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I. Elementary embeddings and alge-

bra

Patrick Dehornoy

It has been observed for many years that computations with elementary em-
beddings entail some purely algebraic features—as opposed to the logical
nature of the embeddings themselves. The key point is that the operation
of applying an embedding to another one satisfies, when defined, the self-
distributivity law x(yz) = (xy)(xz). Using the specific properties of the
elementary embeddings and their critical ordinals, hence under some large
cardinal hypotheses, R. Laver established two purely algebraic results about
sets equipped with a self-distributive operation (LD-systems), namely the
decidability of the associated word problem in 1989, and the unbounded-
ness of the periods in some finite LD-systems in 1993. The large cardinal
assumption was eliminated from the first result by P. Dehornoy in 1992, us-
ing an argument that led to unexpected results about Artin braid groups; as
for the second of Laver’s results, no proof in ZF has been discovered so far,
and the only result known to date is that it cannot be proved in Primitive
Recursive Arithmetic.

1. Iterations of an elementary embedding

Our aim is to study the algebraic operation obtained by applying an ele-
mentary embedding to another one. For j, k : V ≺ M , we can apply j to
any set-restriction of k, and, in good cases, the images of these restrictions
cohere so as to form a new elementary embedding that we shall denote
by j[k]. It is then easy to see that the application operation so defined
satisfies various algebraic identities.

Convention: All elementary embeddings we consider here are supposed
to be distinct from the identity. An easy rank argument shows that every
such embedding moves some ordinal; in particular, the least ordinal moved
by j is called the critical ordinal of j, and denoted crit(j).
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6 I. Elementary embeddings and algebra

1.1. Kunen’s bound and Axiom (I3)

If j is an elementary embedding of V into a proper subclass M , then j[j],
whenever it is defined, is an elementary embedding of M into a proper
subclass M ′ of M , and it is not clear that j[j] can be in turn applied to j,
whose set-restrictions need not belong to M in general. So, if we wish the
application operation on elementary embeddings to be everywhere defined,
we should consider embeddings where the source and the target models
coincide. Here comes an obstruction.

1.1 Proposition (Kunen [15]). (AC) There is no j : V ≺ V .

Proof. Assume j : V ≺ V . Let κ0 = crit(j), and, recursively, κn+1 = j(κn).
Write λ = supn κn. By standard arguments, each κn is an inaccessible cardi-
nal, so λ is a strong limit cardinal. Fix an injection in of P(κn) into λ. Then
the mapping X 7→ (in(X∩κn))n∈ω defines an injection of P(λ) into λω. Us-
ing AC, we fix an enumeration (γξ, Xξ)ξ<ν of λ× [λ]λ, and then inductively
construct an injective sequence (sξ)ξ<ν in λω such that sξ belongs to [Xξ]ω:
this is possible because the cardinality of λ × [λ]λ equals that of λω. Let
f : λω → λ be defined by f(s) = γξ for s = sξ, and f(s) = 0 for s not
of the form sξ. Let X ∈ [λ]λ. Then, for each γ < λ, there exists ξ < ν
satisfying (γ, X) = (γξ, Xξ). For this ξ, we have sξ ∈ [X]ω by hypothesis,
and f(sξ) = γξ. Hence the function f , which lies in Vλ+2, has the property
that the range of f�Xω is λ for every X in [λ]λ.

Let us consider j(f). We have j(λ) = supn κn+1 = λ, hence j(f) is a
function of λ into itself, and, as j is elementary, j(f) has the property that,
for every X in [λ]λ, the range of j(f)�Xω is λ. Now, let X be the set
{θ < λ ; θ ∈ Im(j)}. For every s in Xω, we have sn ∈ Im(j) for every n,
hence s = j(s′) for some s′, and j(f)(s) = j(f)(j(s′)) = j(f(s′)) ∈ X. As
X is a proper subset of λ, the range of j(f)�Xω is not λ, and we have got
a contradiction. a

We are thus led to considering weaker assumptions, involving embeddings
that are defined on ranks rather than on the whole universe.

1.2 Definition (Gaifman, Solovay-Reinhardt-Kanamori [21]). Axiom (I3):
For some δ, there exists j : Vδ ≺ Vδ.

Assume j : Vδ ≺ Vδ. Let κ0 = crit(j), and κn = jn(κ0). The proof
of 1.1 shows that, letting λ = supn κn, it is impossible (at least if AC is
true) that the function called f there belongs to the target model of j.
The function f belongs to Vλ+2, so δ > λ + 2 is impossible, and the only
remaining possibilities for (I3) are δ = λ, and δ = λ + 1. The second
possibility subsumes the first:

1.3 Lemma. Assume j : Vδ+1 ≺ Vδ+1. Then we have j�Vδ : Vδ ≺ Vδ.
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Proof. First, j(δ) < δ is impossible, so we necessarily have j(δ) = δ, and,
therefore, j�Vδ maps Vδ to itself. As for elementarity, an easy induction
shows that, for ~a in Vδ and Φ a first-order formula, Vδ |= Φ(~a) is equivalent
to Vδ+1 |= ΦVδ(~a), and, therefore, Vδ |= Φ(~a) is equivalent to Vδ+1 |= ΦVδ(~a),
hence to Vδ+1 |= ΦVj(δ)(j(~a)), and finally to Vδ |= Φ(j(~a)). a

Thus, without loss of generality, we can restrict to the case j : Vλ ≺ Vλ

in the sequel, i.e., when using (I3), we can add the assumption that δ is the
supremum of the cardinals jn(crit(j)).

Before turning to the core of our study, let us observe that Axiom (I3)
lies very high in the hierarchy of large cardinals.

1.4 Proposition. Assume j : Vδ ≺ Vδ, with κ = crit(j). Then there exists
a normal ultrafilter on κ concentrating on cardinals that are n-huge for
every n.

Proof. As above, let κn = jn(κ). Let Un = {X ⊆ P(κn); j“κn ∈ j(X)}.
Then Un is a κ-complete ultrafilter Un on P(κn), and, for every i < n, the
set {x ∈ P(κn); ot(x ∩ κi+1) = κi} belongs to Un, since its image under j
is {x ∈ P(κn+1); ot(x ∩ κi+2) = κi+1}, which contains j“κn as we have
“κn ∩ κi+2 = j“κi+1. By [14], Theorem 24.8, this means that κ is n-huge.

Then we use a classical reflection argument, especially easy here. Let
U = {X ⊆ κ;κ ∈ j(X)}. Then U is a normal ultrafilter over κ. Let X0

be the set of all cardinals below κ that are n-huge for every n. Then j(X0)
is the set of all cardinals below j(κ) that are n-huge for every n, which
contains κ as was seen above. So X0 belongs to U . a

1.2. Operations on elementary embeddings

For λ a limit ordinal, we denote by Eλ the family of all j : Vλ ≺ Vλ. In most
cases, Eλ is empty, while Axiom (I3) precisely states that at least one set Eλ

is nonempty.
For λ a limit ordinal, it is not true that a function f : Vλ → Vλ is an

element of Vλ. However, we can approximate f by its restrictions f�Vγ

with γ < λ, each of which belongs to Vλ. If g is (another) function defined
on Vλ, then g can be applied to each restriction f�Vγ . If g happens to be an
elementary embedding, the images g(f�Vγ) form a coherent system, and, in
this way, we can apply g to f .

1.5 Definition. For j, k : Vλ → Vλ, the application of j to k is defined by

j[k] =
⋃
γ<λ

j(k�Vγ).

This definition makes sense, as, by construction, k�Vγ belongs to Vk(γ)+3,
and therefore to Vλ.



8 I. Elementary embeddings and algebra

1.6 Lemma. Assume j, k ∈ Eλ. Then j[k] belongs to Eλ, and we have
crit(j[k]) = j(crit(k)).

Proof. When γ ranges over λ, the various mappings k�Vγ are compatible. As
j is elementary, j(k�Vγ) is a partial mapping defined on Vj(γ), and the partial
mappings j(k�Vγ) and j(k�Vγ′) associated with different ordinals γ, γ′ agree
on Vj(γ) ∩ Vj(γ′). Hence j[k] is a mapping of Vλ into itself.

Let Φ(~x) be a first-order formula. For each γ in λ, we have

(∀~x ∈ Vγ)(Φ(~x) ⇔ Φ((k�Vγ)(~x))),

hence, applying j,

(∀~x ∈ Vj(γ))(Φ(~x) ⇔ Φ(j(k�Vγ)(~x))),

so j[k] is an elementary embedding of Vλ into itself.
The equality crit(j[k]) = j(crit(k)) follows from the fact that k(crit(k)) >

crit(k) implies j[k](j(crit(k)) > j(crit(k)), while (∀γ < crit(k))(k(γ) = γ)
implies (∀γ < j(crit(k)))(j[k](γ) = γ). a

Notice that, for j, k in Eλ and γ < λ, the equality

j[k]�Vj(γ) = j(k�Vγ) (I.1)

is true by construction, as well as the formula

j[k](x) = jkj−1(x) (I.2)

whenever x belongs to the image of j.
Besides the application operation, composition is another binary opera-

tion on Eλ. Let us emphasize that application is not composition. As should
be clear from (I.2), application can be viewed as a sort of conjugation with
respect to composition.

Let us turn to the algebraic study of the application and composition
operations. The former is neither commutative nor associative. The opera-
tions satisfy the following identities.

1.7 Lemma (folklore). For j, k, ` ∈ Eλ ∪ {idVλ
}, we have

j[k[`]] = j[k][j[`]], j◦k = j[k]◦j, (j◦k)[`] = j[k[`]], j[k◦`] = j[k]◦j[`]. (I.3)

Proof. Let γ < λ. Then `�Vγ belongs to Vβ for some β < λ. From the
definition, we have k[`]�Vk(γ) = (k�Vβ)(`�Vγ). Applying j we get

j(k[`]�Vk(γ)) = j(k�Vβ)[j(`�Vγ)].

By (I.1), the left factor is j[k[`]]�Vj(k(γ)), and j(k(γ)) = j[k](j(γ)) im-
plies that the right factor is j[k][j[`]]�Vj(k(γ)). As γ is arbitrary, we deduce
j[k[`]] = j[k][j[`]].
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Let x ∈ Vλ. For γ sufficiently large, we have x ∈ Dom(k�Vγ), hence

j(k(x)) = j((k�Vγ)(x)) = j(k�Vγ)(j(x)) = j[k](j(x)),

which establishes the equality j◦k = j[k]◦j. Applying the latter to x = `�Vγ ,
one easily deduces (j◦k)[`] = j[k[`]].

Finally, using the fact that j preserves composition, we obtain

j[k◦`]�Vj(γ) = j((k◦`)�Vγ) = j((k�V`(γ))◦(`�Vγ))
= (j[k]�Vj`(γ))◦(j[`]�Vj(γ)) = (j[k]◦j[`])�Vj(γ),

for every γ, and hence j[k◦`] = j[k]◦j[`]. a

Also j[idVλ
] = idVλ

and idVλ
[j] = j hold for every j in Eλ ∪ {idVλ

}. In
order to fix the vocabulary for the sequel, we put the following definitions:

1.8 Definition. (i) We say that (S, ∗) is a left self-distributive system, or
LD-system, if ∗ is a binary operation on S satisfying

x∗(y∗z) = (x∗y)∗(x∗z). (LD)

(ii) We say that (M, ∗, ·, 1) is a left self-distributive monoid, or LD-
monoid, if (M, ·, 1) is a monoid and ∗ is a binary operation on M satisfying

x·y = (x∗y)·x, (x·y)∗z = x∗(y∗z), x∗(y·z) = (x∗y)·(x∗z), x∗1 = 1. (I.4)

Observe that an LD-monoid is an LD-system and 1∗x = x always holds,
as (I.4) implies x∗(y∗z) = (x·y)∗z = ((x∗y)·x)∗z = (x∗y)∗(x∗z), and, simi-
larly, 1∗x = (1∗x)·1 = 1·x = x. With these definitions (various other names
have been used in literature), we can restate 1.7 as

1.9 Proposition. Let λ be a limit ordinal. Then Eλ equipped with ap-
plication is an LD-system, and Eλ ∪ {idVλ

} equipped with application and
composition is an LD-monoid.

Before developing our study further, let us conclude this section with
an independent result which we shall see in Section 3 leads to interesting
consequences.

1.10 Proposition. Assume j : Vλ ≺ Vλ. Then we have j[j](α) 6 j(α) for
every ordinal α < λ.

Proof. Let β satisfy j(β) > α and (∀ξ < β)(j(ξ) 6 α). As j is elementary,
we deduce j[j](j(β)) > j(α) and (∀ξ < j(β))(j[j](ξ) 6 j(α))—we can make
things rigorous by replacing the parameter j with some approximation of
the form j�Vγ with γ sufficiently large. As α < j(β) holds, we can take
ξ = α in the second formula, which gives j[j](α) 6 j(α). a
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1.3. Iterations of an elementary embedding

We shall now turn to the specific study of the iterations of a fixed elementary
embedding j : Vλ ≺ Vλ, as developed by R. Laver. This means that we
concentrate on the countable subfamily of Eλ consisting of those embeddings
that can be obtained from j using application (or both application and
composition).

1.11 Definition. For j ∈ Eλ, Iter(j) denotes the sub-LD-system of Eλ

generated by j, while Iter∗(j) denotes the sub-LD-monoid of Eλ ∪ {idVλ
}

generated by j. The elements of Iter∗(j) are called the iterates of j, while
the elements of Iter(j) are called the pure iterates of j.

By definition, the pure iterates of j are those elementary embeddings
that can be obtained from j using the application operation repeatedly, so
they comprise j, j[j], j[j[j]], j[j][j], etc. As application is a non-associative
operation, the iterates of j do not reduce to powers of j; however, even
the notion of a power has to be made precise. We shall use the following
notation:

1.12 Definition. For j in Eλ—or, more generally, in any binary system—
we recursively define the nth right power j[n] of j and the nth left power j[n]

of j by j[1] = j[1] = j, j[n+1] = j[j[n]], and j[n+1] = j[n][j].

For future use, let us mention some relations between the powers in an
arbitrary LD-system:

1.13 Lemma. The following identities are satisfied in every LD-system

x[p+1] = x[q][x[p]] for 1 6 q 6 p, (x[p])[q] = x[p+q−1] for 1 6 p, q. (I.5)

The sequel of the study aims at determining some possible quotients of
the algebraic structures Iter(j) and Iter∗(j), i.e., to look for equivalence
relations that are compatible with the involved algebraic operation(s). A
simple idea could be to concentrate on the critical ordinals, or, more gen-
erally, on the values at particular fixed ordinals, but this naive approach
is not relevant beyond the first levels. Another natural idea would be to
consider the restrictions of the embeddings to a fixed rank, i.e., to consider
equivalence relations of the form j�Vγ = j′�Vγ , but such relations are not
compatible with the application operation in general, and we are led to the
following slightly different relations.

1.14 Definition. (Laver) Assume j, j′ ∈ Eλ ∪ {idVλ
}. For γ limit below λ,

we say that j and j′ are γ-equivalent, denoted j
γ
≡ j′, if, for every x in Vγ ,

we have j(x) ∩ Vγ = j′(x) ∩ Vγ .
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By definition,
γ
≡ is an equivalence relation on Eλ ∪ {idVλ

}. Note that
j

γ
≡ j′ implies j(x) ∩ Vγ = j′(x) ∩ Vγ for every x in Vλ—not only in Vγ—

since, for y ∈ Vβ with β < γ, the relation y ∈ j(x) ∩ Vγ is equivalent to
y ∈ j(x∩Vβ)∩Vγ , and x∩Vβ belongs to Vβ+1, hence to Vγ since γ is limit.

Let us begin with easy observations.

1.15 Lemma. Assume j
γ
≡ j′ and α < γ. Then we have either j(α) < γ,

whence j′(α) = j(α), or j(α) > γ, whence j′(α) > γ. So, in particular, we
have either crit(j) = crit(j′) < γ, or both crit(j) > γ and crit(j′) > γ.

Proof. Assume j′
γ
≡ j and α, β < γ. Then, by definition, j(α) > β is

equivalent to j′(α) > β. a

1.16 Lemma. Assume j, k ∈ Eλ. Then j[k] and k are crit(j)-equivalent.

Proof. Let γ = crit(j). An induction on the rank shows that j�Vγ is the
identity mapping. Then y ∈ k(x) is equivalent to j(y) ∈ j[k](j(x)), hence
to y ∈ j[k](x) for x, y in Vγ . a

1.17 Proposition. For limit γ < λ, γ-equivalence is compatible with com-
position.

Proof. Assume j
γ
≡ j′ and k

γ
≡ k′. Let x, y ∈ Vγ , and y ∈ j(k(x)). As

γ is limit, we have x, y ∈ Vβ for some β < γ, so y ∈ j(k(x)) implies y ∈
j(k(x)∩Vβ)∩Vγ . By hypothesis, we have k(x)∩Vβ = k′(x)∩Vβ ∈ Vβ+1 ⊆ Vγ ,
hence

j′(k′(x) ∩ Vβ) ∩ Vγ = j(k′(x) ∩ Vβ) ∩ Vγ = j(k(x) ∩ Vβ) ∩ Vγ .

We deduce y ∈ j′(k′(x)), hence j(k(x))∩Vγ ⊆ j′(k′(x))∩Vγ . By symmetry,
we obtain j(k(x))∩Vγ = j′(k′(x))∩Vγ , so j◦k and j′◦k′ are γ-equivalent. a

1.18 Lemma. Let j : Vλ ≺ Vλ. Then, for each γ satisfying crit(j) < γ < λ,
there exists δ satisfying δ < γ 6 j(δ) < j(γ).

Proof. Let κ = crit(j). Let δ be the least ordinal satisfying γ 6 j(δ): since
γ 6 j(γ) is always true, δ exists, and we have δ 6 γ. Assume δ = γ. This
means that ξ < γ implies j(ξ) < γ, hence jn(ξ) < γ for each n. This
contradicts γ < λ and (remark after 1.3) λ = supn jn(κ). a

1.19 Proposition. Assume j
γ
≡ j′ and k

δ≡ k′ with j(δ) > γ. Then we have
j[k]

γ
≡ j′[k′].

Proof. Assume first crit(j) > γ. By 1.15, we have also crit(j′) > γ. More-

over, δ > γ holds, for δ < γ would imply j(δ) = δ < γ. Hence, k
δ≡ k′

implies k
γ
≡ k′. Then, by 1.16, we find j[k]

γ
≡ k

γ
≡ k′

γ
≡ j′[k′].
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Assume now crit(j) < γ, and, therefore, crit(j′) = crit(j). Since k
δ≡ k′

implies k
δ′≡ k′ for δ′ 6 δ, we may assume without loss of generality that δ

is minimal satisfying j(δ) > γ, which, by 1.18, implies γ > δ. Let j
∗
∩ Vα

denote the set {(x, y) ∈ V 2
α ; y ∈ j(x)}. By definition, j

α≡ j′ is equivalent

to j
∗
∩ Vα = j′

∗
∩ Vα. We have

j[k]
∗
∩ Vγ = (j[k]

∗
∩ Vj(δ)) ∩ V 2

γ = j(k
∗
∩ Vδ) ∩ V 2

γ .

By construction, k
∗
∩ Vδ is a set of ordered pairs of elements of Vδ, hence an

element of Vγ . The hypotheses k
∗
∩ Vδ = k′

∗
∩ Vδ and j(x) ∩ Vγ = j′(x) ∩ Vγ

for x ∈ Vγ imply

j[k]
∗
∩ Vγ = j(k

∗
∩ Vδ) ∩ Vγ = j′(k

∗
∩ Vδ) ∩ Vγ = j′(k′

∗
∩ Vδ) ∩ Vγ = j′[k′]

∗
∩ Vγ ,

so j[k] and j′[k′] are γ-equivalent. a

Let j, k, ` ∈ Eλ. Left self-distributivity gives j[k[`]] = j[k][j[`]], but these
embeddings need not be equal to j[k][`], unless j[`] = ` holds. Now, by 1.16,
j[`] and ` are crit(j)-equivalent, which implies that j[k[`]] and j[k][`] are
j[k](crit(j))-equivalent. Generalizing the argument, we obtain the following
technical lemma. The convention is that j[k][. . .] means (j[k])[. . .].

1.20 Lemma. Assume j, j1, . . . , jp ∈ Eλ, and let γ = crit(j).
(i) Assume j[j1[j2] . . . [j`]](γ) > γ′ for 1 6 ` 6 p− 1. Then we have

j[j1][j2] . . . [jp]
γ′

≡ j[j1[j2] . . . [jp]]. (I.6)

(ii) Assume crit(j1[j2] . . . [j`]) < γ for 1 6 ` 6 p−1 and crit(j1[j2] . . . [jp]) 6 γ.
Then we have

crit(j[j1][j2] . . . [jp]) = j(crit(j1[j2] . . . [jp])). (I.7)

Proof. (i) Use induction on p. For p = 1, (I.6) is an equality. Otherwise, we

have, by induction hypothesis, j[j1][j2] . . . [jp−1]
γ′

≡ j[j1[j2] . . . [jp−1]], and,
therefore,

j[j1][j2] . . . [jp−1][jp]
γ′

≡ j[j1[j2] . . . [jp−1]][jp]. (I.8)

Lemma 1.16 gives jp
γ
≡ j[jp], which implies

j[j1[j2] . . . [jp−1]][jp]
γ′

≡ j[j1[j2] . . . [jp−1]][j[jp]], (I.9)

since j[j1[j2] . . . [jp−1]](γ) > γ′ holds by hypothesis. The right factor of (I.9)
is also j[j1[j2] . . . [jp]] by left self-distributivity, and combining (I.8) and (I.9)
gives (I.6).
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(ii) The case p = 1 is trivial. Assume p > 2, and let γ′ be the smallest of
j[j1](γ), j[j1[j2]](γ), . . . , j[j1[j2] . . . [jp−1]](γ). Applying (i), we find

j[j1][j2] . . . [jp]
γ′

≡ j[j1[j2] . . . [jp]]. (I.10)

Let q be minimal satisfying γ′ = j[j1[j2] . . . [jq]](γ), and j′ = j1[j2] . . . [jq].
Then we have γ′ = j[j′](γ). By hypothesis, we have crit(j′) < γ, so there
exists δ satisfying δ < γ 6 j′(δ). From (I.10) we deduce

j(γ) 6 j(j′(δ)) = j[j′](j(δ)) = j[j′](δ) < j[j′](γ) = γ′.

Hence crit(j1[j2] . . . [jp]) 6 γ implies crit(j[j1[j2] . . . [jp]]) 6 j(γ) < γ′.
Therefore the right embedding in (I.10) has its critical ordinal below γ′,
and, by 1.15, so has the left-hand embedding, and the two critical ordinals
are equal. a

1.4. Finite quotients

By 1.19, γ-equivalence is compatible with the application operation, so quo-
tienting under

γ
≡ leads to a well-defined LD-system. We shall describe this

quotient LD-system completely when γ happens to be the critical ordinal
of some iteration of the embedding j we are studying.

By construction, for j : Vλ ≺ Vλ, the sets Iter(j) and Iter∗(j) consist of
countably many elementary embeddings, each of which except the identity
has a critical ordinal. So, we can associate with j the countable family of
all critical ordinals of iterates of j.

1.21 Definition. The ordinal critn(j) is defined to be the (n+1)th element
in the increasing enumeration of the critical ordinals of iterations of j.

The formulas crit(j[k]) = j(crit(k)), crit(j◦k) = inf(crit(j), crit(k)) and
an obvious induction show that crit(i) > crit(j) holds for every iterate i
of j. Hence crit0(j) is always crit(j). We shall prove below the values
crit1(j) = j(crit(j)) and crit2(j) = j2(crit(j)). Things become complicated
subsequently. At this point, we do not know (yet) that the sequence of the
ordinals critn(j) exhaust all critical ordinals in Iter∗(j): it could happen that
some nontrivial iterate i of j has its critical ordinal beyond all critn(j)’s.

1.22 Theorem (Laver). Assume j : Vλ ≺ Vλ. Then critn(j)-equivalence is
a congruence on the LD-monoid Iter∗(j), and the quotient LD-monoid has
2n elements, namely the classes of j, j[2], . . . , j[2n], the latter also being the
class of the identity.

The proof requires several preliminary results.

1.23 Lemma. Assume that i1, i2, . . . , i2n are iterates of j. Then we have
crit(i1[i2] . . . [ip]) > critn(j) for some p with p 6 2n.
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Proof. We use induction on n. For n = 0, the result is the inequality
crit(i1) > crit(j), which we have seen holds for every iterate i1 of j. Oth-
erwise, we apply the induction hypothesis twice. First, we find q 6 2n−1

satisfying
crit(i1[i2] . . . [iq]) > critn−1(j). (I.11)

If the inequality is strict, we have crit(i1[i2] . . . [iq]) > critn(j), and we are
done. So, we can assume from now on that (I.11) is an equality. By applying
the induction hypothesis again, we find r 6 2n−1 satisfying

crit(iq+1[iq+2] . . . [iq+r]) > critn−1(j).

If r is chosen to be minimal, we can apply 1.20(i) with p = r, j = i1[i2] . . . [iq],
j1 = iq+1, . . . , jp = iq+r, γ = critn−1(j), and γ′ = critn(j). Indeed, with
these notations, we have crit(j1[j2] . . . [js]) < γ for s < r, hence

crit(j[j1[j2] . . . [js]]) = j(crit(j1[j2] . . . [js])) = crit(j1[j2] . . . [js]) < γ,

and, therefore, j[j1[j2] . . . [js]](γ) > γ, which gives j[j1[j2] . . . [js]](γ) > γ′

by definition. So we have

j[j1][j2] . . . [jp]
γ′

≡ j[j1[j2] . . . [jp]].

We have crit(j[j1[j2] . . . [jp]]) > j(γ) > γ′ = critn(j), so, by 1.15, we deduce

crit(j[j1][j2] . . . [jp]) > critn(j)

i.e., crit(i1[i2] . . . [iq] . . . [iq+r]) > critn(j), as was expected. a

The main task is now to show that all iterates of j can be approximated
by left powers of j up to critn(j)-equivalence. We begin with approximating
arbitrary iterates by pure iterates.

1.24 Lemma. Assume that n is a fixed integer, and i is an iterate of j.
Then there exists a pure iterate i′ of j that is critn(j)-equivalent to i.

Proof. Let γ = critn(j), and let A be the set of those iterates of j that
are γ-equivalent to some pure iterate of j. The set A contains j, and it
is obviously closed under application. So, in order to show that A is all
of Iter∗(j), it suffices to show that A is closed under composition, and,
because γ-equivalence is compatible with composition, it suffices to show
that, if i1, i2 are pure iterates of j, then some pure iterate of j is γ-equivalent
to i2◦i1. To this end, we define recursively a sequence of pure iterates of j,
say i3, i4, . . . by the recursive clause ip+2 = ip+1[ip]. Then we have

i3◦i2 = i2[i1]◦i2 = i2◦i1,
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and, recursively, ip+1◦ip = i2◦i1 for every p. We claim that crit(ip) > γ
holds for at least one of the values p = 2n or p = 2n + 1. If this is known,
we find i2◦i1 = ip◦ip−1 = ip[ip−1]◦ip

γ
≡ ip−1, and we are done.

In order to prove the claim, we separate the cases crit(i2) > crit(i1) and
crit(i2) 6 crit(i1). In this first case, we have

crit(i3) = i2(crit(i1)) = crit(i1), and crit(i4) = i3(crit(i2)) > crit(i2).

An immediate induction gives

crit(i1) = crit(i3) = crit(i5) = . . . , crit(i2) < crit(i4) < crit(i6) < . . . .

By definition, we have crit(i1) > crit0(j), and, therefore, crit(i2) > crit1(j),
and, inductively, crit(i2n) > γ, as was claimed.

Assume now crit(i2) 6 crit(i1). Similar computations give

crit(i1) < crit(i3) < crit(i5) < . . . , crit(i2) = crit(i4) = crit(i6) = . . . ,

and we find now crit(i2n+1) > γ. So the claim is established, and the proof
is complete. a

Let us e.g. consider i = j◦j. We are in the case “crit(i2) 6 crit(i1)”, and
we know that the pure iterate i2n+1 as above is a critn(j)-approximation
of i. For instance, we find i3 = j[2], i4 = j[3], i5 = j[3][j[2]] = j[4]

[2], so j◦j

and (j[4])[2] are crit2(j)-equivalent. It can be seen that the critical ordinal
of (j[4])[2], i.e., j[4](crit(j[4])), is larger than crit2(j), namely it is crit3(j),
so the previous equivalence is actually a crit3(j)-equivalence.

1.25 Proposition. Assume j : Vλ ≺ Vλ, i ∈ Iter∗(j), and n > 0. Then i is
critn(j)-equivalent to j[p] for some p with p 6 2n.

Proof. By 1.24, we may assume that i is a pure iterate of j. The principle
is to iteratively divide by j on the right, i.e., we construct pure iterates
of j, say i0, i1, . . . such that i0 is i, and ip is critn(j)-equivalent to ip+1[j]
for every p. So, i is critn(j)-equivalent to ip[j] . . . [j] (p times j) for every p.
We stop the process when we have either ip = j, in which case i is critn(j)-
equivalent to j[p+1], or p = 2n: in this case, we have obtained a sequence of
2n iterates of j, and 1.23 completes the proof.

Let us go into details. In order to see that the construction is possible,
let us assume that ip has been obtained. If ip = j holds, we are done.
Otherwise, ip has the form i′1[i

′
2[. . . [i

′
r[j]] . . .]], where i′1, . . . , i′r are some

uniquely defined pure iterates of j. Applying the identity j[k[`]] = (j◦k)[`]
r − 2 times, we find ip = (i′1◦ . . . ◦i′r)[j], and we define ip+1 to be a pure
iterate of j that is critn(j)-equivalent to i′1◦ . . . ◦i′r.

Assume that the construction continues for at least 2n steps, and let us
consider the 2n embeddings i2n [j], i2n [j][j], . . . , i2n [j][j] . . . [j] (2n times j).
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By 1.23, there must exist p 6 2n such that the critical ordinal of i2n [j][j] . . . [j]
(p times j) is at least critn(j). Let i′ be the latter elementary embed-
ding. Then i is critn(j)-equivalent to i2n [j][j] . . . [j] (2n times j), which is
also i′[j][j] . . . [j] (2n − p times j), and, therefore, i is critn(j)-equivalent to
id[j][j] . . . [j] (2n − p times j), i.e., to j[2n−p], and we are done as well. a

The previous argument is effective. Starting with an arbitrary iteration i
of j and a fixed level of approximation critn(j), we can find some left power
of j that is critn[j]-equivalent to i in a finite number of steps. However, the
computation becomes quickly very intricate, and there is no uniform way
to know how many steps are needed. For instance, let i = j[3], the simplest
iterate of j that is not a left power. We write i = (j◦j)[j], and have to find
an approximation of j◦j. Now, j◦j is crit3(j)-equivalent to j[3], and, in this
particular case, we obtain directly that j[3] is crit3(j)-equivalent to j[3][j],
i.e., to j[4]. If we look for crit4(j)-equivalence, the computation is much more
complicated. The results below will show that, if i is crit3(j)-equivalent
to j[4], then it is crit4(j)-equivalent either to j[4] or to j[12]. By determining
the critical ordinal of i[j][j][j][j], we could find that the final result is j[3]

being crit4(j)-equivalent to j[12]. We shall see an easier alternative way for
proving such statements in Subsection 3.2 below.

1.26 Proposition. Assume that j is a nontrivial elementary embedding of
a limit rank into itself. Then, for every p, we have crit(j[p]) = critm(j),
where m is the largest integer such that 2m divides p.

Proof. We establish inductively on n > 0 that crit(j[2n]) > critn(j) holds,
and that crit(j[p]) = crit(j[2m]) holds for p < 2n with m the largest integer
such that 2m divides p. For n = 0, we already know crit(j) = crit0(j).
Otherwise, let us consider the embeddings j[2n+p] for 1 6 p 6 2n. By
definition, we have j[2n+p] = j[2n][j] . . . [j] (p times j), and, by induction
hypothesis, we have crit(j[s]) < crit(j[2n]) for s < 2n, and crit(j[2n]) >
critn(j). By 1.20(ii) applied with j = j[2n] and j1 = . . . = jp = j, we have

crit(j[2n+p]) = j[2n](crit(j[p])).

For p < 2n, we deduce crit(j[2n+p]) = crit(j[p]) = critm(j) where m is the
largest integer such that 2m divides p, which is also the largest integer such
that 2m divides 2n + p. For p = 2n, we obtain

crit(j[2n+1]) = j[2n](crit(j[2n]) > crit(j[2n]) = critn(j),

and we deduce crit(j[2n+1]) > critn+1(j). So the induction is complete. Now,
it follows from 1.25 that the critical ordinal of any iterate of j is either
equal to the critical ordinal of some left power of j, or is larger than all
ordinals critm(j). Since the sequence of all ordinals crit(j[2n]) is increasing,
the only possibility is crit(j[2n]) = critn(j). a
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1.27 Lemma. The left powers j[p] and j[p′] are critn(j)-equivalent if and
only if p = p′ mod 2n holds.

Proof. We have crit(j[2n]) = critn(j), so j[2n] is critn(j)-equivalent to the
identity mapping, which, by Prop 1.19, inductively implies that j[p] and
j[2n+p] are critn(j)-equivalent for every p. Hence the condition of the lemma
is sufficient. On the other hand, we prove using induction on n > 0 that
1 6 p < p′ 6 2n implies that j[p] and j[p′] are not critn(j)-equivalent.
The result is vacuously true for n = 0. Otherwise, for p′ 6= 2n−1 + p, the
induction hypothesis implies that j[p] and j[p′] are not critn−1(j)-equivalent,
and a fortiori they are not critn(j)-equivalent. Now, assume p′ = 2n−1 + p
and j[p] and j[p′] are critn(j)-equivalent. By applying 2n−1−p times 1.19,
we deduce that j[2n−1] and j[2n] are critn(j)-equivalent, which is impossible
as we have crit(j[2n−1]) < critn(j) and crit(j[2n]) > critn(j). a

We are now ready to complete the proof of 1.22.

Proof. The result is clear from 1.25 and 1.27. That j[2n] and the iden-
tity mapping are critn(j)-equivalent follows from critn(j) being the critical
ordinal of j[2n]. a

1.5. The Laver–Steel theorem

Assume j : Vλ ≺ Vλ. By 1.6, jn(crit(j)) is the critical ordinal of j[n+1], which
is also, by 1.13, j[n][j[n]]: so, in the sequence of right powers j, j[2], j[3], . . . ,
every term is a left divisor of the next one. Kunen’s bound asserts that the
supremum of the critical ordinals in the previous sequence is λ. Actually,
this property has nothing to do with the particular choice of the elemen-
tary embeddings j[n], and it is an instance of a much stronger statement,
which is itself a special case of a general result of Steel about the Mitchell
ordering [22]:

1.28 Theorem (Steel). Assume that j1, j2, . . . is a sequence in Eλ that is
increasing with respect to divisibility, i.e., for every n, we have jn+1 = jn[kn]
for some kn in Eλ. Then we have supn crit(jn) = λ.

Here we shall give a simple proof of the considered specific statement,
which is due to R. Dougherty.

1.29 Definition. Assume j ∈ Eλ, and γ < λ. We say that the ordinal α is
γ-representable by j if it can be expressed as j(f)(x) where f and x belong
to Vγ and f is a mapping with ordinal values; The set of all ordinals that
are γ-representable by j is denoted Sγ(j).

1.30 Lemma. Assume j′ = j[k] in Eλ, and let γ be an inaccessible cardinal
satisfying crit(j) < γ < λ. Then the order type of Sγ(j) is larger than the
order type of Sγ(j′).
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Proof. The point is to construct an increasing mapping of Sγ(j′) into some
proper initial segment of Sγ(j). The idea is that Sγ(j′) is (more or less)
the image under j of some set Sδ(k) with δ < γ, which we can expect to be
smaller than Sγ(j) because δ < γ holds and γ is inaccessible.

By 1.18, there exists an ordinal δ satisfying δ < γ 6 j(δ). Let G be the
function that maps every pair (f, x) in V 2

δ such that f is a function with
ordinal values and x lies in the domain of k(f) to k(f)(x). By construction,
the image of G is the set Sδ(k). The cardinality of this set is at most that
of V 2

δ , hence it is strictly less than γ since γ is inaccessible. So the order
type of the set Sδ(k) is less than γ, and, by ordinal recursion, we construct
an order-preserving mapping H of Sδ(k) onto some ordinal β below γ. Let
us apply now j: the mapping j(H) is also order-preserving, and it maps
j(Sδ(k)), which is Sj(δ)(j′), onto j(β). By hypothesis, j(δ) > γ holds, so
Sj(δ)(j′) includes Sγ(j′). Let α be an ordinal in the latter set: by definition,
there exist f , x in Vγ , f a mapping with ordinal values, x an element in the
domain of j′(f), satisfying α = j′(f)(x), and we have

j(H)(α) = j(H)(j′(f)(x)) = j(H)(j(G)((f, x))) = j(H◦G)((f, x)). (I.12)

Now H and G belong to Vγ , and therefore both H◦G and (f, x) are elements
of Vγ . Thus (I.12) shows that the ordinal j(H)(α) is γ-representable by j,
and the mapping j(H) is an order-preserving mapping of Sγ(j′) into Sγ(j).
Moreover, the image of the mapping H is, by definition, the ordinal β, so the
image of j(H) is the ordinal j(β), and, therefore, j(H) is an order-preserving
mapping of Sγ(j′) into {ξ ∈ Sγ(j); ξ < j(β)}. Now we have j(β) = j(f)(0),
where f is the mapping {(0, β)}. Since β < γ holds, we deduce that j(β)
is itself γ-representable by j, and that the above set {ξ ∈ Sγ(j); ξ < j(β)}
is a proper subset of Sγ(j). So the order type of Sγ(j′), which is that of
{ξ ∈ Sγ(j); ξ < j(β)}, is strictly smaller than the order type of Sγ(j). a

We can now prove the Steel theorem easily.

Proof. Assume for a contradiction that there exists an ordinal γ satisfying
γ < λ and γ > crit(jn) for every n. We may assume that γ is an inaccessible
cardinal: indeed, by Kunen’s bound, there exists an integer m such that
jm
1 (crit(j1)) > γ holds, and we know that jm

1 (crit(j1)) is inaccessible. Now
1.30 applies to each pair (jn, jn+1), showing that the order types of the
sets Sγ(jn) make a decreasing sequence, which is impossible. a

1.31 Theorem (Laver). Assume j : Vλ ≺ Vλ.
(i) The ordinals critn(j) are cofinal in λ, i.e., there exists no θ with θ < λ

such that critn(j) < θ holds for every n.
(ii) For every iterate i of j, we have crit(i) = critm(j) for some integer m,

and, therefore, i is not critm(j)-equivalent to the identity.
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Proof. (i) By definition, every entry in the sequence j, j[2], j[3], . . . is a
left divisor of the next one, hence the Laver-Steel theorem implies that the
critical ordinals of j, j[2], . . . are cofinal in λ. By definition, these critical
ordinals are exactly the ordinals critn(j).

(ii) Proposition 1.25 implies that either crit(i) > critm(j) holds for ev-
ery m, or there exists m satisfying crit(i) = critm(j). By (i), the first case
is impossible. a

Observe that the point in the previous argument is really the Steel theo-
rem, because 1.25 or 1.23 alone do not preclude the critical ordinal of some
iterate i lying above all critm(j)’s.

If follows from the previous result that, for every m, the image under j of
the critical ordinal critm(j) is again an ordinal of the form critn(j). Indeed,
critm(j) is the critical ordinal of j[2m], and, therefore, j(critm(j)) is the
critical ordinal of j[j[2m]], hence the critical ordinal of some iterate of j and,
therefore, an ordinal of the form critn(j) for some finite n.

1.6. Counting the critical ordinals

As we already observed, the definition of an elementary embedding implies
that the critical ordinal of j[k] is the image under j of the critical ordinal of k,
and it follows that every embedding in Eλ induces an increasing injection
on the critical ordinals of Eλ. In particular, every iterate of an embedding j
acts on the critical ordinals of the iterates of j, which we have seen in the
previous section consists of an ω-indexed sequence (critn(j))n<ω. Let us
introduce, for j : Vλ ≺ Vλ, two mappings ̂, ̃ : ω → ω by

̂(m) = p if and only if j(critm(j)) = critp(j),

and ̃(n) = ̂n(0). By definition, crit̃(n) is jn(crit0(j)), so, if we use κ for
crit(j) and κn for jn(κ), we simply have crit̃(n) = κn: thus ̃(n) is the
number of critical ordinals of iterates of j below κn.

The aim of this section is to prove the following result:

1.32 Theorem (Dougherty [7]). For j : Vλ ≺ Vλ, the function ̃ grows
faster than any primitive recursive function.

For the rest of the section, we fix j : Vλ ≺ Vλ, and write γm for critm(j).
Thus ̂ is determined by γ̂(m) = j(γm) and ̃ by γ̃(n) = jn(γ0). We are
going to establish lower bounds for the values of the function ̃. The first
values of the function ̃ can be computed exactly by determining sequences
of iterated values for j[p]. We use the notation

i : 7 7→ θ0 7→ θ1 7→ . . .
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to mean that we have θ0 = crit(i), θ1 = i(θ0) (= crit(i[2])), etc. For instance,
by definition of ̃, we have

j : γ0 7→ γ̃(1) 7→ γ̃(2) 7→ γ̃(3) 7→ . . . .

Now, for each sequence of the form

i : 7 7→ θ0 7→ θ1 7→ θ2 7→ . . . ,

we deduce for each elementary embedding j0 a new sequence

j0[i] : 7 7→ j0(θ0) 7→ j0(θ1) 7→ j0(θ2) 7→ . . . .

Applying the previous principle to the above sequence with j0 = j, and
using ̃(1) = 1, we obtain the sequence

j[2] : 7 7→ γ1 7→ γ̃(2) 7→ γ̃(3) 7→ . . . .

Applying the same principle with j0 = j[2], we obtain

j[3] : 7 7→ γ0 7→ γ̃(2) 7→ γ̃(3) 7→ . . . .

Then γ2 = crit(j[4]) implies γ2 = j[3](γ0), so the previous sequence shows
that the latter ordinal is γ̃(2), i.e., we have proved γ̃(2) = γ2, and, therefore
we have ̂(1) = 2. Similar (but more tricky) arguments give ̂(2) = 4.
Equivalently, we have ̃(1) = 1, ̃(2) = 2, ̃(3) = 4, which means that
the critical ordinals of the right powers j, j[2], and j[3] are γ1, γ2, and γ4

respectively.
We turn now to the proof of 1.32. The basic argument is the following

simple observation.

1.33 Lemma. Assume that some iterate i of j satisfies i : γp 7→ γq 7→ γr.
Then we have r − q > q − p.

Proof. As the restricion of i to ordinals is increasing, γp < α < α′ < γq

implies γq < i(α) < i(α′) < γr. Moreover, if α is the critical ordinal of i1,
i(α) is that of i[i1], and, if i1 is an iterate of j, so is i[i1]. Hence the number
of critical ordinals of iterates of j between γq and γr, which is r − q − 1, is
at least the number of critical ordinals of iterates of j between γp and γq,
which is q − p− 1. a

1.34 Definition. A sequence of ordinals (α0, . . . , αp) is said to be realizable
(with respect to j) if we have i : 7 7→ α0 7→ . . . 7→ αp for some iterate i of j. We
say that the sequence (α0, . . . , αp) is a base for the sequence ~θ = (θ0, . . . , θn)
if, for each m < n, the sequence (α0, . . . , αp, θm, θm+1) is realizable.
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Observe that the existence of a base for a sequence ~θ implies that ~θ
is increasing, and that, if (a0, . . . , ap) is a base for ~θ, so is every final
subsequence of the form (am, . . . , αp): if i admits the critical sequence
7 7→ α0 7→ . . . 7→ θm 7→ θm+1, then i[2] admits the critical sequence 7 7→
α1 7→ . . . 7→ θm 7→ θm+1.

1.35 Lemma. Assume that the sequence (θ0, θ1, . . .) admits a base. Then
θn > γ2n holds for every n.

Proof. Assume that (γp) is a base for (θ0, θ1, . . .). Define f by θn = γf(n).
Lemma 1.33 gives f(n+1)−f(n) > f(n)−p for every n. As f(0) > p holds
by definition, we deduce f(n) > 2n + p inductively. a

For instance, the embedding j[2] leaves γ0 fixed, and it maps γ̃(r) to γ̃(r+1)

for r > 1. So its (r − 1)-th power with respect to composition satisfies

(j[2])r−1 : 7 7→ γ1 7→ γ̃(r), γ2 7→ γ̃(r+1).

Applying these values to the critical sequence of j, we obtain

(j[2])r−1[j] : 7 7→ γ0 7→ γ̃(r) 7→ γ̃(r+1).

Hence (γ0) is a base for the sequence (γ̃(1), γ̃(2), . . .). Lemma 1.35 gives
̃(n) > 2n−1. In particular, we find ̃(4) > 8. This bound destroys any
hope of computing an exact value by applying the scheme used for the first
values: indeed this would entail computing values until at least j[255]. We
shall see below that the value of ̃(4) is actually much larger than 8.

In order to improve the previous results, we use the following trick to
expand the sequences admitting a base by inserting many intermediate new
critical ordinals.

1.36 Lemma. Assume that (α0, . . . , αp, β, γ) is realizable, ~θ is based on (β)
and it goes from γ to δ in n steps. Then there exists a sequence based
on (α0, . . . , αp) that goes from β to δ in 2n steps.

Proof. We use induction on n > 0. For n = 0, the sequence (β, γ) works,
since (α0, . . . , αp, β, γ) being realizable means that (β, γ) is based on (α0, . . . , αp).
For n > 0, let δ′ be the next to last term of ~θ. The induction hypothesis gives
a sequence ~τ ′ based on (α0, . . . , αp) that goes from γ to δ′ in 2n−1 steps.
As (δ′, δ) is based on (β), there exists an embedding i satisfying

i : 7 7→ β 7→ δ′ 7→ δ.

We define the sequence ~τ by extending ~τ ′ with 2n−1 additional terms

τ2n−1+m = i(τ ′m) for 1 6 m 6 2n−1.
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By hypothesis, we have τ ′2n−1 = δ′, hence τ2n = i(δ′) = δ. So ~τ goes
from β to δ in 2n steps. Moreover, (α0, . . . , αp) is a base for ~τ ′, so, for
0 6 m < 2n−1, there exists i′m satisfying

i′m : 7 7→ α0 7→ . . . 7→ αp 7→ τ ′m 7→ τ ′m+1.

As β is the critical ordinal of i and αp < β holds, this implies

i[i′m] : 7 7→ α0 7→ . . . 7→ αp 7→ i(τ ′m) 7→ i(τ ′m+1),

which shows that (α0, . . . , αp) is a base for ~τ . Note that the case m = 0
works because τ ′0 = β implies i(τ ′0) = i(β) = δ′ = τ2n−1 , as is needed a

By playing with the above construction one more time, we can obtain
still longer sequences. In order to specify them, we use an ad hoc iteration
of the exponential function, namely gp inductively defined by g0(n) = n,
gp+1(0) = 0, and gp+1(n) = gp+1(n − 1) + gp(2gp+1(n−1)). Thus, g1 is an
iterated exponential. Observe that gp(1) = 1 holds for every p.

1.37 Lemma. Assume that (β0, . . . , βp+1, γ) is realizable, ~θ is based on
(βp, βp+1) and it goes from γ to δ in n steps. Then there exists a sequence
based on (βp+1) that goes from γ to δ in gp+1(n) steps.

Proof. We use induction on p > 0, and, for each p, on n > 1. For n = 1,
the sequence (γ, δ) works, since, if i satisfies 7 7→ βp 7→ βp+1 7→ γ 7→ δ, then
i[2] satisfies 7 7→ βp+1 7→ γ 7→ δ. Assume n > 2. Let δ′ be the next to
last term of ~θ. By induction hypothesis, there exists a sequence ~τ ′ based
on (βp+1) that goes from γ to δ′ in gp+1(n−1) steps. As in 1.36, we complete
the sequence by appending new terms, but, before translating it, we still
fatten it one or two more times. First, we apply 1.36 to construct a new
sequence ~τ ′′ based on (βp, βp+1) that goes from βp+1 to δ′ in 2gp+1(n−1) steps
and is based on (βp−1, βp) for p 6= 0 (resp. on (βp) for p = 0). For p 6= 0, we
are in position for applying the current lemma with p − 1 to the sequence
of ~τ ′′. So we obtain a new sequence ~τ ′′′ based on (αp), and going from βp+1

to δ′ in gp(2gp+1(n−1)) steps. For p = 0, we simply take ~τ ′′′ = ~τ ′′: as
g0(N) = N holds, this remains consistent with our notations. Now we
make the translated copy: we choose i satisfying 7 7→ βp 7→ βp+1 7→ δ′ 7→ δ,
and complete ~τ ′ with the new terms

τgp+1(n−1)+m = i(τ ′′′m ) for 0 < m 6 gp(2gp+1(n−1)).

The sequence ~τ has length gp+1(n − 1) + gp(2gp+1(n−1)) = gp+1(n), and it
goes from γ to i(δ′), which is δ. It remains to verify the base condition for
the new terms. Now assume that i′′′m satisfies 7 7→ βp 7→ τ ′′′m 7→ τ ′′′m+1. As in
the proof of 1.36, we see that i[i′′′m] satisfies 7 7→ βp+1 7→ i(τ ′′′m ) 7→ i(τ ′′′m+1),
which completes the proof, as i(τ ′′′0 ) = δ′ guarantees continuity. a
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By combining 1.36 and 1.37, we obtain:

1.38 Lemma. Assume that (β0, . . . , βp+1, γ) is realizable, ~θ is based on
(βp, βp+1) and it goes from γ to δ in n steps. Then there exists a sequence
based on (β0) that goes from β1 to δ in h1(h2(. . . (hp+1(n)) . . .)) steps, where
hq(m) is defined to be 2gq(m).

Proof. We use induction on p > 0. In every case, 1.37 constructs from ~θ a
new sequence ~θ′ based on (βp+1) going from βp+1 to δ in gp+1(n) + 1 steps.
Then, 1.36 constructs from ~θ′ a new sequence ~θ′′ that goes from (βp+1) to δ
in 2gp+1(n)+1 = hp+1(n)+1 steps, a sequence based on (αp−1, αp) for p 6= 0,
and on (αp) for p = 0. For p = 0, the sequence ~θ′′ works. Otherwise, we are
in position for applying the induction hypothesis to ~θ′′. a

We deduce the following lower bound for the function ̃.

1.39 Proposition. Assume j : Vλ ≺ Vλ. Then, for n > 3, we have

̃(r) > 2h1(h2(...(hn−2(1))...)). (I.13)

Proof. By definition, (γ̃(n−1), γ̃(n)) is based on (γ̃(n−3), γ̃(n−2)), and the
auxiliary sequence (γ0, . . . , γ̃(n−2)) is realizable. Indeed, j satisfies

j : 7 7→ γ̃(0) 7→ γ̃(1) 7→ γ̃(2) 7→ γ̃(3),

and, therefore, we have

j[n+1] : 7 7→ γ̃(n) 7→ γ̃(n+1) 7→ γ̃(n+2) 7→ γ̃(n+3)

for every n. By applying 1.38, we find a new sequence based on (γ0) that
goes from γ1 to γ̃(n) in h1(h2(. . . (hn−2(1)) . . .)) steps. We conclude us-
ing 1.38. a

We thus proved ̃(4) > 28 = 256, and ̃(5) > 2h1(h2(h3(1))) = 22g1(16)
. It

follows that ̃(5) is more than a tower of base 2 exponentials of height 17.
Let us recall that the Ackermann function fAck

p is defined inductively by
fAck
0 (n) = n + 1, fAck

p+1(0) = fAck
p (1), and fAck

p+1(n + 1) = fAck
p (fAck

p+1(n)). We
put fAck

ω (n) = fAck
n (n). Using the similarity between the definitions of fAck

p

and gp, it is easy to complete the proof of 1.32.

Proof. The function fAck
ω is known to grow faster than every primitive re-

cursive function, so it is enough to show 2h1(h2(...(hn−2(1))...)) > fAck
ω (n− 1)

for n > 5. First, we have gp(n + 3) > fAck
p (n) for all p, n. This is obvious

for p = 0. Otherwise, for n = 0, using gp(2) > 3, we find

gp(3) > gp−1(2gp(2)) > fAck
p−1(6) > fAck

p−1(1) = fAck
p (0).
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Then, for n > 0, we obtain

gp(n + 3) > gp−1(2gp(n+2)) > gp−1(fAck
p (n− 1) + 3)

> fAck
p−1(f

Ack
p (n− 1)) = fAck

p (n).

Finally, we have g2(n) = n + 2 for every n, and therefore

2h1(h2(...(hn+2(1))...)) = 2h1(h2(...(hn+1(2))...)) = 2h1(h2(...(hn(2n+3))...))

> gn(2n+3)) > gn(n + 3) > fAck
n (n),

hence 2h1(h2(...(hn+2(1))...)) > fAck
ω (n− 1). a

Let us finally mention without proof the following strengthening of the
lower bound for ̃(4):

1.40 Proposition (Dougherty). For j : Vλ ≺ Vλ, we have

̃(4) > fAck
9 (fAck

8 (fAck
8 (254))).

In other words, there are at least the above huge number of critical ordi-
nals below κ4 in Iter(j).

2. The word problem for self-distributivity

The previous results about iterations of elementary embeddings have led
to several applications outside Set Theory. The first application deals with
free LD-systems and the word problem for the self-distributivity law x(yz) =
(xy)(xz). In 1989, Laver deduced from 1.20 that the LD-system Iter(j) has
a specific algebraic property, namely that left division has no cycle in this
LD-system, and he derived a solution for the word problem of (LD). Here
we shall describe these results, following the independent and technically
more simple approach of [4].

2.1. Iterated left division in LD-systems

For (S, ∗) a (nonassociative) algebraic system, and x, y in S, we say that x is
a left divisor of y if y = x∗z holds for some z in S; we say that x is an iterated
left divisor of y, and write x @ y if, for some positive k, there exist z1, . . . ,
zk satisfying y = (. . . ((x∗z1)∗z2) . . . )∗zk. So @ is the transitive closure of
left divisibility. In the sequel, we shall be interested in LD-systems where
left division (or, equivalently, iterated left division) has no cycle.

We write Tn for the set of all terms constructed using the variables x1,
. . . , xn and a binary operator ∗, and T∞ for the union of all Tn’s. We
denote by =LD the congruence on T∞ generated by all pairs of the form
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(t1∗(t2∗t3)), (t1∗t2)∗(t1∗t3)). Then, by standard arguments, Tn/=LD is a
free LD-system with n generators, which we shall denote by Fn. The word
problem of (LD) is the question of algorithmically deciding the relation =LD.

2.1 Theorem (Dehornoy [4]; also Laver [18] for an independent approach).
Assume that there exists at least one LD-system where left division has no
cycle.

(i) Iterated left division in a free LD-system with one generator is a linear
ordering.

(ii) The word problem of (LD) is decidable.

The rest of this subsection is an outline of the proof of this statement,
which can be skipped by a reader exclusively interested in Set Theory.

2.2 Definition. For t, t′ terms in T∞, we say that t′ is an LD-expansion of t
if we can go from t to t′ by applying finitely many transformations consisting
of replacing a subterm of the form t1∗(t2∗t3) with the corresponding term
(t1∗t2)∗(t1∗t3).

By definition, t′ being LD-equivalent to t means that we can transform
t to t′ by applying the law (LD) in either direction, i.e., from x∗(y∗z) to
(x∗y)∗(x∗z) or vice versa, while t′ being an LD-expansion of t means that we
transform t to t′ by applying (LD), but only in the expanding direction, i.e.,
from x∗(y∗z) to (x∗y)∗(x∗z), but not in the converse, contracting direction.

2.3 Definition. For t a term and k small enough, we denote by leftk(t)
the kth iterated left subterm of t: we have left0(t) = t for every t, and
leftk(t) = leftk−1(t1) for t = t1∗t2 and k > 1. For t1, t2 in T∞, we say that
t1 @LD t2 is true if we have t′1 = leftk(t′2) for some k, t′1, t′2 satisfying k > 1,
t′1 =LD t1, and t′2 =LD t2.

By construction, saying that t1 @LD t2 is true in T1 is equivalent to saying
that the class of t1 in the free LD-system F1 is an iterated left divisor of
the class of t2. The core of the argument is:

2.4 Proposition. Let t1, t2 be one variable terms in T1. Then at least one
of t1 @LD t2, t1 =LD t2, t2 @LD t1 holds.

2.5 Corollary. If (S, ∗) is an LD-system with one generator, then any two
elements of S are comparable with respect to iterated left division.

Proving 2.4 relies on three specific properties of left self-distributivity. As
in Section 1, we use the notation x[n] for the nth right power of x.

2.6 Lemma. For every term t in T1, we have x[n+1] =LD t∗x[n] for n suffi-
ciently large.
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Proof. We use induction on t. For t = x, we have x[n+1] = x∗x[n] for
every n, by definition. Assume now t = t1∗t2. Assuming that the result is
true for t1 and t2, we obtain for n sufficiently large

x[n+1] =LD t1∗x[n] =LD t1∗(t2∗x[n−1])

=LD (t1∗t2)∗(t1∗x[n−1]) =LD (t1∗t2)∗x[n] = t∗x[n],

which is the result for t. a

2.7 Lemma. Assume that leftn(t) is defined, and t′ is an LD-expansion
of t. Then leftn′(t′) is an LD-expansion of leftn(t) for some n′ > n.

Proof. It suffices to prove the result when t′ is obtained by replacing ex-
actly one subterm t0 of t of the form t1∗(t2∗t3) with the corresponding
(t1∗t2)∗(t1∗t3). If t0 is leftj(t) with j < n, then leftn+1(t′) is equal to leftn(t);
if t0 is leftj(t) with j > n, then leftn(t′) is an LD-expansion of leftn(t); oth-
erwise, we have leftn(t′) = leftn(t). a

2.8 Lemma. Any two LD-equivalent terms admit a common LD-expansion.

Proof (sketch). The point is to prove that, if t′ and t′′ are any two LD-
expansions of some term t, then t′ and t′′ admit a common LD-expansion.
Now, let us say that t′ is a p-expansion of t if t′ is obtained from t by
applying (LD) at most p times (in the expanding direction). Then, for
every term t, one can explicitly define a certain LD-expansion ∂t of t that
is a common LD-expansion of all 1-expansions of t, then check that, if t′

is an LD-expansion of t, then ∂t′ is an LD-expansion of ∂t, and deduce
using an induction that, for every p, the term ∂pt is an LD-expansion of all
p-expansions of t. It follows that, if t′ and t′′ are any two LD-expansions
of some term t, then t′ and t′′ admit common LD-expansions, namely all
terms ∂pt with p sufficiently large. a

It is now easy to complete the proof of 2.4.

Proof. Let t1, t2 be arbitrary terms in T1. By 2.6, we have t1∗x[n] =LD

x[n+1] =LD t2∗x[n] for n sufficiently large. Fix such a n. By 2.8, the terms
t1∗x[n] and t2∗x[n] admit a common LD-expansion, say t. By 2.7, there
exist nonnegative integers n1, n2 such that, for i = 1, 2, the term leftni(t) is
an LD-expansion of left(ti∗x[n]), i.e., of ti. Thus we have t1 =LD leftn1(t),
and t2 =LD leftn2(t). Three cases may occur: for n1 > n2, leftn1(t) is an
iterated left subterm of leftn2(t), and, therefore, t1 @LD t2 holds; for n1 = n2,
t1 and t2 both are LD-equivalent to leftn1(t), and t1 =LD t2 is true; finally,
for n1 < n2, leftn2(t) is an iterated left subterm of leftn1(t), and, therefore,
t2 @LD t1 holds. a

Finally, we can complete the proof of 2.1.
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Proof. (i) Proposition 2.4 tells us that any two elements of the free LD-
system F1 are comparable with respect to the iterated left divisibility re-
lation. Assume that S is any LD-system. The universal property of free
LD-systems guarantees that there exists a homomorphism π of F1 into S.
If (a1, . . . , an) is a cycle for left division in F1, then (π(a1), . . . , π(an)) is
a cycle for left division in S. So, if there exists at least one LD-system S
where left division has no cycle, the same must be true for F1, which means
that the iterated left divisibility relation of F1 is irreflexive. As it is always
transitive, it is a (strict) linear ordering.

(ii) Let us consider the case of one variable terms first. When we are given
two terms t1, t2 in T1, we can decide wheher t1 =LD t2 is true as follows: we
systematically enumerate all pairs (t′1, t

′
2) such that t′1 is LD-equivalent to t1

and t′2 is LD-equivalent to t2. By 2.4, there will eventually appear some pair
(t′1, t

′
2) such that either t′1 and t′2 are equal, or t′1 is a proper iterated left

subterm of t′2, or t′2 is a proper iterated left subterm of t′1. In the first case,
we conclude that t1 =LD t2 is true, in the other cases, we can conclude that
t1 =LD t2 is false whenever we know that t @LD t′ excludes t =LD t′, i.e.,
whenever we know that left division has no cycle in F1.

The case of terms with several variables is not really more difficult. For t
a general term, let t† denote the term obtained from t by replacing all
variables with x1. Assume we are given t1, t2 in Tn. We can decide whether
t1 =LD t2 is true as follows. First we compare t†1 and t†2 as above. If the
latter terms are not LD-equivalent, then t1 and t2 are not LD-equivalent
either (as t 7→ t† trivially preserves LD-equivalence). Otherwise, we can
effectively find a common LD-expansion t of t†1 and t†2. Then we consider
the LD-expansion t′1 of t1 obtained in the same way as t is obtained from t†1,
i.e., by applying (LD) at the same successive positions, and, similarly, we
consider t′2 obtained from t2 as t is obtained from t†2. By constuction, we
have (t′1)

† = (t′2)
† = t, i.e., the terms t′1, t

′
2, and t coincide up to the name

of the variables. Two cases may occur. Either t′1 and t′2 are equal, in which
case we conclude that t1 =LD t2 is true, or t′1 and t′2 have some variable
clash, in which case we can conclude that t1 =LD t2 is false. Indeed, using
the techniques of 2.8, it is not hard to prove that t′1 =LD t′2 would imply
t0 =LD leftn(t0) for some term t0 effectively constructed from t′1 and t′2, thus
would contradict the hypothesis that left divisbility in F1 has no cycle. a

2.2. Using elementary embeddings

In the mid 1980’s, R. Laver showed the following:

2.9 Proposition (Laver). Left division in the LD-system Eλ has no cycle.

Proof. Assume that j1, . . . , jn is a cycle for left division in Eλ. Consider
the infinite periodic sequence j1, . . . , jn, j1, . . . , jn, j1, . . .. The Laver–Steel
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theorem applies, and it asserts that the supremum of the critical ordinals
in this sequence is λ. But, on the other hand, there are only n different
embeddings in the sequence, and the supremum of finitely many ordinals
below λ cannot be λ, a contradiction. a

The original proof of the previous result in [18] did not use the Laver-Steel
theorem, but instead a direct computation based on 1.20.

Using the results of Subsection 2.1, we immediately deduce:

2.10 Theorem (Laver, 1989). Assume Axiom (I3). Then:
(i) Iterated left division in a free LD-system with one generator is a linear

ordering.
(ii) The word problem of (LD) is decidable.

Another application of 2.9 is a complete algebraic characterization of the
LD-system made by the iterations of an elementary embedding.

2.11 Lemma (“Laver’s criterion”). A sufficient condition for an LD-sys-
tem S with one generator to be free is that left division in S has no cycle.

Proof. Assume that left division in S has no cycle. Let π be a surjective
homomorphism of F1 onto S, which exists by the universal property of F1.
Let x, y be distinct elements of F1. By 2.5, at least one of x @ y, y @ x is
true in F1, which implies that at least one of π(x) @ π(y), π(y) @ π(x) is
true in S. The hypothesis that left division has no cycle in S implies that,
in S, the relation a @ b excludes a = b. So, here, we deduce that π(x) 6= π(y)
is true in every case, which means that π is injective, and, therefore, it is
an isomophism, i.e., S is free. a

We deduce the first part of the following result

2.12 Theorem (Laver). Assume j : Vλ ≺ Vλ. Then Iter(j) equipped with
the application operation is a free LD-system, and Iter∗(j) equipped with
application and composition is a free LD-monoid.

We skip the details for the LD-monoid structure, which are easy. The
general philosophy is that, in an LD-monoid, most of the nontrivial informa-
tion is concentrated in the self-distributive operation. In particular, if X is
any set and FX is the free LD-system based on X, then the free LD-monoid
based on X is the free monoid generated by FX , quotiented under the con-
gruence generated by the pairs (x·y, (x∗y)·x). It easily follows that there
exists a realizaton of the free monoid based on X inside the free LD-system
based on X. So, in particular, every solution for the word problem of (LD)
gives a solution for the word problem of the laws that define LD-monoids.
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2.3. Avoiding elementary embeddings

The situation created by 2.10 was strange, as one would expect no link
between large cardinals and such a simple combinatorial property as the
word problem of (LD). Therefore, finding an alternative proof not relying
on a large cardinal axiom—or proving that some set-theoretical axiom is
needed here—was a natural challenge.

2.13 Theorem (Dehornoy [5]). That left division in the free LD-system
with one generator has no cycle is a theorem of ZFC.

Outline of proof. The argument of [5] consists of studying the law (LD)
by introducing a certain monoid GLD that captures its specific geometry.
Viewing terms as binary trees, one considers, for each possible address α
of a subterm, the partial operator Ωα on terms corresponding to applying
(LD) at position α in the expanding direction, i.e., expanding the subterm
rooted at the vertex specified by α. If GLD is the monoid generated by all
operators Ω±1

α using composition, then two terms t, t′ are LD-equivalent if
and only if some element of GLD maps t to t′. Because the operators Ωα

are partial in an essential way, the monoid GLD is not a group. However,
one can guess a presentation of GLD and work with the group GLD admitting
that presentation. Then the key step is to construct a realization of the free
LD-system with one generator in some quotient of GLD, a construction that
is reminiscent of Henkin’s proof of the completeness theorem. The problem
is to associate with each term t in T1 a distinguished operator in GLD (or its
copy in the group GLD) in such a way that the obstruction to satisfying (LD)
can be controlled. The solution is given by 2.6: the latter asserts that, for
each term t, the term x[n+1] is LD-equivalent to t∗x[n] for n sufficiently large,
so some operator χt in GLD must map x[n+1] to t∗x[n], i.e., in some sense,
construct the term t. Moreover 2.6 gives an explicit inductive definition
of χt in terms of χt1 and χt2 when t is t1∗t2. Translating this definition
into GLD yields a self-distributive operation on some quotient of GLD, and
proving that left division has no cycle in the LD-system so obtained is then
easy—even if a number of verifications are in order. a

2.14 Remark. A relevant geometry group can be constructed for every
algebraic law (or family of algebraic laws). When the self-distributivity law
is replaced with the associativity law, the corresponding group is Richard
Thompson’s group F [2]. So GLD is a sort of higher analog to F .

Theorem 2.13 allows one to eliminate any set-theoretical assumption from
the statements of 2.10. Actually, it gives more. Indeed, the quotient of GLD

appearing in the above proof turns out to be Artin’s braid group B∞, and
the results about GLD led to unexpected braid applications.

Being a rather ubiquitous object, Artin’s braid group Bn admits many
equivalent definitions. Usually, Bn is introduced for 2 6 n 6 ∞ as the
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group generated by elements σi, 1 6 i < n, subject to the relations

σiσj = σjσi for |i− j| > 2, σiσjσi = σjσiσj for |i− j| = 1. (I.14)

The connection with braid diagrams comes when σi is associated with an
n-strand diagram where the (i+1)st strand crosses over the ith strand; then
the relations in (I.14) correspond to ambient isotopy.

2.15 Theorem (Dehornoy [5]). For b1, b2 in B∞, say that b1 < b2 holds if,
among all possible expressions of b−1

1 b2 in terms of the σ±1
i , there is at least

one where the generator σi of minimal index i occurs only positively (i.e.,
no σ−1

i ). Then the relation < is a left-invariant linear ordering on B∞.

The result is a consequence of 2.13. Indeed, one can prove that there
exists a (partial) action of the group Bn on the nth power of every left can-
cellative LD-system; one then obtains a linear ordering on Bn by defining,
for b1, b2 in Bn and ~a in Fn

1 , the relation b1 <~a b2 to mean that ~a · b1 is
lexicographically smaller than ~a · b2. One then checks that <~a does not de-
pend on the choice of ~a and it coincides with the relation < of 2.15. In this
way, one obtains the previously unknown result that the braid groups are
orderable. A number of alternative characterizations of the braid ordering
have been found subsequently, in particular in terms of homeomorphisms
of a punctured disk, and of hyperbolic geometry [6]. Various results have
been derived, in particular new efficient solutions for the word problem of
braids with possible cryptographic applications.

The following result, first discovered by Laver (well foundedness), was
then made more explicit by Burckel (computation of the order type):

2.16 Theorem (Laver [20], Burckel [1]). For each n, the restriction of the
braid ordering to the braids that can be expressed without any σ−1

i is a well-
ordering of type ωωn−2

.

Returning to self-distributivity, we can mention as a last application a
simple solution to the word problem of (LD) involving the braid group B∞.
Indeed, translating 2.6 to B∞ leads to the explicit operation

x∗y = x sh(y) σ1 sh(x)−1, (I.15)

where sh is the endomorphism that maps σi to σi+1 for every i. Laver’s
criterion 2.11 implies that every sub-LD-system of (B∞, ∗) with one gener-
ator is free. Then, in order to decide whether two terms on one variable
are LD-equivalent, it suffices to compare their evaluations in B∞ when x is
mapped to 1 and (I.15) is used, which is easy. Note that, once (I.15) has
been guessed, it is trivial to check that it defines a self-distributive operation
on B∞, and, therefore, any argument proving that left division in (B∞, ∗)
has no cycle is sufficient for fulfilling the assumptions of 2.1 without resort-
ing to the rather convoluted construction of GLD. Several such arguments
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have been given now, in particular by D. Larue using automorphisms of a
free group [16] and by I. Dynnikov using laminations [6].

The developments sketched above have no connection with Set Theory.
As large cardinal axioms turned out to be unnecessary, one could argue that
Set Theory is not involved here, and deny that any of these developments
can be called an application of Set Theory. The author disagrees with such
an opinion. Had not Set Theory given the first hint that the algebraic
properties of LD-systems are a deep subject [17, 3], then it is not clear that
anyone would have tried to really understand the law (LD). The production
of an LD-system with acyclic division using large cardinals gave evidence
that some other example might be found in ZFC, and hastened its discovery.
Without Set Theory, it is likely that the braid ordering would not have been
discovered, at least as soon1: could not this be accepted as a definition for
the braid ordering to be considered an application of Set Theory? It is
tempting to compare the role of Set Theory here with the role of physics
when it gives evidence for some formulas that remain then to be proved in
a standard mathematical framework.

3. Periods in the Laver tables

Here we describe another combinatorial application of the set theoretical
results of Section 1. This application involves some finite LD-systems dis-
covered by R. Laver in his study of iterations of elementary embeddings [19],
and, in contrast to the results mentioned in Section 2, the results have not
yet received any ZF proof.

3.1. Finite LD-systems

The results of Subsection 1.4 give, for each j : Vλ ≺ Vλ, an infinite family
of finite quotients of Iter(j), namely one with 2n elements for each n. The
finite LD-systems obtained in this way will be called the Laver tables here.
In this section, we shall show how to construct the Laver tables directly,
and list some of their properties.

Let us address the question of constructing a finite LD-system with one
generator. We start with an incomplete table on the elements 1, . . . , N ,
and try to complete it by using the self-distributivity law. Here, we consider
the case when the first column is assumed to be cyclic, i.e., we have

a∗1 = a + 1, for a = 1, . . . , N − 1, N∗1 = 1. (I.16)

1A posteriori, it became clear that the orderability of braid groups could have been
deduced from old work by Nielsen, but this was not noted until recently.
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3.1 Lemma. (i) For every N , there exists a unique operation ∗ on {1, . . . , N}
satisfying (I.16) and, for all a, b,

a∗(b∗1) = (a∗b)∗(a∗1).

(ii) The following relations hold in the resulting system:

a∗b


= b for a = N ,
= a + 1 for b = 1, and for a∗(b− 1) = N ,
> a∗(b− 1) otherwise.

For a < N , there exists p 6 N −a and c1 = a+1 < c2 < . . . < cp = N such
that, for every b, we have a∗b = ci with i = b (mod p), hence, in particular,
a∗b > a.

Let us denote by SN the system given by 3.1. At this point, the question is
whether SN is actually an LD-system: by construction, certain occurrences
of (LD) hold in the table, but this does not guarantee that the law holds
for all triples. Actually, it need not: for instance, the reader can check that,
in S5, one has 2∗(2∗2) = 3 6= (2∗2)∗(2∗2) = 5.

3.2 Proposition. (i) If N is not a power of 2, there exists no LD-system
satisfying (I.16).

(ii) For each n, there exists a unique LD-system with domain {1, . . . , 2n}
that satisfies (I.16), namely the system S2n of 3.1.

The combinatorial proof relies on an intermediate result, namely that SN

is an LD-system if and only if the equality a∗N = N is true for every a. It
is not hard to see that this is impossible when N is not a power of 2. On the
other hand, the verification of the property when N is a power of 2 relies on
the following connection between SN and SN ′ when N ′ is a multiple of N :

3.3 Lemma. (i) Assume that S is an LD-system and g[N ′+1] = g holds
in S. Then mapping a to g[a] defines a homomorphism of SN ′ into S.

(ii) In particular, if SN is an LD-system and N divides N ′, then mapping
a to a mod N defines a homomorphism of SN ′ onto SN .

(Here a mod N denotes the unique integer equal to a modulo N lying in
the interval {1, . . . , N}.)

3.4 Definition. For n > 0, the nth Laver table, denoted An, is defined to be
the LD-system S2n , i.e., the unique LD-system with domain {1, 2, . . . , 2n}
that satisfies (I.16).
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The first Laver tables are

A0 1
1 1

A1 1 2
1 2 2
2 1 2

A2 1 2 3 4
1 2 4 2 4
2 3 4 3 4
3 4 4 4 4
4 1 2 3 4

A3 1 2 3 4 5 6 7 8
1 2 4 6 8 2 4 6 8
2 3 4 7 8 3 4 7 8
3 4 8 4 8 4 8 4 8
4 5 6 7 8 5 6 7 8
5 6 8 6 8 6 8 6 8
6 7 8 7 8 7 8 7 8
7 8 8 8 8 8 8 8 8
8 1 2 3 4 5 6 7 8

The reader can compute that the first row in the table A4 is 2, 12, 14, 16, 2, . . .
while that of A5 is 2, 12, 14, 16, 28, 30, 32, 2, . . .

By 3.1, every row in the table An is periodic and it comes in the proof
of 3.2 that the corresponding period is a power of 2. In the sequel, we
write on(a) for the number such that 2on(a) is the period of a in An, i.e.,
the number of distinct values in the row of a. The examples above show
that the periods of 1 in A0, . . . , A5 are 1, 1, 2, 4, 4, and 8 respectively,
corresponding to the equalities o0(1) = 0, o1(1) = 0, o2(1) = 1, o3(1) = 2,
o4(1) = 2, o5(1) = 3. Observe that the above values are non-decreasing.

It is not hard to prove that, for each n, the unique generator of An is 1,
its unique idempotent is 2n, and we have 2n∗na = a and a∗n2n = 2n for
every a.

An important point is the existence of a close connection between the
tables An and An+1 for every n (we write ∗n for the multiplication in An):

3.5 Lemma. (i) For each n, the mapping a 7→ a mod 2n is a surjective
morphism of An+1 onto An.

(ii) For every n, and every a with 1 6 a 6 2n, there exists a num-
ber θn+1(a) with 0 6 θn+1(a) 6 2on(a) and θn+1(2n) = 0 such that, for
every b with 1 6 b 6 2n, we have

a∗n+1b = a∗n+1(2n + b) =

{
a∗nb for b 6 θn+1(a),
a∗nb + 2n for b > θn+1(a),

(2n + a)∗n+1b = (2n + a)∗n+1(2n + b) = a∗nb + 2n.

For instance, the values of the mapping θ4 are

a 1 2 3 4 5 6 7 8
θ4(a) 1 1 2 4 2 2 1 0

.

We obtain in this way a short description of An: the above 8 values contain
all information needed for constructing the table of A4 (16 × 16 elements)
from that of A3.
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The LD-systems An play a fundamental role among finite LD-systems.
In particular, it is shown in [12] how every LD-system with one genera-
tor can be obtained by various explicit operations (analogous to products)
from a well-defined unique table An. Let us mention that as an LD-system
An admits the presentation 〈g ; g[m+1] = g〉 for every number m of the
form 2n(2p + 1), and that the structure (An, ∗) can be enriched with a
second binary operation so as to become an LD-monoid:

3.6 Proposition. There exists a unique associative product on An that
turns (An, ∗, ·) into an LD-monoid, namely the operation defined by

a·b = (a∗(b + 1))− 1 for b < 2n, a·b = a for b = 2n. (I.17)

3.2. Using elementary embeddings

In order to establish a connection between the tables An of the previous
section and the finite quotients of Iter(j) described in Subsection 1.4, we
shall use the following characterization:

3.7 Lemma. Assume that S is an LD-system admitting a single generator g
satisfying g[2n+1] = g and g[a] 6= g for a 6 2n. Then S is isomorphic to An.

Proof. Assume that S is an LD-system generated by an element g satisfying
the above conditions. A double induction gives, for a, b 6 2n, the equality
g[a]∗g[b] = g[a∗b], where a∗b refers to the product in An. So the set of all left
powers of g is closed under product, and S, which has exactly 2n elements,
is isomorphic to An. a

We immediately deduce from 1.22:

3.8 Proposition (Laver [19]). For j : Vλ ≺ Vλ, the quotient of Iter(j)
under critn(j)-equivalence is isomorphic to An.

Under the previous isomorphism, the element a of An is the image of the
class of the embedding j[a], and, in particular, 2n is the image of the class
of j[2n], which is also the class of the identity map.

By construction, if S is an LD-system, and a is an element of S, there
exists a well-defined evaluation for every term t in T1 when the variable x
is given the value a. We shall use t(1)An , or simply t(1), for the evaluation
in An of a term t(x) of T1 at x = 1, and t(j) for the evaluation of t(x)
in Iter(j) at x = j. With this notation, it should be clear that, for every
term t(x), the image of the critn(j)-equivalence class of t(j) in An under
the isomorphism of 3.8 is t(1)An .

The previous isomorphism can be used to obtain results about the it-
erations of an elementary embedding. For instance, let us consider the
question of determining which left powers of j are crit4(j)-approximations
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of j◦j and of j[3]. By looking at the table of the LD-monoid A4, we obtain
A4 |= 1◦1 = 11, and A4 |= 1[3] = 12. We deduce that j◦j is crit4(j)-
equivalent to j[11] and j[3] is critn(j)-equivalent to j[12].

The key to further results is the possibility of translating into the language
of the finite tables An the values of the critical ordinals associated with the
iterations of an elementary embedding.

3.9 Proposition. Assume j : Vλ ≺ Vλ. Then, for every term t and for
n > m > 0 and n > a > 1,

(i) crit(t(j)) > critn(j) is equivalent to An |= t(1) = 2n.
(ii) crit(t(j)) = critn(j) is equivalent to An+1 |= t(1) = 2n.
(iii) t(j)(critm(j)) = critn(j) is equivalent to An+1 |= t(1)∗2m = 2n.
(iv) j[a](critm(j)) = critn(j) is equivalent to the period of a jumpimg

from 2m to 2m+1 between An and An+1.

Proof. (i) By definition, crit(t(j)) > critn(j) is equivalent to t(j) being
critn(j)-equivalent to the identity mapping, hence to the image of t(j) in An

being the image of the identity, which is 2n.
(ii) Assume crit(t(j)) = critn(j). Then we have crit(t(j)) > critn(j) and

crit(t(j)) 6> critn+1(j), so, by (i), An |= t(1) = 2n and An+1 6|= t(1) = 2n+1.
Now An |= t(1) = 2n implies An+1 |= t(1) = 2n or 2n+1, so 2n is the only
possible value here. Conversely, An+1 |= t(1) = 2n implies An |= t(1) = 2n

and An+1 6|= t(1) = 2n+1, so, by (i), crit(t(j)) > critn(j) and crit(t(j)) 6>
critn+1(j), hence crit(t(j)) = critn(j).

(iii) As critm(j) is the critical ordinal of j[2m], we have the equality
t(j)(critm(j)) = crit(t(j)[j[2m]]). By (ii), crit(t(j)[j[2m]]) = critn(j) is equiv-
alent to An+1 |= t(1)∗1[2m] = 2n. Now we have An+1 |= 1[2m] = 2m

for n > m.
(iv) The image of j[a] is a both in An and An+1, hence (iii) tells us that

j[a](critm(j)) = critn(j) is equivalent to An+1 |= a∗2m = 2n. If the latter
holds, the period p of a in An+1 is 2m+1: indeed, An+1 |= a∗2m < 2n+1

implies p > 2m, while 2 × 2n = 2n+1 implies p 6 2 × 2m. Conversely,
assume that the period of a is 2m in An and 2m+1 in An+1. We deduce
An |= a∗2m = 2n and An+1 6|= a∗2m = 2n+1, so the only possibility is
An+1 |= a∗2m = 2n. a

For instance, we can check A3 |= 1[3] = 4, and A5 |= 1[4] = 16. Using the
dictionary, we deduce that the critical ordinal of j[3] is crit2(j), while the
critical ordinal of j[4] is crit4(j). Also, we find A4 |= 4∗4 = 8, which implies
that j[4] maps crit2(j) to crit3(j)—as can be established directly. Similarly,
we have A5 |= 1∗4 = 16, corresponding to j(crit2(j)) = crit4(j). As for (iv),
we see that the period of 1 jumps from 1 to 2 between A1 and A2, that
it jumps from 2 to 4 between A2 and A3, and that it jumps from 4 to 8
between A4 and A5. We deduce that, if j is an elementary embedding of Vλ

into itself, then j maps crit0(j) to crit1(j), crit1(j) to crit2(j), and crit2(j)
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to crit4(j), i.e., we have κ2 = γ4 with the notations of Subsection 1.6.
Similarly, the period of 3 jumps from 8 to 16 between A5 and A6: we
deduce that j[3] maps crit3(j) to crit5(j).

By 3.9(iii): ̂(m) = n is equivalent to An+1 |= 1∗2m = 2n. As the latter
condition does not involve j, we deduce

3.10 Corollary. For j : Vλ ≺ Vλ, the mappings ̂ and ̃ do not depend on j.

In the previous examples, we used the connection between the iterates of
an elementary embedding and the tables An to deduce information about
elementary embeddings from explicit values in An. We can also use the cor-
respondence in the other direction, and deduce results about the tables An

from properties of the elementary embeddings.
Now, the existence of the function ̂ and, therefore, of its iterate ̃, which

we have seen is a direct consequence of the Laver–Steel theorem, translates
into the following asymptotic result about the periods in the tables An. We
recall that on(a) denotes the integer such that the period of a in An is 2on(a).

3.11 Proposition (Laver). Assume Axiom (I3). Then, for every a, the
period of a in An tends to infinity with n. More precisely, for j : Vλ ≺ Vλ,

on(a) 6 ̃(r) if and only if n 6 ̃(r + 1) (I.18)

holds for r > a. In particular, (I.18) holds for every r in the case a = 1.

Proof. Assume first a = 1. Then j maps crit̃(r)(j) to crit̃(r+1)(j) for
every r. Hence, by 3.9(iv), the period of 1 doubles from 2̃(r) to 2̃(r)+1

between A̃(r+1) and A̃(r+1)+1. So we have

o̃(r+1)(1) = ̃(r), and o̃(r+1)+1(1) = ̃(r) + 1,

which gives (I.18). Assume now a > 2. By 1.13, we have (j[a])[r] = j[r+1]

for r > a, so the critical ordinal of (j[a])[r] is crit̃(r)(j). Hence, for r > a,
the embedding j[a] maps crit̃(r)(j) to crit̃(r+1)(j), and the argument is as
for a = 1. a

We conclude with another result about the periods in the tables An.

3.12 Proposition (Laver). Assume Axiom (I3). Then, for every n, the
period of 2 in An is at least the period of 1.

Proof. Assume that the period of 1 in An is 2m. Let n′ be the largest
integer such that the period of 1 in An′ is 2m−1. By construction, the
period of 1 jumps from 2m−1 to 2m between An′ and An′+1. Assume that
j is a nontrivial elementary embedding of a rank into itself. By 3.9(iv),
j maps critm(j) to critn′(j). Now, by 1.10, j[j] maps critm(j) to some
ordinal of the form critn′′(j) with n′′ 6 n′. This implies that the period
of 2 jumps from 2m−1 to 2m between An′′ and An′′+1. By construction, we
have n′′ 6 n′ < n, hence the period of 2 in An is at least 2m. a
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3.3. Avoiding elementary embeddings

Once again, the situation of 3.11 and 3.12 is strange, as it is not clear
why any large cardinal hypothesis should be involved in the asymptotic
behaviour of the periods in the finite LD-systems An. So we would either
get rid of the large cardinal hypothesis, or prove that it is necessary.

We shall mention partial results in both directions. In the direction of
eliminating the large cardinal assumption, i.e., of getting arithmetic proofs,
R. Dougherty and A. Drápal have proposed a scheme that essentially con-
sists in computing the rows of (sufficiently many) elements 2p − a in An

using induction on a, which amounts to constructing convenient families
of homomorphisms between the An’s. Here we shall mention statements
corresponding to the first two levels of the induction:

3.13 Theorem (Drápal [11]). (i) For every d, and for 0 6 m 6 2d + 1,
b 7→ 22d

b defines an injective homomorphism of Am into Am+2d ; it follows
that, for 2d 6 n 6 2d+1 + 1, the row of 22d − 1 in An is given by

(22d

− 1)∗nb = 22d

b.

(ii) For every d, and for 0 6 m 6 22d+1
, the mapping fd defined by

fd : 2i 7→ 2(i+1)2d − 2i2d

and fd(
∑

bi2i) =
∑

bifd(2i) defines an injective
homomorphism of Am into Am2d ; it follows that, for 0 6 n 6 22d+1+d such
that 2d divides n, the row of 22d − 2 in An is given by

(22d

− 2)∗nb = fd(b).

So far, the steps a 6 4 have been completed, but the complexity quickly
increases, and whether the full proof can be completed remains open.

3.4. Not avoiding elementary embeddings?

We conclude with a result in the opposite direction:

3.14 Theorem (Dougherty–Jech [9]). It is impossible to prove in PRA
(Primitive Recursive Arithmetic) that the period of 1 in the table An goes
to infinity with n.

The idea is that enough of the computations of Subsection 1.6 can be
performed in PRA to guarantee that, if the period of 1 in An tends to
infinity with n, then some function growing faster than the Ackermann
function provably exists.

Assume j : Vλ ≺ Vλ. For every term t in T1, the elementary embed-
ding t(j) acts on the family {critn(j);n ∈ ω}, and, as was done for j, we
can associate with t(j) an increasing injection t̃(j) : ω → ω by

t̃(j)(m) = n if and only if t(j)(critm(j)) = critn(j).
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If t and t′ are LD-equivalent terms, we have t(j) = t′(j), hence t̃(j) = t̃′(j),
so, for a in the free LD-system F1, we can define f j

a to be the common
value of t̃(j) for t representing a. We obtain in this way an F1-indexed
family of increasing injections of ω to itself, distinct from identity, and, by
construction, the equality

crit(f j
a∗b) = f j

a(crit(f j
b )) (I.19)

is satisfied for all a, b in F1, where we define crit(f) to be the least m
satisfying f(m) > m. The sequence (f j

a ; a ∈ F1) is the trace of the action of j
on critical ordinals, and we shall see it captures enough of the combinatorics
of elementary embeddings to deduce the results of Subsection 1.6.

Let us try to construct directly, without elementary embedding, some
similar family of injections on ω satisfying (I.19). To this end, we can resort
to the Laver tables. Indeed, by 3.9, the condition t(j)(critm(j)) = critn(j)
in the definition of t̃() is equivalent to An+1 |= t(1)∗2m = 2n. So we are
led to

3.15 Definition. (PRA) For a in F1, we define fa to be the partial mapping
on ω such that fa(m) = n holds if, for some term t representing a, we have
An+1 |= t(1)∗2m = 2n.

As An+1 is an LD-system, the value of t(1)∗2m computed in An+1 de-
pends on the LD-class of t only, so the previous definition is non-ambiguous.
If there exists j : Vλ ≺ Vλ, then, for each a in F1, the mapping fa coincides
with f j

a , and, therefore, each fa is a total increasing injection of ω to ω,
distinct from identity, and the fa’s satisfy the counterpart of (I.19). In
particular, we can state

3.16 Proposition. (ZFC + I3) For each a in F1, the function fa is total.

Some of the previous results about the fa’s can be proved directly. Let
us define a partial increasing injection on ω to be an increasing function
of ω into itself whose domain is either ω, or a finite initial segment of ω.
We shall say that a partial increasing injection f is nontrivial if f(m) > m
holds for at least one m, and that m is the critical integer of f , denoted
m = crit(f), if we have f(n) = n for n < m, and f(m) 6= m, i.e., either
f(m) > m holds or f(m) is not defined.

For f a partial increasing injection on ω, and m,n in ω, we write f(m) >̃ n
if either f(m) is defined and f(m) > n holds, or f(m) is not defined; we
write crit(f) >̃ m for (∀n < m)(f(n) = n). Then f(m) = n is equivalent
to the conjunction of f(m) >̃ n and f(m) 6>̃ n + 1, and crit(f) = m is
equivalent to the conjunction of crit(f) >̃ m and crit(f) 6>̃ m + 1.

3.17 Lemma. (PRA) (i) For every p, we have crit(fx[2p]) = p.
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(ii) For t representing a, and for n > m, fa(m) >̃ n is equivalent to
An |= t(1)∗2m = 2n;

(iii) The mapping fa is a partial increasing injection;
(iv) The relation crit(fa) >̃ n is equivalent to An |= t(1) = 2n.
(v) If crit(fb) and fa(crit(fb)) are defined, so is crit(fa∗b) and we have

crit(fa∗b) = fa(crit(fb)).

Proof. (i) First, fx[2p](m) = m is equivalent to Am+1 |= 1[2p]∗2m = 2m by
definition. This holds for m < p, as we have Am+1 |= 1[2p] = 2m+1, and
Am+1 |= 2m+1∗x = x for every x. On the other hand, Am+1 |= 1[2p] = 2m

holds, hence so does Am+1 |= 1[2p]∗2m = 2m+1 6= 2m. So crit(fx[2p]) exists,
and it is p.

(ii) If fa(m) = p holds for some p > n, Ap+1 |= t(1)∗2m = 2p+1, hence
An |= t(1)∗2m = 2n by projecting. And fa(m) not being defined means
that there exists no p satisfying Ap+1 |= t(1)∗2m < 2p+1: in other words
Ap+1 |= t(1)∗2m = 2p+1 for p + 1 > m, and, in particular, for p + 1 = n.

(iii) Assume fa(m + 1) = n + 1. Then An+2 |= t(1)∗2m+1 = 2n+1

holds, i.e., t(1) has period 2m+2 at least in An+2. By projecting from An+2

to An+1, we deduce that t(1) has period 2m+1 at least in An+1, hence
An+1 |= t(1)∗2m 6 2n. If the latter relation is an equality, we deduce
fa(m) = n. Otherwise, by projecting, we find some integer p < n for which
Ap+1 |= t(1)∗2m = 2p, and we deduce fa(m) = p. In both cases, fa(m)
exists, and its value is at most n. This shows that the domain of fa is an
initial segment of ω, and that fa is increasing.

(iv) Assume crit(fa) >̃ n, i.e., fa(m) = m holds for m < n. We have
fa(n − 1) 6>̃ n, hence An |= t(1)∗2n−1 6 2n−1, whence An |= t(1) = 2n, as
An |= a∗2n−1 = 2n holds for a < 2n. Conversely, assume An |= t(1) = 2n,
and m < n. By projecting from An to Am+1, we obtain Am+1 |= t(1) =
2m+1, hence Am+1 |= t(1)∗2m = 2m < 2m+1, which gives fa(m) 6>̃ m + 1
by (ii). As fa(m) >̃ m holds by (ii), we deduce fa(m) = m.

(v) Let a, b ∈ F1 be represented by t1 and t2 respectively. Assume first
fa(p) >̃ n and crit(fb) >̃ p. By (iv), the hypotheses are An |= t1(1)∗2p = 2n,
and Ap |= t2(1) = 2p. By projecting from An to Ap, we deduce that t2(1)An

is a multiple of 2p. Hence, the hypothesis An |= t1(1)∗2p = 2n implies
An |= (t1∗t2)(1) = t1(1)∗t2(1) = 2n, hence, by (iv), crit(fa∗n) >̃ n.

Assume now fa(p) 6>̃ n + 1 and crit(fb) 6>̃ p + 1. The hypotheses are
An+1 |= t1(1)∗2p 6= 2n+1, i.e., the period of t1(1) in An+1 is 2p+1 at least,
and Ap+1 |= t2(1) 6= 2p+1, hence Ap+1 |= t2(1) 6 2p. We cannot have
An+1 |= t2(1) > 2p+1 because, by projecting from An+1 to Ap+1, we would
deduce Ap+1 |= t2(1) = 2p+1, contradicting our hypothesis. Hence we have
An+1 |= t2(1) 6 2p, and the hypothesis that the period of t1(1) in An+1 is
2p+1 at least implies An+1 |= t1(1)∗t2(1) 6 2n, hence crit(fa∗b) 6>̃ n + 1. So
the conjunction of fa(p) = n and crit(fb) = p implies crit(fa∗b) = n. a
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The only point we have not proved so far is that the function fa be total.
Before going further, let us observe that the latter property is connected
with the asymptotic behaviour of the periods in the tables An, as well as
with several equivalent statements:

3.18 Proposition. (PRA) The following statements are equivalent:
(i) For each a in F1, the function fa is total;
(ii) For every term t, the period of t(1) in An goes to infinity with n—so,

in particular, the period of every fixed a in An goes to infinity with n;
(iii) The period of 1 in An goes to infinity with n;
(iv) For every r, there exists an n satisfying An |= 1[r] < 2n;
(v) The subsystem of the inverse limit of all An’s generated by (1, 1, . . .)

is free.

Proof. Let t be an arbitrary term in T1, and a be its class in F1. Saying
that the period of t(1) in An goes to ∞ with n means that, for every m,
there exists n with An |= t(1)∗2m < 2n, i.e., fa(m) 6>̃ n. If the function fa

is total, such an n certainly exists, so (i) implies (ii). Conversely, if (ii)
is satisfied, the existence of n satisfying fa(m) 6>̃ n implies that fa(m) is
defined, so (i) and (ii) are equivalent, and they imply (iii), which is the
special case t = x of (ii).

Assume now (iii). By the previous argument, the mapping fx is total. If
fa and fb are total, then, by 3.17(v), crit(fb[n]) exists for every n, and so
does fa(crit(fb[n])), which is crit(f(a∗b)[n]). This proves that fa∗b(m) exists
for arbitrary large values of m, and this is enough to conclude that fa∗b is
total. So, inductively, we deduce that fa is total for every a, which is (i).

Then, we prove that (ii) implies (iv) using induction on r > 1. The
result is obvious for r = 1. Let p be maximal satisfying Ap |= 1[r−1] = 2p,
which exists by induction hypothesis. By (ii), we have An |= 1∗2p < 2n for
some n > p, so the period of 1 in An is a multiple of 2p+1. By hypothesis,
we have Ap+1 |= 1[r−1] = 2p, hence An |= 1[r−1] = 2p mod 2p+1, so
2p is the largest power of 2 that divides 1[r−1] computed in An. As the
period of 1 in An is a multiple of 2p+1, we obtain An 6|= 1∗1[r−1] = 2n, so
An |= 1[r] = 1∗1[r−1] < 2n.

Assume now (iv), and let t be an arbitrary term. By 2.6, there exist q,
r satisfying t[r] =LD x[q]. By (iv), An |= 1[q] = t(1)[r] < 2n for some n,
hence An |= t(1) < 2n, since every right power of 2n in An is 2n. Hence (iv)
implies (iii).

Assume (i), and let t, t1, . . . , tp be arbitrary terms. By (ii), we can find n
such that none of the terms t, t∗t1, (t∗t1)∗t2, . . . , (. . . (t∗t1) . . .)∗tp evaluated
at 1 in An is 2n: this is possible since An |= t(1) 6= 2n implies Am |= t(1) 6=
2m for m > n. So we have

An |= t(1) < (t∗t1)(1) < ((t∗t1)∗t2)(1) < . . .
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and, in particular, An |= t(1) 6= (. . . (t∗t1)∗) . . . ∗tp)(1). This implies that
left division in the sub-LD-system of the inverse limit of all An’s generated
by (1, 1, . . .) has no cycle, and, therefore, by Laver’s criterion, this LD-
system is free. Conversely, assume that (i) fails, i.e., there exists p > 1 such
that An |= 1∗2p = 2n for every n. Let α denote the sequence (1, 1, . . .) in
the inverse limit. Then we have α[2p] = (1, 2, . . . , 2p, 2p, . . .) and

α∗α[2p+1] = (α∗α[2p])∗(α∗α) = α∗α.

The sub-LD-system generated by α cannot be free, since g∗g = g∗g[2p+1]

does not hold in the free LD-system generated by g. So (v) is equivalent
to (i)–(iv). a

The status of the equivalent statements of 3.18 remains currently open.
However, the results of Subsection 1.6 enables us to say more. We have seen
that the function ̃ associated with an elementary embedding j grows faster
than any primitive recursive function. In terms of the functions f j

a , we have
̃(n) = (f j

x)n(0). As the functions f j
a and fa coincide when the former exist,

it is natural to look at the values fn
x (0). The point is that we can obtain for

this function the same lower bound as for its counterpart f j
x without using

any set theoretical hypothesis:

3.19 Proposition. (PA) Assume that, for each a, the function fa is total.
Then the function n 7→ fn

a (0) grows faster than any primitive recursive
function.

Proof. We consider the proof of 1.32, and try to mimick it using fa and
critical integers instead of f j

a and critical ordinals. This is possible, because
the only properties used in Subsection 1.6 are the left self-distributivity law
and Relation (I.19) about critical ordinals. First, the counterpart of 1.33
is true since every value of fa is an increasing injection and its domain is
an initial interval of ω. Then the definitions of a base and of a realizable
sequence can be translated without any change. Let us consider 1.36. With
our current notation, the point is to be able to deduce from the hypothesis

fb : 7 7→ m0 7→ m1 7→ . . . 7→ mp (I.20)

the conclusion

fa∗b : 7 7→ fa(m0) 7→ fa(m1) 7→ . . . 7→ fa(mp). (I.21)

An easy induction on r gives the equality (fa)n(crit(fa)) = crit(fa[n+1]).
Now (I.20) can be restated as

crit(fb) = m0, crit(fb[2]) = m1, . . . , crit(fb[n+1]) = mn.
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By applying fa and using 3.17(v), we obtain

crit(fa∗b) = fa(m0), . . . , crit(fa∗b[n+1]) = fa(mn).

By (LD), we have fa∗b[n] = f(a∗b)[n] , and therefore (I.20) implies (I.21).
So the proof of 1.36 goes through in the framework of the fa’s, and

so do those of the other results of Subsection 1.6. We deduce that, for
n > 3, there are at least 2h1(h2(...(hn−2(1))...)) critical integers below the
number fn

x (0), where hp are the fast growing function of Subsection 1.6,
and, finally, we conclude that the function n 7→ fn

x (0) grows at least as fast
as the Ackermann function. a

It is then easy to complete the proof of 3.14:

Proof. By 3.18, proving that the period of 1 in An goes to infinity with n
is equivalent (in PRA) to proving that the functions fa are total. By 3.19,
such a proof would also give a proof of the existence of a function growing
faster than the Ackermann function. The latter function is not primitive
recursive, and, therefore, such a proof cannot exist in PRA. a

As the gap between PRA and (I3) is large, there remains space for many
developments here.

To conclude, let us observe that, in the proof of 3.19, the hypothesis that
the injections are total is not really used. Indeed, we establish lower bounds
for the values, and the precise result is an alternative: for each r, either the
value of fn

x (0) is not defined, or this value is at least some explicit value. In
particular, the result is local, and the lower bounds remain valid for small
values of r even if fn

x (0) is not defined for some large n. So, for instance, we
have seen in Subsection 1.6 that, for j : Vλ ≺ Vλ, we have ̃(4) > 256, which,
when translated into the language of An, means that the period of 1 in An

is 16 for every n between 9 and 256 at least. The above argument shows
that this lower bound remains valid even if Axiom (I3) is not assumed. The
same result is true with the stronger inequality of 1.40, so we obtain

3.20 Theorem (Dougherty). If it exists, the first integer n such that the
period of 1 in An reaches 32 is at least fAck

9 (fAck
8 (fAck

8 (254))).

We refer to [8, 10, 13] (and to unpublished work by Laver) for many more
computations about the critical ordinals of iterated elementary embeddings.
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