RECENT PROGRESS ON THE CONTINUUM HYPOTHESIS (AFTER
WOODIN)

PATRICK DEHORNOY

A number of conceptually deep and technically hard results were accumulated in Set Theory
since the methods of forcing and of fine structure appeared in the 1960’s. This report is devoted to
Woodin’s recent results.Not only are these results technical breakthroughs, but they also renew the
conceptual framework, making the theory more globally intelligible and emphasizing its unity. For
the first time, there appear a global explanation for the hierarchy of large cardinals, and, chiefly, a
realistic perspective to decide the Continuum Hypothesis—namely in the negative:

Conjecture 1 (Woodin, 1999). Ewvery set theory that is compatible with the existence of large car-
dinals and makes the properties of sets with hereditary cardinality at most Ry invariant under forcing
implies that the Continuum Hypothesis be false.

Woodin’s results come very close to this conjecture, establishing it for a substantial part of the
hierarchy of large cardinals. The remaining question is whether this substantial part actually is the
whole hierarchy of large cardinals. In any case—and that is what makes it legitimous to discuss
these results now, without waiting for a possible solution of the above conjecture—Woodin’s results
contribute to show that the Continuum Problem and, more generally, the concept of uncountable
infinity are not intrinsically vague and inaccessible to analysis, but that they can be the object of a
genuine conceptual theory that goes far beyond simply exploring the formal consequences of more
or less arbitrary axioms.

The current text owes much to the expository papers [19, 20]. It aims at describing and explaining
four recent results of Woodin, here appearing as Theorems 30, 35, 38, and, chiefly, 40. It seems out
of reach to give an idea of the proofs. The published part fills a significant proportion of the 900
pages of [18], and the most recent part is only alluded to in [21].

I thank all set theorists who helped me with comments and suggestions, in particular Joan
Bagaria, Matthew Foreman, Alexander Kechris, John Steel, Hugh Woodin, and, especially, Stevo
Todorcevic.

1. A CLOSED MATTER?

The Continuum Hypothesis (CH) is the statement: “Every infinite subset of R is in one-to-
one correspondence either with N, or with R”, and the Continuum Problem, raised by Cantor
around 1890, is the question: “Is the Continuum Hypothesis true?”. First on Hilbert’s list in 1900,
the Continuum Problem inspired many works throughout the XXth century. Once a general agree-
ment was made about the Zermelo-Fraenkel system (ZF, or ZFC when the Axiom of Choice is
included) as an axiomatic starting point for Set Theory, the first obvious step in studying the
Continuum Problem is the question “Does there exist a proof of CH, or of its negation —CH,
from ZFC?”,

The answer is given in two results which have been major landmarks of Set Theory, both because
of their own importance and of the methods used to establish them:

Theorem 2. (Godel, 1938) Provided ZFC is not contradictory, there is no proof of ~CH from ZFC.
Theorem 3. (Cohen, 1963) Provided ZFC is not contradictory, there is no proof of CH from ZFC.

It might be tempting to conclude that the Continuum Problem cannot be solved, and, therefore,
is not a closed question, but, at least, has no interest, since every further effort to solve it is
doomed to failure. This interpretation is erroneous. One may judge that studying the Continuum
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Problem is inopportune if one finds little interest in the objects it involves: complicated subsets
of R, well-orderings whose existence relies on the axiom of choice!. But, if one does not dismiss
the question a priori, one must see that Goédel’s and Cohen’s results did not close it, but, rather,
opened it. As shows the huge amount of results accumulated in Set Theory in the past decades,
the ZFC system does not exhaust our intuition of sets, and the conclusion should not be that the
Continuum Hypothesis is neither true nor false?, but simply that the ZFC system is incomplete,
and has to be completed.

Some analogies are obvious. For instance, the proof that the axiom of parallels does not follow
from the other Euclid axioms did not close geometry, but made the emergence of non-Euclidian
geometries possible, and opened the question of recognizing, among all possible geometries, the
most relevant for describing the physical world. Likewise, Godel’s and Cohen’s results show that
several universes are possible from ZFC, and, therefore, they open the study of the various possible
universes—i.e., equivalently, of the various axiomatic systems obtained by adjoining new axioms
to ZFC—and the question of recognizing which one is the most relevant for describing the mathe-
matical world.

Several preliminary questions arise: What can be a good axiom? What can mean “solving a
problem” such as the Continuum Problem from additional axioms?. We shall come back to theses
questions in Section 2 starting from the case of arithmetic. Various axioms possibly completing
ZFC will be considered below. For the moment, let us simply mention the large cardinal axioms.
Intuitively, they are the most natural axioms, and they play a central role. These axioms assert that
higher order infinities exist, that go beyond smaller infinities in the way the infinite goes beyond the
finite. They come from iterating the basic principle of Set Theory, which is precisely to postulate
that infinite sets exist®. One reason for the success of large cardinal axioms is their efficiency in
deciding a number of statements that ZFC cannot prove, see [9]. The important point here is that it
seems reasonable to consider the large cardinal axioms as true, or, at least, to consider as plausible
only those axioms A that are compatible with the existence of large cardinals in the sense that no
large cardinal axiom contradicts A.

2. ARITHMETIC, INCOMPLETENESS, AND FORCING

Let us denote by V the collection of all sets®. In the same way as the ultimate aim of Number
Theory would be to determine all sentences satisfied in the structure (N, 4, x), the one of Set Theory
would be to determine all sentences satisfied in the structure (V, €). This aim is inaccessible, so a
possibility is to restrict to more simple structures of the type (H, €), where H is some fragment of
the collection of sets. Filtrating by cardinality is then natural:

Definition 4. For k > 0, we denote by Hy the set of all sets A that are hereditarily of cardinal
strictly smaller than Ny, i.e., are such that A, the elements of A, the elements of the elements of A,
etc. all have cardinality less than Ny, ©.

Let us first consider the structure (Hy, €), i.e., the level of hereditarily finite sets. Denote by
ZF™ the system ZF without the axiom of infinity.

'But there are more effective versions of CH involving definable objects only.

2or is even undecidable in some mysterious sense

30ne should suspect that just adding CH or =CH to the axioms would not be a very satisfactory solution.

4 As the existence of a large cardinal always implies that ZFC is not contradictory, Gédel’s Second Incompleteness
Theorem forbids that this existence be provable from ZFC, so putting it as an hypothesis always constitutes a proper
axiom.

Sactually, the collection of all pure sets, defined as those obtained from the empty set by iterating the operations
of going to powerset, union, and elements. One knows that such sets are sufficient to represent all mathematical
objects.

5We recall that Xo, N1,... is the increasing enumeration of the infinite cardinals, the latter being defined as the
infinite ordinals that are equipotent to no smaller ordinal. Thus X (also denoted w) is the smallest infinite ordinal,
hence also the upper bound of all finite ordinals, and X; is the smallest uncountable ordinal, hence the upper bound
of all countable ordinals. Then Ng is the cardinality of N, and, writing 2% for the cardinal of P(k) as in the finite
case, 270 is that of P(N), hence also of R, so that the Continuum Hypothesis can be written as PRUESE N
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Lemma 5. From the axioms of ZF, one can define inside (Ho, €) a copy of (N, +, x). Conversely,
from the Peano azioms, one can define inside (N,+, x) a copy of (Hp,€) 7.

So, up to a coding, describing (Hy, €) is equivalent to describing (N, +, x): the “hereditarily
finite” level of Set Theory coincides with arithmetic. A common way of describing a structure S
consists in axiomatizing it, i.e., characterizing those sentences that are satisfied in S as those that
can are provable from some sufficiently simple system of axioms. For arithmetic, the Peano system
is well known, but Goédel’s Incompleteness Theorems show that the description so obtained is
not complete: there exist sentences that are satisfied in (N, 4+, x), but are not provable from the
Peano axioms, and, similarly, there are sentences that are satisfied in (Hp, €) but are not provable
from zZFfin,

Going to the framework of Set Theory enables one to prove more statements, hence to come closer
to completeness. In the case of a sentence ¢ about Hy, this means no longer looking whether ¢ is
provable from ZFfi"| but instead whether the sentence “(Hy, €) satisfies ¢” ® is provable from ZFC.
Similarly, in the case of a sentence ¢ about N, the question is no longer to look whether ¢ is provable
from the Peano axioms, but instead whether “(N, 4, x) satisfies ¢” ? is provable from ZFC.

The Incompleteness Theorem still applies, and axiomatizing using ZFC does not provide a com-
plete description. However, the description so obtained is satisfactory in practice, in that most
of the sentences that are true but unprovable are ad hoc sentences steming more or less directly
from logic!®. Moreover, and chiefly, the way the incompleteness of ZFC appears at the level of
arithmetic is fundamentally different of the way it does at higher levels, for instance in the case of
the Continuum Hypothesis.

In order to explain this difference of nature, we need to introduce the notion of forcing, and,
at first, that of a model of ZFC. As the ZFC axioms involve the membership relation only, it
makes sense to consider abstract structures (M, F) with E a binary relation on M such that each
ZFC axiom is satisfied when the membership relation is given the value E: such a structure is called
a model of ZFC. In this framework, for the ZFC axioms to be true corresponds to the fact that the
structure (V, €) made by true sets equipped with true membership is a model of ZFC!!.

It is the conceptual framework provided by the notion of a model of ZFC which made it possible
to prove Theorems 2 and 3: in order to show that =CH (resp. CH) is not provable from ZFC, it
suffices to construct one model of ZFC satisfying CH (resp. =CH). To this aim, one starts with
an (arbitrary) model M of ZFC, and one constructs a submodel L satisfying CH with Godel, and
an extension M[G] satisfying ~CH with Cohen, respectively'?. Cohen’s method, called the forcing
method, consists in adding to M a new set G whose properties are controlled (“forced”) from
inside M by a specific ordered set P, called forcing set, which describes the elements of M[G] '3.
A model of the form M[G] is called a generic extension of M.

“One obtains a copy N of N inside Hy by recursively defining a copy i of the natural number i by 0 = @ and
i+ 1=3U{i}: this is the von Neuman representation of natural numbers by pure sets. It is then easy to construct
copies 4 and x of + and x, and to prove from ZF™® that (N, +, x) satisfies the Peano axioms. Conversely, following
Ackermann, one can define inside (N, +, X) a relation € by saying that p € ¢ is true if the pth digit in the binary
expansion of ¢ is 1, and then show using the Peano axioms that (N, €) satisfies the axioms of ZFf™ and is isomorphic
to (Ho, €).

84.¢., the sentence obtained from ¢ by adding that all variables take their values in the definable set Ho, cf. Note 14

9or, more exactly and with the notation of Note 7, “(N, +, x) satisfies ¢”

ONoticeable exceptions are the combinatorial properties studied by H. Friedman [6]; also think of the results by
Matiyasevich about the existence of Diophantine equations whose solvability is unprovable [12].

"The description deliberately uses a platonician vocabulary referring to a true world V' made of true sets; more
than a philosophical choice, this is a writing option, and it consists in nothing more than fixing some reference model
and giving a distinguished role to those models that share the same membership relation.

2Similarly, one could show that the axioms of groups do not imply commutativity, say, by starting with an
arbitrary group G and constructing a commutative subgroup and a non-commutative extension of G, respectively.
The construction is more delicate in the second case, because starting with G = {1} or with M = L is not excluded,
so using substructures cannot work.

13as in the case of an algebraic field extension whose elements are described by polynomials of the ground field
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The existence of forcing introduces an essential variability in Set Theory. Starting with a
model M and with a sentence ¢ such that neither ¢ nor —¢ is provable from ZFC, it is frequent that
one can construct a generic extension M[G1] in which ¢ is satisfied by using a first forcing set P,
and another generic extension M[Gs] in which —¢ is satisfied by using another forcing set P, so
that giving any privilege to ¢ or to =¢ seems difficult. However, this cannot happen at the level of
arithmetic.

Definition 6. Let H be a definable set'*. We say that the properties of the structure (H,€) are
invariant under forcing if, for every sentence ¢, every model M, and every generic extension M|G]
of M, the sentence “(H, €) satisfies ¢” is satisfied in M if and only if it is satisfied in M[G] *°.

Proposition 7. The properties of (Ho, €) and of (N, +, x) are invariant under forcing'C.

Thus, the manifestations of the incompletenes of ZFC at the level of arithmetic are not connected
with the variability due to forcing, and they reduce to what could be called a residual incomplete-
ness. We said that the latter introduces little restriction to the efficacity in practice. It is therefore
natural to try to recover, for instance for the structures (Hy, €) with k& > 1, the situation of (Hy, €)
and arithmetic—if this is possible. This leads to putting the question of finding good axioms for
some structure (H, €) as follows:

Problem 8. Find an aziomatic framework, ZFC, or ZFC completed with axiom(s) that are com-
patible with the ezistence of large cardinals, providing a sufficiently complete description of (H, €),
and making its properties invariant under forcing.

The approach developed below consists in giving a leading role to the criterion of invariance
under forcing. Achieving invariance of the properties of (H, €) under forcing means neutralizing
the action of forcing at the level of H, and, therefore, limiting the inevitable incompleteness of the
description as much as possible. Invariance of the properties under forcing is a strong constraint,
and it is not a priori clear that its can be achieved beyond Hy 7. But the possible satisfaction of
this constraint should appear as a strong argument in favour of the axiomatic system that achieves
it18,

In the sequel, by a solution for a structure (H, €), we mean any axiomatic system ZFC com-
pleted with axioms that are compatible with the existence of large cardinals making the properties
of (H, €) invariant under forcing. A solution will be said to be complete if, in addition, it makes
the description of (H, €) empirically complete, an obviously ill-defined and imprecise notion. With
such a vocabulary, we can state the previous results as “ZFC is a complete solution for (Hy, €)”,
and the reader guesses that the point will be the existence of possible (complete) solutions for the
structures (Hy, €) with k£ > 1.

In this framework, we can now propose an answer to the question: “What can mean establishing ¢
when neither ¢, nor its negation —¢ is provable from ZFC?”, typically when one can realize both ¢
and —¢ using forcing. Assume that ¢ involves some definable structure (H, €). If one accepts the
framework of Problem 8, i.e., if one gives some priority to the criterion of invariance under forcing,
it should appear reasonable to consider ¢ as established when two things have been proved:

i e., H is defined as the set of all z’s satisfying a certain formula 1)(z) of the language of Set Theory. For instance,
each of the sets Hy is definable.

5This is something subtle here: assuming that H is defined by the formula 9 (z), we do not require that the sets
defined by ¢ (z) in M and in M[G], i.e., “H computed in M” and “H computed in M[G]”, coincide, we only require
that they satisfy the same properties.

16The result here is even stronger: one obtains invariance not only with respect to generic extensions, but even
with respect to arbitrary extension, (M’, E) being called an extension of (M, E) if M is included in M’, E is the
restriction of E’ to M, and the ordinals of (M, E) and (M’, E") coincide.

"Woodin showed that invariance under forcing is impossible for the properties of the structure (Vigi2,€)
(¢f. Note 27), so, essentially, for any fragment that contains P(R).

®However, there is no unanimity on this point. One objection is to consider that the variability due to forcing
reflects some blurring in our perception of sets. From this point of view, requiring invariance under forcing means
restricting our observation to those fragments of the universe escaping that blurring. But nothing tells us that the
solution of the Continuum Problem, say, must lie in those fragments.
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- (i) that there exists at least one solution to Problem 8 for (H, €), and,

- (ii) that every such solution implies that ¢ be true.
In other words, we consider a sentence ¢ as established when it is necessarily true in every coherent
framework that neutralizes the action of forcing until the level of ¢ 9.

This is exactly the approach developed by Woodin in order to address the Continuum Problem,
which we shall see can be expressed as a property of Ho.

3. THE SECOND LEVEL: COUNTABLE SETS

The simple situation of Hy does not reproduce whenever infinite sets enter the picture: the
ZFC system does not make the properties of H; invariant under forcing, and it leaves many of
them open. But we shall see that, provided ZFC is conveniently improved, there exists an excellent
solution to Problem 8 for (H;, €). The discovery of this solution has been one of the major tasks
of Set Theory in the period 1970-1985.

In the same way as one goes from (Hy, €) to (N, +, x), it is easy to go from (H1, €) to (P(N),N, +,
x, €) 29, Determining which sentences are satisfied in (P(N),N, +, x, €) amounts to studying the
subsets of P(N) that are definable there, i.e., have the form

(1) A={x e P(N); (P(N),N, +, x, €) satisfies ¢(x, a)},

with @ a finite sequence of elements of P(N): typically, recognizing whether Jx¢(x, @) is satisfied
is equivalent to recognizing whether the set defined in (1) is nonempty.

Definition 9 (Lusin). Let X be a Polish space. A subset of XP is said to be projective if it is can
be obtained from a Borel set in XPT* by a finite number of projections and complementations.

The subsets of P(N) that are definable in (P(N),N, +, x, €) exactly are the projective subsets
of {0, 1} 21, As the classes we consider always include the Borel sets, and as there exists a Borel
isomorphism between the Cantor space {0, 1}N and the real line R, we may replace P(N) with R,
and, finally, we conclude that studying (Hj, €) is essentially studying the projective subsets of R.

Owing to Problem 8, the first point is to know whether the ZFC axiomatization provides a
sufficiently complete description of (Hi, €), i.e., of the projective sets. The answer is negative.
Let us say that a set is PCA if it is the projection of the complement of a projection of a Borel
set. Then, if ZFC is not contradictory, neither the statement “All PCA subsets of R are Lebesgue
measurable”, nor its negation, is provable from ZFC 22,

According to our program, we now look for a possible new axiom providing, when added to ZFC,
a solution to Problem 8. Gathering a number of deep results leads to the conclusion that the axiom
of Projective Determinacy does provide such a solution.

Definition 10. We say that a subset A of [0, 1] is determined if the infinite sentence
(Fe1)(Ve2)(Fez) ... (3, €27 € A) or (Ver)(3ea)(Ves) ... (3, €271 ¢ A)

is satisfied, where the €;’s are 0 or 123,

9With still more concrete words: only ¢ remains when temperature has been lowered enough to prevent thermical
agitation connected with forcing to make ¢ and —¢ indiscernible.

204.e., to second order arithmetic where, besides natural numbers and their operations, one also considers sets of
numbers and the associated membership relation

2If ¢ has no quantifier, (1) defines an open set; adding one existential quantifier amounts to projecting, while
adding one negation amounts to taking the complement.

22 A5 mentioned above, Godel shows that —CH (as well as the negation of the axiom of choice) is not provable
from ZF by constructing a certain sub-model L of V. Now L comes equipped with a canonical well-ordering (implying
the axiom of choice) whose restriction to the reals is a PCA set, which cannot be Lebesgue measurable by Fubini’s
theorem. So L satisfies “There exists a non-measurable PCA set”, and, therefore, it is impossible that ZFC proves “All
PCA sets are measurable”. As for the negation, one uses forcing with Martin’s axiom MA, which will be mentioned
in Section 4.

ZEquivalently, one player has a winning strategy in the game G4 where two players I and II alternatively construct
an infinite sequence €1, €2, ... of 0’s and 1’s, and where I (resp. II) is said to win for >, ;27" € A (resp. ¢&).
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All open sets are determined, and a theorem of Martin (1975) states that all Borel sets are
determined. This result is the strongest that can be proved from the axioms of ZFC 24, so, putting
as an hypothesis that all sets in a family that properly includes the Borel sets is a (proper) axiom.

Definition 11. The axiom of Projective Determinacy PD says: “Fuvery projective subset of R is
determined ™.

The determinacy property is a paradigm that allows one to express a number of analytic prop-
erties, and it follows that the axiom PD actually provides a very complete description of projective
sets. Typical results are as follows, cf. [14]:

Proposition 12 (Banach—Mazur, Mycielski-Swierczkowski, Moschovakis). The system ZFC + PD
proves that every projecive set is Lebesque measurable and has the Baire property; it also proves
that projective sets have the Uniformization Property®S.

The unprovability phenomena connected with Godel’s theorems cannot be avoided, but one can
claim without cheating that the ZFC + PD axiomatization gives to the description of H; the same
degree of empirical completeness as ZFC gives to that of Hy.

In view of Problem 8, the next point is to look for possible conditions making the properties of Hy
invariant under forcing. It is precisely this question that led to isolating the notion of a Woodin
cardinal®” and which led in 1984, building on work by Foreman, Magidor, and Shelah mentioned
in Section 4 below, to the following result:

Theorem 13 (Woodin). Assume that there exists a proper class of Woodin cardinals®®. Then the
properties of (Hi, €) are invariant under forcing.

At this point, the only missing result is a proof of the compatibility of the axiom PD with the
existences of large cardinals—so, in some sense, a proof of PD. Around 1983, Woodin gave a proof
from a very strong axiom, but the exact measuring of PD in the large cardinal hierarchy came
in 1985, with the following remarkable result, cf. [2]:

Theorem 14 (Martin—Steel). Assume that there exist infinitely many Woodin cardinals. Then PD

is true®.

So, the system consisting of ZFC enhanced with PD provides a good description of (Hy, €) 3,
and the slightly stronger system consisting of ZFC enhanced with the existence of a proper class of

24In the model L, some set which the projection of a Borel set is not determined.

2’Let AD be the maximal determinacy axiom “Every subset of R is determined”; Woodin proved in 1987 that the
systems ZFC+ “there exists infinitely many Woodin cardinals” (see below) and ZF + AD are equiconsistent; one of the
points is that, if there exist infinitely many Woodin cardinals in V, then AD holds in the minimal sub-model L(R)
of V that contains R.

264.e., if A is a projective subset of R?, then there exists a mapping f : R — R with a projective graph that
chooses, for each z, a distinguished y satisfying (z,y) € A whenever such a y exists; the Uniformization Property is
a corollary to the Scale Property, which is crucial.

27 As many large cardinals, Woodin cardinals are defined by the existence of elementary embeddings, which are
homomorphisms between models of ZFC that preserve everything that is definable from €. Let V,, denote the set of
all pure sets obtained from @ by using the powerset operation at most « times. A cardinal  is called Woodin if, for
every mapping f : k — k, there exist a class M, an elementary embedding j : V — M, and an ordinal @ < x such
that £ < o implies j(§) = £ and f(§) < a and we have j(a) > a and Vj(y) € M. The general idea is natural:
a cardinal « is infinite if there exists a bijection between x and one of its proper subsets, and it will be considered
“super-infinite” if the bijection is even an isomorphism, i.e., an elementary embedding. The logical strength of the
notion depends on how close from the ground model V' the target model M is, here expressed in the condition
Vitr)(a) © M. If the latter were weakened to V.. € M, one would obtain a measurable cardinal, a weaker notion in
terms of consistency.

284.e., for every cardinal &, there exists a Woodin cardinal above &.

2Tt turned out that the implication actually is nearly an equivalence: for each k, the system ZFC + PD proves the
consistency of ZFC+ “there exists £ Woodin cardinals”; still more connections subsequently appeared, for instance
that the forcing axiom MM implies PD; all this made PD and Woodin cardinals central and ubiquitous in Set Theory.

39An additional argument is that not only gives PD some answers to all questions about H;, but it also gives
the heuristically satisfactory answers. For instance, the Uniformization Property dismisses any use of the Axiom
of Choice when projective sets are concerned; similarly, the Lebesgue measurability forbids that any paradoxical
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Woodin cardinals (somehow a delocalized version of PD) gives a complete solution to Problem 8
for Hy: it allows one to recover for Hy, i.e., for the level of countable infinity, the same type of
empirical completeness that ZFC guarantees for Hy, i.e., for the level of finite sets and arithmetic.

4. THE THIRD LEVEL: CARDINALITY Nj

The next step is that of the structure (Hs, €), i.e., that of cardinality N;. It was addressed since
the beginning of the 1980’s. In the same sense as above, Hj is the level of P(R;) 3!, and also that
of the set of all length N; sequences of reals. A prominent technical role is played by the stationary
subsets of Ny, which have no counterpart at the level of ¥y, and originate in the existence of limit
points in the order topology on the ordinal Nj.

Definition 15. We say that a subset of Ny is stationary if it meets every unbounded subset of Ny
that is closed for the order topology. The set of all non-stationary subsets of Ny is denoted Ing.

The level of Hy is the first one where the axiom of choice occurs in an essential way. Also, let us

immediately observe that this is the level where the Continuum Problem arises3?:

Lemma 16. There exists a sentence ¢pcop such that “(Ha, €) satisfies ¢or” is equivalent to CH.

The success obtained for H; leads to looking for some axiom?? playing for (Ha, €) the role played
for (Hyp, €) by PD and by the existence of a proper class of Woodin cardinals, i.e., solving Problem 8.
Bad news, announced by Levy and Solovay as early as 1967, is that no large cardinal axiom can
answer the question:

Proposition 17. No large cardinal aziom can make the properties of (Ha, €) invariant under
forcing.

The reason is the definability of forcing by a set of the ground model. Owing to Lemma 16,
it suffices to show that a large cardinal axiom A cannot decide the truth value of CH. Now, in
order to break CH, it is sufficient to add Ny subsets to N, which can be done using a forcing set of
cardinality No; by construction, such a small forcing preserves all large cardinals. So, starting with
a model satisfying A + CH, we can always construct a generic extension satisfying A +—-CH, and A
cannot make CH invariant under forcing.

So a possible axiomatization of Hs neutralizing the action of forcing is not to be looked at in the
family of large cardinal axioms. In the past two decades, it appeared that natural candidates lie
among forcing arioms>*. The latter are strong versions of the well known Baire Category Theorem
which states that, if X is a locally compact space, then every countable intersection of dense open
subsets of X is dense. The possibility of extending the result to larger intersections obviously
depends on the cardinality of X 3°, and it requires that certain constraints on X or, more precisely,

decomposition of the sphere into projective pieces. In contrary, axiomatizing with ZFC + V=L (the “fine structure” of
Jensen), which means that the universe coincides with the minimal model L of Godel, also provides a rather complete
description of the sets (one that contradicts most large cardinal axioms and gives no invariance under forcing), but
the answers one obtains are less satisfactory than those given by PD: e.g., we have seen that ZFC + V=L proves the
existence of non-measurable projective sets.

Another point distinguishing PD from V=L is that every model V of ZFC includes L as a submodel, so that a theory
of L is always present as a subtheory of any theory of sets. So taking PD as an hypothesis does not dismiss V=L,
while taking V=L as an hypothesis would restrict the scope, as developing group theory by adding the axiom that
every group is commutative. It is such an argument that leads to require that every axiom for V, i.e., for true sets,
be compatible with large cardinals.

314.e., that of sets of countable ordinals, since the construction of ordinals is made in such a way that each ordinal
coincides with the set of smaller ordinals: e.g., Xy is the set of all countable ordinals.

32This is not obvious, as a priori CH involves the whole set P(R), which belongs to Hs only if CH is true; the
lemma states that one can always encode the Continuum Hypothesis in (Ha, €).

330nce for all, when we say one axiom, it could be a finite family, or even an infinite one provided it is sufficiently
effective, typically recursive.

340ther candidiates could be the generic large cardinal axioms of [4].

35If CH is true, the intersection of the R; open dense sets R \ {a} for a in R is empty.
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on the algebra of regular open sets of X, be satisfied. These constraints are motivated by the
theory of forcing and generic extensions, and that is where the name “forcing axioms” comes from.

The first forcing axiom was introduced in 1970 to solve a famous Souslin problem about charac-
terizing the real line. It is the Martin axiom MA: “If X is a locally compact Hausdorf space where
any family of pairwise disjoint open subsets is countable, then every intersection of N; dense open
subsets of X is dense”. This axiom can be seen to express a weak form of invariance between V'
and the generic extensions V[G] associated with a sufficiently simple forcing set.

There exists a natural linear hierarchy of extensions of MA, which results from a highly developed
theory of “iterated forcing”: see [15] (and its 1000 pages!). In [5], Foreman, Magidor, and Shelah
identified the maximal class of compact spaces for which a strong form of the Baire Category
Theorem is not obviously contradictory, namely those compact spaces X such that the Boolean
algebra of regular open sets of X preserves stationarity5. So the strongest possible form of Martin’s
axiom is:

Definition 18 (Foreman-Magidor—Shelah). The Maximum Martin aziom MM says: “If X is a
locally compact Hausdorff space such that the algebra of regular open subsets of X preserves sta-
tionarity, then every intersection of Ny dense open subsets of X is dense”.

As above with PD, the question is whether the axiom MM is compatible with large cardinal
axioms. The answer is positive [5]; it relies on Shelah’s Iterated Forcing Theorem and on some
argument of Baumgartner that relates iterated forcing to supercompact cardinals®’ is:

Theorem 19 (Foreman—Magidor—Shelah). Assume that there exists a supercompact cardinal. Then
the axiom MM is satisfied in some generic extension of V.

For studying Hs, it is natural to consider a weak variant of MM called MMB (Bounded Martin
Mazimum)3® and introduced by Goldstern and Shelah [8]. Let us say that a formula is bounded if the
only quantifications it contains have the form Vy€z and Jycz. The relevance of MMB for (Hj, €)
appears in some reformulation due to Bagaria [1], namely that MMB is equivalent to the statement
“Every sentence 3z (x,a) with ¢ bounded and a in Hs satisfied in a stationary preserving generic
extension of V is already satisfied in Hy”3?. So Axiom MMB proves every property of Hy that can
be expressed by a sentence of the form V...3.. .1 with ¥ bounded?® and that cannot be refuted by
a stationary preserving forcing. Such properties are therefore invariant under stationary preserving
forcing, and the following question is natural:

Does MMB—or some variation of it—solve Problem 8 for (Hs, €)?

The question is open, because there miss a completeness not restricted to V3 sentences, and an
invariance under unconditional forcing.

This appears to be the starting point of Woodin’s work. His approach consists in achieving
invariance under forcing first, starting with a version of Theorem 13 asserting that, if there exists a
proper class of Woodin cardinals, then the properties of the structure (L(R), €) are invariant under
forcing. Then Woodin essentially tries to realize Axiom MMB in a convenient generic extension of
the model L(R). The construction involves a certain forcing set P4, of a new, very sophisticated
type: the elements of the set Py, are themselves models of ZFC. The argument leads to extending
the invariance under forcing from L(R) to the constructed model. The latter is L(P(X;)), and it

360ne says that an ordered set IP preserves stationarity if every stationary subset of R; in V remains stationary in
the generic extension associated with P.

3TA cardinal x is called supercompact if, for every cardinal A > &, there exists a class M and an elementary
embedding j : V — M such that o < x implies j(a) = «, one has j(k) > A, and every length X sequence of elements
of M (in V) belongs to M. The axiom “There exists a supercompact cardinal” is stronger than the axiom “There
exist infinitely many Woodin cardinals” (which we have seen is nearly equivalent to Projective Determinacy in the
consistency hierarchy).

38MMB is like MM, but restricted to intersections of dense open subsets of X that can be written as the union of
at most N; regular open sets.

39This result is directly reminiscent of a classical theorem by Levy-Shoenfied (of which Prop. 7 is a corollary),
stating: “Every sentence 3z (x, a) with ¢ bounded and a in Hs satisfied in V is already satisfied in H»”.

0Tn the sequel, such a sentence (with one quantifier alternation) will be called a V3-sentence.
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includes Hs by construction. It follows that the properties of Hy are captured. The final result
involves a new axiom, here called WMM like “Woodin’s Martin Maximum” *', which is the variant
of (Bagaria’s reformulation of) MMB in which the stationary subsets of X; and a subset of R
belonging to L(R) can be taken as parameters:

Theorem 20 (Woodin). Assume that there exists a proper class of Woodin cardinals. Then ZFC+
WMM provides an empirically complete*? aziomatization of (Ha, €), and makes its properties in-
variant under forcing.

The missing point for ZFC + WMM to be a (complete) solution for Hy is the compatibility
of Axiom WMM with the existence of large cardinals, i.e., the counterpart of the Martin—Steel
theorem. Theorem 19 guarantees this compatibility in the case of MM, hence of MMB, but the
question remains open for WMM. However, we shall see in the sequel that Theorem 20 seems close
to a solution: for the moment, there is no proof that no large cardinal axiom can contradict WMM,
but, at least, one knows that no large cardinal admitting a canonical model can contradict WMM.
We shall come back on this in Section 6.

5. Q-LOGIC

In the recent years, Woodin proposed a new conceptual framework giving a more simple formu-
lation of the previous results, and, mainly, opening numerous perspectives. The idea is to use a
specific logic that directly includes invariance under forcing and, therefore, somehow repares the
blurring introduces by forcing in our perception of sets.

So far, we tried to characterize the sentences satisfied in a strcture (H, €) as those that can be
proved from convenient axioms, via the usual notion of proof (in first order logic). By using a
new more subtle provability notion?3, we can hope to get more simple descriptions of complicated
objects, and to discover new phenomena that otherwise would remain hidden.

As other formal logics, Woodin’s Q-logic can be described using a (syntactic) notion of provability
(existence of a proof, i.e., of a certificate guaranteeing a certain property) and a semantic notion
of validity (satisfaction is some reference structures). In the current case, the role of proofs is
played not by finite sequences of sentences as in usual logic, but by specific sets of reals, namely
the universally Baire sets of [3].

Definition 21 (Feng-Magidor—-Woodin). A subset B of RP is said to be universally Baire if, for
every continuous f : K — RP with K a compact Hausdorff space, the set f~'(B) has the Baire
property in K 4.

Every Borel set is universally Baire, and, if there exists a proper class of Woodin cardinals, so is
every projective set.

Woodin’s idea is to use the universally Baire sets as witnesses for a new provability notion. If
B is a universally Baire subset of R, it can be written as the projection of the infinite branches of
some tree B over Ap X Ng, where Ap is some convenient ordinal, and B then plays the role of a
code for B. When one goes from V to a generic extension V[G], the tree B is preserved, but the
set of its branches in V[G], denoted B¢, may properly include B.

Definition 22. Assume that M is a transitive’® model of ZFC and B is a universally Baire subset
of R. We say that M is B-closed if, for every generic extension V[G] of V, the set B N M|G]
belongs to M[G].

“IThe original statement, denoted (x), is “AD is satisfied in L(R) and L(P(X1)) is a P.c-generic extension
of L(R)”. A more easily understandable reformulation will be given in Section 5.

4Zin the sense that it proves every sentence that cannot be refuted by going to a generic extension

43Warning! We only consider using an alternative logic for statements, which does not change anything to proofs:
theorems are true theorems...

44j.e., there exists an open subset U of K such that both U \ f~!(B) and f~'(B)\ U are meager

45This means that M is included in V, has the same membership relation, and that @ € y € M implies € M.
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This notion is meant as a closedness property, namely that the model M contains enough wit-
nesses to prove the universally Baire character of B. If B happens to be a Borel set, then every
transitive model of ZFC is B-closed. But, the more complicated the set B is, the more demanding
the condition of being B-closed is.

Definition 23 (Woodin). Assume that there exists a proper class of Woodin cardinals’®. We say
that a universally Baire subset B of R is an Q-proof for a sentence ¢ if ¢ is satisfied in every
countable transitive model of ZFC that is B-closed. We say that ¢ is Q-provable if it admits at least
one -proof.

An Q-proof is not a proof in the usual sense, but, as a proof, it will be used as certifying that the
considered sentence has a certain property. Observe that an 2-proof involves small objects only
(but infinite ones, in contrast to proofs in usual logic): sets of reals, countable models of ZFC.

Every provable sentence is Q-provable: if ¢ is provable (in usual logic) from ZFC, then ¢ is
satisfied in every model of ZFC, so in particular in every countable transitive model, and every
universally Baire set (for instance the empty set) is an Q-proof of ¢. Now, there exist {2-provable
sentences whose only 2-proof are more complicated than Borel sets and which are not provable in
the usual sense: 2-logic properly extends usual logic.

Are the Q-provable sentences true? Owing to Godel’s Completeness Theorem, if a sentence ¢
is Q-provable but not provable, there exists at least one model (M, E) of ZFC in which ¢ is not
satisfied. However, we shall see that ¢ must be satisfied in all models that are sufficiently close to
the model V of true sets—hence, in some sense, in all models we are interested in.

For o and ordinal, we denote by V,, the set of all pure sets that can be obtaine from & using the
powerset operation at most « times. The structures (V,, €) can be seen as approximations of (V, €);
in general, (V,, €) is not a model of ZFC, but this is the case whenever « is an inaccessible cardinal?”.

Proposition 24. Assume that there exists a proper class of Woodin cardinals. Then every €)-
provable sentence is satisfied in every model of ZFC of the type “(Vi, €) computed in an (arbitrary)
generic extension of V7.

In other words, an {2-provable sentence cannot be refuted using forcing from the model V' of true
sets. This leads us to choosing the following semantic for 2-logic:

Definition 25. We say that a sentence ¢ is Q-valid is ¢ is satisfied in every model of ZFC of the
type “(V, €) computed in an (arbitrary) generic extension of V7.

In this way, we obtain a coherent logic: Every -provable sentence is 2-valid. Then the converse
question, i.e., the question of whether ()-logic is complete, arises naturally: is every (2-valid sentence
Q-provable?

Conjecture 26 (Q-Conjecture, Woodin, 1999). Every Q-valid sentence is Q-provable?8.

Roughly speaking, the (2-Conjecture asserts that all sentences that cannot be refuted by going
to a generic extension admit a “proof” in the family of universally Baire sets. We shall come back
later on equivalent reformulations.

For the moment, we shall see that the framework given by Q-logic (with the Q-Conjecture)
enables us to simply reformulate Problem 8 and the results of Section 4.

Definition 27. Assume that H is definable. We say that A is an Q-complete axiom for the struc-
ture (H, €) is, for every ¢, exactly one of the two sentences A = “(H, €) satisfies ¢, A = “(H, €)
satisfies ¢ is Q-provable.

46This framework of large cardinals is not needed, but it makes the formulation more simple.

4TA cardinal  is said to be inaccessible if x is uncountable, A < s implies 2* < &, and the conjunction of A < &
and (Va < A)(Aa < k) implies sup{Aa;a < A} < k—i.e., £ cannot be reached from smaller objects by using the
powerset or the limit operations. Inaccessible cardinals are the smallest large cardinals.

48This formulation is readily correct only for V3-sentences; the general case is slightly more complicated.
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So, an Q-complete axiom for (H, €) “Q2-decides” every property of H. What makes the introduc-
tion of Q-complete axioms both interesting and natural is the following point. If A is an Q2-complete
axiom for (H,€), then there can certainly exist statements ¢ such that A = “(H, €) satisfies ¢
is 2-provable but not provable, but, in this case, we at least know by Prop. 24 that ¢ cannot be
refuted by going to a generic extension from a model of ZFC 4+ A. So, we need not have a com-
plete description of H, but we recover the same type of forcing-free completeness as with ZFC and
arithmetic, and as required in Problem 8.

Proposition 28. If the Q-Conjecture is true, then ZFC + A is a solution to Problem 8 for (H,€)
if and only if A is an Q-complete axiom for (H,€).

PROOF (Sketch). Assume that A is an Q-complete axiom for (H,€). We saw above that, by
construction of €2-logic, the properties of H necessarily are invariant under forcing. There remains
to show the compatibility of A with the existence of large cardinals. In the framework of Q-logic,
this means showing that —A is not 2-valid. Now the hypothesis that A is an {2-complete axiom
guarantees that —A is not Q-provable. If the Q2-Conjecture is true, non-{2-provability implies non-
Q-validity.

Conversely, assume that ZFC + A makes the properties of (H, €) invariant under forcing. Then,
for each sentence ¢, exactly one of the two sentences A = “(H, €) satisfies ¢”, A = “(H, €)
satisfies —¢”, is -valid. If the Q-Conjecture is true, this implies that at least one of them is
Q-provable. Moreover, the compatibility of A with large cardinals implies that —A is not 2-valid,
hence a fortiori not Q-provable, and A is an Q-complete axiom for (H, €). ]

Let us come back to the structure (Hs, €). First, 2-logic enables us to give a more easily
understandable formulation of Axiom WMM.

Proposition 29. Assume that there exists a proper class of Woodin cardinals. Then WMM is
equivalent to: “For every A included in R belonging to L(R), every V3-sentence about (Ha,Ing, A, €)
whose negation is not 2-provable is satisfied”.

This shows that WMM is a maximality principle for (Hs,Zyg, €) analogous to algebraic closure®?:
a field K is algebraically closed if every non-contradictory system of algebraic equation with pa-
rameters in K has a solution in K, i.e., precisely, if every V3-property of the structure (K, +, x)
compatible with the axioms of fields is satisfied®”. So, saying that Axiom WMM is true is analogous
to saying that H» is, in some sense, algebraically closed.

From Theorem 20, Woodin proves the following result, which apprears to be its genuine content:

Theorem 30 (Woodin). Assume that there exists a proper class of Woodin cardinals. Then WMM
is an Q-complete axiom for (Ha, €).

By applying Proposition 28, and taking into account the empirical completeness asserted in
Theorem 20, we deduce:

Corollary 31. If the Q2-Conjecture is true, then ZFC +WMM is a complete solution to Problem 8
for (Hq, €).

6. -LOGIC AND LARGE CARDINALS

Q-logic is connected with large cardinals: in some sense, it is even the logic of large cardinals—or,
at least, of those large cardinals that admit canonical models of a certain type. Describing this
connection will enable us to give a precise meaning to our claim that Woodin’s results come close
to a proof of the 2-Conjecture. On the other hand, we shall see that 2-logic provides an elegant

49 Analogy is even more relevant when the hypothesis is restricted to “A projective”; one then obtains an ax-
iom WMM, that is weaker than WMM but has the same properties with respect to axiomatizing Hs. A similar
formulation would be also possible for the axiom MMB of which WMM is a variation.

0In this case, a V3-sentence only involves Boolean combinations of equations since there is no relation in the
considered structure.
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conceptual explanation to the empirical constatation that the large cardinal axioms organize into
a linear hierarchy.

It is easy to check that all so far considered large cardinal axioms enter the following syntactic
framework®!:

Definition 32. We say that Ik(k) is a large cardinal axiom if ¢ is a IV-sentence such that, if
Y(kK) is satisfied in V', then k is an inaccessible cardinal and (k) remains satisfied in every generic
extension of V' associated with a forcing set of cardinality smaller than k. In this case, we say that
Jrp(k) is fulfilled if, for every set X, there exists a transitive model M of ZFC and an ordinal k
of M such that X belongs to V, N M and (M, €) satisfies (k).

For the axiom Jk1)(k) to be fulfilled means that there exist many models containing cardinals with
the property ¥. Observe that, if there exists a proper class of inaccessible cardinals k satisfying ¢ (k),
then the axiom Jky(k) is fulfilled: it suffices to take M = V) with A inaccessible and large enough.

The following result shows that Q-provable sentences are those which are provable (in usual logic)
from some large cardinal axiom for which Q-logic is relevant:

Proposition 33. Assume that there exists a proper class of Woodin cardinals. Then aV3-sentence ¢
1s Q-provable from ZFC if and only if there exists some large cardinal axiom A such that “A is ful-
filled” is Q-provable and ¢ is provable (in usual logic) from ZFC+ “A is fulfilled”.

Corollary 34. The Q-Conjecture is equivalent to the statement: «For every large cardinal axiom A
that is fulfilled, the statement “A is fulfilled” is Q-provable».

We can now explain how Woodin’s results come close to the (2-Conjecture. In view of Corol-
lary 34, the problem is to determine for which large cardinals A the statement “A is fulfilled”
is Q-provable. Now, there exists a canonical model program, which roughly speaking consists in
constructing for each large cardinal axiom A a minimal model where A is satisfied, on the shape
of Gédel’s model L 52. This program, which relies on the so-called comparison method, currently
reaches the level of the axiom “There exist infinitely many Woodin cardinals” [13], but not (yet?)
that of “There exists a supercompact cardinal”. The following result relies on a fine analysis of a
general notion of canonical model:

Theorem 35. For each large cardinal axiom A for which a canonical model based on the compar-
ison method may exist, the statement “A is fulfilled” is Q-provable®.

As Theorem 35 is essentially an equivalence, the point in the 2-Conjecture is the possibility of
extending the comparison method to every large cardinal—we therefore see that this conjecture
could be refuted by showing that some wvery large cardinal is to ever remain inaccessible to any
notion of canonical model.

Let us go to the second point in this section, namely the explanation for the large cardinals
hierarchy. As was said above, all known large cardinal axioms organize into a linear hierarchy:
for any two such axioms, there always turns out that one implies the other, or, at least, that the
consistency of one (i.e., its non-contradiction) implies the consistency of the other. One so obtains
a well-founded hierarchy connected with relative consistency that calibrates the logical strength of
the axioms: for instance, the consistency of (the existence of) a supercompact cardinal implies that
of infinitely Woodin cardinals, which itself implies the consistency of (the existence of) one Woodin
cardinal. The latter implies the consistency of (the existence of) one measurable cardinal, which
itself implies that of one (even many) inaccessible cardinal.

The starting point will be the existence of some complexity scale on universally Baire sets deduced
from Wadge reducibility.

Definition 36. For B, B’ C K ®*, we say that B is reducible (resp. strongly reducible) to B’ if
one has B = f~1(B’) for some continuous (resp. 1/2-Lipschitz) mapping f : K — K.

51'We do not claim that every sentence of this form intuitively corresponds to a large cardinal.

52which corresponds to the case of ZFC, i.e., to the case where no large cardinal axiom at all is assumed
531t follows that the Q-Conjecture is true in every canonical model.

54here it is convenient to return to the Cantor space K = {0, 1}N rather than staying in R
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Proposition 37. Assume that there exists a proper class of Woodin cardinals. Then, for all uni-
versally Baire sets B, B' in KK, either B is reducible to B', or B’ is strongly reducible to K\ B.

As no subset of K may be strongly reducible to its complement, one obtains a preordering < on
universally Baire sets by saying that B < B’ is true if both B and K\ B are strongly reducible
to B’. Then one shows that the preorder < has no infinite descending chain, which enables one to
attach to each universally Baire set A an ordinal that will be called its complexity.

Theorem 38 (Woodin). For A a large cardinal axiom, let p(A) denote the minimal complexity
of an Q-proof of the statement “A is fulfilled”. Then, for all levels where they are defined®, the
consistency hierarchy coincides with the hierarchy associated with p.

This aesthetic and deep result is a strong argument in favour of Q-logic. If the Q-Conjecture is
true, then the hierarchy defined by p covers all large cardinal axioms; if it is false, this hierarchy is
only the beginning of a longer hierarchy about which nothing is known so far.

7. THE RESULTS ON THE CONTINUUM HYPOTHESIS

One of the most dramatic aspects in the recent developments is the new perspective they open
about the Continuum Problem.

Before presenting the result—and without claiming that the brief account below is a complete
story of the results about CH in the past decades—we shall mention a result by Woodin (1984)
that stresses the critical position of the Continuum Hypothesis:

Proposition 39. Assume that there exists a proper class of measurable Woodin cardinals. Then
any two generic extensions of V' satisfying CH satisfy the same existential sentences with parame-
ter R.

In other words, whenever two generic extensions agree on CH, they also necessarily agree on all
properties which have the same syntactic complexity as CH.

On the other hand, it has been observed for along time that there exists no symmetry between CH
and —CH, and that at least certain variants of -CH can be proved while the corresponding counter-
parts for CH cannot. Moreover, several remarkable results (generally with difficult proofs) showed
that, in various frameworks where it is not clearly determined by the hypotheses, the value of the
continuum, i.e., of 280, turns out to be Ny. For instance, Foreman, Magidor, and Shelah showed
in [5] that MM implies 2%° = Xy, and Woodin showed in [18] that so does the hypothesis that the
ideal Z)ys has some combinatorial property called Na-saturation. Recently, using a specially elegant
and direct combinatorial argument, Todorcevic showed in [17] that MMB implies a strong effective
version of the equality 2%° = Ry, namely that one can define a well-ordering of length X3 on R using
as only parameter a single sequence of reals of length N; (hence an element of Hs). These results
collectively may be seen as an empirical hint against CH.

Let us come to the recent result. By Lemma 16, every sufficiently complete description of Hs
must include a solution of the Continuum Hypothesis. For instance, it is not difficult to see that
WMM, as well as MM or MMB, implies that CH is false, and that 2% = X, holds. But this result
does not say anything about the solution of CH given by other possible axiomatizations of (Ha, €).
The last theorem of Woodin we wish to stress is the following result, established in 2000:

Theorem 40 (Woodin). Assume there exists a proper class of Woodin cardinals. Then every Q-
complete axiom for (Ha, €) whose negation is not Q-valid implies that CH be false.

The proof of Theorem 40—which is a technical tour de force—relies on analysing -recursive
sets, which play for Q-logic the role of recursive sets in classical logic. A subset T of N is said to
be recursive of there exists an algorithm (which can be implemented on a Turing machine) that

554.e., essentially, for those large cardinals accessible to the comparison method
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recognizes its elements®®. Among many equivalent characterizations, recursive sets happen to be
those sets that can be defined in (Hp, €) both by an existential formula and by the negation of an
existential formula. Let L(B,R) denote the model of ZFC that is constructed like Gédel’s model L,
but starting with B and R.

Definition 41. A subsetT of N is said to be Q-recursive if there exists a universally Baire subset B
of R such that T can be defined in the structure (L(B,R),€,{R}) both by an existential formula
and by the negation of an existential formula.

As Hy is definable in L(R), every recursive set is Q-recursive, but the existence of universally
Baire sets which are (much) more complicated than Borel sets implies that there exist {2-recursive
sets which are (much) more complicated than recursive sets.

The key point in Woodin’s proof consists in studying whether Q-recursive sets can be defined
in (Ha, €)—or, more generally, in the set of all sets hereditarily of cardinality at most that of R.
This study requires many developments involving tools from Descriptive Set Theory (study of the
subsets of the real line), from the theory of large cardinals, and from that of determinacy. A
crucial part is to adapt to the framework of determinacy axioms the Mitchell-Steel construction
of canonical models for Woodin cardinals [13]. To this aim, Woodin investigates a new family of
canonical models denoted HODXBR)  which are indexed by universally Baire sets. The result of
this technically sophisticated analysis is

Proposition 42. Assume that there exists a proper class of Woodin cardinals. Let T be an -
recursive subset of N. Then

(i) either T is definable in (Ha, €),

(ii) or there exists a definable surjection of R onto Ns.

Theorem 40 then follows from Prop. 42 using a diagonalization argument. Indeed, if A is an -
complete axiom for (Hs, €), then the set of all numbers of those sentences ¢ such that A = “(H, €)
satisfies ¢” is Q2-provable is a Q-recursive set (this is easy). Now, a classical result by Tarski states
that, for any structure S, the set of those sentences that are satisfied in S cannot be defined
inside S. So, in particular, the set of all (numbers of) sentences satisfied in (Hz, €) cannot be
definable in (Hj, €), and the only possibility according to Prop. 42 is case (ii), i.e., the Continuum
Hypothesis being (in an effective sense) false.

Corollary 43. If the Q-Conjecture is true, then every solution to Problem 8 for (Ha, €) implies
that the Continuum Hypothesis be false®” .

We obtain in this way the following more precise version of the conjecture stated in Introduction:

Theorem 44. If the Q2-Conjecture is true, then every theory of sets obtained by adding to ZFC an
aziom that is compatible with the ezistence of large cardinals and makes the properties of (Ha, €)
tnvariant under forcing implies that the Continuum Hypothesis be false.

We saw that, always if the 2-Conjecture is true, axiomatizing by ZFC + WMM is a (complete)
solution to Problem 8 for (Hs,€). Hence, we are, with respect to Ho and CH®®, exactly in the
position considered at the end of Section 2: Problem 8 has a solution, and every solution implies
that CH is false. So we reached the following conclusion:

Corollary 45. If the Q-Conjecture is true, then the negation of the Continuum Hypothesis is
established, in the sense described at the end of Section 2.

56The effectiveness of the rules of usual logic implies that the set of all (numbers of) sentences provable from ZFC
is the projection of a recursive set, while the set of all (numbers of) sentences that are satisfied in (Hy, €) is not,
what implies that the inclusion of the former set in the latter is strict, a way of proving Godel’s First Incompleteness
Theorem.

5TLet us also mention a variant of the CH result. Let us enumerate all formulas with one free variable, and define
QQ to be the set of all pairs (n,7) in N x R such that ¢,(r) is Q-provable. Woodin proves that, if the set QQ is not
universally Baire, then, essentially, every solution to Problem 8 for (Ho, €) implies that CH be false: in other words,
the pure analysis hypothesis “g” is not universally Baire” gives the same conclusion as the 2-Conjecture.

58 more exactly, of the sentence ¢cm that codes CH inside Hs
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The hasty reader might only remember that the solution of Continuum Problem is just postponed
to the solution of another new problem which is equally open—and whose statement is still more
complicated. This would be a short view, because the nature of the 2-Conjecture is very different
from that of the Continuum Problem. The radically new feature is that one can reasonably expect
a proof®® or a refutation of the Q-Conjecture in the future—and, from there, a solution for at
least one of the aspects of the Continuum Problem. A remarkable point is that the solution of the
Q-Conjecture can come from several disjoint parts of Set Theory, which both shows how central
the conjecture is and emphasizes the unity of Set Theory.

8. CONCLUSION

Two conclusions should appear—and be seen as evidences that Set Theory did not end up with
Cohen’s Theorem.

The first one is that the axiom of projective determinacy PD makes, when added to the ZFC sys-
tem, the correct axiomatization of Hj, i.e., of analysis, in the same way as ZFC is a correct axiom-
atization of Hy, i.e., of arithmetic. This axiom leads to an empirically complete and heuristically
satisfactory description for Hi, i.e., for the realm of countable infinity. This success of PD is the
strongest argument in favour of its being true. It may seem surprising to identify efficacity and
truth%. Let us simply observe that no a priori intuitive evidence®' may exist here, so the only
possible truth criterion is the empirical a posteriori evidence given by a long familiarity. May the
reader think to the widely accepted axiom that infinite sets exist: its operatory efficiency is such
that no one would think to renounce to it, hence, e.g., to real numbers. However, this axiom has
no intrinsic justification, nor has it either any intuitive evidence but the one given by interiorizing
a long familiarity. The situation with PD is similar, and the long familiarity with this axiom set
theorists acquired now gives to this strong axiom of infinity the same intuitive evidence it gave to
the basic axiom of infinity decades ago%?.

The second conclusion is that there exists so far no solution for Hsy, i.e., for the level of the subsets
of Ny, enjoying the same degree of evidence, but that there exists at least one global solution at
this level, namely the one developed by Woodin from the axiom WMM and (-logic.

Even is the Q-Conjecture is to be proved in the future, the discussion about whether invariance
under forcing is the only legitimate criterion will not be closed®?, and it not clear that Q-logic
should be the only reasonable framework. That is why it would be unwise to claim that Woodin’s
solution to the Continuum Problem is the ony possible one.

But, even without the stronger argument that an idea of the proofs would bring, the quick
overview of results we have done should make it unquestionable that there can exist a genuine
conceptual theory of uncountable infinity, one that stands on its own and has its own intrinsic logic
and intuition. No comparable argument can be proposed by the opponents to such a theory, in
particular by those who consider the Continuum Problem as essentially impossible to solve 4.

59In particular, Woodin estalishes a connection between -valid sentences and universally Baire, which is not
yet Q-provability, but seems to be close to. In [21], Woodin proposes a program possibly leading to a proof of the
Q-Conjecture, based on new canonical models.

59 A priori, it would be strange, assuming that one is to study an unknown field, to say: “Algebraically closed fields
have a good theory, hence I will assume that K is algebraically closed”; actually, the problem here is not exactly to
study an unknown and possibly arbitrary field K, but rather to study “the world of fields”, in which case assuming
that the ambient framework is algebraically closed is a quite reasonable hypothesis.

51Thought experiments, which have been sometimes proposed [10], do not go very far here...

62¢cf. Godel [7): “There might exist axioms so abundant in their verifiable consequences, shedding so much light
upon a whole discipline, and furnishing such powerful methods for solving given problems (and even solving them,
as far as possible, in a constructivistic way) that quite irrespective of their intrinsic necessity they would have to be
assumed at least in the same sense as any established physical theory.”

53In particular, we mentioned that invariance under forcing cannot be expected much beyond Ha, cf. Note 17; see
also Note 18.

64cf. Woodin [20]: «There is a tendancy to claim that the Continuum Hypothesis is inherently vague and that
this is simply the end of the story. But any legitimate claim that CH is inherently vague must have a mathematical
basis, at the very least a theorem or a collection of theorems. My own view is that the independance of CH from
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Finally and in any case, hopefully enough has been said to let the reader suspect that Woodin’s
work is a remarkable piece of mathematics.
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ZFC, and from ZFC togeher with large cardinal axioms, does not provide this basis. I would hope this is the minimum
metamathematical assessment of the solution to CH that I have presented. Instead, for me, the independence results
for CH simply show that CH is a difficult problem.>»



