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Abstract. We establish a new, fairly general cancellativity criterion for a
presented monoid that properly extends the previously known related criteria.
It is based on a new version of the word transformation called factor reversing,
and its specificity is to avoid any restriction on the number of relations in the
presentation. As an application, we deduce the cancellativity of some natural
extension of Artin’s braid monoid in which crossings are colored.

Establishing that a presented monoid (or semigroup) is cancellative is in general
a nontrivial task, for which not so many methods are known [12, sec. 5.3]. If a
distinguished expression (“normal form”) has been identified for each element of the
monoid, and if, for each element a of the considered monoidM and every generator s
of the considered presentation, the normal form of a can be retrieved from that of sa
and s, then one can indeed conclude that sa = sb implies a = b. But, when no
normal form is known, no generic method is available. Adjan’s criterion based on
the left graph [1, 14] is useful, but, by definition, it applies only to presentations with
(very) few defining relations. Ultimately relying on Garside’s analysis of the braid
monoids B+++

n [11], the so-called reversing method [5, 8] provides a simple criterion,
which proved to be useful for many concrete presentations, typically those of all
Artin–Tits monoids. However, an intrinsic limitation of the method is that it only
applies to monoid presentations (S,R) that contain a limited number of relations,
namely those such that, for all s, t in S, there exists at most one relation of the
form s...= t... in R (“right-complemented” presentations). The aim of this paper
is to extend the previous criterion by developing a new approach that requires
no limitation on the number of defining relations. The result we prove takes the
following form:

Proposition. Assume that (S,R) is a monoid presentation such that

(i) there exists an ≡R-invariant map λ from S∗ to ordinals satisfying λ(sw) > λ(w)
for all s in S and w in S∗, and

(ii) for every s in S, for every relation w=w′ in R, and for every (S,R)-grid
from (s, w), there exists an equivalent grid from (s, w′), and vice versa, and

(iii) there is no relation sw= sw′ in R with w,w′ distinct.

Then the monoid associated with (S,R) admits left cancellation.

In the above statement, ≡R refers to the congruence on the free monoid S∗

generated by the relations of R, and an (S,R)-grid is a certain type of rectangular
van Kampen diagram specified in Definition 1.1 below. Note that Condition (i) in
the above statement is trivial when each relation in R consists of two words with
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the same length (“homogeneous presentation”), since, in that case, λ(w) can be
taken to be the length of w.

As an application, we deduce:

Proposition. For every n and every nonempty set C, the monoid

B+++

n,C :=

〈
σ
(a)
i (i 6 n, a ∈ C)

∣∣∣∣
σ
(a)
i σ

(b)
j = σ

(b)
j σ

(a)
i for |i− j| > 2

σ
(a)
i σ

(b)
j σ

(c)
i = σ

(c)
j σ

(b)
i σ

(a)
j for |i− j| = 1

〉+

is left and right cancellative.

The monoid B+++

n,C is an extension of Artin’s monoid B+++

n of positive n-strand
braids, and it is a typical example of a monoid that is inaccessible to all previously
known methods. We shall see that the elements of B+++

n,C admit a natural interpre-

tation in terms of braids with C-colored crossings, and both B+++

n,C and its universal
group might be structures of independent interest. They are in particular directly
reminiscent of (but not identical to) the monoids investigated in [2].

1. Using reversing grids

As in [8], our cancellativity criterion is based on some word transformation called
factor (or subword) reversing, and on a criterion for establishing that the latter
is complete, meaning that it detects every word equivalence with respect to the
presentation. The specificity of the current paper is to extend the framework so as
to avoid any restriction on the number of relations in the presentation. This is done
by introducing the new notion of a reversing grid (Section 1.1), then establishing a
convenient completeness criterion (Section 1.2), and finally deducing the expected
cancellativity criterion and various other consequences (Section 1.3).

1.1. The notion of a reversing grid. If S is a nonempty set, we denote by S∗ the
free monoid of all words in S, and use ε for the empty word. A monoid presentation

is a pair (S,R), where R is a list of (unordered) pairs of words of S∗; as usual,
we write relations with an equality sign, thus writing w=w′ for {w,w′}. We then
denote by 〈S |R〉+ the monoid presented by (S,R), that is, the monoid S∗/≡R,
where ≡R is the congruence on S∗ generated by R. To avoid any confusion due to
using = in relations of the presentation, we shall use ≡ for word equality.

A relation of the form w= ε with w nonempty will be called an ε-relation. In
the sequel, we shall only address monoid presentations (S,R) that contain no ε-
relation. In this case, the only invertible element of the monoid 〈S |R〉+ is the
unit 1, represented by the empty word. Note that every such presentation also
defines a semigroup and, in fact, most statements of this paper can be adapted to a
semigroup context. However, the overall philosophy here is really that of monoids,
and it seems more natural to stick to a monoid context.

Our main subject of investigation is a certain binary relation (or rewrite system)
on S × S associated with (S,R) as follows.

Definition 1.1. If (S,R) is a monoid presentation, an (S,R)-grid is a rectangular
diagram consisting of finitely many matching S ∪ {ε}-labeled pieces of the types

t

s
t1 tq

s1

sp

with s, t, s1, ..., sp, t1, ..., tq in S
and st1··· tq = ts1··· sp a relation of R,
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s

s

ε

ε ,

ε

s

ε

s ,

t

ε

t

ε ,

ε

ε

ε

ε with s, t in S.

For u, v, u1, v1 in S∗, we say that an (S,R)-grid Γ goes from (u, v) to (u1, v1) or,
equivalently, that (u, v) is the source of Γ and that (u1, v1) is its target, if the labels
of the left and top edges of Γ form the words u and v, respectively, whereas the
labels of the right and bottom edges form the words u1 and v1. If there exists an
(S,R)-grid from (u, v) to (u1, v1), we say that (u, v) is right R-reversible to (u1, v1),

written (u, v) yR (u1, v1) or, in a diagrammatic way,

v

v1

u u1yR ; we then

often skip R if there is no ambiguity.

In the above definition, a grid consists of (finitely many) rectangular pieces (or
tiles) whose edges are labeled by one or several letters of the current alphabet S
or by ε, and two adjacent pieces are called matching if the letters occurring on
the common part of their edges coincide (but we do not assume that all edges
involve the same number of letters: by definition, there is only one letter on the
top and the left edges, whereas there can be more on the bottom and right edges,
depending on the length of the words involved in the relations of the presentation).
Let us immediately observe that, by definition, a grid that contains more than
one elementary piece can be split into the union of several grids, see for instance
Lemma 1.5 below.

Example 1.2. Consider the Artin presentation of the n-strand braid monoid

(1.1) B+++

n :=

〈
σ1, ..., σn−1

∣∣∣∣
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

〉+

.

For n > 4, a typical grid for (1.1) is

(1.2)

σ2 σ3 σ2

σ3 σ2 σ1

ε σ1

σ2 σ1 σ3 σ2 ε σ1

σ1

σ1

σ2

σ1

σ2

σ3

ε

σ3

σ1

σ2

ε

σ3

It contains eight squares, of which five correspond to relations of (1.1), and it
goes from (σ1, σ2σ3σ2) to (σ1σ2σ3, σ2σ1σ3σ2σ1), witnessing the right reversing relation

(σ1, σ2σ3σ2) y (σ1σ2σ3, σ2σ1σ3σ2σ1), alias

σ2σ3σ2

σ2σ1σ3σ2σ1

σ1 σ1σ2σ3y .

In all five types of elementary pieces considered in Definition 1.1, the labels of the
two possible paths from the top-left vertex to the bottom-right vertex form words
that are ≡R-equivalent, i.e., represent the same element in the monoid 〈S |R〉+.
An easy induction on the number of elementary pieces implies:



4 PATRICK DEHORNOY

Lemma 1.3. For every monoid presentation (S,R), and for all words u, v, u1, v1
in S∗, the relation (u, v) yR (u1, v1) implies uv1 ≡R vu1. In particular,

(1.3) (u, v) yR (ε, ε) implies u ≡R v.

In other words, a reversing grid from (u, v) to (u1, v1) is a special type of van
Kampen diagram witnessing the ≡R-equivalence of the words uv1 and vu1.

Remark 1.4. In the articles [5, 6, 7, 10], reversing was described in terms of signed
S-words, defined to be words in a symmetrized alphabet S ∪ S with S consisting
of one copy s for each letter s of S. If w,w′ are signed S-words, one declares that
w yR w′ holds if one can go from w to w′ by a finite sequence of transformations,
each of which consists either in deleting some length two factor ss, or in replacing
some length two factor st with t1··· tqsp··· s1, where st1··· tq = ts1··· sp is a relation
of R. The connection with our current approach is easy: writing w for the word
obtained from w by exchanging s and s everywhere and reversing the order of letters,
the relation (u, v) yR (u1, v1) of Definition 1.1 is equivalent to uv yR v1u1 in the
sense of signed word reversing. The advantage of the current description is to make
it more visible that reversing only involves positive words and the presented monoid,
without connection with inverting the elements and moving to a group context. In
any case, the reversing grid is the fundamental object, and it seems more natural
to begin with it.

One of the advantages of the current grid-based approach is to make the following
technical result almost straightforward:

Lemma 1.5. For every monoid presentation (S,R), and for all u, v′, v′′, u1, v1
in S∗, the following are equivalent:

(i) The relation (u, v′v′′) yR (u1, v1) holds;
(ii) There exist u′, v′1, v

′′
1 in S∗ satisfying (u, v′) yR (u′, v′1), (u

′, v′′) yR (u1, v
′′
1 ),

and v1 ≡ v′1v
′′
1 .

Proof. Assume that Γ is an (S,R)-grid from (u, v′v′′) to (u1, v1). By definition, Γ
is a juxtaposition of elementary diagrams as in Definition 1.1.
Grouping the diagrams that lie below v′ on the one hand,
and below v′′ on the other hand, splits Γ into two grids Γ′

and Γ′′. By construction, the input of Γ′ is (u, v′); call
its output (u′, v′1). Then, by construction, the input of Γ′

is (u′, v′′), and its output has the form (u1, v
′′
1 ), with

v1 ≡ v′1v
′′
1 . So (i) implies (ii).

v′ v′′

v′1 v′′1

u u′ u1

v1

y y

Conversely, concatenating a grid from (u, v′) to (u′, v′1) and a grid from (u′, v′′)
to (u1, v

′′
1 ) provides a grid from (u, v′v′′) to (v′1v

′′
1 , u1), so (ii) implies (i). �

1.2. Completeness of reversing. A reversing grid is a van Kampen diagram of a
special type, namely one in which at most two edges (one horizontal, one vertical)
start from each node. If there exists an (S,R)-grid from (u, v) to (ε, ε), then, by
Lemma 1.3, the words u and v must be ≡R-equivalent. Conversely, if u and v are
≡R-equivalent words, there must exist a van Kampen diagram connecting u and v
but, in general, there is no reason why the latter could be chosen with the special
form of a reversing grid: for instance, Fact 2.10 below will provide an example of
an equivalence that cannot be recognised by a reversing grid. We now consider the
case when using reversing grids is always possible.
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Definition 1.6. We say that right reversing is complete for a monoid presenta-
tion (S,R) if the converse of (1.3) also holds, that is, if, for all u, v in S∗,

(1.4) (u, v) yR (ε, ε) is equivalent to u ≡R v.

This definition is theoretical, and our aim will be to establish a practical criterion
characterizing completeness of reversing. Two such criteria have already appeared.
A first criterion is described in [7], in terms of what is called the cube condition:
in principle, this criterion works for arbitrary presentations but, in practice, it
can be used only for complemented presentations, namely presentations with at
most one relation s...= t... for each pair of generators (s, t). Another criterion is
described in [6], but, even in theory, it does not apply to presentations that are
not complemented. What we do below is establish a new completeness criterion
that extends the one of [6] and works for every presentation, complemented or not.
The main point is that this new criterion, contrary to the cube condition, remains
tractable in the non-complemented case, i.e., without any restriction on the number
of relations in the considered presentation.

It follows from the definition of a reversing grid that reversing can be complete
only for monoid presentations with no ε-relation: indeed, by definition, (w, ε) y (ε, ε)
is impossible for w nonempty. So we shall hereafter restrict to monoid presentations
with no ε-relation. The crucial notion is then the notion of equivalent grids.

Definition 1.7. If (S,R) is a monoid presentation with no ε-relation, two (S,R)-
grids Γ,Γ′ are said to be equivalent if the labels of the four edges of Γ form words
that are ≡R-equivalent to their counterparts in Γ′.

We shall start from the following observation.

Lemma 1.8. If (S,R) is a monoid presentation with no ε-relation, a sufficient

condition for right reversing to be complete for (S,R) is that, for all u, v in S∗,

(♦∗)
For every grid from (u, v), and for all u′, v′ satisfying u′ ≡R u and v′ ≡R v,

there is an equivalent grid from (u′, v′).

Proof. Assume that (♦∗) holds for all u, v in S∗, and let u, u′ be ≡R-equivalent
words. A trivial induction on the length of u shows
that there exists a grid Γ from (u, u) to (ε, ε), as
shown on the right. Applying (♦∗) to Γ and to the
equivalences u ≡R u and u ≡R u′, we conclude that
there exists a grid Γ′ from (u, u′) that is equivalent
to Γ. Let (u′

1, v
′
1) be the output of Γ′. Then, by

assumption, we have u′
1 ≡R ε and v′1 ≡R ε. Because

R contains no ε-relation, u′
1 ≡R ε implies that u′

1

is empty, and v′1 ≡R ε implies that v′1 is empty.

s1 sℓ

ε sℓ
ε sℓ

ε ε

s1

sℓ

ε

sℓ

ε

sℓ

ε

ε

u

u

So Γ′ witnesses that (u, u′) right-reverses to (ε, ε) and, therefore, right reversing is
complete for (S,R). �

As it stands, Lemma 1.8 does not provide a tractable criterion, because it in-
volves arbitrary pairs of ≡R-equivalent words in S∗. We show now that, under
convenient finiteness assumptions (“noetherianity”), the most elementary instances
of the condition are sufficient to deduce the full condition.

If M is a monoid and g, h belong to M , one says that g properly right-divides h,
written g ≺R h or h ≻R g, if h = h′g holds for some non-invertible element h′ of M
(proper left-division ≺L would be defined symmetrically with g on the left).
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Definition 1.9. A monoid M is called right noetherian if there is no infinite de-
scending sequence with respect to proper right-divisibility relation in M , that is,
every sequence g0 ≻R g1 ≻R ... in M is finite1.

In a general monoid, the notions of left invertible, right invertible, and invertible
elements need not coincide. That difficulty vanishes in a right noetherian monoid.

Lemma 1.10. Assume that M is a right noetherian monoid.

(i) An element of M is left invertible if, and only if, it is right invertible if, and

only if, it is invertible.

(ii) The product of two non-invertible elements of M is non-invertible.

Proof. (i) First, we recall that, if an element admits a left and a right inverse, then
the latter are equal, for fg = gf ′ = 1 implies f = f(gf ′) = (fg)f ′ = f ′.

Now, assume that g admits a left inverse, say fg = 1. Two cases are possible.
If f is invertible, then so is g, since hf = 1 implies h = hfg = g, whence gf = 1.
Otherwise, gk = fggk gives gk ≻R gk+1 for every k > 0, leading to the infinite
descending sequence 1 ≻R g ≻R g2 ≻R ..., which contradicts right noetherianity.
Hence left invertibility implies invertibility in M .

Next, assume that g admits a right inverse, say gh = 1. Then h admits a left
inverse and, by the above result, h must be invertible. This in turn implies that h is
also a left inverse of g, so g is invertible, and right invertibility implies invertibility.

(ii) Assume that g and h are non-invertible elements of M , and gh is invertible.
Then g is right invertible and h is left invertible, so, by (i), both are invertible,
which implies that their product is invertible, a contradiction. �

Recognizing whether a monoid is noetherian is in general difficult. In practice,
we can use the following criterion.

Lemma 1.11. For every monoid M , the following are equivalent:

(i) The monoid M is right noetherian.

(ii) There exists a map λ from M to ordinals such that, for all g, g′ in M ,

(1.5) g ≻R g′ implies λ(g) > λ(g′).

(iii) There exists a map λ from M to ordinals satisfying, for all g, h in M ,

(1.6) λ(gh) > λ(h) + λ(g), and λ(g) > 0 whenever g is non-invertible.

Proof. The equivalence of (i) and (ii) is standard: for ≻R to admit no infinite
descending sequence means that the relation ≻R is well-founded, and it is well
known that this amounts to the existence of a map to the ordinals that decreases
along ≻R.

Next, (iii) implies (ii): indeed, assuming g = hg′ with h non-invertible and
applying (1.6), we obtain λ(g) > λ(g′) + λ(h) > λ(g′).

Finally, assume (i), whence (ii). As above, the relation ≻R is well founded, so,
by standard arguments, there exists a map λ : M → Ord inductively defined by

(1.7) λ(g) :=

{
0 if g is invertible,

sup{λ(f) + 1 | f ≺R g} otherwise.

1This notion of noetherianity, which is reminiscent of that of rings and algebras, is not the
only one used for semigroups: right noetherianity may also refer to a monoid in which every right
congruence is finitely generated, or to a monoid in which every right ideal is finitely generated.
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We claim that this particular function λ, which satisfies (1.5) by construction, also
satisfies (1.6). First, we observe that, if g is not invertible, then g ≻R 1 is true,
so we must have λ(g) > λ(1) = 0. So the second assertion in (1.6) is true. Next,
we observe that, if g is invertible, then λ(gh) > λ(h) holds. Indeed, the inequality
is trivial for λ(h) = 0, and, otherwise, the sets {f | f ≺R h} and {f | f ≺R gh}
coincide, and we deduce

λ(gh) = sup{λ(f) + 1 | f ≺R gh} = sup{λ(f) + 1 | f ≺R h} = λ(h).

We prove now using induction on λ(g) that λ(gh) > λ(h) + λ(g) holds for every h
in M . Assume first λ(g) = 0. Then g must be invertible, and we established above
the equality λ(gh) = λ(h) = λ(h)+λ(g), as expected. Assume now λ(g) > 0. Then
g is not invertible and, by definition, we have λ(g) = sup{λ(f)+ 1 | f ≺R g}. Let h
be an arbitrary element of M . By Lemma 1.11, gh is not invertible, and we obtain

λ(gh) = sup{λ(f) + 1 | f ≺R gh} by definition

> sup{λ(fh) + 1 | f ≺R g} because f ≺R g implies fh ≺R gh

> sup{λ(h) + λ(f) + 1 | f ≺R g} by induction hypothesis

= λ(h) + sup{λ(f) + 1 | f ≺R g} by monotonicity of ordinal addition

= λ(h) + λ(g) by definition.

Thus the first inequality in (1.6) is established, and (i) implies (iii). �

Translating the previous result at the level of presentations, we can state:

Lemma 1.12. If (S,R) is a monoid presentation, the monoid 〈S |R〉+ is right

noetherian whenever the following equivalent conditions hold:

there exists an ≡R-invariant map λ from S∗ to the ordinals

satisfying λ(sw) > λ(w) for all s in S and w in S∗;
(1.8)

there exists an ≡R-invariant map λ from S∗ to the ordinals

satisfying λ(uv) > λ(v) +λ(u) for all u, v in S∗, and λ(s) > 0 for s in S.
(1.9)

Thus, (1.8) provides a sufficient condition for right noetherianity—which is also
necessary if no element of S is invertible in 〈S |R〉+—and, when it is satisfied, one is
assured that the stronger condition (1.9) is satisfied (possibly by another map λ′).
As already noted, in the case of a homogeneous presentation, i.e., when all relations
have the form w=w′ with w,w′ of the same length, defining λ(w) to be the length
of w provides a map λ witnessing (1.9). Note that (1.8) can hold only if there is
no ε-relation so, when considering below monoid presentations that satisfy (1.8),
there is no need to explicitly require that they contain no ε-relation.

The main technical result we shall establish is the following criterion for the
completeness of reversing:

Lemma 1.13. A monoid presentation (S,R) satisfying (1.8) satisfies (♦∗) if, and
only if, for every element s in S and every relation w=w′ in R,

(♦) for every grid from (s, w), there is an equivalent grid from (s, w′),
and vice versa.

The proof will use an induction on an ordinal parameter called the diagonal of
a grid:
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Definition 1.14. If (S,R) is a monoid presentation and λ is a map witnessing (1.9),
then, if Γ is an (S,R)-grid from (u, v) to (u1, v1), the diagonal of Γ is the value
of λ(uv1).

Note that, with the above notation and by Lemma 1.3, the diagonal of Γ is also
equal to λ(vu1).

On the other hand, for w,w′ in S∗, we write distR(w,w′) for the combinatorial

distance between w and w′ with respect to R, namely the minimal length of an
R-derivation from w to w′ if w and w′ are ≡R-equivalent, and ∞ otherwise.

Proof of Lemma 1.13. One implication is trivial: (♦) for s and w=w′ follows from
applying (♦∗) to the words s and w with the equivalences s ≡R s and w′ ≡R w.

The point is to establish the converse implication. This will be done using two
nested inductions. First, we fix a map λ from S∗ to ordinals satisfying (1.9), which
is possible by Lemma 1.12. By the properties of ordinal addition, we always have

(1.10) λ(u) 6 λ(uv), λ(v) 6 λ(uv), and λ(v) < λ(uv) for u nonempty.

Then, for α an ordinal, we introduce the special case of Condition (♦∗) correspond-
ing to grids whose diagonal is at most α:

(♦∗
α)

For every grid with diagonal 6α from (u, v), and for all u′, v′ satisfying
u′ ≡R u and v′ ≡R v, there is an equivalent grid from (u′, v′).

Finally, for d a natural number, we consider the special case of Condition (♦∗
α)

corresponding to combinatorial distances between the sources of the old and new
grids bounded by d:

(♦∗

α,d)
For every grid with diagonal 6α from (u, v), and for all u′, v′ satisfying

distR(u, u′) + distR(v, v′) 6 d, there is an equivalent grid from (u′, v′).

It should be clear that (♦∗) for two words u, v is equivalent to the conjunction
of all (♦∗

α,d) for u, v. Using an induction on α and, for a given α, on d, we shall

establish that, if (♦) is true for every s and every relation w=w′ of R, then (♦∗

α,d)
is true for all u, v.

Assume first α = 0. Assume that Γ is a grid with zero diagonal from (u, v)
to (u1, v1), and u′ ≡R u and v′ ≡R v hold. By construction, λ(w) = 0 implies that
w is empty, so λ(uv1) = λ(vu1) = 0 requires that u, v, u1, and v1 all are empty.
Next, the assumption u′ ≡R ε implies that u′ is empty, and v′ ≡R v implies that v′

is empty as well. Then choosing Γ′ := Γ provides the expected condition. So (♦∗
0 )

is true for all u, v.
Assume now α > 0 and d = 0. Assume that Γ is a grid with diagonal 6α

from (u, v) to (u1, v1), and distR(u, u′) + distR(v, v′) = 0 holds. By definition, we
have u′ ≡ u and v′ ≡ v. Then choosing Γ′ := Γ provides the expected condition.
So (♦∗

α,0) is true for all u, v and for every α.
Assume now α > 0 and d = 1. Assume that Γ is a grid with diagonal 6α

from (u, v) to (u1, v1), and distR(u, u′)+distR(v, v′) = 1 holds. Up to a symmetry,
we may assume u′ ≡ u and distR(v′, v) = 1. By definition, the latter relation means
that there exists a relation w=w′ in R and two words v0, v2 satisfying v ≡ v0wv2
and v′ ≡ v0w

′v2. As v is the product v0wv2, repeated applications of Lemma 1.5
show that the assumption (u, v) yR (u1, v1) implies the existence of u0, u2 and v3,
v4, and v5 satisfying v1 ≡ v3v4v5 and

(u, v0) yR (u0, v3), (u0, w) yR (u2, v4), and (u2, v2) yR (u1, v5),
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corresponding to a decomposition of the grid Γ into the union of three grids

v0 w v2

v3 v4 v5
v1

v

u u0 u2 u1y y y

Assume first that the word u0 is empty. Then, necessarily, u1 and u2 are empty,
and we have v4 ≡ w and v5 ≡ v2. Then the situation is as the left diagram below

v0 w v2

v3 w v2
v1

v

u ε ε εy y y

v0 w′ v2

v3 w′ v2
v′1

v′

u ε ε εy y y

and the right diagram shows that (♦∗
α,1) is satisfied with u′

1 empty and v′1 ≡ v3w
′v2.

Assume now that u0 is not empty. Then we write u0 ≡ su3 with s in S. Splitting
the grid again, we obtain the existence of words u4, ..., u7 and v6, v7 such that the
situation is as in the left diagram below

v0 w v2

v6 v7

v3 v4 v5
v1

v

u

s

u3

u4

u5

u6

u7

u1y

y y

y y

v0 w′ v2

v′6 v′7

v3 v′4 v′5
v′1

v′

u

s

u3

u′
4

u′
5

u′
6

u′
7

u′
1

y

y y

y y

We shall now establish the existence of words u′
3, ..., u

′
7 and v′4, ..., v

′
7 such that the

right diagram above is a legitimate (S,R)-grid, with u′

i ≡R ui and v′j ≡R vj for
all i and j.

We begin with the top median square. By assumption, we have (s, w) yR

(u4, v6) and w=w′ ∈ R. By (♦), there exist u′
4 and v′6 satisfying

u′

4 ≡R u4, v′6 ≡R v6 and (s, w′) yR (u′

4, v
′

6).

Consider now the bottom median square. Then u3 ≡R u3 is trivial, whereas
v′6 ≡R v6 and (u3, v6) yR (u5, v4) hold by construction. Moreover, (1.10) implies

λ(u3v4) < λ(su3v4) 6 λ(v0su3v4) 6 λ(v0su3v4v5) = λ(uv1) 6 α,

whence β := λ(u3v4) < α. By induction hypothesis, (♦∗

β) is true for u3 and v6, and

we deduce the existence of u′
5 and v′4 satisfying

u′

5 ≡R u5, v′4 ≡R v4 and (u3, v
′

6) yR (u′

5, v
′

4).
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We move to the top right square. Then v2 ≡R v2 is trivial, whereas u′
4 ≡R u4

and (u4, v2) yR (u6, v7) hold by construction. Moreover, because w cannot be
empty, since R contains no ε-relation, (1.10) implies

λ(u4v7) < λ(wu4v7) 6 λ(v0wu4v7) 6 λ(v0wu4v7u7) = λ(uv1) 6 α,

whence γ := λ(u4v7) < α. By induction hypothesis, (♦∗
γ ) is true for u4 and v2, and

we deduce the existence of u′
6 and v′7 satisfying

u′

6 ≡R u6, v′7 ≡R v7 and (u′

4, v2) yR (u′

6, v
′

7).

Finally, we consider the bottom right square. By construction, we have u′
5 ≡R u5,

v′7 ≡R v7 and (u5, v7) yR (u7, v5). Moreover, (1.10) implies

λ(u5v5) 6 λ(v6u5v5) < λ(sv6u5v5) 6 λ(v0sv6u5v5) = λ(uv1) 6 α,

whence δ := λ(u5v5) < α. By induction hypothesis, (♦∗

δ ) is true for u5 and v7, and
we deduce the existence of u′

7 and v′5 satisfying

u′

7 ≡R u7, v′5 ≡R v5 and (u′

5, v
′

7) yR (u′

7, v
′

5).

Put u′
1 ≡ u′

6u
′
7 and v′1 ≡ v3v

′
4v

′
5. Then u′

1 ≡R u1 and v′1 ≡R v1 hold, and the
right diagram below witnesses (v, v′) yR (u′

1, v
′
1). Thus (♦∗

α,1) is satisfied for u
and v, which completes the case d = 1 in the induction for (♦∗

α).
Assume finally α > 0 and d > 2. Assume that Γ is a grid with diagonal 6α

from (u, v) to (u1, v1), and distR(u, u′) + distR(v, v′) = d holds. We can find two
words u′′, v′′ satisfying

distR(u′′, u) + distR(v′′, v) = d− 1 and distR(u′, u′′) + distR(v′, v′′) = 1.

By assumption, we have λ(uv1) 6 α. By induction hypothesis, (♦∗

α,d−1) is true

for u and v, so we deduce the existence of u′′
1 , v

′′
1 satisfying

u′′

1 ≡R u1, v′′1 ≡R v1, and (u′′, v′′) yR (u′′

1 , v
′′

1 ).

Now u′′ ≡R u and v′′1 ≡R v1 imply λ(u′′v′′1 ) = λ(uv1) 6 α. By induction hypothesis,
(♦∗

α,1) is true for u′′ and v′′, so we deduce the existence of u′
1, v

′
1 satisfying

u′

1 ≡R u′′

1 , v′1 ≡R v′′1 , and (u′, v′) yR (u′

1, v
′

1).

By transitivity of ≡R, we have u′
1 ≡R u1 and v′1 ≡R v1, and we conclude that

(♦∗

α,d) is true for u and v. This completes the induction. �

1.3. Main results. We are now ready to state the main results of the paper and,
in particular, to establish the cancellativity criterion announced in the title.

First, summarizing the results established so far directly gives the following:

Proposition 1.15. Assume that a monoid presentation (S,R) satisfies (1.8) and (♦)
for every s in S and every relation w=w′ in R.

(i) For all u, v, u1, v1 in S∗ satisfying (u, v) yR (u1, v1), and for all u′, v′ in S∗

satisfying u′ ≡R u and v′ ≡R v, there exist u′
1, v

′
1 satisfying (u′, v′) yR (u′

1, v
′
1),

with u′
1 ≡R u1 and v′1 ≡R v1.

(ii) For all u, v in S∗, the words u and v represent the same element of the

monoid 〈S |R〉+ if, and only if, (u, v) yR (ε, ε) holds.

Proof. Point (i) is Condition (♦∗) for u, v, and Lemma 1.13 states that the latter
holds whenever (1.8) holds and so does (♦) for every s in S and every relation w=w′

in R.
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(ii) By Lemma 1.8, (i), that is, (♦∗) for all u, v, implies that reversing is complete
for (S,R), which, by definition, implies the equivalence of (ii). �

Let us turn to left cancellativity. Then completeness of right reversing is useful,
as it shows that, if there is no obvious counter-example to left cancellativity, then
there is no hidden counter-example either:

Lemma 1.16. If right reversing is complete for the presentation (S,R) and R
contains no relation of the form su= sv with s in S and u, v distinct, then the

monoid 〈S |R〉+ admits left cancellation.

Proof. It is enough to prove that, for all words u, v in S∗, every relation of the form

su ≡R sv with s in S implies u ≡R v. So assume su ≡R sv.

By completeness of right reversing, we deduce (su, sv) yR

(ε, ε). By Lemma 1.5, a grid witnessing (su, sv) yR (ε, ε)
decomposes into four grids, as shown on the right. The as-
sumption about the presentation requires that u1 and v1 are
empty, which in turn implies u2 ≡ u and v2 ≡ v.

s v

v1 v2

ε ε

s

u

u1

u2

ε

ε

Then the bottom right square witnesses (u, v) yR (ε, ε), which, by Lemma 1.3,
implies u ≡R v. �

Putting things together, we deduce the practical cancellativity criterion that is
the main result of this paper, as stated in the preamble of the paper:

Proposition 1.17. Assume that a monoid presentation (S,R) satisfies (1.8) and
(♦) for every s in S and every relation w=w′ in R. Then a sufficient condition

for the monoid 〈S |R〉+ to be left cancellative is that there is no relation sw = sw′

in R with w,w′ distinct.

We recall once again that Condition (1.8) automatically holds when the consid-
ered presentation (S,R) is homogeneous.

Of course, a symmetric criterion exists for right cancellativity: right noetherian-
ity is to be replaced with left noetherianity, meaning the non-existence of an infinite
descending sequence with respect to proper left divisibility, and right reversing grids
are to be replaced with their left counterparts, in which one starts from the bottom
and right edges and uses the relations to build a rectangular diagram in which the
output corresponds to the left and top edges. Note that a right reversing grid is
not a left reversing grid, in particular because “cancellation squares” are not the

same:

s

s

ε

ε in a right reversing grid, to be compared with

ε

ε

s

s in a left

reversing grid.

Remark 1.18. Contrary to Adjan’s cancellativity criterion of [1, 14], the criterion
of Proposition 1.17 does not guarantee that the considered monoid 〈S |R〉+ embeds
in its universal group, that is, in the group defined, as a group, by the presenta-
tion (S,R), sometimes also called the enveloping group of 〈S |R〉+. For instance,
consider the monoid M with presentation

(1.11) 〈a, b, c, d, a′, b′, c′, d′ | ac = bd, ac′ = bd
′, a′c = b

′
d〉+.

The monoid M fails to satisfy the first Malcev condition [4, Chapter 12, page 310]
and, therefore, it does not embed in its universal group. However, the presentation
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of (1.11) is eligible for the cancellativity criterion of Proposition 1.17—but not for
Adjan’s criterion, since (a, b) is a cycle in the left graph.

We conclude with one more application of completeness of right reversing, now
in terms of common (right) multiples.

Proposition 1.19. Assume that a monoid presentation (S,R) satisfies (1.8) and
(♦) for every s in S and every relation w=w′ in R. Then two elements a, b
of 〈S |R〉+ respectively represented by words u and v in S∗ admit a common right

multiple if, and only if, there exists at least one (S,R)-grid from (u, v); in this case,

every common right multiple of a and b is a right multiple of an element represented

by uv1 and by vu1 with u1, v1 satisfying (u, v) yR (u1, v1).

Proof. Assume that there exists a grid from (u, v), say (u, v) yR (u1, v1). By
Lemma 1.3, this implies uv1 ≡R vu1, which shows that the element of 〈S |R〉+

represented by uv1 and vu1 is a common right multiple of a and b.

Conversely, assume that c is a common right multiple of a and b:
this means that there exist words u′, v′ such that c is repre-
sented by uv′ and vu′, which therefore satisfy uv′ ≡R vu′. Un-
der the assumptions, right reversing is complete for (S,R), so
(uv′, vu′) yR (ε, ε) holds. Splitting a reversing grid in four
pieces as shown on the right, we see that there exists a grid

v u′

v1 v2

ε ε

u

v′

u1

u2

ε

ε

from (u, v), and that the equivalences u′ ≡R u1v2, v2 ≡R u2, and v′ ≡R v1u2

are satisfied. The latter show that c is a right multiple of the element represented
by uv1 and vu1. �

Corollary 1.20. Assume that a monoid presentation (S,R) satisfies the assump-

tions of Proposition 1.19 and, moreover, it is right complemented, i.e., if, for all s, t
in S, there is at most one relation s...= t... in R. Then two elements a, b of 〈S |R〉+

respectively represented by u and v in S∗ admit a common right multiple if, and only

if, (u, v) yR (u1, v1) holds for some u1, v1; in this case, the element represented

by uv1 and vu1 is a right lcm of a and b.

Proof. The assumption that (S,R) is right complemented implies that an (S,R)-
grid from (u, v) is unique when it exists. Thus, Proposition 1.19 says that every
common right multiple of a and b is a right multiple of the element represented
by uv1. So the latter element, when it exists, is a right lcm of a and b. �

Specializing even more, we finally obtain:

Corollary 1.21. Assume that a monoid presentation (S,R) satisfies the assump-

tions of Proposition 1.19 and, moreover, for all s, t in S, there exist s′, t′ in S such

that st′ = ts′ is a relation of R. Then any two elements of the monoid 〈S |R〉+

admit a right lcm.

Proof. The presentation is eligible for Corollary 1.20, so we know that any two ele-
ments with a common right multiple admit a right lcm. The additional assumption
about (S,R) guarantees that, for all words u, v in S∗, there exists one (S,R)-grid
from (u, v): indeed, obstructions arise when a relation s...= t... is missing, and when
the process never terminates because smaller and smaller arrows appear without
end. The assumption that there always exist a relation s...= t... discards the first
obstruction; the assumption that the relations involve words of length 6 2 discards



A CANCELLATIVITY CRITERION FOR PRESENTED MONOIDS 13

the second one. Thus, any two elements of the monoid 〈S |R〉+ admit a common
right multiple, hence a right lcm. �

Remark 1.22. The cancellativity criterion of Proposition 1.17 subsumes the one
established in [6] in the case of a right complemented presentation. In such a case,
there exists at most one (S,R)-grid admitting a given source (u, v), and, therefore,
the output words can be seen as functions of u and v. Then, the cancellativity
criterion can be stated as a compatibility of the functions in question, called “com-
plement”, with the equivalence relation ≡R. In our general case, the scheme of the
proof remains the same, but one needs to find a different formalism, which makes
the extension nontrivial: indeed, whenever the considered presentation contains at
least two relations with the same initial letters, there may exist more than one
grid with a given source, and complement functions just make no sense. In [6], in
addition to qualitative aspects, some quantitative results are established, and they
can be extended to our current framework. Say that a monoid presentation (S,R)
has defect d if, for every s in S, every relation w=w′ in R, and every (S,R)-grid Γ
from (s, w), there exists an equivalent (S,R)-grid Γ′ from (s, w′) such that the sum
of the distances between the output words of Γ and Γ′ is bounded above by d, and d
is minimal with that property. Then the inductive proof of Proposition 1.13 can be
adapted to show that, if (S,R) has finite defect d and Γ is a grid from (u, v), then,
for all u′ ≡R u and v′ ≡R v, there exists an equivalent grid Γ′ from (u′, v′) such that
the distance between the outputs of Γ and Γ′ is bounded by an explicit function
of the distance between their inputs, actually a double exponential of base d. The
reader is referred to [6] to fill in the details.

2. Applications to variants of braid monoids

As an application of the results of Section 1, we now establish that the monoids
of colored braids, which are extensions of the classical Artin braid monoids, admit
cancellation.

2.1. Braids with colored crossings. We mentioned in Example 1.2 that, for
n > 1, the standard n-strand monoid B+++

n is the monoid presented by (1.1). We
recall, for instance from [3], that, under interpreting σi as the elementary crossing
that exchanges the strands at positions i and i+ 1 as in

σi :

1 2

· · ·

i−1 i i+1 i+2

· · ·

n

the monoid B+++

n is the monoid of isotopy classes of positive n-strand braid diagrams.
We now consider an extension of the monoid B+++

n :

Definition 2.1. For n > 1 and C a nonempty set, the monoid of positive C-colored

braids is the monoid with presentation

(2.1) B+++

n,C :=

〈
σ
(a)
i (i 6 n, a ∈ C)

∣∣∣∣
σ
(a)
i σ

(b)
j = σ

(b)
j σ

(a)
i for |i− j| > 2

σ
(a)
i σ

(b)
j σ

(c)
i = σ

(c)
j σ

(b)
i σ

(a)
j for |i− j| = 1

〉+

.

The idea is that the generator σ
(a)
i corresponds (as usual) to a crossing at posi-

tions i and i+1 with, in addition, an attached “color” a in C. The relations of (2.1)
are then natural if we imagine that the colors are connected with the names, or
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initial positions, of the strands (as opposed to the current positions). Typically, we
may think of taking for C the set of all (unordered) pairs in {1, ..., n}, the mean-

ing of the crossing σ
(p,q)
i being “the strands starting at positions p and q cross at

position i”, see Figure 1.

p q r

σ
(p,q)
i

σ
(p,r)
i+1

σ
(q,r)
iσ
(q,r)
i

∼

p q r

σ
(q,r)
i+1

σ
(p,r)
i

σ
(p,q)
i+1

Figure 1. Colored braid relation: if we give σ
(p,q)
i the meaning “the

strands starting at positions p and q cross at position i”, that is, if we
take into account the names (origins) of the strand that cross, then
the relations of (2.1) appear naturally.

Of course, when the colour set C is a singleton, we can forget about colours, and
the monoid B+++

n,C is simply the n-strand monoid—which is known to be cancellative

since Garside [11]. By contrast, for #C > 2 and n > 3, the presentation of (2.1) is
not complemented (for some generators s, t, there is more than one relation of the
type s... = t... in the presentation), and no simple criterion seems to apply. Here
we shall prove:

Proposition 2.2. The monoid B+++

n,C admits left and right cancellation.

The proof consists of applying the criterion of Proposition 1.17, namely consid-

ering all generators σ
(a)
i and all relations w=w′ of (2.1), and checking that, for

every reversing grid built from σ
(a)
i and w, there exists an equivalent reversing grid

built from σ
(a)
i and w′, and vice versa. We shall see that there are only two critical

cases, with all other cases either reducing to them or being trivial.

Lemma 2.3. Property (♦) holds for σ
(a)
1 and the relation σ

(b)
2 σ

(c)
3 σ

(d)
2 = σ

(d)
3 σ

(c)
2 σ

(b)
3 .

Proof. We look at all possible grids from (σ
(a)
1 , σ

(b)
2 σ

(c)
3 σ

(d)
2 ), and exhibit for each of

them an equivalent grid from (σ
(a)
1 , σ

(d)
3 σ

(c)
2 σ

(b)
3 ), and conversely. First, exhaustively

inspecting the presentation shows that the valid grids from (σ
(a)
1 , σ

(b)
2 σ

(c)
3 σ

(d)
2 ) are the

following grids, where e and f are arbitrary elements of the color set C:

(2.2)

σ
(b)
2 σ

(c)
3 σ

(d)
2

σ
(c)
3 σ

(f)
2 σ

(d)
1

ε σ
(d)
1

σ
(e)
2 σ

(b)
1 σ

(f)
3 σ

(c)
2

ε
σ
(d)
1

σ
(a)
1

σ
(e)
1

σ
(a)
2

σ
(e)
1

σ
(f)
2

σ
(a)
3

ε

σ
(a)
3

σ
(f)
1

σ
(e)
2

ε

σ
(a)
3

∗

∗
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A priori, one might use different colors f, f ′ in the squares marked ∗, but f 6= f ′

leads to a grid that cannot be completed, since there is no relation σ
(f)
2 ...=σ

(f ′)
2 ...

in (2.1). Now, consider the following valid grid:

(2.3)

σ
(d)
3 σ

(c)
2 σ

(b)
3

σ
(b)
3

σ
(d)
3 σ

(f)
2 σ

(c)
1 σ

(e)
3 σ

(b)
2

σ
(a)
1 σ

(a)
1

σ
(f)
1

σ
(a)
2

σ
(f)
1

σ
(e)
2

σ
(a)
3

The right edges of (2.2) and (2.3) both yield the word σ
(f)
1 σ

(e)
2 σ

(a)
3 . For the bottom

edges, using ≡R for the congruence generated by the relations of (2.1), we find

σ
(d)
3 σ

(f)
2 σ

(c)
1 σ

(e)
3 σ

(b)
2 ≡R σ

(d)
3 σ

(f)
2 σ

(e)
3 σ

(c)
1 σ

(b)
2 ≡R σ

(e)
2 σ

(f)
3 σ

(d)
2 σ

(c)
1 σ

(b)
2

≡R σ
(e)
2 σ

(f)
3 σ

(b)
1 σ

(c)
2 σ

(d)
1 ≡R σ

(e)
2 σ

(b)
1 σ

(f)
3 σ

(c)
2 σ

(d)
1 ,

which shows that (2.2) and (2.3) are equivalent grids.

Conversely, starting from σ
(a)
1 and σ

(d)
3 σ

(c)
2 σ

(b)
3 , the only possible reversing grids

have the form of (2.3) for some e and f in C, and then (2.2) provides the expected
equivalent grid. �

Lemma 2.4. Property (♦) holds for σ
(a)
2 and the relation σ

(b)
1 σ

(c)
3 = σ

(c)
3 σ

(b)
1 .

Proof. As in Lemma 2.3, we look at all reversing grids from (σ
(a)
2 , σ

(b)
1 σ

(c)
3 ), and

exhibit an equivalent grid from (σ
(a)
2 , σ

(c)
3 σ

(b)
1 ), and conversely. The grids from

(σ
(a)
2 , σ

(b)
1 σ

(c)
3 ) are the following grids, with d, e, f arbitrary in C:

(2.4)

σ
(b)
1 σ

(c)
3

σ
(e)
3 σ

(c)
2

σ
(d)
1 σ

(b)
2 σ

(e)
3 σ

(f)
2 σ

(c)
1

σ
(a)
2

σ
(d)
2

σ
(a)
1 σ

(a)
1

σ
(e)
2

σ
(d)
3

σ
(f)
1

σ
(a)
2

On the other hand, the following grid is also valid:

(2.5)

σ
(c)
3 σ

(b)
1

σ
(e)
1 σ

(b)
2

σ
(f)
3 σ

(c)
2 σ

(e)
1 σ

(d)
2 σ

(b)
3

σ
(a)
2

σ
(f)
2

σ
(a)
3 σ

(a)
3

σ
(e)
2

σ
(f)
1

σ
(d)
3

σ
(a)
2

The right edges of (2.4) and (2.5) correspond to equivalent words, since we have

σ
(e)
2 σ

(f)
1 σ

(d)
3 σ

(a)
2 ≡R σ

(e)
2 σ

(d)
3 σ

(f)
1 σ

(a)
2 .
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Similarly, we find for the bottom edges

σ
(f)
3 σ

(c)
2 σ

(e)
1 σ

(d)
2 σ

(b)
3 ≡R σ

(f)
3 σ

(d)
1 σ

(e)
2 σ

(c)
1 σ

(b)
3 ≡R σ

(d)
1 σ

(f)
3 σ

(e)
2 σ

(b)
3 σ

(c)
1 ≡R σ

(d)
1 σ

(b)
2 σ

(e)
3 σ

(f)
2 σ

(c)
1 .

Hence (2.4) and (2.5) are equivalent grids.

Conversely, the possible reversing grids from (σ
(a)
2 , σ

(c)
3 σ

(b)
1 ) have the form of (2.5)

for some f , e, and d in C, and then (2.4) provides the expected equivalent grid. �

Lemma 2.5. Property (♦) holds for all σ
(a)
i and all relations of (2.1).

Proof. First consider the case of σ
(a)
i and a relation σ

(b)
j σ

(c)
k σ

(d)
j = σ

(d)
k σ

(c)
j σ

(b)
k with, say,

k = j + 1. For i 6 j − 2, every grid from (σ
(a)
i , σ

(b)
j σ

(c)
k σ

(d)
j ) is a commutation grid,

namely a grid in which every tile corresponds to a commutation relation st= ts,

and then there exists an equivalent grid from (σ
(a)
i , σ

(d)
k σ

(c)
j σ

(b)
k ) as shown below:

(2.6)

σ
(b)
j σ

(c)
k

σ
(d)
j

σ
(b)
j σ

(c)
k σ

(d)
j

σ
(a)
i σ

(a)
i σ

(a)
i σ

(a)
i

σ
(d)
k

σ
(c)
j σ

(b)
k

σ
(d)
k σ

(c)
j σ

(b)
k

σ
(a)
i σ

(a)
i σ

(a)
i σ

(a)
i

The case when we start with a grid from (σ
(a)
i , σ

(d)
k σ

(c)
j σ

(b)
k ) is similar.

The case i = j − 1 corresponds to Lemma 2.3 for i = 1, and the general case is
similar, since the relations of (2.1) are invariant under shifting the indices.

Next, assume i = j. Then a grid from (σ
(a)
i , σ

(b)
j σ

(c)
k σ

(d)
j ) exists only for a = b, and

then it is as in the left hand diagram below, in which case the right hand diagram
provides an equivalent grid for e = c:

(2.7)

σ
(b)
j σ

(c)
k

σ
(d)
j

ε
σ
(c)
k σ

(d)
j

σ
(a)
i ε ε ε

σ
(d)
k

σ
(c)
j σ

(b)
k

ε σ
(b)
k

σ
(e)
k σ

(d)
j

ε ε

σ
(a)
i

σ
(e)
j

σ
(a)
k

ε

σ
(a)
k

ε

ε

In the other direction, the only possible grids from (σ
(a)
i , σ

(d)
k σ

(c)
j σ

(b)
k ) correspond to

the right hand diagram in (2.7) with e = c and a = b, in which case the left diagram
provides the required equivalent grid.

The case i = j+1 = k is symmetric to i = j. Similarly, the case i = j+2 = k+1
is symmetric to i = j − 1. Finally, the cases i > k + 2 are symmetric to i 6 j − 2.

We now consider the case of σ
(a)
i and a relation σ

(b)
j σ

(c)
k =σ

(c)
k σ

(b)
j with, say, k > j+2.

The case i 6 j − 2 is similar to that of (2.6), with commutation grids.

Assume i = j − 1. Then the grids from (σ
(a)
i , σ

(b)
j σ

(c)
k ) are as on the left diagram

below, with d arbitrary in C, and the right diagram then provides the expected

equivalent grid from (σ
(a)
i , σ

(c)
k σ

(b)
j ):

(2.8)

σ
(b)
j σ

(c)
k

σ
(c)
k

σ
(d)
j σ

(b)
i σ

(c)
k

σ
(a)
i

σ
(d)
i

σ
(a)
j

σ
(d)
i

σ
(a)
j

σ
(c)
k

σ
(b)
j

σ
(c)
k σ

(d)
j σ

(b)
i

σ
(a)
i σ

(a)
i

σ
(d)
i

σ
(a)
j
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In the other direction, the only grids from (σ
(a)
i , σ

(c)
k σ

(b)
j ) are those shown in the

right diagram of (2.8) with d arbitrary in C, and the left diagram then provides
the expected equivalent grid.

The case i = j is almost trivial: grids may exist only for a = b, and then they
take the form

(2.9)

σ
(b)
j σ

(c)
k

ε
σ
(c)
k

σ
(a)
i ε ε

σ
(c)
k

σ
(b)
j

σ
(c)
k

ε

σ
(a)
i σ

(a)
i ε

Next, assume j + 1 6 i 6 k − 1. If k = j + 2 holds, typically i = 2, j = 1,
k = 3, we are, up to a shifting of the indices, in the situation of Lemma 2.4, and
so (♦) is guaranteed. Otherwise, either i is adjacent to exactly one of j or k, and
the situation is that of (2.8), or i is at distance at least 2 from both j and k, and
the situation is that of (2.7). Finally, the cases of i = k, i = k + 1, and i > k + 2
are symmetric to those of (2.9), (2.8), and (2.7), respectively. Thus, all cases have
been successfully treated. �

We can now easily complete the proof of Proposition 2.2:

Proof of Proposition 2.2. The presentation (2.1) is eligible for the criterion of Propo-
sition 1.17. Indeed, all relations are of the form w=w′ with w,w′ of the same length.
Hence the monoid B+++

n,C is right noetherian. By Proposition 1.17 and Lemma 2.5,

right reversing is complete for (2.1). Hence, as the presentation contains no rela-
tion contradicting left cancellation, the monoid admits left cancellation. Finally,
the symmetry of the relations guarantees that the identity map on the generators
induces an anti-automorphism of the monoid, and, therefore, right cancellativity
automatically follows from left cancellativity. �

Inspecting the proofs above shows that, in the worst cases, the combinatorial
distance between the outputs of the old and the new grids is at most 5, so, according
to the terminology sketched in Remark 1.22, the defect of the presentation (2.1) is 5,
which could be used to obtain explicit upper bounds on the number or reversing
steps needed to possibly establish the equivalence of words.

As mentioned in Remark 1.18, our current approach says nothing about the
embeddability of the involved monoid in a group. So the obvious question after
Proposition 2.2 is

Question 2.6. Does the monoid B+++

n,C embed in its universal group?

A classical sufficient condition is provided by Ore’s theorem [13] stating in the
current context that a cancellative monoid M in which any two elements admit a
common right multiple embeds in its universal group, which, in addition, is then
a group of right fractions for M . This applies for instance to the monoid B+++

n .
However, for #C > 2, the monoid B+++

n,C admits no common multiple: for a 6= b,

the elements σ
(a)
1 and σ

(b)
1 admit no common right (or left) multiple, since there is

no valid reversing grid from (σ
(a)
1 , σ

(b)
1 ). In [9], the embeddability criterion of Ore’s

theorem is extended to cancellative monoids with no nontrivial invertible elements
that satisfy the following “3-Ore condition”:

(2.10)
any three elements of M which pairwise admit a common right multiple
admit a common right multiple, and similarly for left multiples,
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provided any two elements of M admit a left and a right gcd, i.e., greatest lower
bounds with respect to left and right division. For #C > 2, the monoid B+++

n,C

does not admit gcds: for instance, for a 6= b, the elements σ
(a)
1 and σ

(a)
2 left divide

both σ
(a)
1 σ

(a)
2 σ

(a)
1 and σ

(a)
1 σ

(b)
2 σ

(a)
1 , but no common multiple of σ

(a)
1 and σ

(a)
2 left divides

the above elements. This leads to two new questions:

Question 2.7. Does the monoid B+++

n,C satisfy the 3-Ore condition (2.10)?

Question 2.8. Is the 3-Ore condition (2.10) sufficient for implying the embeddabil-

ity of a monoid in its universal group in the case of a cancellative monoid that need

not admit gcds?

2.2. A variant. In [2], the authors consider a variant of the monoid B+++

n,C with the
same generators but with a restricted list of relations:

Definition 2.9. For n > 1 and C a nonempty set, the monoid of restricted positive

C-colored braids is the monoid with presentation

(2.11) B̃+++

n,C :=

〈
σ
(a)
i (i 6 n, a ∈ C)

∣∣∣∣
σ
(a)
i σ

(b)
j = σ

(b)
j σ

(a)
i for |i− j| > 2

σ
(a)
i σ

(a)
j σ

(b)
i = σ

(b)
j σ

(a)
i σ

(a)
j for |i− j| = 1

〉+

.

All relations of (2.11) are relations of (2.1), but, in the “Yang-Baxter” relations,
the median color must be equal to one of the extremal colors. Thus the monoid B+++

n,C

is a quotient of the monoid B̃+++

n,C . The authors of [2] ask whether the monoid B̃+++

n,C

is cancellative. Frustratingly, the criterion of Proposition 1.17 cannot be applied:

Fact 2.10. If C has at least two elements, right reversing is not complete for the

presentation (2.11).

Proof. Let a, b, c be elements of C satisfying a 6= b and a 6= c. Then Property (♦)

fails for σ
(a)
1 and the relation σ

(b)
2 σ

(c)
3 σ

(c)
2 =σ

(c)
3 σ

(c)
2 σ

(b)
3 . Indeed, we have the following

valid grid

(2.12)

σ
(c)
3 σ

(c)
2 σ

(b)
3

σ
(b)
3

σ
(c)
3 σ

(a)
2 σ

(c)
1 σ

(b)
3 σ

(b)
2

σ
(a)
1 σ

(a)
1

σ
(a)
1

σ
(a)
2

σ
(a)
1

σ
(b)
2

σ
(a)
3

and there may exist no equivalent grid from (σ
(a)
1 , σ

(b)
2 σ

(c)
3 σ

(c)
2 ). Indeed, according to

what was seen in the proof of Lemma 2.3, the only possible form for such a grid
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would be

(2.13)

σ
(b)
2 σ

(c)
3 σ

(c)
2

σ
(c)
3 σ

(y)
2 σ

(c)
1

ε σ
(c)
1

σ
(x)
2 σ

(b)
1 σ

(y)
3 σ

(c)
2

ε
σ
(c)
1

σ
(a)
1

σ
(x)
1

σ
(a)
2

σ
(x)
1

σ
(y)
2

σ
(a)
3

ε

σ
(a)
3

σ
(y)
1

σ
(x)
2

ε

σ
(a)
3

with x ∈ {a, b} and y ∈ {a, c}∩{x, c}. The equivalence of σ
(a)
1 σ

(b)
2 σ

(a)
3 and σ

(y)
1 σ

(x)
2 σ

(a)
3

would require in particular x = b. But, on the other hand, since no relation applies

to the word σ
(c)
3 σ

(a)
2 σ

(b)
3 , the equivalence class of the word σ

(c)
3 σ

(a)
2 σ

(c)
1 σ

(b)
3 σ

(b)
2 on the

bottom edge of (2.12) with respect to the congruence generated by the relations

of (2.11) consists of two words only, namely σ
(c)
3 σ

(a)
2 σ

(c)
1 σ

(b)
3 σ

(b)
2 and σ

(c)
3 σ

(a)
2 σ

(b)
3 σ

(c)
1 σ

(b)
2 ,

none of which begins with σ
(b)
2 . Hence no (σ

(a)
1 , σ

(b)
2 σ

(c)
3 σ

(c)
2 )-grid may be equivalent

to (2.12). �

The above negative result does not say that the monoid B̃+++

n,C is not cancellative,
it just says that the criterion of Proposition 1.17 fails to apply. The proof of
Fact 2.10 provides an explicit example of a valid relation that cannot be checked
using reversing, namely

(2.14) σ
(b)
2 σ

(c)
3 σ

(c)
2 σ

(a)
1 σ

(b)
2 σ

(a)
3 ≡R σ

(a)
1 σ

(c)
3 σ

(a)
2 σ

(c)
1 σ

(b)
3 σ

(b)
2 ,

whose only proof requires introducing an intermediate word beginning with σ
(c)
3 , for

instance σ
(c)
3 σ

(c)
2 σ

(b)
3 σ

(a)
1 σ

(b)
2 σ

(a)
3 . In other words, every van Kampen diagram witness-

ing (2.14) must contain a vertex from which three edges start. By adding (2.14)
as a new (redundant) relation in the presentation, we can make the above relation
eligible for factor reversing, but new obstructions are likely to appear, and it is not
clear why the completion procedure thus sketched should come to an end. Thus,
the following question is left open:

Question 2.11. [2] Does the monoid B̃+++

n,C admit cancellation? Does it embed in

its universal group?
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