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Résumé. We show that every finitely generated Artin–Tits group admits a
finite Garside family, by introducing the notion of a low element in a Coxe-
ter group and proving that the family of all low elements in a Coxeter sys-
tem (W, S) with S finite includes S and is finite and closed under suffix and
join with respect to the right weak order.

1. Introduction

Artin–Tits groups, also known as Artin groups, are those groups defined by
relations of the form

(1) sts... = tst...

where both terms consist of two alternating letters and have the same length.
First investigated by J. Tits in the late 1960s [2], and then in [3] and [11], these
groups remain incompletely understood, with many open questions, including the
decidability of the Word Problem in the general case [6]. The only well understood
case is the one of spherical type, which is the case when the associated Coxeter
group, obtained by adding the relations s2 = 1 to the presentation, is finite. Then
a large part of the known results in this case is included in the fact that an Artin–
Tits group of spherical type is a Garside group, and the corresponding monoid is a
Garside monoid [10, 7].

At the heart of the properties of an Artin–Tits monoid of spherical type—and
more generally of a Garside monoid—lies the fact that every element of the latter
admits a distinguished decomposition (“greedy normal form”) involving the divi-
sors of a certain element ∆ (“Garside element”), in which each entry is in a sense
maximal [17, Chapter 9]. It was recently realized that such distinguished decom-
positions exist in the more general framework of what was called Garside families:
whenever F is a Garside family in a left-cancellative monoid M (or category), the
mechanism of the greedy normal form works and provides distinguished decompo-
sitions with nice properties [8, 9]. The case of a Garside monoid corresponds to a
Garside family consisting of the divisors of a single element ∆ (“bounded Garside
family”), but various examples of unbounded Garside families are now known.

If M is an Artin–Tits monoid of non-spherical type, that is, the associated
Coxeter group W is infinite, it is well known that M is not a Garside monoid:
the projection of a possible Garside element to W should be a longest element
of W , which cannot exist in this case. This however says nothing about possible
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unbounded Garside families in M . In view of effectivity results, the interesting
Garside families are the finite ones. The aim of this note is to announce a proof of
the following, previously conjectured, statement, which was supported by partial
results and computer experiments.

Theorem 1.1. Every finitely generated Artin–Tits monoid admits a finite Garside
family.

The proof of Theorem 1.1 relies on translating the problem into the language
of Coxeter groups and introducing the new notion of a low element by looking at
the action on the associated root system. Then Theorem 1.1 will follow from the
next result, which is of independent interest and seems rich in potential further
applications:

Theorem 1.2. For every Coxeter system (W, S) with S finite, the set of all low
elements of W includes S and is finite and closed under join (taken in the right
weak order) and suffix.

2. The Artin–Tits problem

If M is a (left-cancellative) monoid and f, g lie in M , one says that f left-divides g

or, equivalently, that g is a right-multiple of f , written f 4 g, if fg′ = g holds for
some g′ in M . If there is no nontrivial invertible element in M , that is, if fg = 1
holds only for f = g = 1, the left-divisibility relation is a partial ordering that is
compatible with multiplication on the left.

Definition 2.1. [8, 9] If M is a left-cancellative monoid with no nontrivial in-
vertible element, a Garside family of M is a family F containing 1 and such
that every element of M admits a F -normal decomposition, meaning a finite se-
quence (s1, ... , sp) satisfying s1 ···sp = g and such that all entries lie in F and
∀s∈F ∀f∈M (s 4 fsisi+1 ⇒ s 4 fsi) holds for every i < p.

(Demanding that a Garside family contains 1 is not necessary, but it is convenient
here, and harmless.) The intuition is that a sequence (s1, ... , sp) is F -normal if every
entry si lies in F and contains as much as possible of the remainder as it can: si is
a 4-greatest left-divisor of si ···sp lying in F (whence the word “greedy” often used
in this context). One shows that, in the context of Definition 2.1, the F -normal
decomposition is unique (up to adding or deleting final 1s) when it exists and that,
if F is a Garside family, (s1, ... , sp) is F -normal if and only if the simplified condition
∀s∈F (s 4 sisi+1 ⇒ s 4 si) holds for every i < p.

Various practical characterizations of Garside families are known, depending in
particular on the specific properties of the considered monoid. In the case of the
Artin–Tits monoid M associated with a Coxeter system (W, S), the presentation
of M by relations in which both members are words with equal length implies that
M is strongly Noetherian, meaning that there exits a map λ : M → N satisfying
λ(g) 6= 0 for g 6= 1 and λ(gh) > λ(g) + λ(h) for all g, h. On the other hand, by [3,
Verkürzungslemma], M admits conditional right-lcms, that is, any two elements
of M that admit a common right-multiple admit a right-lcm (least common right-
multiple).

Now, by [8, Proposition 3.27], in any left-cancellative monoid M with no nontriv-
ial invertible element that is strongly Noetherian and admits conditional right-lcms,
a subfamily F of M is a Garside family if and only if it contains all atoms of M
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and is closed under right-lcm and right-divisor. We recall that an element g is
called an atom if its only left-divisors are 1 and g, and a family F is called closed
under right-lcm if the right-lcm of two elements of F belongs to F when it exists;
similarly, F is closed under right-divisor if every right-divisor of an element of F

belongs to F , where a right-divisor of g is any element f such that g = g′f holds for
some g′. A direct consequence is that, under the above assumptions, there exists
a smallest Garside family in M , namely the closure of the atoms under right-lcm
and right-divisor [8, Corollary 3.28].

Applying this in the case of an Artin–Tits monoid, we obtain:

Proposition 2.2. A subfamily F of an Artin–Tits monoid M is a Garside family
if and only if it contains all atoms of M and is closed under right-lcm and right-
divisor. In particular, M admits a unique smallest Garside family, namely the
closure of the atoms under right-lcm and right-divisor.

Corollary 2.3. An Artin-Tits monoid M with atom set S admits a finite Garside
family if and only if the closure of S under right-lcm and right-divisor is finite.

Table 1 and Proposition 5.1 below give some information about the smallest
Garside family in a few Artin-Tits monoids. See Figure 1 for an example.
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Figure 1. The Cayley graph of the smallest Garside family F in an

Artin–Tits monoid of type Ã2, i.e., the monoid with three genera-
tors σ1, σ2, σ3 subject to the relations σ1σ2σ1 = σ2σ1σ2, σ2σ3σ2 =
σ3σ2σ3, σ3σ1σ3 = σ1σ3σ1; the Garside family consists of the 16 right-
divisors of σ1σ2σ3σ2, σ2σ3σ1σ3, and σ3σ1σ2σ1; the 6 white dots with
grey labels do not belong to F , witnessing that F is not closed under
left-divisor: σ1σ2σ3σ2 lies in F , whereas its left-divisors σ1σ2σ3 and
σ1σ3σ2 do not.

3. Translation of the problem to Coxeter groups

The above considerations admit simple counterparts involving Coxeter groups,
which we now explain. Assume that M is an Artin–Tits monoid with atom set S.
Then the quotient W of M obtained by adding the relations s2 = 1 to those of (1)
is a Coxeter group. The canonical projection π from M to W is injective on S

and (at the expense of identifying S with its image under π) the pair (W, S) is a
Coxeter system. By Matsumoto’s lemma, mapping a reduced decomposition of an
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type of (W, S) spherical
large
no ∞ Ã2 Ã3 Ã4 B̃3 C̃2 C̃3

#E 1 3
(
#S
3

)
3 10 35 14 3 12

#F #W O((#S)3) 16 125 1,296 315 24 317

Table 1. The smallest Garside family F in the Artin–Tits monoid
associated with the Coxeter system (W, S); when F is finite, it must
consist of all right-divisors of the elements of some minimal finite
set E (the “extremal elements”).

element of W to the element of M admitting that decomposition provides a well
defined set-theoretic section σ of π from W to M , and its image W is a copy of W

inside M .
For w in W , we denote by ℓ(w) the S-length of w in W , that is, the length

of a reduced word for w in S (the simple reflections). Then the product of two
elements f, g of W lies in W if and only if the equality ℓ(π(f))+ ℓ(π(g)) = ℓ(π(fg))
holds in W . We recall that the (right) weak order 6 on W is defined as follows:
let u, w ∈ W , then u 6 w holds if and only if a reduced word for u is a prefix
of a reduced word for w, if and only if there exists v in W satisfying w = uv

and ℓ(w) = ℓ(u) + ℓ(v) , see [1, Chapter 3]. Now, (W, 6) is a complete meet-
semilattice [1, Theorem 3.2.1], implying that, if two elements of u, v of W admit
a common upper bound with respect to 6, they admit a smallest one called the
join u ∨ v.

Lemma 3.1. Assume that (W, S) is a Coxeter system and M is the associated
Artin–Tits monoid.

(i) The copy W of W inside M is a Garside family of M .
(ii) If f, g lie in W , then f left-divides g in M if and only if π(f) 6 π(g) holds

in W . Similarly, f right-divides g if and only if a reduced word for π(f) is a suffix
of a reduced word for π(g).

(iii) If f, g lie in W , then f and g of W have a right-lcm in M if and only if
π(f) ∨ π(g) exists in W . In this case the right-lcm of f and g lies in W and is the
image under σ of π(f) ∨ π(g).

Proof. Point (i) follows from [8, Proposition 6.27], which says that W embeds in
the monoid M ′ generated by W with the relations fg = h for f, g, h satisfying
ℓ(f) + ℓ(g) = ℓ(h) and that its image is a Garside family in M ′. By [20], the
monoid M ′ is M , and the image of W is W . Next, translating the definition
of the left- and right-divisibility relations in M directly gives (ii). Finally, the
characterization of a Garside family in an Artin–Tits monoid and (i) imply that W

is closed under right-lcm in M . So, if two elements f, g of W admit a common right-
multiple, hence a right-lcm, in M , the latter lies in W , and, by (ii), its projection
under π must be the join of π(f) and π(g), which therefore exists. Conversely,
by (ii), if the join exists, its image under σ must be the right-lcm of f and g in W .
So (iii) is true. �

Using the dictionary of Lemma 3.1, we deduce:

Proposition 3.2. If (W, S) is a Coxeter system and M is the associated Artin–Tits
monoid, the projection of the smallest Garside family of M to W is the smallest
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subfamily of W that includes S and is closed under join (least common upper bound
with respect to the weak order) and suffix.

Thus, in order to prove Theorem 1.1, it is now sufficient to show that, if (W, S) is
a Coxeter system with S finite, then there exists a finite subset of W that includes S

and is closed under join and suffix.

4. Low elements in a Coxeter group

The above result will be established by introducing the notion of a low element
in a Coxeter group and showing that the family of all low elements has the expected
properties (Theorem 1.2).

From now on, (W, S) is a fixed Coxeter system with S finite. Let (Φ, ∆) be a
based root system in (V, B) with associated Coxeter system (W, S) as in [19, 15].
So, V is a real vector space, B is a symmetric bilinear form on V , and ∆ is a subset
of V consisting of one element αs for each s in S (the simple roots). The map
sending each s in S to the B-reflection in αs extends to a faithful representation
of W on V as the subgroup of the orthogonal group OB(V ) generated by these
reflections. We set Φ = W (∆) (the roots), Φ+ = cone(∆) ∩ Φ (the positive roots),
and Φ− = −Φ+ (the negative roots). Here cone(X) means the set of all nonnegative
linear combinations of elements of X (the conic closure of X).

For w in W , the (left) inversion set N(w) of w is Φ+ ∩ w(Φ−), which is also
{α ∈ Φ+ | ℓ(sαw) < ℓ(w)}. Its cardinality is ℓ(w). The following properties can be
found in, or deduced from, [1, Chapter 3] or [12].

Lemma 4.1. (i) For w in W and s in S satisfying ℓ(sw) < ℓ(w), the element sw

is a suffix of a reduced word for w and we have N(w) = {αs} ⊔ s(N(sw)) (disjoint
union).

(ii) The map N is a poset monomorphism from (W, 6) to (P(Φ+),⊆), and u 6 g

is equivalent to N(u) ⊆ N(g).
(iii) For u, v in W such that u ∨ v exists, N(u ∨ v) = cone(N(u) ∪ N(v)) ∩ Φ

holds.

In order to show that the language of reduced words of (W, S) is regular, Brink
and Howlett introduced in [4] the notion of dominance order and small roots. The
dominance order is the partial order 4 on Φ such that α 4 β holds (“β domi-
nates α”) if and only if we have

∀w ∈ W (w(β) ∈ Φ− ⇒ w(α) ∈ Φ−).

A positive root β is called small 1 when β dominates no other positive root than
itself, i.e., if we have ∀α ∈ Φ+ (α 4 β ⇒ α = β). We denote by Σ the set of small
roots. The small roots are characterized recursively by the following lemma.

Lemma 4.2. [4, 1] (i) The set ∆ is included in Σ.
(ii) For every β in Φ+ \∆, there exists α in ∆ satisfying ℓ(sαsβsα) = ℓ(sα)− 2,

or equivalently, B(α, β) > 0. Then, for every such α, one has β ∈ Σ if and only if
sα(β) lies in Σ and B(α, β) < 1 holds.

Theorem 4.3 (Brink-Howlett [4]). The set Σ is finite.

1. These roots are also called humble or elementary in the literature. We adopt here the
terminology of [1]. See [1, Notes, p.130] for more details.
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The following result is a restatement of a special case of Propositions 1.4 and 3.6
in [13]:

Lemma 4.4. For w in W , let N1(w) := {α ∈ Φ+ | ℓ(sαw) = ℓ(w) − 1} ⊆ N(w).
Then N1(w) is the set of all α in Φ+ such that the cone of {α} is an extreme ray
of the polyhedral cone spanned by N(w).

Definition 4.5. An element w of W is low if N1(w) ⊆ Σ holds, i.e., if we have
N(w) = cone(A) ∩ Φ for some some family of small roots A. We denote by L the
set of low elements of W .

We can now sketch the proof of Theorem 1.2; a complete proof of this theorem
can be found in [16].
Proof (sketch). First, the fact that L is finite follows from Theorem 4.3 and
Lemma 4.1(ii): there is only a finite number of subsets of Σ, hence a finite number
of low elements, since the map N is injective. Then, the fact that L includes S

follows from the fact that, for s in S, we have N(s) = {αs} ⊆ Σ. Now, assume
that we have N(u) = cone(A) ∩ Φ and N(v) = cone(B) ∩ Φ with A, B ⊆ Σ. By
definition of the conic closure, we have cone(cone(A) ∪ cone(B)) = cone(A ∪ B).
By Lemma 4.1(iii), we deduce

cone(N(u ∨ v)) ∩ Φ = cone(cone(A) ∪ cone(B)) ∩ Φ = cone(A ∪ B) ∩ Φ :

as A ∪ B is included in Σ, we conclude that u ∨ v lies in L, so L is closed under
join.

The difficult part is to show that L is closed under suffix, and here we only give
a sketch of the proof. Recall first that a maximal rank 2 root subsystem of Φ is
a set Φ′ of the form Φ′ = P ∩ Φ where P is a plane in V intersecting Φ+ in at
least two roots. The cone spanned by Φ′ ∩ Φ+ has then a basis ∆′ of cardinality 2
included in Φ′ ∩ Φ+, and then one has P ∩ Φ+ = cone(∆′) ∩ Φ.

(i) We start by showing that Σ is bipodal, meaning that, for every small root
β and for every maximal rank 2 root subsystem Φ′ of Φ with basis ∆′ satisfying
β ∈ Φ′ \ ∆′, we must have ∆′ ⊆ Σ. To prove this, we note that, for every α in ∆
satisfying B(α, β) > 0, the reflection subgroup generated by reflections in ∆′ ∪ {α}
is of rank at most three and β is a small root for its corresponding root subsystem.
Using this observation and Lemma 4.2, one reduces by induction on ℓ(sβ) to the
case of root systems of rank three. Then one checks the result in rank three using
the explicit descriptions of small roots in [5].

(ii) Now, consider w and s as in Lemma 4.1(i). Write s = sα with α ∈ ∆. For
every β in Φ+ \ {α}, let fα(β) be the simple root different from α in the standard
simple system of the maximal rank two root subsystem Φ ∩ P , where P is the
plane spanned by α and β: in other words, we have fα(β) ∈ Φ+ and P ∩ Φ+ =
cone({α, fα(β)})∩Φ+. Then we show that N1(sw) is included in {s(β), fα(β) | β ∈
N1

w \ {α}}. To prove this, one uses Lemma 4.4 to reformulate it as a statement in
terms of Bruhat order, and checks that statement using standard properties from
[14] of cosets of (maximal dihedral) reflection subgroups.

(iii) Finally, to show that L is closed under suffix, it is enough to show that,
for w in L (i.e., for N1(w) ⊆ Σ) and s in S satisfying ℓ(sw) < ℓ(w), the element sw

also lies in L. Write s = sα with α in ∆. By (ii), it is sufficient to show that s(β)
and fα(β) are small for every β in N1(w) \ {α}. But, by (i), fα(β) is small since
β is. On the other hand, assume that s(β) is not small. Then, Lemma 4.2 implies
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B(α, β) 6 −1 . But then the subgroup generated by s and sβ is infinite dihedral
with α and β as its simple roots, so its positive system Φ+ ∩ cone({α, β}), which is
infinite, must be included in N(w), which is finite. This contradiction shows that
s(β) must be small, and completes the proof. �

In [16], we introduce and study a more general notion, the n-low elements, that
are defined using a notion of n-small roots. The 0-low elements are the low elements
as defined in this text. We conjecture that, for every n, the n-low elements give rise
to a Garside family in the associated Artin–Tits monoid. We know that they form
a finite set, closed under join. To conclude, it would suffice to prove that the set of
n-small roots is bipodal for every n, which we conjecture in general and prove in
some cases including affine Weyl groups.

5. Descriptions of π(F ) and L in some special cases

We keep the same notation, and describe the image π(F ) of the smallest Garside
family F of M in a few cases. By Proposition 3.2, π(F ) is the closure of S under
join and suffix in W . We denote the Coxeter matrix of (W, S) as (ms,t)s,t∈S , and
write [s, t]k for the alternating product stst ··· with k factors, k > 1. It is well-
known that the standard dihedral parabolic subgroup W{s,t} consists of the identity
together with the elements [s, t]k and [t, s]k, k > 1. Moreover W{s,t} is finite if and
only if ms,t is finite and in this case the longest element is [t, s]ms,t

= [s, t]ms,t
.

Proposition 5.1. (i) If M is an Artin–Tits monoid of spherical type, then we have
π(F ) = L = W .

(ii) If M is an Artin–Tits monoid of large type (i.e., ms,t > 3 holds for all s 6= t),
then we have π(F ) = L = X, where X is the union of all finite standard parabolic
subgroups of W (each being of rank at most two) together with all elements t[r, s]mr,s

with r, s, t distinct in S and mr,s, ms,t, mt,r all finite.
(iii) If M is a right-angled Artin–Tits monoid (i.e., ms,t ∈ {2,∞} holds for

all s 6= t), then we have π(F ) = L = X, where X is the union of all finite standard
parabolic subgroups of W (which are of the form WI where I is a set of pairwise
commuting simple reflections).

Proof (sketch). First, σ(L) is a Garside family in M by Theorem 1.2, which implies
F ⊆ σ(L), whence π(F ) ⊆ L in every case. Hence, for (i), it suffices to show
W ⊆ π(F ) and, for (ii) and (iii), it suffices to show X ⊆ π(F ) and L ⊆ X .

(i) Here, π(F ) contains the join of all elements of S, which is the longest element
w0 of W , and every element of W is a suffix of w0. We deduce W ⊆ π(F ), as re-
quired. (Note that, if W is infinite, then any finite standard parabolic subgroup WI

generated by a subset I of S satisfies WI ⊆ π(F ) by the same arguments.)
(ii) First, S ⊆ π(F ) holds by definition. Next, for r, s distinct in S with mr,s

finite, the subgroup W{r,s} is finite and by the remark above we have W{r,s} ⊆ π(F ).
Finally, for r, s, t pairwise distinct in S with mr,s, ms,t and mt,r all finite, as just
seen, tr and ts lie in π(F ), hence so does their join, which is t[r, s]mr,s

. This shows
X ⊆ π(F ).

Now we show L ⊆ X . First, by [5], the full subgraph of the Coxeter graph
on the support of a small root contains no cycle or infinite bond. Hence, in large
type, the small reflections (meaning the reflections in a small root) are precisely
the reflections in the finite standard parabolic subgroups. Assume that r, s, t are
pairwise distinct in S. We claim that an element of L cannot admit a reduced
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expression of the form w = ut[r, s]k with u 6= t ∈ S and 2 6 k 6 mr,s. Indeed,
assume w ∈ L. For any reduced expression rn ···r1 of w and 1 ≤ i ≤ n we define
ti := rn ···ri+1riri+1 ···rn, a reflection with ℓ(tiw) < ℓ(w). By Lemma 4.4, ti is
a small reflection if ℓ(tiw) = ℓ(w) − 1 holds. So, here, tn−2, i.e., utrtu, must be
a small reflection, which forces u = r (and mr,t < ∞). Also, t1 must be a small
reflection. Now, we have t1 = utvtu = rtvtr with v = [r, s]2k−1, and v is a reflection
of W{r,s} unequal to r. Since r, s and t are pairwise non-commuting, Matsumoto’s
Lemma implies, first, ℓ(tvt) = ℓ(v) + 2 and, then, ℓ(t1) = ℓ(tvt) + 2, by considering
the cases v = s and ℓ(v) > 1 separately. Hence the smallest standard parabolic
subgroup containing t1 is W{r,s,t} of rank 3, a contradiction.

Similar (but simpler) arguments show that an element of L cannot admit a
reduced expression of the form t[r, s]k with r, s, t distinct in S and 2 6 k < mr,s, or
[r, s]k with r, s distinct in S and 2 6 k < mr,s = ∞. Now, every element w of W

has a unique decomposition w = uv with u ∈ W satisfying ℓ(us) = ℓ(ur) > ℓ(u)
and v ∈ W{r,s}, see [1, Proposition 2.4.4 (i)]. So, as L is closed under suffix, no
element of any of the three types excluded above can be a suffix of an element of L,
and L ⊆ X easily follows.

(iii) The proof is similar to (and simpler than) that of (ii). First, since small
roots cannot have any infinite bonds in their supports, the set of small reflections
is precisely S. Then, for I ⊆ S consisting of commuting simple reflections, the
parabolic subgroup WI is finite. Hence such WI are contained in π(F ), which
implies X ⊆ π(F ).

For L ⊆ X , suppose w = ur1 ···rn where u, r1, ... , rn are distinct pairwise com-
muting simple reflections such that u does not commute with all of r1, ... , rn, and
let i be minimal with uri 6= riu. If w were low, arguing as in (ii), we would deduce
that ur1 ···ri ···r1u, i.e., uriu, is a small reflection, so lies in S, leading to a contra-
diction with uri 6= riu. Hence ur1 ···rn is not low and, again, one easily deduces
L ⊆ X . �

In type C̃2, with Coxeter graph σ1 σ2 σ3 , one finds |L| = 25 and
|π(F )| = |F | = 24: here σ1σ3σ2 is low, but does not lie in π(F ). Hence π(F ) = L

need not hold in general.

However, for type Ãn, the equality π(F ) = L holds and we have |L| = (n + 2)n.
Indeed, while preparing this manuscript, the third author (CH), together with P.
Nadeau and N. Williams, built two automata recognizing the language of reduced
words with respective state sets π(F ) and L. It is easy to see that π(F ) and L

inject into the state set of the canonical automaton defined by Brink and Howlett,

see [1, p.120]. Now, in type Ãn, Eriksson showed that the latter is minimal [1,
p.125], so π(F ) and L must share its cardinality, which is (n + 2)n. A more direct
proof would be desirable.
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Caen, 14032 Caen, France

E-mail address: patrick.dehornoy@unicaen.fr

URL: www.math.unicaen.fr/∼dehornoy

Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame,

IN 46556, USA

E-mail address: Matthew.J.Dyer.1@nd.edu

URL: //math.nd.edu/people/faculty/matthew-j-dyer/
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