |s
′
n. The assumption ν(a) = ν(a′) means that these words are connected by

a finite sequence of defining relations of M . By Lemma 2.3, the map (x1, ... , xn) 7→
(Ω1(x1), ... ,Ωn(x1, ... , xn)) of S[n] to itself is surjective, so we can assume without
loss of generality that s1| ··· |sn and s′1| ··· |s

′
n are connected by one relation exactly,

that is, there exist i satisfying si+1 = si ∗ s
′
i, s

′
i+1 = s′i ∗ si and s′k = sk for

k 6= i, i + 1. The relations s′k = sk inductively imply r′k = rk for k < i. Next,
writing ~r for r1, ... , ri−1, we have si = Ωi(~r, ri) and s′i = Ωi(~r, r

′
i). Then, we find

Ωi(~r, ri) ∗ Ωi(~r, ri+1) = Ωi+1(~r, ri, ri+1) = si+1 = si ∗ s
′

i = Ωi(~r, ri) ∗ Ωi(~r, r
′

i).

As the left-translation by Ωi(~r, ri) is injective, we deduce Ωi(~r, ri+1) = Ωi(~r, r
′
i),

whence ri+1 = r′i by Lemma 2.3(i). A symmetric argument gives r′i+1 = ri. Finally,
for k > i+ 1, the relations s′k = sk inductively imply r′k = rk. Indeed, we have

Ωk(~r, ri, r
′

i, ri+2, ... , rk) = sk = s′k = Ωk(~r, r
′

i, ri, ri+2, ... , r
′

k),

and, by Lemma 2.2, switching the non-final entries ri and r′i in Ωk changes nothing,
so r′k = rk follows by Lemma 2.3. So the words r1 | ··· |rn and r′1 | ··· |r

′
n are obtained
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by switching two (adjacent) entries, hence they represent the same element in N(S).
Hence ν is injective, and it provides the expected right-I-structure on M . �

Note that Proposition 4.2 does not require the set S to be finite.
In the other direction, we prove that every finitely generated monoid of I-type is

associated with an RC-quasigroup, an explicit version of the YBE results of [20, 24]:

Proposition 4.3. If M is a finitely generated monoid of right-I-type, there exists
a unique finite RC-quasigroup (S, ∗) such that M is the structure monoid of (S, ∗):
the set S is the atom set of M and ∗ is determined by s ∗ t = s\t for s 6= t and
{s ∗ s} = S \ {s\t | t 6= s}. Moreover, the right-I-structure on M is unique: it is
defined from the operation ∗ by ν(s1 ···sn) = Πn(s1, ... , sn).

Once again our proof relies on RC-calculus. One of the benefits is to obtain
an argument that, although complete, in particular for establishing (4.7) below, is
shorter than that of [25, Chapter 8]. Another benefit is that Lemma 4.4 extends to
a nonfree Abelian monoid, which will be useful in Section 5.

Lemma 4.4. Assume that M is a left-cancellative monoid and ν is a right-I-
structure of shape (M

•
, S) on M , where M

•
is Abelian and satisfies

(4.3) ∀s, t, s′, t′ ∈ S ((s 6= t and st′ = ts′) ⇒ (s′ = s and t′ = t)).

Put s ∗ t = ψ(s)(t) for s, t in S. Then (S, ∗) is an RC-quasigroup.

Proof. We claim that, for all s, t, s′, t′ in S with s 6= t, the only equality st′ = ts′

holding in M is s(s∗ t) = t(t∗ s). Indeed, by assumption, M
•

is Abelian and, in M ,
using (4.2), we obtain s(s ∗ t) = sψ(s)(t) = ν(st) = ν(ts) = tψ(t)(s) = t(t ∗ s). On
the other hand, assume st′ = ts′ in M . Let t′

•
= ψ(s)−1(t′) and s′

•
= ψ(t)−1(s′).

Always using (4.2), we find ν(st′
•
) = st′ = ts′ = ν(ts′

•
) in M , whence st′

•
= ts′

•

in M
•

since ν is bijective. The assumption on M
•

implies s′
•

= s and t′
•

= t, whence
s′ = ψ(t)(s) = t ∗ s and t′ = ψ(s)(t) = s ∗ t. This establishes the claim.

Now, let a belong to M
•

and s, t belong to S. Using (4.2), we find

ν(ast) = ν(as) · ψ(as)(t) = ν(a) · ψ(a)(s) · ψ(as)(t),

and, similarly, ν(ats) = ν(a) · ψ(a)(t) · ψ(at)(s). By assumption, M
•

is Abelian, so
we have ast = ats, whence ν(ast) = ν(ats) and, merging the above expressions and
left-cancelling ν(a), which is legal as M is left-cancellative, we find

(4.4) ψ(a)(s) · ψ(as)(t) = ψ(a)(t) · ψ(at)(s).

Assume first s 6= t. The elements ψ(a)(s), ψ(as)(t), ψ(a)(t), and ψ(at)(s) lie in S,
so, by the claim above, (4.4) implies

(4.5) ψ(as)(t) = ψ(a)(s) ∗ ψ(a)(t) and ψ(at)(s) = ψ(a)(t) ∗ ψ(a)(s).

When t ranges over S \ {s}, the element ψ(a)(t) ranges over S \ {ψ(a)(s)}, and
ψ(a)(s) ∗ ψ(a)(t) ranges over S \ {ψ(a)(s) ∗ ψ(a)(s)}. As ψ(as) is a bijection of S,
the only possibility is therefore ψ(as)(s) = ψ(a)(s) ∗ ψ(a)(s). Hence (4.5) is valid
in S for all a in M

•
and s, t in S.

Now, let r lie in S. Making a = r in (4.5) and applying the definition of ∗ gives
ψ(rs)(t) = (r∗s)∗(r∗t) and, similarly, ψ(sr)(t) = (s∗r)∗(s∗t). Now, inM

•
, we have

rs = sr, whence ψ(rs)(t) = ψ(sr)(t), and this gives (r∗s)∗(r∗t) = (s∗r)∗(s∗t), the
RC-law. So (S, ∗) is an RC-system. Moreover, by definition, ψ(s) belongs to SS ,
so the left-translations of ∗ are one-to-one, and (S, ∗) is an RC-quasigroup. �
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Lemma 4.5. Assume that M is a left-cancellative monoid and ν is a right-I-
structure of shape (M

•
, S) on M , where M

•
is Abelian and satisfies (4.3). Then,

for every p > 1 and for all s1, ... , sp in S, we have

(4.6) ψ(s1 ···sp−1)(sp) = Ωp(s1, ... , sp) and ν(s1 ···sp) = Πp(s1, ... , sp),

where Ωp and Πp are associated with ∗ as in Section 2 and values are taken in M .

Moreover, for all a, b in N(S), we have

(4.7) ν(ab) = ν(a)ν(ψ(a)[b]) and ψ(ab) = ψ(ψ(a)[b]) ◦ ψ(a)

where ψ(a)[b] is the result of applying ψ(a) to b componentwise.

Proof. We begin with the left equality in (4.6), which is proved using induction
on p. For p = 1, we have ψ(1)(s1) = s1 = Ω1(s1) and, for p = 2, we have
ψ(s1)(s2) = s1 ∗ s2 = Ω2(s1, s2). For p > 3, using (4.5), the induction hypothesis,
and the inductive definition of the monomials Ωp, we find

ψ(s1 ···sp−1)(sp) = ψ(s1 ···sp−2)(sp−1) ∗ ψ(s1 ···sp−2)(sp)

= Ωp−1(s1, ... , sp−1) ∗ Ωp−1(s1, ... , sp−2, sp) = Ωp(s1, ... , sp).

The right equality in (4.6) then follows using a similar induction on p. For p = 1,
we have ν(s1) = s1 = Π(s1). For p > 2, using (4.2), the left equality in (4.6), and
the inductive definition of Πp, we find

ν(s1 ···sp) = ν(s1 ···sp−1) · ψ(s1 ···sp−1)(sp)

= Πp−1(s1, ... , sp−1) · Ωp(s1, ... , sp) = Πp(s1, ... , sp).

The definition of Ωn implies, for p, q > 1, the formal equality

Ωp+q(~x, y1, ... , yq) = Ωq(Ωp+1(~x, y1), ... ,Ωp+1(~x, yq)),

where ~x stands for x1, ... , xp; this is a formal identity, not using the RC-law or any
specific relation; for instance, it says that Ω3(x, y1, y2), that is, (x ∗ y1) ∗ (x ∗ y2), is
also Ω2(Ω2(x, y1),Ω2(x, y2)). With the same convention, one deduces

(4.8) Πp+q(~x, y1, ... , yq) = Πp(~x) · Πq(Ωp+1(~x, y1), ... ,Ωp+1(~x, yq)).

Now, assume that a, b lie in N(S). Write a = s1 ···sp and b = t1 ···tq with s1, ... , tq
in S. The right equality in (4.6) gives ν(ab) = Πp+q(s1, ... , sp, t1, ... , tq). On the
other hand, we have ν(a) = Πp(s1, ... , sp) and the left equality in (4.6) implies
ψ(a)(t) = Ωp+1(s1, ... , sp, t) for every t, whence in particular

ν(ψ(a)(t)) = Πq(Ωp+1(s1, ... , sp, t1), ... ,Ωp+1(s1, ... , sp, tq)).

Merging with (4.8), we obtain the left formula in (4.7).
Finally, assume s ∈ S. On the one hand, (4.2) gives ν(abs) = ν(ab)ψ(ab)(s). On

the other hand, the left formula in (4.7) gives

ν(abs) = ν(a) · ν(ψ(a)[bs]) = ν(a) · ν(ψ(a)[b] · ψ(a)(s))

= ν(a) · ν(ψ(a)[b]) · ψ(ψ(a)[b])(ψ(a)(s)) = ν(ab) · ψ(ψ(a)[b])(ψ(a)(s)).

Merging the two expressions and using the assumption that M is left-cancellative,
we deduce ψ(ab)(s) = ψ(ψ(a)[b])(ψ(a)(s)), which is the right equality in (4.7). �

We now connect left-divisibility with the I-structure, in the case of a right-I-
structure of shape (N(S), S), that is, a genuine right-I-structure.
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Lemma 4.6. Assume that ν is a right-I-structure based on S in a monoid M .
(i) There exists a length function on M and S is the atom set in M .
(ii) The map ν is compatible with left-division in the sense that, for all a, b

in N(S), we have a4 b in N(S) if and only if ν(a) 4 ν(b) holds in M .
(iii) The monoid M admits right-lcms.

Proof. (i) Defining λ(g) to be the length of ν−1(g) provides a function from M
to N that satisfies λ(1) = 0, λ(gh) = λ(g) + λ(h), and λ(s) = 1 for every s in S.
It follows that M contains no nontrivial invertible element, and that S is the atom
set of M .

(ii) Assume a 4 b in N(S). For an induction on length, we may assume b = as
with s in S. Now, by (4.2), we have ν(b) = ν(a)ψ(a)(s), whence ν(a) 4 ν(b) in M .
Conversely, assume ν(a)4ν(b). Again, it is enough to consider the case ν(b) = ν(a)s
with s in S. Now, as ψ(a) is bijective, there exists a unique r in S satisfying
ψ(a)(r) = s, and, by (4.2), we have then ν(ar) = ν(a)ψ(a)(r) = ν(a)s = ν(b),
whence b = ar since ν is injective, and a4 b in N(S).

(iii) The monoid N(S) admits right-lcms, and (ii) enables us to transfer the result
to M . So, let g, h belong to M . Put a = ν−1(g) and b = ν−1(h). Let ab′ be the
right-lcm of a and b in N(S). By (ii), ν(ab′) is a common right-multiple of g and h
in M . Now, assume that f is a common right-multiple of g and h in M . By (ii)
again, we have a 4 ν−1(f) and b 4 ν−1(f) in N(S), whence ab′ 4 ν−1(f). By (ii)
once more, this implies ν(ab′) 4 f in M . So ν(ab′) is a right-lcm of g and h in M ,
and M admits right-lcms. �

We can now easily complete the proof of Proposition 4.3.

Proof of Proposition 4.3. Assume that ν is a right-I-structure on M , based on a
set S. By Lemma 4.6(i), S must be the atom set of M , and the assumption that
M is finitely generated implies that S is finite.

Next, the free Abelian monoid N(S) satisfies the assumptions of Lemma 4.4 and,
therefore, the latter applies. Hence, if we define s ∗ t = ψ(s)(t), then (S, ∗) is an
RC-quasigroup. Moreover, as S is finite, (S, ∗) is bijective by [27, Theorem 2].

Assume s 6= t ∈ S. By (4.2), we have s(s ∗ t) = ν(st) = ν(ts) = t(t ∗ s), whereas,
by Lemma 4.6(i) and (iii), the monoid M admits unique right-lcms. Moreover,
as S is finite, the argument of [25, Lemma 8.1.2(6)] shows that M must be left-
cancellative (for that point we have no alternative method and it is useless to repeat
the original argument, which easily adapts). It follows that s(s ∗ t) is necessarily
the right-lcm of s and t, and we must have s ∗ t = s\t.

Finally, as M is left-cancellative, admits a length function, and admits right-
lcms, and as S is the atom set of M , it follows from [8, Prop. 4.1] that the list of all
relations s(s\t) = t(t\s) with s 6= t ∈ S make a presentation of M . By definition
of ∗, this means that M is the structure monoid of (S, ∗).

Finally, the connection between ν and the polynomials Π is given by the right
formula in (4.6). The uniqueness of ν follows, as S is the atom set of M , and ∗ is
the only possible extension of the right-complement operation outside the diagonal
that admits bijective left-translations, so they only depend on M . �

As observed in [24], (4.2) is reminiscent of a semi-direct product. For further
reference, we now describe the connection formally, here in the slightly extended
context of Lemma 4.4; the point is to have the formulas of (4.7) at hand.
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Proposition 4.7. Assume that M is a left-cancellative monoid, N is either N or
Z/dZ for some d, and ν maps N (S) to M . Then the following are equivalent:

(i) The map ν is a right-I-structure of shape (N (S), S) on M ;
(ii) There exists a map ψ : N (S) → SS such that g 7→ (ν−1(g), ψ(ν−1(g))−1)

defines an injective homomorphism of M to the wreath product N ≀ SS whose first
component is a bijection.

Proof. Assume that ν is a right I-structure of shape N (S) on M . Let ψ be the map
from N (S) to SS of (4.2). Define ι : M → N ≀SS by ι(g) = (ν−1(g), ψ(ν−1(g))−1),
where N ≀ SS is N (S) ⋊ SS with SS acting on N (S) by permuting positions.

First, ι is injective and its first component is bijective, since ν−1 is bijective.
In order to prove that (i) implies (ii), the point is to check that ι is a homo-

morphism. Let g, h belong to M . Putting a = ν−1(g), b = ν−1(h), σ = ψ(a), and
τ = ψ(b), we find ι(g) = (a, σ−1) and ι(h) = (b, τ−1), whence, in N ≀ SS ,

(4.9) ι(g)ι(h) = (aσ−1[b], σ−1
◦ τ−1).

On the other hand, the monoid N (S) satisfies (4.3), so Lemma 4.5 applies and,
using the left formula in (4.7), we find

ν(aσ−1[b]) = ν(a)ν(ψ(a)(σ−1 [b])) = gν(σ[σ−1[b]]) = gν(b) = gh,

whence ν−1(gh) = aσ−1[b]. Using the right formula in (4.7) similarly, we find

ψ(aσ−1[b]) = ψ(ψ(a)[σ−1[b]]) ◦ ψ(a) = ψ(σ[σ−1[b]]) ◦ σ = ψ[b] ◦ σ = τ ◦ σ.

We deduce ι(gh) = (aσ−1[b], σ−1
◦ τ−1). So, by (4.9), ι is a homomorphism.

Conversely, assume (ii) with ν and ψ ensuring that ι is an embedding. Then the
above computation gives, for all a, b in N (S), the equality ν(ab) = ν(a)ν(ψ(a)[b]),
whence in particular ν(as) = ν(a)ψ(a)(s) for a in N (S) and s in S. So ν is a
right-I-structure of shape (N (S), S) on M , and (ii) implies (i) �

5. Coxeter-like groups

We now use the RC-calculus of Section 2 and the I-structure of Section 4 and
to solve what can be called the quest of a Coxeter group, namely constructing for
every group associated with a finite RC-quasigroup a finite quotient that plays the
role played by Coxeter groups in the case of spherical Artin–Tits groups. This finite
quotient is not the group G0

X of [16] in general.
In the case of Artin’s braid groupBn, the seminal example of a Garside group, the

Garside structure (B+

n ,∆n) is connected with the symmetric group Sn. Precisely,
the group Bn and the monoid B+

n admit the (Artin) presentation

(5.1)

〈
σ1, ..., σn−1

∣∣∣∣
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

〉
,

and Sn is the quotient of Bn obtained by adding the relations σ2
i = 1 to (5.1). Then

there exists a set-theoretic section σ : Sn → Bn whose image is the family of all
divisors of ∆n in B+

n , and a presentation both of the group Bn and the monoid B+

n

in terms of the image of σ consists of all relations σ(f)σ(g) = σ(h) with f, g, h
in Sn satisfying ‖f‖ + ‖g‖ = ‖h‖, where ‖f‖ is the length of f (minimal number
of adjacent transpositions in a decomposition of f). Thus Bn appears as a sort of
unfolded version of Sn where permutation length is used to get rid of torsion.

This is the situation we shall obtain in our current context. To make things
precise, we introduce a notion of a Garside germ [13]. If a set S positively generates
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a group G (that is, every element of G can be expressed as a product of elements
of S), we denote by ‖g‖

S
the length of a shortest S-decomposition of g.

Definition 5.1. If (M,∆) is a Garside monoid andG is its group of fractions, a sur-
jective homomorphism π : G→ G is said to provide a Garside germ for (G,M,∆)
if there exists a map σ : G → M such that π ◦ σ is the identity, the image of σ is
the family of all divisors of ∆ in M , and M admits the presentation

(5.2) 〈 σ(G) | {σ(f)σ(g) = σ(fg) | f, g ∈ G and ‖f‖
S

+ ‖g‖
S

= ‖fg‖
S
} 〉,

where S is the image under π of the atom set of M .

In the context of Definition 5.1, every element of G can be written as ∆pg for
some p in Z and some g in M , implying that S positively generates G and making
‖g‖

S
meaningful. The term germ stems from [14, 13] where the germ derived

from (G,S) is defined to be (G, •) where • is the partial binary operation so that
f • g = h holds for fg = h with ‖f‖

S
+ ‖g‖

S
= ‖h‖

S
. The monoid and the group

defined by (5.2) are then said to be generated by the germ (G, •). The situation
described in Definition 5.1 corresponds to (G, •) being a germ generating G. When
it is so, the maps π and σ induce mutually inverse isomorphisms between the
finite lattice made by the divisors of ∆ in M and (G,6S) where f 6S g means
‖f‖

S
+ ‖f−1g‖

S
= ‖g‖

S
. The Hasse diagram of these partial orders then coincides

with the Cayley graph of the germ (G, •) with respect to the generating set S.
The above mentioned results for the braid groupBn and the symmetric group Sn

can be summarized into the statement that collapsing σ2
i to 1 for every i provides a

Garside germ for (Bn, B
+

n ,∆n), with associated quotient Sn. It is known—see [1] or
[12, Chapter IX]—that similar results hold for every Artin–Tits group of spherical
type: if (W,S) is a spherical Coxeter system (that is, W and S are finite), and G
and M are the associated Artin–Tits group and monoid, and ∆ is the right-lcm
of atoms in M , then collapsing s2 to 1 for every s in S provides a Garside germ
for (G,M,∆), with associated quotient W .

It is then natural to ask whether similar results hold for every Garside group,
namely whether some finite quotient provides a Garside germ, that is, in other
words, whether there exists an associated Coxeter-like group enjoying all the nice
properties known in the Artin–Tits case. No general answer is known, but we shall
establish a complete positive answer for structure groups of finite RC-quasigroups.
Indeed, we define for every finite RC-quasigroup a notion of class and prove:

Proposition 5.2. Assume that (S, ∗) is an RC-quasigroup of cardinal n and class d.
Let G,M be the associated group and monoid, and ∆ be the right-lcm of S in M .
Then collapsing s[d] to 1 in G for every s in S, where s[d] stands for Πd(s, ..., s),
gives a finite group G that provides a Garside germ for (G,M,∆d−1). The group G
has dn elements and the kernel of the projection is (isomorphic to) Zn.

In the framework of Proposition 5.2, the finite groupG will be called the Coxeter-
like group associated with (S, ∗) and d.

The proof, which is not difficult, consists in using the I-structure to carry the
results from the (trivial) case of Zn to the case of an arbitrary group of I-type. It
will be decomposed into several easy steps. First we define the class.

Definition 5.3. An RC-quasigroup (S, ∗) is said to be of class d it it satisfies

(5.3) ∀s, t ∈ S ( Ωd+1(s, ..., s, t) = t ).
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So an RC-quasigroup is of class 1 if s ∗ t = t holds for all s, t, and it is of class 2
if (s ∗ s) ∗ (s ∗ t) = t holds for all s, t.

Lemma 5.4. Every RC-quasigroup of cardinal n is of class d for some d < (n2)!.

Proof. Let (S, ∗) be a finite RC-quasigroup with cardinal n. By Rump’s theorem,
(S, ∗) must be bijective, that is, the map Ψ : (s, t) 7→ (s∗t, t∗s) is bijective on S×S.
Consider Φ : (s, t) 7→ (s ∗ s, s ∗ t) on S2. Assume (s, t) 6= (s′, t′). For s 6= s′, we
have Ψ(s, s) 6= Ψ(s′, s′), hence s ∗ s 6= s′ ∗ s′, and Φ(s, t) 6= Φ(s′, t′). For s = s′,
we must have t 6= t′, whence s ∗ t 6= s ∗ t′ and, again, Φ(s, t) 6= Φ(s′, t′) since
left-translations of ∗ are injective. So Φ is injective, hence bijective on the finite
set S × S. As S × S has cardinal n2, the order of Φ in SS×S is at most (n2)!.
So there exists d < (n2)! such that Φd+1 is the identity. Now, an easy induction
gives Φm(s, t) = (Ωm(s, ..., s, s),Ωm(s, ..., s, t)) for every m. So Φd+1 = id implies
Ωd+1(s, ..., s, t) = t for all s, t in S. �

There exist finite RC-quasigroups with an arbitrarily high minimal class. Indeed,
let S = {a1, ... , an} and s∗t = f(t) where f maps ai to ai+1(modn) for every i. Then,
for all p, i and s1, ... , sp in S, we have Ωp+1(s1, ... , sp, ai) = ai+p (modn). Hence (S, ∗)
is of class d if and only if d is a multiple of n, and the minimal class is n.

We shall establish Proposition 5.2 using the I-structure on the monoid M , which
exists by Proposition 4.2. As in Section 4, the I-structure will be denoted by ν,
and the associated map from NS to SS as defined in (4.2) will be denoted by ψ.
As mentioned at the end of Section 4, ν and ψ respectively extend into a bijection
from ZS to G and a map from ZS to SS that still satisfy (4.1) and (4.2).

Lemma 5.5. Assume that (S, ∗) is an RC-quasigroup of class d and M is the
associated monoid. For s in S and q > 0, let s[q] = Πq(s, ..., s). Then ν(sda) =

s[d]ν(a) holds for all s in S and a in N(S). The permutation ψ(sd) is the identity
and, for all s, t in S, the elements s[d] and t[d] commute in M .

Proof. Assume a = t1 ···tq with t1, ... , tq in S. Proposition 4.2 implies

ν(sda) = Πd+q(s, ..., s, t1, ... , tq)

= Πd(s, ..., s)Πq(Ωd+1(s, ..., s, t1), ... ,Ωd+1(s, , ..., s, tq))

= Πd(s, ..., s)Πq(t1, ... , tq) = ν(sd)ν(t1 ···tq) = s[d]ν(a),

in which the second equality comes from expanding the terms and the third one
from the assumption that M is of class d. Applying with a = t in S and merging
with ν(sdt) = ν(sd)ψ(sd)(t), we deduce that ψ(sd) is the identity. On the other
hand, applying with a = t[d], we find s[d]t[d] = ν(sdtd) = ν(tdsd) = t[d]s[d]. �

Lemma 5.6. (i) Assume that (S, ∗) is a finite RC-quasigroup, M is the associated
monoid, and d > 2 holds. Let ∆

•
=

∏
s∈S s in NS and ∆d = ν(∆d−1

•
). Then we

have ∆d = ∆d−1 where ∆ is the right-lcm of S, and ∆d is a Garside element in M .
(ii) If, moreover, (S, ∗) is of class d, then ∆d and (∆d)

d lie in the centre of M .

Proof. (i) By Lemma 3.3, we have ∆ = Πn(s1, ... , sn) = ν(∆
•
), where (s1, ... , sn)

is any enumeration of S. In other words, we have ∆ = ∆2. Now, we observe that
f [∆

•
] = ∆

•
holds in NS for every f in SS since every element of S occurs once in

the definition of ∆
•
. By (4.7), we deduce

(5.4) ν(a∆
•
) = ν(a)ν(ψ(a)[∆

•
]) = ν(a)ν(∆

•
),
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whence ν(∆k
•
) = ν(∆

•
)k for every k and, in particular, ∆d = ν(∆

•
)d−1 = ∆d−1.

By Proposition 3.5, ∆ is a Garside element in M . It is standard that this implies
that every power of ∆ is also a Garside element, hence, in particular, so is ∆d.

(ii) Assume now that (S, ∗) is of class d. Let t belong to S. Then, by (5.4), we
obtain ν(t∆d

•
) = ν(t)ν(∆d

•
) = t∆d. On the other hand, (5.4) and Lemma (5.5) give

(5.5) ∆d = ν(∆d
•
) =

∏

s∈S

s[d] and ν(∆d
•
t) =

∏

s∈S

s[d]t = ∆dt.

Merging the values of ν(t∆d
•
) and ν(∆d

•
t), we obtain t∆d = ∆dt, so that ∆d, hence

its power (∆d)
d as well, lies in the centre of M . �

We can now introduce the equivalence relation on ZS that, when carried to G,
induces the expected quotient of G (and M). For a in ZS , we denote by #s(a) the
(well-defined) algebraic number of letters s in any S-decomposition of a.

Lemma 5.7. Assume that (S, ∗) is an RC-quasigroup of class d and M and G are
the associated monoid and group. For a, a′ in ZS, write a ≡

•
a′ if #s(a) = #s(a

′)
(mod d) holds for every s in S.

(i) For g, g′ in M , declare g ≡ g′ for ν−1(g) ≡
•
ν−1(g′). Then ≡ is an equivalence

relation on M that is compatible with left- and right-multiplication. The class of 1
is the Abelian submonoid M1 of M generated by the elements s[d] with s in S.

(ii) For g, g′ in G, declare that g ≡ g′ holds if there exist h, h′ in M and r, r′

in Z satisfying g = ∆drh, g′ = ∆dr′h′, and h ≡ h′. Then ≡ is a congruence on G,
and the kernel of the projection of G to G/≡ is the group of fractions of M1.

Proof. (i) As ν is bijective, carrying the equivalence relation ≡
•

of NS to M yields
an equivalence relation on M . Assume g ≡ g′. Let a = ν−1(g) and a′ = ν−1(g′).
Without loss of generality, we may assume a′ = asd = sda for some s in S. Ap-
plying (4.7) and Lemma 5.5, we obtain ψ(a′) = ψ(ψ(sd)[a] ◦ ψ(sd) = ψ(a). Let t
belong to S. Using (4.7) again, we deduce

g · ψ(a)(t) = ν(a) · ψ(a)(t) = ν(at)

≡ ν(a′t) = ν(a′) · ψ(a′)(t) = ν(a′) · ψ(a)(t) = g′ · ψ(a)(t).

As ψ(a)(t) takes every value in S when t ranges over S, we deduce that ≡ is com-
patible with right-multiplication. On the other hand, a ≡

•
a′ implies f [a] ≡

•
f [a′]

for every permutation f of S. Let t belong to S. Always by (4.7), we obtain

t · g = t · ν(a) = ν(t · ψ(t)−1[a]) ≡ ν(t · ψ(t)−1[a′]) = t · ν(a′) = t · g′,

and ≡ is compatible with left-multiplication by S.
The ≡

•
-class of 1 in NS is the free Abelian submonoid generated by the ele-

ments sd with s in S. The ≡-class of 1 in M consists of the ν-image of the products
of such elements sd. By Lemma 5.5, the latter are the products of elements s[d].

(ii) First, ≡ is well-defined. As ∆d is a Garside element in M , every element of G
admits an expression ∆drh with r in Z and h in M . This expression is not unique,
but, if we have g = ∆drh = ∆dr1h1 with, say, r1 < r, then, as M is left-cancellative,
we must have h1 = ∆d(r−r1)h, whence h1 ≡ h by (5.5). So, for every h′ in M , the
relations h ≡ h′ and h1 ≡ h′ are equivalent.

That ≡ is a equivalence relation is easy. Its compatibility with multiplication
on G follows from the compatibility on M and the fact that ∆d is central in G.
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Finally, the ≡-class of 1 in G consists of all elements ∆drh with h in M1. As
∆d belongs to M1, this is the group of fractions of M1 in G, hence the free Abelian
subgroup of G generated by the elements s[d] with s in S. �

Proof of Proposition 5.2. Let G be the quotient-group G/≡. By Lemma 5.7, the
kernel of the projection of G onto G is a free Abelian group of rank n, hence it is
isomorphic to ZS . The cardinality of G is the number of ≡-classes in G. As every
element of G is ≡-equivalent to an element of M , this number is also the number of
≡-classes in M , hence the number dn of ≡

•
-classes in NS , and we have G = M/≡.

By definition, s[d] ≡ 1 holds for s in S. Conversely, the congruence ≡
•

on ZS is
generated by the pairs (sd, 1) with s in S, hence the congruence ≡ on G is generated
by the pairs (s[d], 1) with s in S. Hence a presentation of G is obtained by adding
to the presentation (1.10) of G and of M the n relations s[d] = 1 with s in S.

By construction, the bijection ν is compatible with the congruences ≡
•

on ZS

and ≡ on G, so it induces a bijection ν of NS/≡
•
, which is (Z/dZ)S , onto M/≡,

which is G, providing a commutative diagram

(5.6)

(Z/dZ)S G .

NS Mν

π
•

π

ν

Now, let σ
•

be the section of π
•

from (Z/dZ)S to NS that maps every ≡
•
-class to

the unique n-tuple of {0, ... , d− 1}S that lies in that class, and let σ : G → M be
defined by σ(g) = ν(σ

•
(ν−1(g)). Then, for every g in G, we obtain

π(σ(g)) = π(ν(σ
•
(ν−1(g)) = ν(π

•
(σ

•
(ν−1(g)) = g

since σ
•

is a section of π
•
. Hence σ is a section of π. Next, by construction, the

image of G under σ is the image under ν of {0, ... , d−1}S, hence the image under ν
of the family of all left-divisors of ∆d−1

•
in NS , hence the family of all left-divisors

of ∆d−1, that is, of ∆d, in M .
Finally, the relation σ(f)σ(g) = σ(fg) holds in M if and only if the relation

σ
•
(ν(f))σ

•
(ν(g)) = σ

•
(ν(fg)) holds in NS , hence if and only if, for every i, the

sum of the ith coordinates of ν(f) and ν(g) does not exceed d − 1. This happens
if and only if ‖ν(f)‖

S
+ ‖ν(g)‖

S
= ‖ν(fg)‖

S
holds in (Z/dZ)S , hence if and only

if ‖f‖
S

+ ‖g‖
S

= ‖fg‖
S

holds in G. By construction, the family S is included in
the image of σ, and all length two relations of (1.10) belong to the previous list of
relations, hence the latter make a presentation of M . This completes the proof. �

Example 5.8. For an RC-quasigroup of class 1, that is, satisfying s ∗ t = t for
all s, t, the group G is a free Abelian group, G is trivial, and Proposition 5.2 here
reduces to the isomorphism ZS ∼= G.

For class 2, that is, when (s∗s)∗(s∗ t) = t holds for all s, t, the element ∆d is the
right-lcm of S, it has 2n divisors which are the right-lcms of subsets of S, and the
group G is the order 2n quotient of G obtained by adding the relations s(s∗ s) = 1.
For instance, in the case of {a, b} with s ∗ t = f(t), f : a 7→ b 7→ a, the group G
has the presentation 〈a, b | a2 = b

2〉, the relations a
[2] = b

[2] = 1 both amount to
ab = 1, and the associated Coxeter-like group G is a cyclic group of order 4.

For class 3, let us consider as in Example 3.6 the RC-quasigroup {a, b, c} with
s ∗ t = f(t) and f : a 7→b 7→c 7→a. The presentation of the associated group G
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is 〈a, b, c | ac = b
2, ba = c

2, cb = a
2〉. With the same notation as above, the

smallest Garside element ∆ is a
3. As the class of (S, ∗) is 3, we consider here

∆3 = ∆2 = a
6. The lattice Div(∆3) has 27 elements, its Hasse diagram is the

cube shown in Figure 3. The latter is also the Cayley graph of the germ derived
from (G, {a, b, c}), that is, the restriction of the Cayley graph of G to the partial
product of the germ. Adding to the above presentation the relations s[3] = 1, that
is, s(s ∗ s)((s ∗ s) ∗ (s ∗ s)) = 1, namely abc = bca = cab = 1, here reducing to
abc = 1, yields for G the presentation 〈a, b, c | ac = b

2, ba = c
2, cb = a

2, abc = 1〉.
One can check that other presentations of G are 〈a, b | a = b

2
ab, b = aba

2〉 and
〈a, b | a = b

2
ab, a3 = b

3〉.

1

a b c

ab b
2 bc a

2
c
2 ca

ac
2

b
2
a ab

2
a
3

ba
2

a
2
b ca

2

b
2
a
2

a
4

b
4

a
2
c
2

c
4

c
2
b
2

b
5

a
5

c
5

∆

Figure 3. The Coxeter-like group associated with the RC-quasigroup
of Example 3.6; the 27-vertex cube shown above is the lattice of divisors
of a6 in the associated monoid M , the Hasse diagram of the weak order
on the finite group G with respect to the generators a, b, c, and the Cayley
graph of the germ derived from G with respect to the previous generators.
The complete Cayley graph of G would be obtained by adding arrows that
correspond to cases when the S-lengths do not add, for instance ab ·c = 1,
as when one transforms a cube into a 3-torus by gluing opposite faces.

Remark 5.9. (i) General results by Gromov imply that every finitely generated
groupG whose Cayley graph is (quasi)-isometric to that of Zn must be virtually Zn,
that is, there exists an exact sequence 1 → Zn → G→ G→ 1 with G finite, see [2].
By definition, an I-structure is an isometry as above, and the existence of a finite
quotient G as in Proposition 5.2 can be seen as a concrete instance of the above
(abstract) result.

(ii) In [16], one considers the quotientG0
S = G/Γ, where Γ consists of the elements

whose action on S is trivial. By Lemma 5.5, ψ(sd) is the identity permutation for
every s in S, meaning that every element s[d] belongs to Γ. Hence G0

S is a quotient

of our current group G, a proper one in general: for the groups of Example 5.8, in
the class 2 example, the orders of G0

S and G are 2 vs. 4 (ab lies in Γ but it is not

trivial in G), in the class 3 example, the orders are 3 vs. 27.

The question naturally arises of characterizing Coxeter-like groups associated
with finite RC-quasigroups (hence, equivalently, with solutions of YBE) as described
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in Proposition 5.2. We show now that, exactly as structure groups of solutions
of YBE are those groups that admit an I-structure, their Coxeter-like quotients are
those finite groups that admit the counterpart of an I-structure where some cyclic
group Z/dZ replaces Z, that is, what was called an I-structure of shape (Z/dZ)S

in Definition 4.1.

Proposition 5.10. For every finite group W , the following are equivalent:
(i) There exists a finite RC-quasigroup (S, ∗) of class d such that W is the

Coxeter-like group associated with (S, ∗) and d.
(ii) The group W admits a right-I-structure of shape (Z/dZ)S .

Proof. Assume that (S, ∗) is a finite RC-quasigroup and G and M are the asso-
ciated group and monoid. Then M admits an I-structure ν. The congruences of
Lemma 5.7, ≡

•
on ZS and ≡ on G, are compatible and ν induces a well-defined

map ν from (Z/dZ)S to G/≡ that makes (5.6) commutative. Then ν is bijective
by construction, and projecting (4.2) for ν gives its counterpart for ν. So ν is a
right-I-structure of shape (Z/dZ)S for G/≡, and (i) implies (ii).

Conversely, assume that W admits a right-I-structure of shape (Z/dZ)S . As
(Z/dZ)S satisfies (4.3), Lemmas 4.4 and 4.5 apply. Thus putting s ∗ t = ψ(s)(t)
yields an RC-quasigroup and (4.6) is valid. Let s and t belong to S. In (Z/dZ)S ,
we have sd = 1, whence ψ(sd) = ψ(1) = idS . Applying (4.6) (left), we deduce
Ωd+1(s, ..., s, t) = ψ(sd)(t) = t. Hence the RC-quasigroup (S, ∗) is of class d.

Now, let G be the group associated with (S, ∗), and let G be the associated finite
quotient as provided by Proposition 5.2. The group G is generated by S and it
admits a presentation consisting of all relations s(s ∗ t) = t(t ∗ s) with s, t in S. By
assumption, the group W is generated by S, and we observed that the relations
s(s ∗ t) = t(t ∗ s) with s, t in S are satisfied in W since, by definition, they are
equivalent to ν(st) = ν(ts) and (Z/dZ)S is Abelian. Hence there exists a surjective
homomorphism θ from G to W that is the identity on S.

(Z/dZ)S G

ZS G

W

ν̂

π
•

π
θ

θ

ν

Next, G is the quotient of G obtained by adding the relations s[d] = 1, that
is, Πd(s, ..., s) = 1 for s in S. Now, in W , we have Πd(s, ..., s) = ν(sd) by (4.6);
but sd = 1 holds in (Z/dZ)S , so, in W , we have Πd(s, ..., s) = 1 for every s in S.
Thus the surjective homomorphism θ factorizes through G, yielding a surjective
homomorphism θ from G to W . As both G and W have cardinality dn, the homo-
morphism θ must be an isomorphism. Hence W is the Coxeter-like quotient of the
group associated with (S, ∗) and d. So (ii) implies (i). �

Using Proposition 4.7, we deduce

Corollary 5.11. Every finite group that is the Coxeter-like group associated with
an RC-quasigroup of size n and class d embeds into the wreath product (Z/dZ) ≀Sn

so that the first component is a bijection.

Example 5.12. For the last group G of Example 5.8, owing to the fact that the
permutations of {1, 2, 3} associated with a, b, c all are the cycle f : 1 7→ 2 7→ 3 7→ 1,
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one obtains a description as the family of the 27 tuples (p, q, r; fp+q+r) with p, q, r
in Z/3Z, the product of triples being twisted by the action of fp+q+r on positions.

Corollary 5.11 implies that the Coxeter-like groups G associated with finite RC-
quasigroups are IG-monoids in the sense of [23]. It follows that they inherit all
properties of such monoids established there, in particular in terms of the derived
algebras K[G] and their prime ideals.

We conclude with linear representations of the groups G and G associated with
a finite RC-quasigroup. Here again, we use the I-structure to carry the results from
the trivial case of a free Abelian group to the group of an arbitrary RC-quasigroup.

Proposition 5.13. Assume that (S, ∗) is an RC-quasigroup of cardinal n and
class d. Let G be the associated group. For s the ith element of S, define

(5.7) Θ(s) = Θ
•
(s)Pψ(s),

where Θ
•
(s) is the diagonal n× n-matrix with diagonal entries (1, ... , 1, q, 1, ... , 1),

q at position i and Pψ(s) is the permutation matrix associated with ψ(s) : t 7→ s ∗ t.

Then Θ provides a faithful representation of G into GL(n,Q[q, q−1]); specializing
at q = exp(2iπ/d) gives a faithful representation of the associated group G.

Proof. First, Θ
•

defines a faithful representation of ZS into GL(n,Q[q, q−1]) since
Θ

•
(
∏

s
ei

i ) is the diagonal matrix with diagonal (qe1 , ... , qen), and specializing at
q = exp(2iπ/d) gives a faithful representation of (Z/dZ)S .

In order to carry the results to G and G, we show that (5.7) extends into
Θ(ν(a)) = Θ

•
(a)Pψ(a) for every a in ZS . As we are working with invertible matrices,

it is enough to consider multiplication by one element of S (division automatically
follows) and, therefore, the point for an induction is to go from a to as. We find

Θ(ν(as)) = Θ(ν(a)ψ(a)(s)) by (4.2)

= Θ(ν(a))Θ(ψ(a)(s)) by definition

= Θ
•
(a)Pψ(a) Θ

•
(ψ(a)(s))Pψ(ψ(a)(s)) by induction hypothesis

= Θ
•
(a)Θ

•
(s)Pψ(a) Pψ(ψ(a)(s)) by conjugating by Pψ(a)

= Θ
•
(as)Pψ(ψ(a)(s))◦ψ(a) by definition

= Θ
•
(as)Pψ(as). by (4.7)

It is then clear that Θ is well-defined on the monoid associated with (S, ∗), hence on
its group of fractions, which isG. For faithfulness, Θ

•
(ν−1(g)) is the unique diagonal

matrix obtained from Θ(g) by right-multiplication by a permutation matrix, so Θ(g)
determines ν−1(g), hence g.

Finally, specializing at a dth root of unity induces a well-defined faithful rep-
resentation of the finite group G since, by definition, g and g′ represent the same
element of G if and only if ν−1(g) and ν−1(g′) are ≡

•
-equivalent, hence if and only

if Θ
•
(ν−1(g))q=exp(2iπ/d) and Θ

•
(ν−1(g′))q=exp(2iπ/d) are equal. �

Example 5.14. Coming back to the last group in Example 5.8, the permutations
ψ(a), ψ(b), ψ(c) all are the 3-cycle (1, 2, 3), and we find the explicit representation

Θ(a) =




0 q 0
0 0 1
1 0 0



 , Θ(b) =




0 1 0
0 0 q
1 0 0



 , Θ(c) =




0 1 0
0 0 1
q 0 0



 .
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Specializing at q = exp(2iπ/3) gives a faithful unitary representation of the associ-
ated 27-element group G. Using the latter, it is easy to check for instance that G
has exponent 9: a, b, c have order 9, and all elements have order 1, 3, or 9.

Corollary 5.15. Every finite group that is the Coxeter-like group associated with an
RC-quasigroup of size n can be realized as a group of isometries in an n-dimensional
Hermitian space.

Indeed, the matrices Θ
•
(s)q=exp(2iπ/d) correspond to order d complex reflections,

whereas permutation matrices are finite products of hyperplane symmetries.
We shall not go farther in the description of the Coxeter-like groups G. The anal-

ogy with Coxeter groups suggests to further investigate their geometric properties:
according to Proposition 5.10 and Figure 3, the Cayley graph of the Coxeter-like
group associated with an RC-quasigroup of cardinal n and class d is drawn on an
n-torus and corresponds to a tiling of the torus (hence to a periodic tiling of Rn)
by dn copies of a single cubical pattern. On the other hand, as G characterizes the
RC-quasigroup it comes from, classifying all finite groups (or all periodic tilings
of Rn) that occur in this way is a priori not easier than classifying all solutions
of YBE, hence presumably (very) difficult.

We conclude with a speculative idea. So far, Propositions 3.7 and 4.2 provide
the only known characterization of a relatively large family of Garside groups: it
identifies Garside groups that admit a presentation of a certain form with those
that admit an I-structure, hence resemble a free Abelian group. One might replace
free Abelian groups with other groups Γ and consider as in [23] those groups G
that admit a “I-structure of shape Γ” in the sense that their Cayley graph is that
of Γ up to relabeling the edges. Should this approach make sense here, a natural
problem would be to characterize those Garside groups that admit an I-structure
of shape Γ for various reference (Garside) groups Γ, maybe a first step toward a
global classification of Garside groups which, so far, remains out of reach.
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