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ACTION OF BRAIDS ON SELF-DISTRIBUTIVE SYSTEMS

Patrick DEHORNOY

Abstract. This paper is a survey of recent work about the action of braids on self-
distributive systems. We show how the braid word reversing technique allows one to
use new self-distributive systems, leading in particular to a natural linear ordering of
the braids.
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It has been observed for many years that there exist a connection between braids and left self-
distributive systems (LD-systems for short), defined as those algebraic systems consisting of
a set equipped with a binary operation ∗ that satisfies the left self-distributivity identity

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z). (LD)

In particular, D. Joyce [14] and S. Matveev [17], in independent works, have associated
with every knot a particular LD-system that characterizes the isotopy type of the knot, and
several variants of this approach have been subsequently proposed, with different names.

Here, we do not try to associate with a given braid or knot a particular LD-system that
gives information about it, but we fix an LD-system, and try to use it to get information
about arbitrary braids. To this end, we can use the intuition of braid colouring: assuming
that (S, ∗) is an LD-system, we use the elements of S as colours that we put on the strands
of the braids, with the rule that a ∗ b is the new colour obtained when a strand of colour a
overcrosses a strand of colour b. The left self-distributivity identity arises naturally as
the compatibility condition needed for the colouring to be invariant under positive braid
isotopy. In this way, we obtain for every LD-system S a well-defined action on Sn of the
monoid B+

n of n-strand positive braids. In order to define an action of the whole group Bn,
we must assume that the LD-system S has the additional property that all left translations
are bijective, i.e., left division is always possible with a unique well-defined result. Such
particular LD-systems have been called automorphic sets by E. Brieskorn [2], or racks by
R. Fenn and C. Rourke [12]. So, in this way, we obtain an action of Bn on the n-th power
of every automorphic set. Considering the known examples of automorphic sets leads to
several classical representations of the braid groups, in particular Artin’s representation in
the automorphisms of a free group and Burau representation.

Automorphic sets are LD-systems of a very special type, in particular they are idempotent,
or close to. In the recent years, new examples of LD-systems have appeared, in connection
with results of set theory involving some strange LD-system [7]. These new examples are
quite different from automorphic sets, and the question arises of extending the existence of
a braid action to them. The aim of this paper is to explain how this can be done, at the
expense of replacing an everywhere defined action with a partial action, in the case of a left
cancellative LD-system, i.e., when we assume that the left translations are injective, but
not necessarily surjective. Such a result makes most of the new examples of LD-systems
eligible for a braid action. In particular, considering the action in the case of a certain left
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semf-distributive operation on the braids themselves leads to defining a linear ordering of
the braids.

The author wishes to thank S. Matveev and the organizers of the Chelyabinsk Conference,
as well as A. Sossinsky, for their constant and friendly help during his visit to Russia in
August 1999.

1. Braid colourings

We use standard notations for braids, as introduced for instance in [18]. Thus Bn denotes
the n-strand braid group; it admits the presentation

〈σ1, . . . , σn−1 ; σiσj = σjσi for |i− j| ≥ 2, σiσjσi = σjσiσj for |i− j| = 1〉, (1.1)

where σi corresponds to the elementary braid diagram
1 2 i i+1 n

σi : . . . . . .

We use B∞ for the direct limit of the groups Bn when Bn is embedded in Bn+1 by adding
an additional strand on the right. Then B∞ admits the above presentation (1.1) with an
infinite sequence of generators σ1, σ2, . . .

By construction, an element of Bn is an equivalence class of braid words that live in the
free monoid over the 2n − 2 letters σ1, . . . , σn−1, σ−1

1 , . . . , σ−1
n−1. It will be crucial in the

sequel to carefully distinguish between the braids and the braid words that represent them.
We write ≡ for braid word equivalence. For b a braid and w a braid word, we say that w
is an expression of b to mean that b is the ≡-equivalence class of w in Bn. We say that a
braid word is positive if it involves no letter σ−1

i ; we say that a braid is positive if admits at
least one expression by a positive braid word. Positive n-strand braid form a submonoid B+

n

of Bn.

Assume that S is a fixed nonempty set. Let us use the elements of S to colour the strands
of the braids. To this end, we attribute to each top end of a strand a colour from S, and
we propagate the colour along the strands of the diagram. The general principle will be to
try to recover information about the considered braid by comparing the initial sequence of
colours with the final sequence.

If the colours are propagated without change along the strands, the final sequence of
colours is a permutation of the initial sequence, and the only piece of information about the
braid we get in this way is its projection in the symmetric group.

Things become more interesting when we allow colours to change at crossings. We begin
with the case of positive braid words. According to the idea of propagating the colours
downwards from the top of the braid diagram, it is natural to fix the rules of colouring so
that the colours after a crossing (the ‘new’ colours) are determined by the colours before
the crossings (the ‘old’ colours). Keeping the colours corresponds to the simplest function,
namely identity. The next step in complexity is to assume that only one colour may change,
say the colour of the front strand, and the new colour depends only on the two colours of
the strands that have crossed. This amounts to using a function of S × S into S, i.e., a
binary operation ∗ on S, so that the rule for propagating colours is

a b

a ∗ b a
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Formally, the construction consists in defining a (right) action of n-strand positive braid
words on Sn by the inductive rule

~a · ε = ~a, ~a · σiw = (a1, . . . , ai ∗ ai+1, ai, ai+2, . . . , an) · w, (1.2)

where ε denotes the empty word (everywhere in the sequel, when ~a denotes a sequence, we
use a1, a2, . . . for the successive entries of that sequence).

As we are interested in braids rather than in braid words, we wish the previous action to
induce a well-defined action of braids. This means that the colourings have to be invariant
under braid relations.

Lemma 1.1. Assume that (S, ∗) is a binary system. The right action of positive braid
words on Sn defined in (1.2) is invariant under braid relations (1.1) if and only if (S, ∗)
satisfies the left self-distributivity identity

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z). (LD)

Proof. Compare the diagrams:
a b c a b c

a∗b a c a
b∗c b

a∗b a∗c a a∗(b∗c) a b

(a∗b)∗(a∗c) a∗b a a∗(b∗c) a∗b a

The lower colours on the left strand coincide for every initial choice of a, b, c if and only if
the operation ∗ satisfies Identity (LD).

Let us now consider arbitrary braid words. We try to define an action of arbitrary words on
sequences of colours. We have to choose a rule for colouring negative crossings. In order to
have a flexible definition, let us first assume that the set of colours S is equipped with three
binary operations, say ∗, ◦ and ∗. We complete the previous definition with the rule

a b

a ◦ b b ∗ a

This amounts to extending the action of braid words on sequences of colours by defining,
for ~a = (a1, . . . , an),

~a · σ−1
i w = (a1, . . . , ai ◦ ai+1, ai+1 ∗ ai, ai+2, . . . , an) · w. (1.3)

Lemma 1.2. Assume that (S, ∗, ◦, ∗) is a triple binary system. The right action of braid
words on Sn defined by (1.2) and (1.3) is invariant under the relations σiσ

−1
i = σ−1

i σi = ε
if and only if the identities

x ◦ y = y, x ∗ (x ∗ y) = x ∗ (x ∗ y) = y

are satisfied in S.

Proof. This follows from:
a b a b

a ∗ b a a ◦ b b ∗ a

(a ∗ b)◦a a ∗ (a ∗ b) (a◦b)∗(b∗a) a◦b
First, we see on the rightmost strand that a ◦ b must coincide with b. Then looking at the
remaining strands gives the relations between the operations ∗ and ∗.
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We are thus led to the following definitions.

Definition. (i) An LD-system is defined to be a set equipped with a binary operation that
satisfies Identity (LD).

(ii) An LD-quasigroup is defined to be an LD-system equipped with an additional opera-
tion ∗ that satisfies the identity

x ∗ (x ∗ y) = x ∗ (x ∗ y) = y. (1.4)

As it stands, an LD-quasigroup is defined as a set equipped with two binary operations.
Actually, each operation determines the other one. Indeed, if (Q, ∗, ∗) is an LD-quasigroup,
then, for all a, b in Q, we have

a ∗ b = the unique c satisfying a ∗ c = b. (1.5)
Conversely, if (S, ∗) is an LD-system where all left translations are bijective, i.e., an auto-
morphic set in the sense of [2] or a rack in the sense of [12], then using (1.5) to define a
second operation ∗ gives S the structure of an LD-quasigroup.

So, at this point, we have the following result, which can be traced back at least to [2]:

Proposition 1.3. (i) Assume that (S, ∗) is an LD-system. Then, for every n, Formula (1.2)
defines an action of the braid monoid B+

n on Sn.
(ii) Assume that (S, ∗, ∗) is an LD-quasigroup. Then, for every n, Formulas (1.2) and (1.3)

(with a ◦ b = b) define an action of the braid group Bn on Sn.

In the current context, for ~a a sequence of elements of S, and b a braid, we shall write ~a · b
for the result of applying b to ~a, i.e., for ~aw where w is an arbitrary expression of b. The
question we raised above is to extract information about the braid b from the comparison of
the sequences ~a and ~a · b. Let us first consider some classical examples of LD-quasigroups.

Example 1.4. (trivial) Let S be an arbitrary set. Then the trivial operations
a ∗ b = b, a ∗ b = b (1.6)

turn S into an LD-quasigroup. Using such a structure to colour the strands of the braids
amounts to keeping the colours unchanged. Then, for every braid b in Bn, and every
sequence ~a in Sn, we have

~a · b = perm(b)−1(~a), (1.7)
where perm(b) denotes the permutation that specifies the initial positions of the strands
in terms of their final positions (this choice is needed for perm to be a homomorphism
with composition of permutations). Thus, using this particular LD-quasigroup leads to the
surjective homomorphism

perm : Bn →→ Sn.

Example 1.5. (shift) Let Z denote the set of all integers. Then the operations
a ∗ b = b + 1, a ∗ b = b− 1 (1.8)

turn Z into an LD-quasigroup. For every braid b in Bn, and every sequence ~a in Zn, we find∑
(~a · b) =

∑
~a + sum(b), (1.9)

where
∑

~a denotes a1 + . . . + an, and sum(b) denotes the exponent sum of b, defines to be
the difference between the number of positive and legative letters in any expression of b.
Thus, using this LD-quasigroup leads (in particular) to the homomorphism

sum : Bn →→ (Z,+).
Observe that the above two LD-quasigroups belong to the more general type

a ∗ b = f(b), a ∗ b = f−1(b) (1.10)
where f is an arbitrary bijection of the considered domain.
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Example 1.6. (mean) Assume that E be a Z[t, t−1]-module. The binary operations

a ∗ b = (1− t)a + tb, a ∗ b = (1− t−1)a + t−1b (1.11)

turn E into an LD-quasigroup. For every n-strand braid b, and every sequence ~a in En,
the output colours ~a · b are linear combinations of ~a. There exists an n × n-matrix rB(b)
satisfying

~a · b = ~a× rB(b). (1.12)

Thus, using the current LD-quasigroup leads to a linear representation

rB : Bn → GLn(Z[t, t−1]).

This linear representation of Bn is known as the (unreduced) Burau representation. Observe
that Example 1.4 corresponds to the specialization t = 1 in the current example.

Example 1.7. (conjugacy) Let G be a group. Then the binary operations defined by

x ∗ y = xyx−1, x ∗ y = x−1yx (1.13)

turn G into an LD-quasigroup. In particular, let Fn be the free group based on {x1, . . . , xn}.
For b an n-strand braid, let b̃ denote the image of b under the antiautomorphism of B∞ that
is the identity on the generators σi: thus an expression of b̃ is obtained from an expression
of b by reversing the orders of the letters. Then define elements y1, . . . , yn of G by

(y1, . . . , yn) = (x1, . . . , xn) · b̃,
and let ϕ(b) be the endomorphism of Fn that maps xi to yi for every i. Then ϕ is an
endomorphism of Bn into End(Fn), and, as ϕ(b−1) = ϕ(b)−1 holds by construction, the
image of ϕ is actually included in Aut(Fn). As in Example 1.4, using here b̃ is necessary
because we consider a right action of B∞, while, by definition, composition of automor-
phisms corresponds to a left action. Thus, using the current LD-quasigroup leads to Artin’s
representation

ϕ : Bn → Aut(Fn),

which is known to be faithful. Using the framework of free differential calculus, it can be
seen that the mean operations of Example 1.6 as projections of the operations of the current
example, this corresponding to the fact that the Burau matrix of a braid can be deduced
from the associated automorphism of a free group.

This more or less completes the list of the classical examples of LD-quasigroups. As using
them leads to nontrivial representation results for the braid groups, it is natural to raise the
following question:

Question 1.8. Can we find new examples of LD-quasigroups, and deduce further properties
of braids?

The answer to the first part is positive, but it seems that the answer to the second part
seems to be essentially negative. To explain this, let us introduce one more example.

Example 1.9. (half-conjugacy) Let again G be a group, and X be a subset of G. The
binary operations defined by

(a, x) ∗ (b, y) = (axa−1b, y), (a, x) ∗ (b, y) = (ax−1a−1b, y) (1.14)

turn G×X into an LD-quasigroup. These operations can be called “half-conjugacy” because
it is related to conjugacy as follows: let f be the mapping of G × X to G defined by
f((a, x)) = axa−1; then f is a surjective homomorphism of G × X equipped with the
current operations onto G equipped with the operations of Example 1.7.
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Half-conjugacy of a group gives, in some sense, the most general LD-quasigroup: indeed, if
we denote by FX the free group based on X, then the LD-quasigroup consisting of FX ×X
with the half-conjugacy operations of (1.14) is a free LD-quasigroup based on X: every
LD-quasigroup generated by X is a quotient of FX ×X, and, therefore, the optimal results
about braids we can expect to obtain using LD-quasigroups are those coming from FX ×X.
The mapping f of Example 1.8 is not an embedding, and, in theory, we could perhaps
obtain more using FX × X with half-conjugacy than using FX with conjugacy, but the
distance between the two structures is short—half-conjugacy is a sort of semidirect product
of conjugacy with the trivial operations of Example 1.5—and we have no positive result in
this direction.

The LD-quasigroups of Examples 1.4 (trivial), 1.6 (mean), and 1.7 (conjugacy) all are
idempotent, i.e., they satisfy the identity

x ∗ x = x.

This is not true for the LD-quasigroups of Example 1.5 (shift) and 1.8 (half-conjugacy), but
a weak form of idempotency is also satisfied.

Lemma 1.10. Every LD-quasigroup satisfies the identity

(x ∗ x) ∗ y = x ∗ y. (1.15)

Proof. As FX ×X equipped with half-conjugacy is a free LD-quasigroup, it suffices to check
that (1.15) holds in this particular LD-quasigroup, which is straightforward. However, we
can also write directly, using the identities of an LD-quasigroup:

(x ∗ x) ∗ y = (x ∗ x) ∗ (x ∗ (x ∗ y)) = x ∗ (x ∗ (x ∗ y)) = x ∗ y.

Important from our point of view is the fact that Identity (1.15) prevents LD-quasigroups
from satisfying some orderability conditions. In the sequel, if (S, ∗) is an arbitrary binary
system, and a, b are elements of S, we say that a is a left divisor of b if b = a ∗ x holds
for some x. We shall consider below those LD-systems where the left divisibility relation
induces an ordering. A necessary condition in this direction (actually also sufficient) is that
left division has no cycle, and we are thus led to study the possible cycles of left division.
In those LD-systems we have met so far, the answer is the worst possible. In an idempotent
system S, every element a is a left divisor of itself, and, therefore (a) is a cycle of length 1
for left division. As we have seen, all LD-quasigroups are not idempotent, but, from the
point of view of cycles in left division, the situation is the same:

Proposition 1.11. In every LD-quasigroup, left division admits cycles of length 1.

Proof. Assume that (Q, ∗) is an LD-quasigroup, and a is an arbitrary element of Q. Then
we have (a ∗ a) ∗ a = a ∗ a, hence (a ∗ a) is a cycle of length 1 for left division.

At the end of this first section, we are thus led to the following double question:

Question 1.12. (i) Do there exist some LD-system (necessarily not an LD-quasigroup)
where left division admits no cycle?

(ii) If so, can we use such an LD-system to colour braids?
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We shall see in the sequel that the answer to both questions is positive. For the moment, let
us conclude with a last example, which brings a (very) partial answer to Question 1.12.(i).

Example 1.13. (injection bracket, [4]) Let us denote by I∞ the monoid of all injective,
non-bijective mappings of N into itself equipped with composition. For f , g in I∞, let us
define the injection f [g] by

f [g](n) =
{

fgf−1(n) if n belongs to the image of f ,
n otherwise.

(1.16)

It is easy to verify that this bracket operation is left self-distributive, and that the equality

coIm(f [g]) = f(coIm(g))

holds, where coIm(f) denotes the complement of the image of f . It follows that no equality
of the form f [g] = f is possible in I∞, for coIm(f [g]), being included in Im(f), is always
disjoint from coIm(f). It follows that left division in (I∞, [ ]) admits no cycle of length 1
(but it can be checked that it admits cycles of length 2).

2. Braid word reversing

As they stand, the previous results cannot really be improved. In order to go further, we
need new results about braids, or, more precisely, about braid words. In this section, we
introduce a specific technique called word reversing, which will give us the needed results.
This technique is reminiscent of the tools used by Garside in his solution of the conjugacy
problem of Bn [13]. However, our point of view is slightly different as we put the emphasis
on braid words rather than on braids. This distinction will be crucial for the application to
braid colourings in Section 3.

A trivial observation is that all relations in the standard presentation of the braid group
have the form

σi · . . . = σj · . . . ,
where the dots represent some braid word depending on σi and σj . Let us denote by Σ the
alphabet {σ1, σ2, . . .}. We use Σ∗ for the set of all words on Σ, i.e., for the set of all positive
braid words, and (Σ ∪ Σ−1)∗ for the set of all words on Σ ∪ {σ−1

1 , σ−1
2 , . . .}, i.e., the set of

all braid words. Let us consider the function θR of Σ× Σ into Σ∗ defined by

θR(σi, σj) =

σi for |i− j| ≥ 2,
σiσj for |i− j| = 1,
ε for i = j.

Then, according to the presentation (1.1) of B∞, braid word equivalence is generated by the
relations

σi θR(σj , σi) ≡ σj θR(σi, σj) (2.1)

for i 6= j. We call a monoid or a group presentation of the type above a (right) complemented
presentation, for the relations exactly tell us how to complete each pair of generators on the
right so as to obtain a common multiple of these generators.

Now we observe that, for all i, j, Relation (2.1) implies the equivalence

σ−1
i σj ≡ θR(σj , σi) θR(σi, σj)−1 (2.2)

in the free monoid (Σ ∪ Σ−1)∗, where, for w a braid word, we denote by w−1 the braid
word obtained from w by reversing the order of the letters and exchanging σi with σ−1

i

everywhere. It follows that, if a braid word w′ is obtained from another braid word w by
repeatedly applying relations of the type (2.2), then w and w′ are equivalent, i.e., they
represent the same braid.
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Definition. Assume that w, w′ are braid words. We say that w′ is obtained from w by
k steps of (right) word reversing if one can transform w into w′ by successively replacing
k factors of the type σ−1

i σj with the corresponding factor θR(σj , σi) θR(σi, σj)−1.

Example 2.1. (word reversing) Let us consider w = σ−1
1 σ−1

3 σ2σ4. Then w contains the
factor σ−1

3 σ2, and this is the only factor of the type σ−1
i σj in w: so applying word re-

versing to w leads in one step to w1 = σ−1
1 σ2σ3σ

−1
2 σ−1

3 σ4. We see that, in w1, there
are two factors of the type σ−1

i σj , namely the initial factor σ−1
1 σ2, and the final fac-

tor σ−1
3 σ4. Hence two words can be obtained from w by two steps of word reversing,

namely σ2σ1σ
−1
2 σ−1

1 σ3σ
−1
2 σ−1

3 σ4 and σ−1
1 σ2σ3σ

−1
2 σ4σ3σ

−1
4 σ−1

3 . The reader can continue,
and check that all sequences of word reversing from w end in 16 steps with the word
σ2σ1σ3σ2σ4σ3σ2σ1σ

−1
4 σ−1

3 σ−1
2 σ−1

1 σ−1
3 σ−1

2 σ−1
4 σ−1

3 . The latter word can no longer be re-
versed, for it contains no more factor of the form σ−1

i σj .

The existence of a complemented presentation in itself is a rather weak hypothesis, which
does not seem to be sufficient to deduce interesting properties of the associated monoid or
group in general. Now the point is that, provided the complement mapping satisfies certain
effective conditions, which is the case for the braid complement θR, then many properties
automatically follow. We refer to [6] for a complete development about braid word reversing,
and just mention here those results we need in the sequel.

Proposition 2.2. Assume that w is a braid word. Then there exist an integer cR(w) and
two positive words NR(w), DR(w) such that every sequence of word reversing from w leads
in cR(w) steps to the word NR(w)DR(w)−1.

For instance, in he case of the word w of Example 2.1, the words NR(w) and DR(w) are
σ2σ1σ3σ2σ4σ3σ2σ1 and σ3σ4σ2σ3σ1σ2σ3σ4.

It follows from (2.2) that, if the braid word w is reversible to w′, then, in particular, w
and w′ are equivalent. Thus, Proposition 2.2 implies that

w ≡ NR(w) DR(w)−1 (2.3)

holds for every braid word w, and, therefore, an application is Garside’s well-known re-
sult that every braid can be expressed as a right fraction ab−1 with a, b in the positive
braid monoid B+

∞. This explains our notation, where NR means “right numerator”, and DR

means “right denominator”. However, Proposition 2.2 tells us a little more than a mere
equivalence of w and NR(w)DR(w)−1 as it gives a distinguished way for transforming w
into NR(w)DR(w)−1. The point is that this transformation avoids introducing any new
factor of the type σ−1

i σi or σiσ
−1
i .

About the number cR(w), an upper bound O(`22n) can be proved for w an n-strand braid
word of length `. Hence, when n is not bounded, the only uniform upper bound proved
so far is an exponential function of the length. Actually, we have no example with more
than a cubic complexity, and we conjecture that the optimal upper bound is polynomial
(presumably cubic).

Let us observe that braid word reversing is defined only at the level of braid words, and
not of braids. Indeed, the functions NR and DR do not induce well-defined mapping of B∞
into B+

∞. For instance, let w = σ1σ
−1
1 and w′ = ε. Then w and w′ are equivalent, as both

represent the unit braid. Now, by definition, each of w, w′ is terminal with respect to word
reversing, as it contains no factor σiσ

−1
j , and we find

NR(σ1σ
−1
1 ) = DR(σ1σ

−1
1 ) = σ1, NR(ε) = DR(ε) = ε,

which shows that w ≡ w′ does not implie NR(w) ≡ NR(w′) or DR(w) ≡ DR(w′). Nevertheless,
there exists a connection between the numerators and denominators of equivalent braid
words:
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Lemma 2.3. Assume that w and w′ are equivalent braid words. Then there exist two
positive braid words v, v′ satisfying

NR(w) v ≡ NR(w′) v′ and DR(w) v ≡ DR(w′) v′. (2.4)

By construction, the braid relations are symmetric, and everything we said so far about right
word reversing can be transposed into a similar statement about left braid word reversing.
We introduce the mapping θL of Σ× Σ into Σ∗ by

θL(σi, σj) =

 σi for |i− j| ≥ 2,
σjσi for |i− j| = 1,
ε for i = j,

and we see that the braid relations (1.1) also consist of the family of all relations

θL(σi, σj) σj ≡ θR(σj , σi) σi (2.5)

for i 6= j. We observe now that (2.5) implies

σi σ−1
j ≡ θL(σj , σi)−1 θL(σi, σj), (2.6)

and we naturally define left braid word reversing by saying that w′ is obtained from w by
k steps of left word reversing if one can transform w into w′ by successively replacing k factors
of the type σiσ

−1
j with the corresponding factor θL(σj , σi)−1 θL(σi, σj). The counterpart of

Proposition 2.2 is:

Proposition 2.4. Assume that w is a braid word. Then there exist an integer cL(w) and
two positive words NL(w), DL(w) such that every sequence of word reversing from w leads
in cL(w) steps to the word DR(w)−1NL(w).

The words NL(w) and DL(w) are called the left numerator and the left denominator of w.
Of course, as for the functions NR and DR, the left functions NL and DL do not induce
well-defined mappings on braids. However, let us mention here that, when a double, left
and right, word reversing is used, then the resulting mappings induce well-defined mappings
on braids (we shall not use this result in the sequel).

Proposition 2.5. For w a braids word, define NRL(w) = NL(NR(w)DR(w)−1) and DRL(w) =
DL(NR(w)DR(w)−1). Then the mappings NRL and DRL induce well-defined mappings on
braids, i.e., w ≡ w′ implies NRL(w) ≡ NRL(w′) and DRL(w) ≡ DRL(w′).

The construction of the words NRL(w) and DRL(w) is very simple: starting with w, we first
reverse it to the right, obtaining the word NR(w)DR(w)−1, and we then reverse the latter
word to the left: the final word is a left fraction, which we call DRL(w)−1NRL(w). Observe
that we obtain in this way a simple solution to the word problem of braids, i.e., to the
question of algorithmically recognizing whether a given braid word represents or not the
unit braid.

Corollary 2.6. Assume that w is a braid word. Then w ≡ ε holds if and only if the
words NRL(w) and DRL(w) are empty.

Proof. As NRL(ε) = DRL(ε) = ε trivially holds, applying Proposition 2.5 in the case w ≡ ε
gives NRL(w) ≡ DRL(w) ≡ ε. Now, for a positive braid word to be equivalent to the empty
word implies being equal to the empty word.

9



Let us finally mention that, for every braid word w, the word DRL(w)−1NRL(w) happens to
be the shortest left fraction equivalent to w, i.e., the shortest word of the form u−1v with
u, v in Σ∗. Using this remark and the normal form result of [1] for positive braids leads to
a new construction of the greedy normal form of [10] and [9].

3. Action of braids on left cancellative LD-systems

We have described in Section 1 a natural action of the braid monoid B+
n on the n-th power

of every LD-system by means of braid colourings, and observed that the action can be
extended to the whole braid group Bn when the considered LD-system admits bijective left
translations, i.e., when it is what we have called an LD-quasigroup. In this section, we
show how to extend the result to LD-systems where left translations are only suppoed to be
injective, at the expense of obtaining a partial action only. The existence and uniqueness of
this partial action relies on using the braid word reversing technique of Section 2.

Definition. Assume that (S, ∗) is an LD-system and w is an n-strand braid word, n ≤ ∞.
We say that a pair of sequences (~a,~c) in Sn is an S-colouring for w if colours from S can be
attributed to each segment in the canonical diagram associated with w in such a way that
~a are the input (top) colours, ~c are the output (bottom) colours, and the rules

a b

a ∗ b a

a ∗ b a

a b

are obeyed at each crossing.

If w is a positive braid word, we know that, for every sequence ~a in Sn, the pair (~a,~a ·w) is
a colouring of w, and, if S is an LD-quasigroup, the same holds for every braid word. The
point is that, even if the LD-system we consider is not an LD-quasigroup, S-colourings exist
for every braid word.

Lemma 3.1. Assume that (S, ∗) is an LD-system and u, v are positive n-strand braid
words. Then, for every sequence ~x in Sn, the pair (~x · u, ~x · v) is an S-colouring for u−1v.

Proof. (See figure below) We apply the colours ~x in the middle of the diagram associated
with u−1v and propagate them upwards through u−1 and downwards through v. So we
obtain ~x · u on the top of the diagram, and ~x · v on the bottom. By construction, the rules
of colouring are obeyed in each part of the diagram.

u−1

x1 x2 x3

~x · u

~x

~x · v

v
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We know that every braid can be represented by a braid word of the form u−1v with u, v
positive braid words, i.e., every braid word w is equivalent to a word of the form above.
This, however, is not sufficient for concluding that there exists an S-colouring for w: indeed,
an S-colouring for a braid word w need not be an S-colouring for every braid word w′ that
is equivalent to w. Now, the results of Section 2 can be applied.

Lemma 3.2. Assume that (S, ∗) is an LD-system. Assume that the braid word w is L-
reversible to w′, and that (~a,~c) is an S-colouring for w′. Then (~a,~c) is an S-colouring for w
as well. In particular, if (~a,~c) is an S-colouring for D−1

L (w)NL(w), it is an S-colouring for w
as well.

Proof. It suffices to prove the result when w is L-reversible to w′ in one step. If w′ has
been obtained from w by deleting some factor σiσ

−1
i , or replacing σiσ

−1
j with σ−1

j σi with
|j − i| ≥ 2, the result is obvious. Assume that w′ has been obtained from w by replacing
some factor σiσ

−1
j with |j − i| = 1 by σ−1

j σ−1
i σjσi. Assume for instance i = 1 and j = 2.

So we start with a colouring of σ−1
2 σ−1

1 σ2σ1, and we wish to construct a colouring of σ1σ
−1
2

with the same end colours. Let a1, a2, a3 be the initial colours. The hypothesis that the
rules of colouring are obeyed at the first crossing implies that there exists c2 in S such that
a2 = a3 ∗ c2 holds. Similarly, there exists c1 in S such that a1 = a3 ∗ c1 holds. Then the
colouring must be as displayed on the figure below, and, then, the colouring displayed on
the right answers the question.

a1 a2 a3 a1 a2 a3
a3 c2a1

c1 c2 a3∗c1∗c2
a3∗c1 a3a3

c1a3 c1∗c2

a3∗c1∗c2 a3 c1
a3∗c1∗c2 a3 c1

A similar argument gives the following result, whose proof is left to the reader.

Lemma 3.3. Assume that (S, ∗) is an LD-system. Assume that the braid word w is R-
reversible to w′, and that (~a,~c) is an S-colouring for w. Then (~a,~c) is an S-colouring for w′

as well. In particular, if (~a,~c) is an S-colouring for w, it is an S-colouring for NR(w)DR(w)−1

as well.

Definition. Assume that (S, ∗) is an LD-system. For ~a in S∞ and w a braid word, we
say that ~a is admissible for w if there exists at least one sequence ~c such that (~a,~c) is an
S-colouring of w.

It follows from Lemmas 3.1 and 3.2 that, for every LD-system S and every braid word w,
there exists at least one sequence in S∞ that is admissible for w. We can extend this result
to the case of several braid words simultaneously.

Lemma 3.4. Assume that (S, ∗) is an LD-system. Let w1, . . . , wn a finite family of braid
words. Then there exists a sequence in S∞ that is admisible for each wi.

Proof. Lemma 3.2 implies that every sequence of the form ~x ·uDL(w) with u a positive word
is admissible for w. We can find positive words u1, . . . , un satisfying

u1DL(w1) ≡ . . . ≡ unDL(wn) :

11



          

we choose u1, . . . , un so that uiDL(wi) represents the left lcm of the positive braids rep-
resented by DL(w1), . . . , DL(wn), which is known to exist in the braid monoid B+

∞. Then,
for every initial choice ~x, the common value of the sequences ~x · uiDL(wi) is admissible
for wi.

Proposition 3.5. Assume that (S, ∗) is a left cancellative LD-system, and w, w′ are
equivalent braid words. Then, for each sequence ~a in S∞ that is admissible both for w
and w′, there exists exactly one sequence ~c such that (~a,~c) is both an S-colouring of w
and w′.

Proof. Assume that (~a,~c) is an S-colouring of w, and (~a,~c ′) is a colouring of w′. As w and
w′ are equivalent, by Lemma 2.3, there exist positive words v, v′ satisfying

NR(w)v ≡ NR(w′)v′, DR(w)v ≡ DR(w′)v′.

By Lemma 3.3, (~a,~c) is also an S-colouring of the word NR(w)DR(w)−1, and, therefore, it is
an S-colouring of NR(w)vv−1DR(w)−1 too. By construction, we have

~a ·NR(w)v = ~c ·DR(w)v.

The same argument gives ~a ·NR(w′)v′ = ~c ′ ·DR(w′)v′, and, therefore, we have

~c ·DR(w)v = ~c ′ ·DR(w′)v′ = ~c ′ ·DR(w)v.

This implies ~c = ~c ′. Indeed, it suffices for an induction to show that ~x · σi = ~x ′ · σi implies
~x = ~x ′. The hypothesis implies xi = x′i and xi∗xi+1 = x′i∗x′i+1, hence xi+1 = x′i+1 provided
(S, ∗) admits left cancellation.

The previous result applies in particular to the case when the words w and w′ coincide,
and it tells us that there exists at most one colouring of w with a given initial sequence of
colours. It follows that the following definition makes sense:

Definition. Assume that (S, ∗) is a left cancellative LD-system. For w a braid word and
~a a sequence in S∞, ~a · w is defined to be the unique sequence ~c such that (~a,~c) is an S-
colouring of w, if it exists. If b is a braid, ~a · b is defined to be the sequence ~a · w, where w
is an arbitrary expression of b such that ~a · w exists, if such an expression exists.

We thus have extended the action of braids to all left cancallative LD-systems, at the expense
of having in general a partial action, i.e., one that need not be defined everywhere. In the
case of a left cancellative LD-system that is not an LD-quasigroup, the hypothesis that the
sequence ~a · b exists does not imply that ~a ·w exists for every braid word w that represents b.
The important fact is that, yet the action is partial, there always exist sequences that are
admissible for a given braid. More precisely, we deduce from Lemma 3.4 the follwing result:

Proposition 3.6. Assume that (S, ∗) is a left cancellative LD-system. Then, for every
finite family of braids b1, . . . , bm in Bn, there exists at least one sequence ~a in Sn such that
~a · bi is defined for every i.

12



           

We are thus led to looking for new examples of LD-systems, namely left cancellative LD-
systems that need not be LD-quasigroups, i.e., where left division need not be always pos-
sible.

Example 3.7. (free LD-systems) It is known [5] that free LD-systems of any rank are left
cancellative. Thus they are eligible for the partial action of braids. We shall not investigate
this action directly here.

Example 3.8. (injection bracket) The injection bracket of Example 1.13 is left cancellative.
Indeed, assume that f , g, g′ are (non-surjective) injections of N into itself satisfying f [g] =
f [g′]. For every nonnegative integer p, f [g](f(p)) = f [g′](f(p)) expands into f(g(p)) =
f(g(p′)), which implies g(p) = g′(p) as f is injective. Hence (I∞, [ ]) is eligible for the partial
braid action.

Example 3.9. (braid exponentiation) Let sh denote the shift endomorphism of the
group B∞ that maps σi to σi+1 for every i. Let us define a new binary operation ∗ on B∞
using the formula

a ∗ b = a sh(b) σ1 sh(a−1). (3.1)

The motivation for introducing (3.1) (called braid exponentiation in recent references) is
provided by the general theory of left self-distributivity [5]. It is easy to verify that the
operation ∗ is left self-distributive, and that the LD-system (B∞, ∗) is left cancellative (the
latter point follows from the injectivity of the endomorphism sh). Hence (B∞, ∗) is eligible
for the partial braid action.

4. The action of braids on braids

In the sequel, we shall concentrate on the latter action, i.e., the action of braids on braids
equipped with the self-distributive operation of (3.1). Here we shall see how this action
naturally leads to introducing a linear order of the braids, as an application of general
results about LD-systems.

The first technically significant fact is that the action of braids on braids can be connected
with a multiplication on the right in B∞, a property that is reminiscent of Formulas 1.7,
1.9, and 1.12.

Definition. We denote by B
(∞)
∞ the set of all sequences in B∞∞ with only finitely many

entries not equal to 1, and, for ~x in B
(∞)
∞ , we define

shΠ(~x) =
∞∏

k=1

shk−1(xk) = x1 sh(x2) sh2(x3) . . . (4.1)

Lemma 4.1. Assume ~a ∈ B
(∞)
∞ , b ∈ B∞, and ~a · b exists. Then we have

shΠ(~a · b) = shΠ(~a) b. (4.2)

Proof. We use induction on the minimal length of a braid word w representing b and such
that ~a · w exists. If w is empty, everything is clear. The result is true when w is empty.
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Assume now w = σiw0. Let b0 be the braid represented by w0. By hypothesis, ~a · σi and
(~a · σi) · b0 exist. We find first

shΠ(~a · σi) = shΠ((a1, . . . , ai ∗ ai+1, ai, . . .))

= a1 sh(a2) . . . shi−1(ai ∗ ai+1) shi(ai) shi+1(ai+2) . . .

= a1 sh(a2) . . . shi−1(ai) shi(ai+1) σi shi(ai)−1 shi(ai) shi+1(ai+2) . . .

= a1 sh(a2) . . . shi−1(ai) shi(ai+1) σi shi+1(ai+2) . . .

= a1 sh(a2) . . . shi−1(ai) shi(ai+1) shi+1(ai+2) . . . σi = shΠ(~a) σi,

as σi commutes with every braid in the image of shk with k ≥ i+1. Applying the induction
hypothesis, we deduce shΠ(~a · b) = shΠ(shΠ(~a · σi)) b0 = shΠ(~a) σi b0 = shΠ(~a) b.

It follows that the action of B∞ on B
(∞)
∞ is strongly faithful:

Proposition 4.2. Assume that b and b′ are braids in B∞ and there exists at least one

sequence ~a in B
(∞)
∞ such that ~a · b and ~a · b′ are defined and equal. Then b and b′ are equal.

Proof. By Lemma 4.1, ~a · b = ~a · b′ = ~c implies b = shΠ(~c) shΠ(~a)−1 = b′.

We shall now use the partial action of braids on braids to construct a linear ordering on B∞.
To this end, we introduce a certain subset of B∞. For every braid b, there exists a least
sub-LD-system of (B∞, ∗) that contains b, namely the closure of the singleton {b} under
operation ∗. A significant rôle is played by the closure of {1} in the sequel.

Definition. We say that a braid b is special if it belongs to the closure of {1} under
operation ∗. The set of all special braids is denoted Bsp

∞ .

By construction, every special braid has an expression involving the trivial braid 1 and
operation ∗ exclusively. Thus, for instance, 1, 1 ∗ 1, which is σ1, (1 ∗ 1) ∗ 1, which is σ2

1σ−1
2 ,

1 ∗ (1 ∗ 1), which is σ2σ1, are special braids.
By definition, special braids equipped with operation ∗ form a left cancellative LD-system,

and, therefore, we can use them to colour the strands of the braids. In particular, restating
Proposition 3.6 in this case yields:

Proposition 4.3. For every finite family of braids b1, . . . , bm in Bn, there exists at least
one sequence ~a of special braids such that ~a · bi is defined and consists of special braids for
every i.

Applying Formula (4.2) in the case of special braids leads to a decomposition of every braid
in terms of special braids.

Definition. Assume that b is a braid.We say that ~c is a special decomposition for b if ~c is a
sequence of special braids satisfying b = shΠ(~c).

Lemma 4.4. Every positive braid admits a special decomposition.

Proof. For b ∈ B+
∞, the sequence (1, 1, . . .) · b is always defined, since possible obstructions

occur only with negative crossings. It consists of special braids, as special braids are closed
under ∗.
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As every braid is the quotient of two positive braids, we deduce:

Corollary 4.5. Every braid can be expressed under the form

. . . shi−1(ai)−1 . . . sh(a2)−1 a−1
1 c1 sh(c2) . . . shi−1(ci) . . .

where a1, a2, . . . , c1, c2, . . . are special braids.

In order to go further, we shall use without proof two results of self-distributive algebra.
The first deals with operation ∗ on B∞.

Proposition 4.6. Left division in the LD-system (B∞, ∗) has no cycle.

This result was first proved in [5]. A simpler proof appears in [15]. It can be observed
that the result is straightforward once at least one example of a left cancellative LD-system
where left division has no cycle is known (and one can prove that a free LD-system is such
an example). Indeed, using the explicit definition of the operation ∗, we see that a possible
cycle for left division in (B∞, ∗) would give a braid word w representing the unit braid,
and such that σ1 occurs in w, but σ−1

1 does not. Assume that (S, ∗) is a left cancellative
LD-system where left division has no cycle, and that w is an n-strand braid word as above.
We let w act on Sn: there exists at least one sequence ~a in Sn such that ~a ·w exists. Now, by
definition, the successive colours on the leftmost strand make a strictly increasing sequence
with respect to left division in S. As left division is supposed to have no cycle, this implies
that the final colour of the leftmost strand does not coincide with the initial colour of the
leftmost strand, and, therefore, w cannot represent the unit braid.

a0

a0
left divisor of

a1

a1
left divisor of

a2
...

The second result we shall use without proof is a general property of monognerated LD-
systems, which also appears in [5]. For (S, ∗) a binary system, and a, b in S, we say that a
is an iterated left divisor of b, and write a @ b, if there exists some positive integer p, and
some elements b1, . . . , bp in S satisfying

b = (. . . ((a ∗ b1) ∗ b2 . . .) ∗ bp. (4.3)

Proposition 4.7. Assume that (S, ∗) is a monogenerated LD-system. Then any two el-
ements of S are comparable with respect to the iterated left divisibility relation, i.e., for
all a, b in S, at least one of a @ b, a = b, a A b holds.

Applying this result to the LD-system of special braids, we deduce:

Proposition 4.8. The relation v on special braids is a linear ordering that extends the left
divisibility relation of ∗, i.e., a @ a ∗ b holds for all a, b.
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For instance, the sequence 1, 1 ∗ 1, (1 ∗ 1) ∗ 1, ((1 ∗ 1) ∗ 1) ∗ 1, . . . is increasing in (Bsp
∞ ,@),

which corresponds to the explicit inequalities

1 @ σ1 @ σ2
1σ−1

2
@ σ2

1σ−1
2 σ1σ3σ

−2
2
@ . . .

A crucial property of the order v on Bsp
∞ is that it can be characterized explicitly in terms

of occurrences of the generator σ1.

Lemma 4.9. Assume that a, b are special braids; Then the following are equivalent:
(i) The relation a @ b holds;
(ii) The braid a−1b admits an expression where σ1 occurs, but σ−1

1 does not.

Proof. Assume a @ b. By construction, this means that there exists special braids b1, . . . ,
bp satisfying (3.4). Expanding the latter expression gives

b = a sh(b1) σ1 sh(c1) σ1 . . . σ1 sh(cp),

with ck = ((. . . ((a ∗ b1) ∗ b2) . . .) ∗ bk)−1bk+1. Hence the braid a−1b admits an expression
where σ1 occurs p times and σ−1

1 does not occur.
Conversely, assume that a @ b does not hold. Then either we have a = b, hence a−1b = 1,

or b @ a holds, and, by the previous argument, b−1a admits an expression where σ1 occurs,
but σ−1

1 does not, hence a−1b admits an expression where σ−1
1 occurs, but σ1 does not. In

both cases, Proposition 4.6 implies that a−1b cannot admit an expression where σ1 occurs,
but σ−1

1 does not.

Assume that b and b′ are arbitrary braids. By Proposition 3.12, we know that there exists
at least one sequence of special braids ~a such that both ~a · b and ~a · b′ exist and consist
of special braids. Now special braids are equipped with a linear order, and there exists a
natural lexicographical extension of this ordering into a linear ordering of special sequences:
for ~a, ~a′ special sequences, say ~a = (a1, a2, . . .), ~a′ = (a′1, a

′
2, . . .), we say that ~a @Lex ~a′ is true

if ak @ a′k holds for the first index k satisfying ak 6= a′k. The obvious idea is to define the
braid b to be smaller than the braid b′ if the sequence ~a · b is smaller than ~a · b′ with respect
to @Lex.

In order to make the intuition rigorous, we have to verify that the previous comparison
of b and b′ does not depend on the choice of the special sequence ~a. Verification is easy,
because the order admits another equivalent intrinsic definition.

Definition. Let b be a braid. We say that b is σ1-positive (resp. σ1-negative) if it admits
at least one expression where the letter σ1 occurs, but σ−1

1 does not (resp. σ−1
i occurs

but σi does not). We say that b is σ-positive (resp. σ-negative) if there exists a nonnegative
integer k such that b is the image under shk of a σ1-positive braid (resp. of a σ1-negative
braid).

With these notions, Proposition 4.6 states that a σ1-positive braid is never trivial, and
Lemma 4.9 states that, if a and b are special braids, then a @ b holds if and only if a−1b is
σ1-positive.

Lemma 4.10. Assume that b is a σ-positive braid. Then b is neither the unit braid, nor a
σ-negative braid.

Proof. Assume that b is both shi(b1) and shj(b−1
2 ) where b1 is σ1-positive and b2 is σ1-

positive or equal to 1. Assume i ≤ j. Then b1 shj−i(b2) is a σ1-positive braid, contradicting
Proposition 4.6.

16



            

Lemma 4.11. Assume that b, b′ are braids. Then the following are equivalent:
(i) There exists a sequence ~a of special braids such that ~a · b and ~a · b′ exist, consist of

special braids, and ~a · b @Lex ~a · b′ holds;
(ii) The braid b−1b′ is σ-positive.

Proof. Assume (i). Let ~c and ~c ′ denote respectively the sequences ~a · b and ~a · b′. By
Lemma 4.1, we have shΠ(~c) = shΠ(~a) b, and shΠ(~c′) = shΠ(~a) b′. So we deduce

b−1 b′ = shΠ(~c)−1 shΠ(~c ′). (4.4)

By definition, there exists an integer i such that ck = c′k holds for k < i, and ci @ c′i holds.
Thus (4.4) takes the form

b−1 b′ = shi(sh(c−1) c−1
i c′i sh(c′))

for some c, c′. By Lemma 4.9, the braid c−1
i c′i is σ1-positive, and so is the braid

sh(c−1) c−1
i c′i sh(c′). Hence the braid b−1b′ is σ-positive, as it admits a decomposition

where σi occurs, and neither σ−1
i nor any σ±1

k with k < i occurs.
Conversely, assume that the braid b−1b′ is σ-positive. Let ~a an arbitrary sequence of

special braids such that both ~a · b and ~a · b′ exist and consist of special braids. As @Lex is a
linear order on sequences of special braids, it suffices that we show that both ~a · b = ~a · b′
and ~a · b′ @Lex ~a · b are impossible. Now, the first relation implies b = b′, hence b−1b′ = 1.
The second relation implies that the braid b−1b′ is σ-negative. Both are incompatible with
the hypothesis of b−1b′ being σ-positive.

Definition. Assume that b, b′ are braids. We say that b <L b′ is true if one of the equivalent
conditions of Lemma 4.11 holds.

Proposition 4.12. (i) Every braid b, b 6= 1, is either σ-positive or σ-negative.
(ii) The relation ≤L is a linear ordering on B∞ that extends the ordering v of special

braids. It is compatible with multiplication on the left.

Proof. Point (i) follows from the previous lemma, as the lexicographical ordering on special
sequences is, by construction, a linear ordering. For (ii), the product of two σ-positive braids
is a σ-positive braids, hence the relation ≤L is transitive. Moreover b <L b is impossible, as
the unit braid 1 is not σ-positive. Hence ≤L is an ordering. It extends the previously defined
order on Bsp

∞ as a σ1-positive braid is σ-positive by definition.

It is easy to prove that≤L is the unique ordering on B∞ that is compatible with multiplication
on the left and shift, and satisfies 1 <L sh(b)σ1sh(b′) for all b, b′.

The main property of this order known to date is the following result of Laver [16], as
improved by Burckel [3]:

Proposition 4.13. For every integer, the restriction of the linear order ≤L to positive
n-strand braids is a well-ordering whose type is the ordinal ωωn−2

.

The braid ordering plays a crucial rôle in the quick algorithm for the word problem of braids
described in [8]. Let us finally mention that new definitions ≤L in terms of mapping class
groups and of hyperbolic geometry have been given recently in [11] and [19] respectively.
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