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Abstract. We survey some of the recently developed cryptographic schemes
involving Artin’s braid groups, as well as the attacks against these schemes.
We also point out some hints for future work.
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a quick success, probably due in part to the intuitive and appealing character of
braid groups. Recently, several attacks lowered the initial enthousiasm, and some
authors even announced the premature death of the subject. The aim of this text is
to give a sketchy description of braid-based cryptography, including a discussion of
the attacks, and an analysis of why, in our opinion, these attacks do not condemn
the subject, but only show that further investigation is needed.

1. Background on braids

Artin’s braid groups are infinite non-commutative groups. They are eligible for
applications because there exist efficient ways of specifying braids and computing
with them.

1.1. Braid groups. Braid groups appear in several a priori unrelated frame-
works, and they admit many equivalent definitions. For our current purpose, it is
convenient to start with an explicit presentation.

Definition 1.1. For n � 2, the braid group Bn is defined by the presentation

〈σ1, . . . , σn−1 ; σiσj = σjσi for |i − j| � 2, σiσjσi = σjσiσj for |i − j| = 1〉.(1.1)

For each n, the identity mapping on {σ1, . . . , σn−1} induces an embedding of Bn

into Bn+1, so that the groups Bn naturally arrange into an inductive system of
groups with increasing complexity. Note that B2 is an infinite cyclic group, i.e., is
isomorphic to the group of integers: the “arithmetic” of braids can be seen as an
extension of the usual arithmetic of integers equipped with addition.

We refer the reader to any textbook about braids, for instance [8] or [15],
for a geometric interpretation for the elements of Bn as n-strand braids in the
usual sense. The principle is to associate with every word in the letters σ±1

i the
plane diagram obtained by concatenating the elementary diagrams of Figure 1
corresponding to the successive letters. Such a diagram can be seen as a plane
projection of a three-dimensional figure consisting on n disjoint curves connecting
the points (1, 0, 0), . . . , (n, 0, 0) to the points (1, 0, 1), . . . , (n, 0, 1) in R3, and, then,
the relations (1.1) are a translation of ambient isotopy, i.e., the result of continu-
ously moving the curves without moving their ends and without allowing them to
intersect. It is easy to check on Figure 2 that each relation in (1.1) corresponds to
such an isotopy; the converse implication, i.e., the fact that the projections of iso-
topic three-dimentional geometric braids always can be encoded in words connected
by (1.1) was proved by E. Artin in [4].
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Figure 2. Geometric interpretation of the braid relations

The geometric interpretation makes it clear that mapping the braid σi to the
transposition that exchanges i and i + 1 induces a surjective homomorphism of
the braid group Bn onto the symmetric group Sn. Under this homomorphism, here
denoted π, a braid b is mapped to the permutation f of 1, . . . , n such that the strand
that finishes at position i in a diagram associated with b begins at position f(i).
The kernel of π is a normal subgroup of Bn generated by the braids σ2

i and their
conjugates, which corresponds to the fact that the symmetric group Sn admits the
Coxeter presentation obtained from (1.1) by adding the relations σ2

i = 1.

1.2. The greedy normal form. When a group is specified using a presen-
tation, each element of the group is an equivalence class of words with respect to
the congruence generated by the relations of the presentation. In the current case,
a word on the letters σ±1

1 , . . . , σ±1
n−1 will be called an n-strand braid word. So,

by definition, every n-strand braid is an equivalence class of n-strand braid words
under the congruence denoted ≡ generated by Relations (1.1). If the braid b is
the equivalence class of the braid word w, we say that w is a representative of b.
Note that a braid always admits infinitely many representative braid words, since
all words wσk

1σ−k
1 represent the same braid.

A good solution for working with a presented group consists in selecting a
distinguished word in each equivalence class, i.e., in defining a normal form. Then
working with normal words is exactly equivalent to working with the elements of
the groups themselves. In the case of braid groups, there exists such a normal
form, namely the greedy normal form of [23]. It grew up from the work of Garside
[29], and several variants have been described in several partly independent papers
[20, 1, 56, 22, 23]. Normal braid words are as follows. Let us denote by B+

n the
submonoid of Bn generated by σ1, . . . , σn−1. The elements of B+

n are called positive
braids. Garside proved that B+

n admits, as a monoid, the presentation (1.1), that
Bn is a group of fractions of B+

n , i.e., every braid in Bn can be expressed as b−1
1 b2

with b1, b2 in B+
n , and that B+

n equipped with the (left) divisibility relation is a
lattice, i.e., any two positive braids admit a greatest common left divisor (gcd) and
a least common right multiple (lcm)—as well as a right gcd and a left lcm.

Let ∆n denote the positive braid of B+
n inductively defined by

∆1 = 1, ∆n+1 = ∆nσnσn−1 . . . σ1.(1.2)

Then ∆n is a (left and right) common multiple for all generators σi in the monoid B+
n ,

and it follows that the powers of ∆n can be used as universal denominators: every
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braid in Bn can be written as ∆k
nb with k in Z and b in B+

n , a decomposition that
is unique when we require k to be maximal.

Let us say that a positive braid b in B+
n is simple if it is a left divisor of ∆n, i.e.,

if we have ∆n = bc for some positive braid c. If b is any positive braid, then there
exists a maximal simple braid b1 that divides b, namely the left gcd of b and ∆n.
We can then write b = b1b

′, and repeat the operation, i.e., look for the maximal
simple left divisor b2 of b′, etc.

Let us say that a finite sequence (k; b1, . . . , br), with k an integer and b1, . . . , br

some simple braids, is normal if, for each i, the braid bi is distinct of 1 and ∆n and
it is the maximal simple left divisor of bibi+1 . . . br. Then the result is:

Proposition 1.2. Every braid b in Bn admits a unique decomposition of the
form ∆k

nb1 · · · br with (k; b1, . . . , br) a normal sequence.

In this situation, we say that (k; b1, . . . , br) is the normal form of b. The param-
eter r is called the complexity (or canonical length) of b, and denoted by cpty(b).

In order to obtain a unique braid word representative for every braid, it now
suffices to fix, for every simple braid, a positive word representing it. One shows
that the restriction of the mapping π to simple braids is a bijection, i.e., the simple
braids of Bn are in one-to-one correspondence with the permutations of 1, . . . , n.
In order to select one distinguished braid word representative for each simple braid,
one can iteratively construct for each permutation f a positive braid word f̂ so that
π(f̂) equals f , and then, for each simple braid b, use π̂(b) as a distinguished word
representing b. The conclusion is that every braid admits a unique representative
of the form (∆̂n)kπ̂(b1) . . . π̂(br) with (k; b1, . . . , br) a normal sequence: this word
will be called the normal word representing the considered braid.

Example 1.3. Let us consider the braid of Figure 1, namely b = σ1σ
−1
2 σ3σ

−1
1 .

To find the normal form of b, we first have to find the maximal k such that ∆k
4b

belongs to B+
4 . As b admits a decomposition with as many negative and positive

letters, b does not belong to B+
4 , i.e., k = 0 is impossible. Now, one has ∆4b =

σ1σ3σ2σ3σ2σ3, hence b = ∆−1
4 σ1σ3σ2σ3σ2σ3, and k = −1 works. Then, the maximal

simple left divisor of σ1σ3σ2σ3σ2σ3, i.e., the left gcd of that braid and ∆4, is σ1σ3σ2σ3,
and we have σ1σ3σ2σ3σ2σ3 = (σ1σ3σ2σ3)(σ2σ3). As σ2σ3 is simple, the normal form of b
is (−1;σ1σ3σ2σ3, σ2σ3), and its complexity is 2. Finally, assuming that σ1σ3σ2σ3 and
σ3σ2σ1σ3σ2σ3 are the chosen normal words representing the simple braids σ1σ3σ2σ3

and ∆4, respectively, σ−1
3 σ−1

2 σ−1
3 σ−1

1 σ−1
2 σ−1

3 σ1σ3σ2σ3σ2σ3 is the unique normal word
representing b.

1.3. Implementation of braids. In order to implement integers, one needs
to specify them using numbers, i.e., finite sequences of digits. Similarly, braids have
to be encoded in finite sequences of letters in order to be implemented. The normal
braid words of Section 1.2 are a natural solution, but it is not the only possible
one. The question of how braids are specified is important in practice, because it
has a direct influence on what we call the size of the braid and on the notion of a
random braid drawing—as well as on the practical efficiency of the procedures.

1.3.1. Normal braid words. The first, natural possibility is to use normal braid
words. The practical benefit of working with unique representatives is that es-
tablishing a possible braid equality is algorithmically easy: if we assume that two
braids b1, b2 are represented by normal words w1, w2 respectively, then the braid
equality b1 = b2 is equivalent to the word equality w1 = w2.
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On the other hand, algebraic operations in Bn have a non-negligible algorithmic
cost. With the same notations as above, the normal word representing the braid b1b2

is not the word w1w2 in general, but it is the unique normal word that is equivalent
to w1w2. So we need an algorithm taking an arbitrary braid word w as an input
and returning the unique normal word that is equivalent to w. In the current case,
such an algorithm exists and, for the typical braid size that will be considered in the
sequel (a few dozens strands, a few hundreds or thousands of crossings), computing
the normal form has a moderate cost (typically one second). The normal form is
computed iteratively: assuming that w is a normal word, one computes the normal
form of wσ±1

i —or, more generally, of wu±1 where u represents a simple braid—by
pushing to the left the new letter σ±1

i through w (in the process, σ±1
i or u±1 may

change and be replaced with another simple words v±1). The point is that the
greedy normal form is associated with an automatic structure [23, 56, 16], which
implies that adding one more letter—or one more simple word—can be done in a
time cost that is linear in the length of w. So, finally, the normal word equivalent
to a word w can be determined in a time cost that is quadratic in the length of w.

1.3.2. Normal braid sequences. We mentioned that there exists a bijection be-
tween the simple braids of Bn and Sn. It follows that, instead of selecting a dis-
tinguished braid word for each simple braid, we can also use a permutation. Thus,
in order to specify the braid whose normal decomposition is (k; b1, . . . , br), we can
use the sequence (k;π(b1), . . . , π(br)) consisting of one integer and a finite sequence
of permutations. For simplicity, such data will be called a braid sequence in the
sequel, and we shall naturally say that a braid sequence (k; f1, . . . , fr) is normal if
the corresponding sequence (k; f̂1, . . . , f̂r) is.

Then, by construction, every braid is represented by a unique normal braid
sequence. For instance, we have seen that the braid b of Example 1.3 admits the
normal decomposition (−1; σ1σ3σ2σ3, σ2σ3). The permutations associated with the
simple braids σ1σ3σ2σ3 and σ2σ3 are (2, 4, 3, 1) and (1, 3, 4, 2) respectively—we denote
by (f(1), . . . , f(n)) the permutation f—so the normal braid sequence associated
with b is (−1; (2, 4, 3, 1), (1, 3, 4, 2)).

Using normal braid sequences is similar to using normal braid words: checking
equality is straightforward, but computing product or inverse requires being able to
determine the unique normal sequence that is equivalent to an arbitrary sequence.
The algorithm to do this is analogous to the one used for braid words: as mentioned
above, in the case of words, the principle is to incorporate one after the other the
subwords representing simple braids, so, in the current framework, to incorporate
one after the other the permutations. A practical implementation is given in [12].

1.3.3. Arbitrary braid words. Still another possibility is to use arbitrary braid
words—or braid sequences—instead of normal ones. The advantage of using arbi-
trary braid words is clear: if we no longer require that all braid words are normal,
the cost of computing the product becomes negligible, as the product of the braids
represented by two words w1, w2 can be represented by the concatenated word w1w2,
without further reduction to the normal form. On the other hand, the price to pay
is equally clear: when we have to compare two braids, it no longer suffices to com-
pare letter by letter the unique braid words or sequences that represent them, but
we need a specific algorithm to decide whether the braid word equivalence w1 ≡ w2

holds. Of course, checking whether the normal form of w−1
1 w2 is empty is one
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possibility—but, then, the benefit with respect to using normal words everywhere
is not obvious.

We shall return to this option in Section 4.3 below.
1.3.4. Data size and random drawing. Although using (normal) words and us-

ing (normal) sequences are equivalent approaches in theory, they are not completely
equivalent in practice, because they lead to different evaluations of the size of the
data, and to different notions of random drawing. For instance, the braids σk

1 and
∆k

n are represented by the normal sequences

(0; (2 1 3 . . . n), . . . , (2 1 3 . . . n)) and (0; (n n−1 . . . 2 1), . . . , (n n−1 . . . 2 1))

respectively, each of length k, hence by data of global size kn (if we do not take into
account the size of the integers, otherwise a factor log n is to be added). On the other
hand, these braids are represented by normal words of length k and kn(n − 1)/2,
respectively. We see that the evaluations may differ by a large constant factor,
typically 4, 950 for n = 100 (even more if we take into account the size of the
integers and add log n factors).

This phenomenon induces some ambiguity about what randomly drawing a
braid means. A most natural choice is to draw random braid words, or random
braid sequences, and then compute the associated normal word or sequence. One
problem is that, as Table 1 shows, when we draw random words of length �, the
average complexity of the normal words equivalent to these words is not even pro-
portional to their length, implying a possible bias in the statistical results that
can be deduced from such drawings. Table 2 shows that the bias may be smaller
with braid sequences, as, in the average, putting to normal form a random braid
sequence does not change its length significantly.

� = 100 � = 200 � = 500 � = 1, 000 � = 2, 000

n = 10 15.2 28.3 67 132 265
n = 20 10.1 17.2 28.2 73.2 142
n = 50 6.8 10.2 19.6 34.9 63.4
n = 100 5.43 7.62 13.2 21.2 36.4
n = 200 4.59 6.12 9.63 14.1 23.1

Table 1. Average complexity of the braid specified by a random n-
strand braid word of length �

r = 10 r = 20 r = 50 r = 100 r = 200

n = 10 9.01 17.4 42.6 84.6 168
n = 20 9.99 19.99 49.96 99.92 199.81
n = 50 10 20 50 100 200
n = 100 10 20 50 100 200
n = 200 10 20 50 100 200

Table 2. Average complexity of the braid specified by a random n-
strand braid sequence of length r: one almost always finds r.
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Another possibility is to generate normal braid words or normal braid sequences
exclusively. This is not difficult in practice: indeed, for a finite sequence of simple
braids (b1, . . . , br) to be normal turns out to be a local property, in the sense
that it only requires that each one of the pairs (b1, b2), (b2, b3), . . . , (br−1, br) be
normal. Thus one can directly draw normal words (or sequences) by restricting
the drawing process after each factor bi to those simple braids b such that (bi, b)
is normal—which is easy. Of course, the resulting distribution of normal words
or sequences need not coincide with the one originating from normalizing random
words or random sequences.

Remark 1.4. The family {σ1, . . . , σn−1} is not the only interesting family of
generators for the group Bn. In [9] and [10], Birman, Ko, and Lee consider a larger
family of generators for Bn, namely the

(
n
2

)
braids ars defined for 1 � r < s � n

by

ars = σs−1 · · ·σr+1σrσ
−1
r+1 · · ·σ−1

s−1.(1.3)

Most of the Garside theory for the submonoid B+
n of Bn generated by the σi’s also

works for the submonoid generated by the ars’s. Again there exists a unique normal
form defined in terms of the divisors of some distinguished element. The point is
that, in the case of B+

n , we have n − 1 generators and a distinguished element ∆n

whose length in the generators σi is
(
n
2

)
, while, in the case of the Birman–Ko–Lee

monoid, we have
(
n
2

)
generators and a distinguished element whose length in terms

of the generators ars is n−1. This explains why th Birman–Ko–Lee monoid is often
called the dual monoid for Bn. So other possibilities for implementing braids consist
in using normal words in the generators ars’s or using the associated sequences of
permutations, which turn out to make a proper subset of Sn (non-overlapping
permutations). Also see [5, 19, 16, 17, 34] for more about the possible Garside
structures of the braid groups.

2. Braid-based schemes

We now review (some of) the existing braid-based cryptographical schemes.
Nearly all schemes proposed so far relie on the supposed difficulty of problems re-
lated with conjugacy in Bn, and, in particular, of what will be called the Conjugator
Search Problem in Bn. For n � 3, the braid group Bn is non-commutative, as, e.g.,
σ1 and σ2 do not commute; it is even strongly non-commutative, in that its centre is
very small, namely cyclic, generated by the unique element ∆2

n. Moreover, the cen-
traliser of a braid b is typically generated by b and ∆2

n, i.e., it has the least possible
value. It follows that the conjugacy operation is not trivial in Bn. One says that
two braids p, p′ are conjugate if we have p′ = sps−1 for some braid s. The Conju-
gacy Problem is the question of algorithmically recognizing whether two braids p, p′

are conjugate, and the Conjugator Search Problem is the related question of finding
a conjugating braid for a pair (p, p′) of conjugate braids, i.e., finding s satisfying
p′ = sps−1.

As will be explained in Section 3, the Conjugacy Problem and the Conjugator
Search Problem in Bn are decidable, but the only solutions proposed so far for the
latter have a high algorithmic complexity, at least in the worst case. Typically,
in the state-of-the-art, it seems infeasible to solve the Conjugator Search Problem
for appropriately chosen pairs of 50-strand braid words of length 1,000: as it is
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easy to work with such data, in particular to put them into normal form, start-
ing from the Conjugator Search Problem appears a reasonable basis for designing
cryptographical schemes.

2.1. Key exchange. Various cryptographical problems have been addressed.
The key exchange problem is as follows: two entities, traditionally called A(lice) and
B(ob), wish to agree on a common secret, in such a way that an intruder observing
the communication cannot deduce any useful information about the common secret.

2.1.1. The Anshel-Anshel-Goldfeld scheme. The following scheme was proposed
by Anshel & al. in [3] and [2]. Note that the scheme can be used in any group
where the Conjugator Search Problem is difficult enough—so this scheme, as well
as the other schemes described below, would keep its interest even if it turned out
that braid groups are not relevant.

The public key consists of two sets of braids, say p1, . . . , p�, q1, . . . , qm, in Bn.
The secret key of Alice is a word u on � letters and their inverses, the secret key of
Bob is a word v on m letters and their inverses. The exchanges are as follows:

• A computes the braid s = u(p1, . . . , p�), and uses it to compute the
conjugates q′1 = sq1s

−1, . . . , q′m = sqms−1; she sends q′1, . . . , q
′
m;

• B computes the braid r = v(q1, . . . , qm), and uses it to compute the
conjugates p′1 = rp1r

−1, . . . , p′� = rp�r
−1; he sends p′1, . . . , p

′
�;

• A computes tA = s u(p′1, . . . , p
′
�)

−1;
• B computes tB = v(q′1, . . . , q

′
m) r−1.

The common key is tA = tB.

Indeed, we find:

tA = s u(p′1, . . . , p
′
�)

−1 = s r u(p1, . . . , p�)−1 r−1

= s r s−1 r−1 = s v(q1, . . . , qm) s−1 r−1 = v(q′1, . . . , q
′
m)r−1 = tB

The security is based on the difficulty of a variant to the Conjugator Search Problem
in Bn, namely the Multiple Conjugator Search Problem, in which one tries to find
a conjugating braid starting not from one single pair of conjugate braids (p, p′),
but from a finite family of such pairs (p1, p

′
1), . . . , (p�, p

′
�) obtained using the same

conjugating braid—it should be noted that the Multiple Conjugator Search Problem
may be easier than the original Conjugator Search Problem. Provided this problem
is hard enough for the considered braids, knowing the pairs (p1, p

′
1), . . . , (p�, p

′
�) does

not enable an intruder to find the value of the secret key r, and, similarly, knowing
the pairs (q1, q

′
1), . . . , (qm, q′m) does not enable him to find s. In [2], it is suggested

to work in B80 with � = m = 20 and short initial braids pi, qj of length 5 or 10.
2.1.2. A Diffie–Hellman-like scheme. Although braid groups are not commu-

tative, they contain large subgroups such that each element of the first subgroup
commutes with each element of the second. Indeed, braids involving disjoint sets
of strands commute. So, if we denote by LBn (resp. UBn) the subgroup of Bn gen-
erated by σ1, . . . , σm−1 (resp. σm+1, . . . , σn−1) with m = �n/2�, every braid in LBn

commutes with every braid in UBn.
This observation is exploited in the following Diffie–Hellman-like key exchange

scheme proposed by Ko & al. in [42]. This scheme also had been proposed in-
dependently by Sidelnikov & al. in [54] in the context of a general, unspecified
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noncommutative semigroup with difficult conjugacy problem, but the authors do
not mention braid groups explicitly.

Here the public key consists in one braid p in Bn. The secret key of Alice is a
braid s in LBn; the secret key of Bob is a braid r in UBn. The exchanges are as
follows:

• A computes the conjugate p′ = sps−1, and sends it to B;
• B computes the conjugate p′′ = rpr−1, and sends it to A;
• A computes tA = s p′′ s−1;
• B computes tB = r p′ r−1.
The common key is tA = tB.

Indeed, because s and r commute, we find:

tA = s p′′ s−1 = s r p r−1 s−1 = r s p s−1 r−1 = r p′ r−1 = tB.

Here also the security is based on the difficulty of the Conjugator Search Problem
in Bn, or, more exactly, on the difficulty of the following variant, which can be called
the Diffie–Hellmann-like Conjugacy Problem: Given a braid p in Bn, and the braids
p′ = sps−1 and p′′ = rpr−1, where s and r lie in LBn and UBn respectively, find the
braid rp′r−1, which is also sp′′s−1. The connection between the Diffie–Hellmann-
like Conjugacy Problem and the variant of the Conjugator Search Problem where
the conjugating braid is to be found in LBn is similar to the one between the
Diffie-Helmann Problem and the Discrete Log Problem. Provided that problem is
difficult enough, knowing the pairs (p, p′) and (p, p′′) is not sufficient to find the
mixed intermediate conjugate rp′r−1 = sp′′s−1. In [12], it is suggested to work
in B80 with braids specified using (normal) sequences of length 12, i.e., sequences
of 12 permutations.

2.2. Enciphering–deciphering. Here the problem is as follows: Bob wishes
to send Alice a message m, and he can use Alice’s public key to encipher his message.
Alice must be able to retrieve Bob’s original message using her private key, but an
intruder watching the communication should not.

The following scheme is proposed by Ko & al. in [42]. The notations are those
of the previous key exchange scheme. In addition, we assume that h is a collision-
free one-way hash function of Bn to {0, 1}N , i.e., a computable function such that
the probability of having h(b2) = h(b1) for b2 �= b1 is negligible (collision-free), and
retrieving b from h(b) is infeasible (one-way)—see Section 4.4 below.

We start with p in Bn and s in LBn. Alice’s public key is the pair (p, p′), with
p′ = sps−1; Alice’s private key is s. In order to send the message mB, which we
assume lies in {0, 1}N , using ⊕ for the Boolean operation “exclusive-or” (i.e., the
sum in Z/2Z):

• B chooses a random braid r in UBn and he sends the encrypted text
m′′ = mB ⊕h(rp′r−1) together with the auxiliary datum p′′ = rpr−1;
• A computes mA = m′′ ⊕ h(sp′′s−1).
Then we have mA = mB, i.e., Alice retrieves Bob’s original message.

Indeed, because the braids r and s commute, we have

sp′′s−1 = srpr−1s−1 = rsps−1r−1 = rp′r−1,
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and, therefore, mA = mB ⊕ h(rp′r−1) ⊕ h(rp′r−1) = mB. Here also the security
is based on the difficulty of the Diffie–Hellmann-like Conjugacy Problem in Bn:
owing to the hypotheses on h, being able to break the system means being able to
retrieve the common value of rp′r−1 and sp′′s−1 from the pairs (p, p′) and (p, p′′).
The recommended parameters are the same as in Section 2.1.2.

2.3. Authentication. Now the problem is: Alice (the prover) wishes to prove
her identity to Bob (the verifier), i.e., she wishes to prove that she knows some
private (secret) key without enabling an intruder watching the communication to
deduce anything about her private key.

2.3.1. A Diffie–Hellman-like scheme. The following challenge–response scheme,
mentioned in [53], is a direct adaptation of the previous scheme by Ko & al. [42].

The keys are as above: the public key is a pair of conjugate braids (p, p′) in Bn

with p′ = sps−1, while Alice’s private key is the braid s used to conjugate p into p′;
we assume that s belongs to LBn. We still use h for a collision-free one-way hash
function on Bn. The exchanges are as follows:

• B chooses a random braid r in UBn, and he sends the challenge
p′′ = rpr−1 to A;
• A sends the response y = h(sp′′s−1);
• B checks y = h(rp′r−1).

A correct answer of the prover A leads to acceptation by the verifier B because,
as above, the braids r and s commute and, therefore, we have rp′r−1 = sp′′s−1.
On the other hand, acceptation occurs only if the response y of A satisfies y =
h(rp′r−1), hence, by the hypotheses about h, only if A has been able to find the
value of rp′r−1 from the knowledge of p, p′, p′′, i.e., only if A has been able to solve
the corresponding instance of the Diffie–Hellmann-like Conjugacy Problem in Bn.
Once again, the security of the scheme relies on the difficulty of that problem.

2.3.2. A Fiat-Shamir-like scheme. Another authentication scheme is proposed
by Sibert & al. in [53]. This scheme is reminiscent of the Fiat–Shamir scheme, and
it involves repeating several times a three-pass challenge–response step.

As before, the public keys are a pair of conjugate braids (p, p′) with p′ = sps−1,
while s, the conjugating braid, is Alice’s private key. In contrast to the previous
schemes, both p and s lie in Bn, i.e., we do not assume that s lies in any particular
subgroup such as LBn or UBn. We still assume that h is a collision-free one-way
hash function on Bn. The authentication procedure consists in repeating k times
the following three exchanges:

• A chooses a random braid r in Bn, and she sends the commitment
x = h(rp′r−1);
• B chooses a random bit c and sends it to A;
• For c = 0, A sends y = r, and B checks x = h(yp′y−1);
• For c = 1, A sends y = rs, and B checks x = h(ypy−1).

If A knows s and answers correctly, she is accepted by B: for c = 0, we have
x = h(yp′y−1) directly, while, for c = 1, we have ypy−1 = (rs)p(rs)−1 = rp′r−1,
hence x = h(ypy−1). On the other hand, if A is dishonest, she can cheat and send
a correct answer in both cases: in the case c = 0, it suffices that A keeps track of r
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and sends coherent answers; in the case c = 1, it suffices that the commitment x is
chosen so as to anticipate the equality x = h(ypy−1), which is easy as well. But a
cheater cannot choose his commitment so as to answer correctly in both cases: if
he anticipates c = 0, the probability of answering correctly for c = 1 is negligible,
and, symmetrically, if he anticipates c = 1, the probability of answering correctly
for c = 0 is negligible. So, globally, a cheater has no more than 0.5 chance to be
accepted. Thus, by repeating the exchanges k times, we can make the probability
that a cheater be accepted as small as 1/2k.

The security of the scheme relies on the difficulty of the original Conjugator
Search Problem in Bn. Indeed, for A to be accepted with a probability higher
than 0.5 means being able to answer in both cases c = 0 and c = 1, hence
knowing y, y′ satisfying x = h(ypy−1) and x = h(y′p′y′−1). As h is supposed
to be collision-free, i.e., virtually injective, this gives ypy−1 = y′p′y′−1, hence
(y′−1

y)p(y′−1
y)−1 = p′: so A must know a solution to the Conjugator Search

Problem for (p, p′). It is suggested to work in B50 (as no subgroup is involved) with
braids specified by words of length 512—with possible additional requirements on p
(see Section 4.1).

2.4. Signature. The last problem we consider is signature. The problem is
for A to send B a (clear or ciphered) message together with a signature proving the
origin of the message. Note that each signature scheme leads to an authentication
scheme: in order to authenticate A, B can send her a message and require that A
signs this message.

Two braid-based signature schemes are introduced by Ko & al. in [41]: the
second one is the scheme recommended by the authors, but the first is simpler and
the common principle is more easily readable. These schemes use the supposed
complexity gap between the Conjugacy Problem and the Conjugator Search Prob-
lem: as will be seen in Section 3.3 below, for medium values of n (typically n = 20),
using a linear representation makes it possible to decide whether two braids in Bn

are conjugate without enabling one to determine a conjugating braid when it exists.
As before, the public keys are a pair of conjugate braids (p, p′) with p′ = sps−1,

while s, the conjugating braid, is Alice’s private key; the braids p and s belong
to Bn. We use H for a one-way collision-free hash function from {0, 1}∗ to Bn—
so a function going in the converse direction of the hash functions involved in
Sections 2.2 and 2.3; we use ∼ for conjugacy in Bn.

The first scheme is as follows:

• A signs the message m with q′ = sqs−1, where q = H(m);
• B checks q′ ∼ q and p′q′ ∼ pq.

If A uses the secret key s, we have q′ = sqs−1 and p′q′ = spqs−1, so the signature
is accepted. Conversely, the security of the scheme relies on the difficulty of the
following Matching Conjugate Search Problem: Assuming p′ ∼ p and q in Bn, find q′

satisfying both q′ ∼ q and p′q′ ∼ pq. It is shown in [41] that the problem is at least
as difficult as the Conjugator Search Problem for the pair (p, p′).

A possible weakness of the previous scheme lies in that repeated uses disclose
many conjugate pairs (qi, q

′
i) associated with the common conjugator s, leading

to possible attacks (cf. Section 3). To avoid this, the authors of [41] modify the
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scheme by incorporating an additional random braid—here we again use h for a
one-way hash function from Bn to {0, 1}∗:

• A chooses a random braid r in Bn;
• A signs the message m with the triple (p′′, q′′, q′), where p′′ = rpr−1,
q = H(mh(p′′)), q′′ = rqr−1, and q′ = rs−1qsr−1;
• B checks p′′ ∼ p, q′′ ∼ q′ ∼ q, p′′q′′ ∼ pq, and p′′q′ ∼ p′q.

The security analysis is similar to that of the first scheme. The authors recommend
to work in B20 with keys specified by braid sequences of length 3.

The previous schemes are elegant and the arguments developed in [41] provide
a convincing evidence of their security. However, it has been noted that it could be
theoretically possible to generate fake signatures: even if the latter are associated
with no message, this is usually considered to be a potential weakness.

3. Attacks against the braid schemes

Several attacks against the braid-based schemes were proposed recently [36,
38, 28, 37, 35, 47, 13], and we shall now sketch some of them. As the security
of the schemes depends on the difficulty of the Conjugator Search Problem in Bn

and its variants, it is not surprising that the attacks mainly aim at solving this
problem. At least three different strategies can be considered: (i) using a solution
to the Conjugacy Problem; (ii) using a probabilistic approach inside Bn; (iii) using
auxiliary groups, typically linear representations.

3.1. Solutions to the Conjugacy Problem. The most obvious way to at-
tack the braid schemes is to solve the Conjugacy Problem in Bn, which is known to
be possible after Garside’s seminal work [29]. Successive refinements of the method
have greatly improved its algorithmic efficiency.

3.1.1. The Super Summit Set. Garside’s method for solving the Conjugacy
Problem in Bn consists in associating with every braid b a distinguished finite
set of conjugates of b called its Summit Set. El-Rifai and Morton showed in [22]
how to replace the Summit Set with one of its subsets called the Super Summit Set
(SSS), which is smaller and therefore easier to determine.

Definition 3.1. The super summit set SSS(b) of a braid b is the set of all
conjugates of b with the minimal possible complexity.

Proposition 3.2. [22] For every braid b, the set SSS(b) is finite, and it is
algorithmically computable.

By construction, two braids b, b′ are conjugate if and only if their SSS’s coincide—
or, equivalently, if and only if these sets intersect. So, the previous result implies
the decidability of the Conjugacy Problem in Bn. Actually, more precise results
are known.

Definition 3.3. Assume that b is a braid in Bn, and that (k; b1, . . . , br) is its
normal form. Then the braids ∂+(b) and ∂−(b) are defined by

∂+(b) = ∆k
nb2 . . . brφ

k
n(b1), ∂−(b) = ∆k

nφk
n(br)b1 . . . br−1,(3.1)

where φn is the flip automorphism that maps σi to σn−i for each i; we say that
∂+(b) (resp. ∂−(b)) is obtained by cycling (resp. decycling) from b.
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By construction, the braids ∂+(b) and ∂−(b) are conjugates of b. The point is
that, if b is a braid in Bn that does not belong to its SSS, i.e., that does not have the
minimal complexity in its conjugacy class, then by cycling or decycling b at most
n(n − 1)/2 times, one can find a conjugate of b with a strictly smaller complexity.
So, by repeating the operation, we obtain after finitely many steps a conjugate b∗

of b lying in SSS(b).
The next result is that, if b lies in its SSS, then the whole set SSS(b) can be

obtained by saturating {b} under conjugation by simple braids: starting with {b},
we successively consider all conjugates sbs−1 where s is a simple braid; we keep
those conjugates b′ that have the same complexity as b, and throw the others away,
until no more conjugate can be added.

A complete procedure for deciding whether two braids b, b′ are conjugate is
therefore (see Figure 3):

• Using cycling and decycling, find a conjugate b∗ of b lying in SSS(b);
• Using cycling and decycling, find a conjugate b′∗ of b′ lying in SSS(b′);
• Determine SSS(b) by saturating {b∗} under simple conjugation;
• Then b and b′ are conjugate if and only if b′∗ belongs to SSS(b).

By keeping track of the conjugating braids used at each step, one does not only
decide whether b and b′ are conjugate, but one also obtains a conjugator if it exists,
i.e., if b and b′ are conjugate. So, in this way, one solves both the Conjugacy
Problem and the Conjugator Search Problem of Bn.

b

SSS(b)

complexity

braids

cycling

simple

decycling

conjugacy

/

b∗

Figure 3. Solving the conjugacy problem: going to the SSS and then
enumerating it (the points represent the conjugates of b)

As for complexity, since cycling and decycling a constant number of times
guarantees that the normal length will decrease if it can, finding a conjugate in the
SSS has a linear cost with respect to the complexity of the initial braid. Then there
remains the cost of enumerating the set SSS(b). It is shown in [27] that this can be
done in a number of steps which is linear in the size of SSS(b), and with a reasonable
constant coefficient. The problem is that there exist n! simple braids in Bn so, for
typical values like n = 50, it is hopeless to enumerate all of them. What Franco
and Gonzales-Meneses show in [27] is that, if conjugating b by simple braids s1, s2
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gives elements in the SSS, so does conjugating b by the gcd of s1 and s2 and, as
a consequence, it is sufficient to consider conjugation by what they call minimal
simple elements, which are at most n in number in the case of Bn.

3.1.2. The Ultra Summit Set. Quite recently, V. Gebhardt proposed a new
refinement in [30]. This refinement consists in replacing the SSS with a still smaller
set called the Ultra Summit Set (USS).

Let us consider the action of cycling on the SSS: starting with a braid b in
its SSS, iterated cycling in SSS need not return to the initial b, but it certainly
becomes eventually periodic. We can therefore partition the SSS into several orbits,
each of which consists of a cyclic part, and of tails (Figure 4). In [30], Gebhardt
defines the Ultra Summit Set (USS) to be the union of the cyclic parts of the orbits.
By definition, the USS is a subset of the SSS, and Gebhardt shows that the USS
can be used instead of the SSS: as with the SSS, it is easy to find an element of
the USS, and, then, the whole USS can be computed using minimal simple elements.
The point is that the size of the USS is often much smaller than that of the SSS,
typically its size can be linear w.r.t. the length of the initial braid, while that of
the SSS is exponential. In such cases, the USS can be determined quickly, and the
Conjugacy Problem is solved. Nothing is proved so far, but the average complexity
of the method might turn to be polynomial.

Figure 4. Action of cycling inside the SSS; the elements of the USS
are in black

3.1.3. Derived attacks. The previous exact solutions to the Conjugacy Problem
can be used to directly attack the cryptographical schemes of Section 2.

As for the solution based on the SSS, statistics suggest that, for 5 strands and
more, the size of the latter set is exponential in the length (and the complexity)
of the braid. The typical size of the SSS of a 80-strand braid specified by a braid
sequence of length 12—the size considered in [42]—is (much) more than 2100, which
makes an exhaustive search infeasible.

The recent improvement of the method based on the USS might change the
situation: Gebhardt reports that the USS of 100-strand braids specified by random
braid words of length 1,000 can be computed effectively, and the associated Conju-
gator Search Problem can therefore be solved. Here the significant parameter is the
size of the SSS or of the USS, and whether the attack is feasible directly depends
on this size.

Remark 3.4. In the schemes we described, the secret key is a braid s con-
jugating p to p′. We know that, for a given pair (p, p′) of conjugate braids, the
conjugating braid s is not unique: any other braid s′ such that s−1s′ belongs to
the commutator of p is also a solution, and, when we solve the Conjugator Search
Problem, there is no reason to find the precise s that was used. However, this is
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sufficient to break the schemes: in each case, an intruder only needs to know one
braid s′ conjugating p to p′, no matter whether it is the one initially used.

3.2. Attacks based on length. Besides using an exact solution to the Con-
jugator Search Problem, one can also attack the braid schemes using a probabilistic
heuristic approach: whenever the probability of success is more than negligible, this
may be enough to endanger the security of the scheme. The length-based attacks
of [28, 45, 32, 35] belong to this family.

The common principle of these attacks is to try to retrieve a conjugator for
a pair (p, p′) by starting with p′, which is supposed to be derived from p, and
iteratively conjugating p′ into a new braid tp′t−1 so that the length [28] or the
complexity [45, 32, 35] of tp′t−1 is minimal.

In [28, 45, 32], one simply checks whether the new conjugate tp′t−1 happens
to be equal to p. The attack is specially active against the key exchange scheme
of [3, 2] based on the Multiple Conjugator Search Problem, because, in this case,
one knows several pairs of conjugate braids associated with the same conjugating
braid. Non-negligible success rates are reported in the cases of 50-strand braids
and more, at least for some choices of the number of initial braids pi’s and qj ’s.

The attack of [35] is similar, but it includes one more step and it is therefore
more powerful. As above, we start with a conjugate p′ of p, and the first step
is to find a conjugate tp′t−1 of p′ with minimal complexity. Then, instead of
checking whether, by chance, tp′t−1 is merely equal to p, one looks whether the
“permutation distance” between tp′t−1 and p is at most 1, i.e., one tries to find a
permutation f such that tp′t−1 is equal to the simple conjugate f̂pf̂−1. Finding
the possible permutation is easy, as this amounts to solving the Conjugator Search
Problem in the symmetric group Sn. With this improvement, the success rate of
the attack reaches 99% in the case of the Anshel & al. key agreement scheme of [2]
in B80 with � = m = 20 and initial braids pi, qj of length 5 or 10, even when
on restricts to pure braids—braids such that the associated permutation is the
identity—as was suggested in [45] to improve security. The success rate against
the key exchange scheme of [42] is slightly lower, but it remains about 80% for
(pure) braids in B80 and a secret conjugator s obtained by drawing 12 random
permutations—as suggested in [42].

3.3. Attacks based on linear representations. A third way to attack the
braid-based cryptographical schemes is to use linear representations of the braid
groups, i.e., to map the braid groups into groups of matrices. As the Conjugacy
Problem in a linear group is easy, we may think of solving the Conjugacy Problem
of Bn in this way.

3.3.1. The Burau representation. The best known linear representation of the
braid group Bn is the Burau representation, a linear representation with values
in GLn(Z[t, t−1]). The image of σi is the n × n matrix obtained from the identity
matrix by replacing the central (i, i+1)-square with

(
1−t t
0 1

)
. The Burau represen-

tation of Bn is known to be unfaithful for n � 5 [6], but the kernel is very small,
and the probability that different braids admit the same Burau image is negligible.

In [36] and [45], the Anshel & al. scheme of [2] is attacked using the Burau
representation: starting with one or several pairs of conjugate braids (p, p′) associ-
ated with the same conjugating braid s, it is easy to compute their Burau image
and to solve the Conjugator Search Problem in the linear group. In general, this is
not enough for solving the Conjugator Search Problem in Bn, because there is no
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reason for the conjugating matrix that has been found to belong to the image of
the Burau representation, or that one can find a possible preimage. But, in [36],
one takes advantage of the fact that, in the scheme of [2], the secret data are the
words u and v, which can be guessed in the linear groups as well.

In [41], a similar approach is developed not to attack any scheme, but, on the
contrary, to solve the Conjugacy Problem of Bn for medium values of n (typically
n = 20) and implement the signature schemes of Section 2.4. The solution is
probabilistic, and it relies on evaluating the Burau matrices at a convenient number
of values of the indeterminate t chosen in Z/NZ with N large enough.

3.3.2. The Lawrence–Krammer representation. The Lawrence–Krammer rep-
resentation is another linear representation of Bn, which is faithful [7, 43]. It
associates with every n strand braid a matrix of size

(
n
2

)
with entries in a 2-variable

Laurent polynomial ring Z[t±1, q±1]. In [13], Cheon and Jun develop an attack
against the scheme of [42] based on the Lawrence–Krammer representation: as
above, it is easy to compute the images of the involved braids in the linear group
and to solve the Conjugacy Problem there, but there is no way to lift the solution
back to the braid groups in general. But, once again, what is needed here is not a
complete solution to the Conjugator Search Problem, but only a solution to the de-
rived Diffie–Hellman-like Conjugacy Problem: knowing p, sps−1, and rpr−1, with
r in LBn and s in UBn, find (rs)p(rs)−1. Taking advantage of the particular form
of the Lawrence–Krammer matrices, which contain many 0’s, the authors obtain a
solution with a polynomial complexity and they show that, for the sizes considered
in [42], the procedure is not infeasible.

3.4. Are these attacks dangerous? As they stand, the previous attacks
seem very dangerous, and nearly all schemes considered so far have been attacked,
for typical values of the parameters which were previously suggested to be secure.
It is certainly possible to increase complexity, and therefore to improve security, by
increasing the size of the parameters, but, then, the computation times will become
very large, and the benefit of using braids will quickly vanish.

However, it is not certain that the attacks are really so dangerous, and that they
virtually dismiss braid-based cryptography. Indeed, it seems easy to understand
two specific reasons that make these attacks work, namely the use of variants of
the Conjugator Search Problem, and the way the keys are generated.

3.4.1. Variants of the Conjugator Search Problem. The previous attacks work
mainly because the involved schemes use specific variants of the Conjugator Search
Problem, namely the Multiple Conjugator Search Problem and the Diffie–Hellman-
like Conjugacy Problem, rather than the problem itself: except for the Hofheinz–
Steinwandt and for the direct attack using the USS, the attacks do not work against
the Conjugator Search Problem, and, e.g., the authentication scheme of [53] is
not threatened. It is true that, as it stands, the scheme of [2] seems to be the
most seriously endangered, but, in any case, the conclusion could be that this
specific scheme is to be modified or rejected, but not that the whole braid-based
cryptography is endangered.

3.4.2. Why are length-based attacks efficient? Length-based attacks, and, in
particular, the one of [35], seem very efficient, and the latter works against instances
of the Conjugator Search Problem that a priori seem generic. Actually, this is not
the case, and the success of this attack only reflects the way keys are generated.
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It is easy to understand how length-based attacks work. For all braids b1, b2,
we have the relation

0 � cpty(b1b2) � cpty(b1) + cpty(b2)(3.2)

between the complexity of b1b2 and those of b1 and b2. These inequalities are
optimal: for instance, for b2 = b−1

1 , the complexity of b1b2 is 0. Now, Table 3 shows
that, with probability virtually 1, we have the equality

cpty(b1b2) = cpty(b1) + cpty(b2).(3.3)

This is natural, as the normal form of b1b2 can be obtained from that of b1 by
successively appending the factors of the normal form of b2: the factor ∆k coming
from b2 moves across the whole normal form of b1, but, then, the simple factors
from b2 have little chance to merge with those coming from b1. So, in general,
the normal form of b1b2 is not obtained by simply appending the normal form of b2

after that of b1, but the cascades arising from pushing to the factors coming from b2

quickly stop: typically, only the last 3 or 4 factors in the normal form of b1 are
modified, and the overall number of simple factors does not change.

r = 10 r = 20 r = 50 r = 100 r = 200

n = 10 17.4 34.2 84.6 169 337
n = 20 19.99 39.97 99.91 199.8 399.7
n = 50 20 40 100 200 400
n = 100 20 40 100 200 400
n = 200 20 40 100 200 400

Table 3. Complexity of the product of two random n-strand braid
sequences of length r: one almost always finds 2r.

As a consequence, if p and s are random braids, one has, with a high probability

cpty(sps−1) = cpty(p) + 2 cpty(s) :(3.4)

the complexity of a random conjugate of p is higher than that of p, a paradoxical
situation as conjugacy is a symmetric relation!

Let us consider the Heinzhof–Steinwandt attack. Assume that we start with
a braid p lying in its SSS (a statistically almost sure case), and we generate p′ by
conjugating p using a random braid s. According to the previous observation, the
complexity of the conjugates of p obtained by conjugating by the succesive letters
of s is likely to increase at each step, and p′ is likely to have a high complexity.
Now, in the attack, we start from p′ and lower its complexity so as to return to
the SSS: the successive descending steps need not coincide with the ascending steps
leading from p to p′, and there is no reason that we finish with p exactly, but it is
not surprising that the first element p′′ of SSS(p) on which we land often lies at a
distance of at most one simple conjugacy from p, the hypothesis under which the
attack works.

It is then clear that one can defeat the previous attack by requiring that p′ has
the same complexity as p does, i.e., that p′ lies in SSS(p), and then checking that
the distance between p′ and p is more than one simple.

We see that, in this case, the crucial point is how keys are constructed. The
situation is similar in the case of the recent results by Gebhardt on the Ultra
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Summit Set: here an attack is possible only when the USS happens to be small
enough, what need not always be the case (see below), and, again, the attack can
be defeated by a proper choice of the keys.

So it seems that the proper conclusion to draw from the attacks is simply that all
instances of the Conjugator Search Problem in Bn are not equally secure, and, that,
in particular, it is not a good idea to generate a pair of conjugate braids by starting
with a random braid p, and then deducing p′ by drawing a random conjugator s
and computing p′ = sps−1. Such a conclusion should not come as a surprise, as
prescribing some constraints on the keys is a quite common situation: there exist
few cryptosystems where keys can be chosen at random. So, even if some authors
argued that the existing attacks definitely condemn braid-based cryptography, it
seems more reasonable at the moment to only conclude that still more work is
needed, in particular in the direction of constructing provably hard instances of
the underlying problems—or in giving some evidence that such instances cannot be
constructed.

4. Clues for further research

In this more prospective section, we mention some possible further lines of
research. Some of them already received preliminary developments, but others
seem to remain completely open.

4.1. Key generation. We saw that most of the attacks against the braid-
based schemes take advantage of the way the keys are generated. So the main
problem of current braid-based cryptography seems to construct provably hard
instances of the involved problems, hence, at the moment, of the Conjugator Search
Problem. Although this would be the only way of generating keys with convenient
security properties, the question seems to have been little investigated so far, and
we can only mention a few preliminary observations.

The first remark is that, even if the attacks of Section 3 did not exist, a random
choice of the keys is certainly not possible: if we start with a braid p and conjugate
it by s, then Table 4 shows that it is likely that a large prefix of the normal form
of s remains directly readable in the normal form of sps−1. This obvious point
seems quite significant, and it is rather surprising that it is not addressed more
systematically in the existing literature.

r = 10 r = 20 r = 50 r = 100 r = 200

n = 10 3.0 8.8 27.5 58.5 121.5
n = 20 6.1 16.0 45.6 94.0 186.0
n = 50 7.4 17.4 47.4 97.5 197.0
n = 100 7.7 17.7 47.7 97.5 197.5
n = 200 7.8 17.8 47.8 98.0 198.0

Table 4. Number of initial simple factors in the normal form of s
remaining unchanged in the normal form of sp when s, p are n-strand
braids specified by r random permutations.

As explained above, a sufficient condition for generating instances of the Con-
jugator Search Problem that defeat the Hofheinz–Steinwandt attack of [35], and,
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more generally, all length based attacks, is to choose the pair (p, p′) in such a way
that p and p′ cannot be distinguished using the length or the complexity. The
question of generating such pairs is discussed in [52], where Sibert proposes a sym-
metric construction in which p and p′ are conjugates of a common third braid.
Unfortunately, it seems difficult to design a similar construction for the Multiple
Conjugator Search Problem or the Diffie–Hellman-like Conjugacy Problem: while
it is easy to choose the conjugator s so that two conjugate braids p, sps−1 have
the same complexity, doing it with several pairs simultaneously, or with s in some
prescribed subgroup LBn or UBn, seems uneasy.

Next, it is natural to choose the conjugate braids p, p′ so that they lie in
their SSS, or, better USS, and such that the “simple distance” between p and p′, i.e.,
the minimal number of simple conjugacy steps inside USS needed to conjugate p
to p′, is large enough (in any case, at least 2 to defeat the Hofheinz–Steinwandt
attack). This leads to the condition that the set USS(p) itself be large enough,
which is also required to defeat the direct attack consisting in enumerating USS(p).
So we need families of braids with a large USS. The work of Gonzales-Meneses
in [33] suggests a possible connection with the Nielsen–Thurston classification of
braids: if p is a pseudo-Anosov braid, then the sets SSS(p) and USS(p) seem to be
(much) smaller than in the case of periodic and reducible braids. So choosing the
initial braid p to be reducible could be a promising approach.

In a similar direction—but no precise connection with the size of the USS is
known so far—experiments suggest that a good way of generating hard instances
of the Conjugator Search Problem could be to use braids whose normal sequence
involves short permutations, i.e., permutations with a small number of inversions.
While the average number of inversions in a random permutation of n objects
is n(n − 1)/4, it is suggested in [52] to use permutations with a typical number of
O(n) inversions. Such a choice appears as intermediate between starting with braid
words, i.e., with the braids σi, which correspond to permutations with one inversion,
and starting with random braid sequences, which corresponds to permutations with
an average number of O(n2) inversions.

We conclude with a minor remark whose only interest is to emphasize the role
possibly played by the way braids are specified. Using braids with a sufficiently
high complexity is a usual requirement, in particular for defeating attacks like the
one of [36]. If the instances of the Conjugacy Problem are generated using normal
sequences, the complexity can be given a prescribed value. On the other hand, if
we start with arbitrary words of moderate size, we have no direct control of the
complexity, which may be too small. Then, some tricks may be used to guarantee a
high complexity, e.g., requiring that, after each occurence of σ±1

i , the next letter is
σ±1

i−1, σ
±1
i , or σ±1

i+1. Also, randomly replacing some letters σi with σ2
i dramatically

increases the complexity.
At least, these heuristic remarks should show how little is known, and how

large is the work that remains to be done about these questions.

4.2. Random drawing and security proofs. The question of how to per-
form a random drawing in the group Bn, or in some prescribed subset of Bn relevant
for a specific scheme, is both a practical and a theoretical issue, as it underlies all
security arguments. We refer to [11] for a general study.

The main problem is that the group Bn is infinite, and, contrary to the case of
integers, there is no known way of replacing Bn with a convenient finite quotient
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as is done with Z and Z/NZ. It is not difficult to introduce probability measures
on Bn by resorting to the notion of a random walk [57], but the notion of a uniform
probability measure over Bn remains problematic. The natural requirement would
be to resort to a probability measure µ on the subsets of Bn that is left-invariant,
i.e., such that µ(bA) = µ(A) holds for every braid b and every subset A of Bn. A
group G is said to be amenable if there exists at least one such measure on G. Now,
for n � 3, the group Bn is not amenable: indeed, the subgroup of B3 generated
by σ2

1 and σ2
2 is free, and it is known that a group admitting at least one free

subgroup of rank 2 cannot be amenable. So there exists no measure on Bn that is
invariant under left (or right) multiplication.

As braids can be specified by (normal) words or sequences, we can easily fix an
upper bound on the words or the codes we consider, and then define the notion of a
random drawing over the braid words of length at most � or over the braid sequences
of length at most r. The problem is that the probability measures induced on the
group Bn itself are not known, and there is no reason why these measures should
be invariant under multiplication. In particular, there is no reason why randomly
drawing braid words should induce the same probability distribution as randomly
drawing braid sequences.

These questions are crucial in order to prove possible security results. For in-
stance, it is considered desirable that an authentication scheme be zero-knowledge,
this meaning that, using public data only, one can construct a probabilistic Turing
machine able to simulate the instances of the communication between A and B in a
way that cannot be distinguished from the real communication [31, 26]: if this can
be done, no information about the secret data can be extracted from the exchanges
performed in the scheme. Let us consider tthe Fiat–Shamir-like authentication
scheme of Section 2.3.2. The question is to design a Turing machine generating the
triples (h(rp′r−1), 0, r) (communication in the case c = 0), and (h(rp′r−1), 1, rs)
(communication in the case c = 1), with the same probability distribution as in
the real exchanges. Using a probability measure µ, we could argue as follows:
for the triples of the first type, the Turing machine draws r µ-randomly, then it
computes x = h(rp′r−1) and outputs (x, 0, r); for the triples of the second type,
the machine draws r and s′ µ-randomly, it computes x = h(rs′p(rs′)−1) and out-
puts (x, 1, rs′). Now we can claim that the distributions of rs (real communication)
and rs′ (simulated communication) coincide only if the measure µ is right-invariant.
Unfortunately, no such µ exists, so, whatever the chosen probability is, the distri-
butions of rs and rs′ need not coincide, and the communication between A and B
need not be correctly simulated in the case c = 1.

Failing theoretical results, it is sometimes possible to establish statistical evi-
dence instead. It is shown in [52] that, for the scheme above, one can construct a
probabilistic Turing machine simulating the exchanges between A and B in a way
that is not theoretically indistinguishable from the real communication, but, at
least, is computationally indistinguishable in some convenient sense. The criterion
chosen by Sibert is not to compare the distributions of rs and rs′ directly, but
to investigate instead some parameters deduced from these distributions, namely
the distance to the braid p′ = sps−1, which is the only public datum where s is
involved. Here, the distance between two braids is defined to be the length of the
maximal common subword in their normal forms. The results show that, both when
braids are drawn using random braid words, and when they are drawn using ran-
dom sequences of short permutations, the distances between rs (the “real” braid)
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and sps−1 on the one hand, and between rs′ (the simulated braid) and sps−1 on
the other hand have the same distribution. This supports the opinion that the
Fiat–Shamir-like scheme is close to zero-knwoledge in practice.

However, such statistical results are partial, and they cannot replace genuine
proofs. The general question of what is a good random drawing on Bn remains
widely open; see [41] for further investigation.

4.3. Using braid words and braid reduction. The greedy normal form of
braids provides a convenient way for working with braids. However, we can also
think of another way of implementing braids, namely by using arbitrary words (or
sequences). As was explained in Section 1.3.3, the possible benefit would lie in
the possibility of using direct comparison algorithms deciding w ≡ w′ more quickly
than computing the normal form of w−1w′ does. Such efficient algorithms do exist.
Here we shall mention one of them, namely braid word reduction, but still other
candidates can be found in [59] and in [21] (see [18]).

4.3.1. Handle reduction. Braid word reduction—also called handle reduction—
is introduced in [14], and it can be seen as an extension of the free reduction process
relevant for free groups. Free reduction consists in iteratively deleting all patterns
of the form xx−1 or x−1x: starting with an arbitrary word w of length �, and no
matter on how the reductions are performed, one finishes in at most �/2 steps with
a unique reduced word, i.e., a word that contains no xx−1 or x−1x. Free reduction
is possible for any group presentation, thus in particular for the Artin presentation
of Bn, but, as Bn is not a free group for n � 3, it does not solve the word problem:
if freely reducing a braid word w leads to an empty word, then w represents 1 in Bn,
but, conversely, there exist words that represent 1 in Bn but do not freely reduce
to the empty word, e.g., the freely reduced word σ1σ2σ1σ

−1
2 σ−1

1 σ−1
2 .

Handle reduction generalizes free reduction and involves not only patterns of the
form xx−1 or x−1x—i.e., in our framework, σiσ

−1
i or σ−1

i σi—but also more general
patterns of the form σi . . . σ−1

i or σ−1
i . . . σi with intermediate letters between the

letters σi and σ−1
i .

Definition 4.1. A σi-handle is a braid word of the form

w = σe
i w0 σd

i+1 w1 σd
i+1 . . . σd

i+1 wm σ−e
i ,(4.1)

with e, d = ±1, m � 0, and w0, . . . , wm containing no σ±1
j with j � i + 1. Then

the reduct of w is defined to be

w′ = w0 σ−e
i+1σ

d
i σe

i+1 w1 σ−e
i+1σ

d
i σe

i+1 . . . σ−e
i+1σ

d
i σe

i+1 wm,(4.2)

i.e., we delete the initial and final letters σ±1
i , and we replace each letter σ±1

i+1 with
σ−e

i+1σ
±1
i σe

i+1.

Note that a braid word of the form σiσ
−1
i or σ−1

i σi is a handle, and that reducing
it means deleting it: handle reduction generalizes free reduction.

Reducing a braid word yields an equivalent braid word: as illustrated in Fig-
ure 5, the (i + 1)th strand in a σi-handle forms a sort of handle, and reduction
consists in pushing that strand so that it skirts above the next crossings instead of
below. So, as in the case of free reduction, if there is a reduction sequence from
a braid word w to the empty word, i.e., a sequence w = w0, w1, . . . , wN = ε such
that, for each k, the word wk+1 is obtained from wk by replacing some handle of wk

by its reduct, then w is equivalent to the empty word, i.e., it represents the unit
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Figure 5. Reducing a σ1-handle

braid. What is not obvious is the converse implication, as well as the fact that
handle reduction must terminate in any case. This is what the following result
from [14] claims:

Proposition 4.2. Assume that w is an n-strand braid word of length �. Then
every reduction sequence starting from w leads in at most 2�4n steps to an irreducible
word. Moreover, the empty word is the only irreducible word in its equivalence
class, hence w represents the unit braid if and only if some—or, equivalently, any—
reduction sequence starting from w finishes with the empty word.

A braid word may contain many handles, so building an actual algorithm re-
quires to fix a strategy prescribing in which order the handles will be reduced.
Several variants have been considered; as can be expected, the most efficient ones
use a Divide-And-Conquer trick. For our current purpose, the important fact is
that, although the proved complexity upper bound of Proposition 4.2 is very high,
handle reduction is extremely efficient in practice: Table 5 shows that, for vari-
ous sizes, handle reduction is always much quicker than reduction to the normal
form. Also, reduction being a local procedure, the amount of memory needed to
implement it is essentially what is needed to just store the braid under reduction.
So, using arbitrary words together with handle reduction instead of normal words
could be interesting in cryptographical applications when the computing resources
of one of the entities are limited.

� = 64 � = 256 � = 1, 024 � = 4, 096

n = 4 0.20 vs. 5.36 2.71 vs. 77.4 54.5 vs. 1,526 1,560 vs. 29,900
n = 16 0.03 vs. 8.65 0.45 vs. 105 10.2 vs. 1,378 1,635 vs. 21,990
n = 64 0.016 vs. 23.1 0.14 vs. 194 1.56 vs. 1,899 33 vs. 23,640

Table 5. Handle reduction vs. normal form: comparison of average
CPU time in millisec. for random n-strand braid words of length �;
C++ implementation on AMD Duron 750 MHz by H. Sibert

It can be noted that braid reduction is specially efficient on certain families of
words. For instance, we mentioned in Section 4.1 that, starting with a random word,
we can increase the complexity by replacing some letters σi with their square σ2

i .
In doing so, the cost of reduction almost remains the same, so, for such words, the
benefit of using reduction is obvious.
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4.3.2. Scrambling functions. A new problem arises when we use arbitrary braid
words. As was said above, the main advantage of the method is that the product
of braids is implemented by word concatenation. But, for instance, if we have to
conjugate (the braid represented by) w by (the braid represented by) u and we
transmit the word uwu−1, then the word u, and therefore the braid it represents,
is immediately readable as a prefix of the word uwu−1.

The problem is not new, as we mentioned in Section 4.1 that a similar phe-
nomenon occurs when the normal form is used: in general, at least the beginning
of the normal form of s is likely to be readable on the normal form of sps−1.

As for words, a solution is to introduce some scrambling process that replaces
the word uwu−1 by an equivalent word f(uwu−1) from which u cannot be recovered.
Some suggestions are formulated in [53]. One possibility consists in using handle
reduction itself as a scrambling device, i.e., to define f(w) to be red(w), the result
of applying handle reduction according to some fixed strategy until an irreducible
word is obtained. In particular, it is proved that the words u and w can be chosen
so that u and f(uwu−1) have no prefix in common and, more precisely, no prefix
of the word f(uwu−1) represents a braid equal to one represented by a prefix of u.

A better choice could be to use the scrambling function defined by

f ′(w) = red(σ−1
n . . . σ−1

1 red(σ1 . . . σnwσ−1
n . . . σ−1

1 )σ1 . . . σn).

The scrambling effect of the double reduction is remarkable, as the expectation
for the length of the longest common subword between a random word w and its
image f ′(w) given in Table 6 is exactly the same as for independent random words.

n = 32 n = 64
� = 4, 096 � = 8, 192

average length 4 4
maximal length 5 5

Table 6. Length of the longest common subword between w and f ′(w)
for w a random n-strand braid word of length �

Still another possibility is to resort to the braid word transformation called
reversing [17]. One says that a braid word w reverses to w′ if w′ can be obtained
from w by iteratively applying the following transformations:

• Replace some subword σe
i σ

e′
j with |i − j| � 2 and e, e′ = ±1 by σe′

j σe
i ;

• Replace some subword σe
i σ

e
jσ

e
i with |i − j| = 1 and e = ±1 by σe

jσ
e
i σ

e
j ;

• Replace some subword σe
i σ

−e
j with |i − j| = 1 and e = ±1 by σ−e

j σ−e
i σe

jσ
e
i ;

• Delete some subword σiσ
−1
i or σ−1

i σi.
These reversing transformations map a braid word to an equivalent braid word, and
handle reduction turns out to be a special case of reversing. A possible scrambling
function is obtained by defining g(w) to be the result of randomly reversing w until
the length of the maximal common subword between w and g(w) reaches some
prescribed (small) value.

Remark 4.3. Using a scrambling function to avoid that u be read from uwu−1

does not solve the problem that the normal word equivalent to u can be possibly
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read from the normal word equivalent to uwu−1: one is a word problem, while the
other is a braid problem. In general, using arbitrary braid words may be a good
choice for practical efficiency, but one should not forget that computing the normal
form always remains possible, in particular for attacking the schemes.

4.4. Hash functions. In several schemes, a hash function is invoked. This
means a function h from the considered braid group Bn to another set, e.g., the
set {0, 1}∗ of all finite sequences of 0’s and 1’s. A hash function is called ideal if
its values of h cannot be distinguished from the values given by a random oracle.
Ideal hash functions are often required for security proofs. Constructing an ideal
hash function is connected with the general question of finding a so-called hard-core
predicate, i.e., in the current case, of finding a function of Bn to {0, 1} whose value
provably gives no information about its argument (in connection with some fixed
difficult problem, here the Conjugator Search Problem). In [46], it is argued that
the function mapping a braid b of Bn to the parity of the exponent of ∆n in the
normal form of b has such a property.

In practice, it is sufficient to work with hash functions h that are one-way and
collision-free, i.e., such that recovering a braid from its image under h is infeasible
and such that the probability for different braids to have the same image under h
is negligible. There exist several ways of conceiving such functions. In [12], Cha &
al. propose to resort to the (colored) Burau representation. As was mentioned in
Section 3.3, the Burau representation of Bn is known to be unfaithful for n � 5,
but the kernel is very small, and the probability that different braids admit the
same Burau image is negligible. Also, there is no known way of recovering a braid
from its Burau image. So a hash function can be obtained by encoding the Burau
image, for instance in a sequence of 0’s and 1’s.

Other linear representations could be used similarly. One could also use non-
linear representations, i.e., homomorphisms whose target group is not a linear
group. For instance, there exists a well known embedding, due to Artin, of Bn

into Aut(Fn), the group of automorphisms of a rank n free group—see also [58, 49]
for variants. However, Artin’s representation cannot be used directly to define a
hash function, as its image is precisely known and there exists an algorithmic way
to invert it, i.e., to go back from an automorphism to a braid.

Another type of hash function is considered in [53], where h : Bn → Bn is
defined by h(x) = xpx−1, with p a fixed public braid for which the Conjugator
Search Problem is hard enough. Using such a function h in the Fiat-Shamir-like
Scheme of Section 2.3.2 could be convenient, as one knows no nontrivial solution
to the Double Conjugator Search Problem consisting in finding x witnessing that a
braid p′ is equal to (xsx−1)p(xs−1x−1) assuming that there exists one.

Completely different hash functions could be defined using Dynnikov’s formu-
las of [21]—see also [18]. The principle is to encode every braid of Bn into a
sequence of 2n integers, and it originates from an action of braids on laminations of
a punctured disk by counting the intersections with some fixed lines. The sequence
associated with the unit braid is (0, 1, 0, 1, . . . , 0, 1), and the formulas for deducing
the sequence (α′

1, β
′
1, . . . , α

′
n, β′

n) associated with the braid bσi from the sequence
(α1, β1, . . . , αn, βn) associated with the braid b are

α′
i = αi + (δ+ + βi)+, α′

i+1 = αi+1 − (δ+ − βi+1)+,

β′
i = βi − (−δ′)+ + δ+, β′

i+1 = βi+1 + (−δ′)+ − δ+,
(4.3)
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with δ = αi+1−αi, δ′ = α′
i+1−α′

i, and x+ standing for max(x, 0). The sequence as-
sociated with the braid bσ−1

i is obtained by successively applying τ , σi, and τ to the
sequence associated with b, where τ(α1, β1, . . . , αn, βn) is (−α1, β1, . . . ,−αn, βn).
This representation of Bn is known to be faithful, and it is easy to compute the
image of large braids provided large integer arithmetic is available: the integers
arising in the encoding of a length � braid word are � digit numbers.

Remark 4.4. Dynnikov’s formulae (4.3) can also be used to efficiently solve of
word problem of Bn: they even provide the only known solution whose complexity is
proved to be quadratic in the length � of the input word independently of the number
of strands—the solution associated with the greedy normal form is quadratic in the
length only for a fixed value of the number of strands, otherwise its complexity
is in O(�3 log �) [23]. This solution could be used as an alternative to braid word
reduction in the approach of Section 4.3.

4.5. Other braid problems. Another direction of research is to investigate
new primitive problems possibly replacing the Conjugator Search Problem.

4.5.1. Root problems. The braid groups are torsion-free, i.e., if b is a non-trivial
braid, then b2, and, more generally, be for e � 2, is not trivial. Then two natural
new problems arise, namely the Root Existence Problem (for exponent e): Starting
with a braid b in Bn, decide whether there exists c satisfying ce = b, and the Root
Extraction Problem (for exponent e): Assuming that the braid b is an eth power
in Bn, find c satisfying ce = b.

Styshnev proved in [55] that the previous problems are decidable—see also
[51]—but the only known algorithm consists in explicitly enumerating several con-
jugacy classes related with the initial braid, a process which seems exponential
in essence, and therefore infeasible when braids of a sufficient size are considered.
In practice, root problems appear more difficult than conjugacy problems. Let us
also mention a result by Gonzales-Meneses, who proves in [33] using the Nielsen–
Thurston classification of braids that the eth root in Bn is unique up to conjugacy
when it exists.

The following authentication scheme of [53] relies on the Root Extraction Prob-
lem. Here Alice’s private key is a braid s in Bn, while p = s2 is public—replacing
the exponent 2 by another fixed exponent is also possible. The authentication
procedure consists in repeating k times the following three exchanges—h is again
supposed to be a collision-free one-way hash function:

• A chooses a random braid r in Bn, and sends the commitment
x = h(rpr−1);
• B chooses a random bit c and sends it to A;
• For c = 0, A sends y = r, and B checks x = h(ypy−1);
• For c = 1, A sends y = rsr−1, and B checks x = h(y2).

If A knows s, the verification for c = 1 is y2 = rs2s−1 = rpr−1, so an honest
prover is accepted. On the other hand, a dishonest prover can always cheat B, but,
because of the commitment, the probability is not more than 1/2 for one three-pass
exchange, hence not more than 1/2k when the exchanges are repeated k times.
The security of the scheme relies both on the difficulty of the Conjugator Search
Problem and on the difficulty of the Root Extraction Problem. Its weakness lies in
that, in the case c = 1, a conjugate of the secret key s is communicated.
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No scheme relying on the Root Extraction Problem alone has been proposed
so far.

4.5.2. The minimal length problem. A different type of problem consists in
finding short words representing a given braid: this problem is not a problem
inside the group Bn, but rather a problem for Bn together with the choice of a
distinguished family of generators, e.g., the σi’s. Here we consider the problem for
an arbitrary number of strands, i.e., in the direct limit B∞ of all groups Bn, which
is the group generated by an infinite sequences of generators σ1, σ2, . . . subject to
the braid relations of (1.1). So the precise problem we address is the following
Minimal Length Problem: Starting with a word w in the σ±1

i ’s, find the shortest
word w′ that is equivalent to w, i.e., that satisfies w′ ≡ w.

The potential cryptographic interest of this problem lies in the following result
of Paterson and Razborov:

Proposition 4.5. [48] The Minimal Length Problem is NP-complete.

This suggests introducing new schemes in which the secret key is a short braid
word, and the public key is another longer equivalent braid word. It must be noted
that the NP-hardness result holds in B∞ only, i.e., when there is no bound on the
number of strands of the considered braids: inside Bn, no such result is known.

The advantage of using an NP-complete problem lies in the possibility of prov-
ing that some instances are difficult; however, from the point of view of cryptogra-
phy, the problem is not to prove that some specific instances are difficult (worst-case
complexity), but rather to construct relatively large families of provably difficult
instances in which the keys may be randomly chosen. Preliminary experiments sug-
gest that braids of the form w(σe1

1 , σe2
2 , . . . , σen

n ) with ei = ±1, i.e., braids specified
by braid words in which, for each i, at least one of σi or σ−1

i does not occur, could
be relevant. Also, the recent relaxation algorithm of [59] seems efficient for finding
short word representatives in Bn for small values of n.

4.5.3. More exotic operations. Finally, the group operations of Bn are not the
only possible ones, and we could also think of using other algebraic operations. Let
sh denote the shift endomorphism of the group B∞ that maps every generator σi

to the corresponding σi+1—here working with B∞ is essential. Then several skew
versions of conjugacy may be defined. In particular, the operation defined on B∞
by

s ∗ p = s sh(p)σ1 sh(s−1)(4.4)

turns out to have many remarkable properties [15], and it could possibly be used
as an alternative to conjugacy. Let us also mention that the function

h : x �→ x ∗ 1 = x σ1 sh(x−1)(4.5)

is known to be injective, while no practical way of finding preimages is known. This
suggests that h could lead to a valuable hash function. Many variants are possible.

5. Conclusion

This survey is far from complete, but its aim is to give an introduction rather
than a comprehensive description. We would like to convince the reader that braid
cryptography is still at a very preliminary stage, and that much more work is needed
before it can be claimed to be a valuable alternative to the cryptosystems based on
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modular integers or on elliptic curves. In particular, the question of key generation
seems crucial, and, as was emphasized in Section 4.1, very little is known about it.

More specifically, the complexity status of the Conjugator Search Problem
in Bn remains unclear: it might turn out in the future that the worst-case complex-
ity is polynomial—according to some weak prediction of [56]—or that the worst-
case complexity is exponential, but the generic-case or the average-case complexity
[39, 40] is polynomial. Such questions are important, but, in any case, the main
issue for cryptography is the existence of definable families of instances for which
the problem is provably difficult, and this is a different question. Also, we have
mentioned that using conjugacy problems and their variants could be just a first
step: completely new schemes could appear, and the future of braid cryptography
does not necessarily reduce to the single question of conjugacy in Bn.

Braid groups are equipped with a number of different structures originating
from various points of view: algebra, combinatorics, geometry, topology. It was
argued recently [50] that the multiplicity of the possible approaches are a poten-
tial weakness, because many different attacks can appear and defeating them will
perhaps be possible, but at the expense of changing the schemes and contradicting
the necessary stability requirements. But, on the other hand, it may also be argued
that the multiplicity of approaches is a guarantee of depth and richness, and, at
this point, we see no serious reason for doubting that braid groups are and will
remain a promising platform for cryptography.
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