DIAGRAMS COLOURINGS AND APPLICATIONS

PATRICK DEHORNOY

ABSTRACT. This paper reviews some results involving arc colourings in a braid or a link
diagram. The left self-distributivity idendity then appears as an algebraic counterpart to
Reidemeister move of type III. Using classical and less classical self-distributive operations
leads to a number of different results, as well as to many open questions.

It has been observed for many years that there exist a connection between braids and links
on the one hand, and left self-distributive systems (LD-systems for short) on the other hand,
the latter consisting of a set equipped with a binary operation * that satisfies the left self-
distributivity identity
(LD) xx(y*xz)=(z*xy)*(x*2).

In this text, we review some of the results about links and, mainly, braids, that can be obtained
using this approach. Some results are connected with classical LD-systems, such as the racks
of [30] or the quandles of [37]: here, we use “classical” for those LD-systems whose operation
is close to conjugacy in a group, the most common example. But the main emphasis will be
put on non-classical LD-systems. The latter are examples of a completely different flavour
which have been considered from the beginning of the 1990’s in connection with work in Set
Theory—but do not depend on this approach, which is involved as a motivation only. We shall
in particular show how considering non-classical LD-systems leads to ordering properties, and
how self-distributive operations can be defined on braids themselves. The unifying principle
behind all the developments described here is the Hurwitz action of braids on the power of an
LD-system, as identified for instance by Brieskorn in [6].

1. COLOURING THE STRANDS OF A DIAGRAM

1.1. The basic principle. Let us consider a standard braid or link diagram such as those of

) A

FIGURE 1. A braid diagram (left) and a link diagram (right)

Colouring the strands of such a diagram, say D, means choosing an auxiliary set S (the
colours) and attaching with each arc in D an element of S, i.e., use the elements of S to label
the arcs of the diagram. The basic idea is to use such colourings to extract information about D,
or, rather, about the braid or the link represented by D.

It is natural to assume that the colours remain unchanged while propagated along the arcs,
and the question is of what happens at crossings. If we decide that both strands keep their
color, then only n different colours may occur in an n strand braid diagram or an n component
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link diagram and, as can be expected, not much about the braid or the link represented by the
diagram can be extracted.

Things become more interesting when we allow colours to change at crossings. Several rules
can be considered, but here we shall concentrate on the most natural one, namely when the
front strand (the one that is not interrupted) keeps its colour, while the back strand may change
its colour so that the new colour only depends on the colours of the two strands involved in the
crossing. We shall always consider oriented diagrams, so that there are two cases, according to
whether the front strand comes from the left or from the right. This amounts to saying that
there exists a binary operation on the set of colours so that the new colour is the product of
the two initial colours. As crossings may have two distinct orientations, we are led to assume
that the set of colours S is equipped with two binary operations *, %, and the rules of Figure 2
are obeyed at each crossing.

T xy TxY
Y Y

FIGURE 2. Rules for changing colours: y becomes x * y when it is overcrossed by z
coming from its right, and x ¥ y when it is overcrossed by x coming from its left

1.2. Invariance under isotopy. We are interested in using colourings to extract information
about the braid or the link represented by a diagram, so we wish that the colourings are, in
some sense, invariant under isotopy. As is well-known—see for instance [3, 8, 40] or [50]—
two link diagrams represent the same link if and only if they can be connected by a finite
sequence of Reidemeister moves, and two braid diagrams represent the same braid if and only
if they can be connected by a finite sequence of braid equivalences, which are special cases
of Reidemeister moves of type II and III. Thus we are led to study whether the colourings
defined as in Figure 2 are invariant under the previous transformations. We shall successively
consider three cases, namely the case of positive braid diagrams (those in which all crossings
have the same orientation), then the case of arbitrary braid diagrams, and, finally, the case of
link diagrams.

We implicitly assume that some index n is fixed and consider n strand braid diagrams. We
allow n = oo, but, as usual, only consider diagrams with finitely many crossings. As is standard,
we use o; for the elementary diagram consisting of a single crossing between the strands at
position ¢ and i + 1 (Figure 3). The braid diagrams are supposed to be oriented from the top
to the bottom.

FIGURE 3. The elementary n strand braid diagram o;

We shall say that a colouring is compatible with a family of diagram transformations if,
for any choice of the input colours, the output colours are not changed when the considered
transformations are applied.

Lemma 1.1. In the case of positive braid diagrams, the colourings defined in Figure 2 are
compatible with isotopy if and only if the operation x satisfies the identity

(1.1) T (yxz)=(z*y)*(r*2).
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Proof. As is well-known, two positive braid diagrams, i.e., two diagrams obtained by stacking
several diagrams o, one over the other, are isotopic if and only if they can be connected by
applying finitely many times the so-called braid relations

(1.2) o,0; =0,0; for [i—j|>2, o0,0;0, =0;0,0; for i —j|=1.

Thus the question is to check whether, for each choice of the input colours, the output colours
of a positive braid diagram are not changed when braid relations are applied. The compatibility

with 0, 0; = 0,0, for |i — j| > 2 is automatic. As for the length 3 relation 0, 0,0, = 0,0,0;

with | — j| = 1—a Reidemeister move of type III—the argument is illustrated in Figure 4. O
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FIGURE 4. Compatibility of colouring with the braid relations
Let us consider now arbitrary braid diagrams, which contain, in addition to the elementary
diagrams o, , their mirror images o, L

Lemma 1.2. In the case of arbitrary braid diagrams, the colourings defined in Figure 2 are
compatible with isotopy if and only if the operation x satisfies (1.1) and, in addition, we have

(1.3) xx(z¥xy)=a*(xxy)=y.

Proof. For arbitrary braid diagrams, isotopy corresponds to applying the braid relations of (1.2),
plus the free group relations

(1.4) o0, =07to, =1

—which correspond to Reidemeister moves of type II. Then (1.3) arises as a translation of (1.4),
as shown in Figure 5. O

z Y
'4 N\
yx(yxx) y z y

FIGURE 5. Compatibility of colouring with the free group relations

Relations (1.3) express that the operation * is a sort of left inverse for the operation *, and
vice versa. In particular, (1.3) implies that all left translations relative to * and ¥ are bijections,
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hence in particular that left cancellation with respect to * and * is allowed. Let us observe that
the conjunction of (1.1) and (1.3) implies several other distributivity relations, namely

(1.5) xx(yxz)=(xxy)*(x*2),
(1.6) xx(y*xz)=(r¥xy)* (x*2),
(1.7) T (Y®z) = (z*y)*(r*2).

For instance, we find

T (zF (y*2) =3 yxz =3 (@* (@xy)* (xx (2% 2)) =q1) v+ ((x5y) * (z%2)),
and (1.6) follows by cancelling = on the left.
Finally, let us consider link diagrams. The results takes the following form:

Lemma 1.3. In the case of link diagrams, the colourings defined in Figure 2 are compatible
with isotopy if and only if the operation x satisfies Identities (1.1) and (1.3), and, in addition,

(1.8) THT =X

Proof. Relation (1.8) arises when we translate the compatibility with Reidemeister moves of
type I, as shown in Figure 6. As for other types, we observed that the free group relations
are particular Reidemeister moves of type II, and that the braid relations are particular Reide-
meister moves of type III. So Lemma 1.2 shows that (1.1) and (1.3) are necessary conditions.
That they are sufficient requires a few additional verifications, because, in the general case, the
orientations of the arcs need not be those of Figures 5 and 4. Checking all possible combinations
is easy. For type III, in addition to (1.1) and (1.3), the requirements about * and * turn out
to be the identities (1.5), (1.6), and (1.7), which we have seen are consequences of the previous
ones. Two case are displayed in Figures 7 and 8. O
x

o |

FIGURE 6. Compatibility of colouring with Reidemeister move of type I

T *xT
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FIGURE 7. Compatibility of colouring with another Reidemeister move of type II
(observe that, here, this is twice the same transformation)

Relation (1.1) is called the (left) self-distributivity law for the operation *, as it expresses
that « is distributive with respect to itself; it will be denoted LD in the sequel, while (1.8) is the
idempotency law. Observe that, when (1.1) and (1.3) are satisfied, * satisfying the idempotency
law is equivalent to % doing, as we have z * (x ¥ x) =(1.3) T =(1.8) T * T, hence x ¥ = x
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z T Y z

FIGURE 8. Compatibility of colouring with another Reidemeister move of type III:
by (1.1) and (1.3), we have y* (y*2) *2) = (y* (y*x)) * (y*2) =z * (y * 2)

by cancelling x on the left. We are thus led to consider algebraic systems consisting on a set
equipped with one or two self-distributive operations. We fix the following vocabulary.

Definition. (i) An algebraic system consisting of a set S equipped with a binary operation
satisfying (1.1) is called an LD-system.

(ii) An algebraic system consisting of a set R equipped with two binary operations x,*
satisfying (1.1) and (1.3) is called a rack—or an LD-quasigroup in the terminology of [19], or
an automorphic set in that of [6].

(iii) An algebraic system consisting of a set ) equipped with two binary operations x,*
satisfying (1.1), (1.3) and (1.8) is called a quandle—or, equivalently, an LDI-quasigroup in [19].

In the sequel, we choose “rack” and “quandle” because these are the most common names
in the context of topology. As it stands, a rack involves two binary operations. Actually, each
operation determines the other. Indeed, if (R, *,%*) is a rack, then, for all z,y in R, we have

(1.9) T ¥y = the unique z satisfying z x z = y,

and all left translations in the LD-system (R, *) are bijective—hence they are automorphisms
of (R,*). Conversely, if (R, *) is an LD-system where all left translations are bijective, then
using (1.9) to define a second operation % gives R the structure of a rack. Such an LD-system
can therefore be called a rack—or a quandle if its operation happens to be idempotent—without
ambiguity.

Many examples of LD-systems will appear in the sequel. For the moment, let us just observe
that, if S is any set, then S equipped with the operation x * y = y is a quandle (the “trivial”
quandle on S), and that, if G is a group, then G equipped with the conjugacy operation
x*y=xyxr~!is also a quandle (the “conjugacy” quandle on G).

1.3. Two ways of using colourings. Building on the previous common approach, we can
use diagram colourings to study braids or links. It turns out that, up to now, colourings and
self-distributive systems have been used in rather different ways according to whether either
braids or links are considered. The point is that braids are open objects, while knots and links
are closed.

In the case of braids, the strands have open initial and final ends, and the general principle
is to fix a rack (R,#*,%) and then to use R to colour every braid diagram. In this way, every
n strand braid b defines a mapping p, of R™ into itself (Figure 9), hence a sort of R-valued
representation of dimension n. We use p; to extract information about b.

More formally, n strand braids (resp. positive braids) make a group B,, (resp. a monoid B;),
and considering the correspondence in R™ induced by colouring n strand diagrams amounts to
defining an action of braid words on sequences of colours:

Definition. Assume that (R, *,*) is an algebraic system consisting of a set equipped with two
binary operations. For 2 < n < oo, we inductively define a right action of n strand braid words
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r1 T T3 ... €R"

L
b
A

Y1 Y2 Y3 ... €R"

— pp: R — R"

FIGURE 9. Using braid colourings: extracting information about the braid b from
its action on sequences of colours

on R™ by x e = & (where ¢ denotes the empty word), and
(1.10) To(o,w) = (T1, .., Tim1,Ti ¥ Tig1, Ti, Tigo...) oW,
(111) T e (Ji_lw) = (i[l, ey L1, L1, T4 §$i+1,$i+2 e ) o W.

Throughout the paper, we use the convention that, when x denotes a (finite or infinite)
sequence, the successive elements of x are denoted x1,xs,... Then Lemmas 1.1 and 1.2 yield
the following result, which can be traced back at least to Brieskorn:

Proposition 1.4 ([6]). (i) For each LD-system (S,x), (1.10) defines an action of B;} on S™.
(i) For each rack (R,*,%), (1.10) and (1.11) define an action of B, on R™.

The previous action will be called the Hurwitz action of braids on the powers of S or R. In
this case, for  a sequence of elements of S or R, and b a braid, we denote x o b for the result
of applying b to x, i.e., for the sequence  « w where w is an arbitrary expression of b.

The case of a knots or a link L is different. Again we can start with a fixed algebraic system,
typically a quandle @, and try to use @ to colour the arcs of a diagram representing L. Now
the problem is that L is a closed diagram, and pushing the colours along the arcs is likely to
result in obstructions. As is well-known, every link can be represented as the closure of a braid,
so we can concentrate on this case. If L is the closure of the braid b and we choose arbitrary
colours x1,xs,... for the top strands of b, then the colours yi,¥y2,... of the bottom strands
of b are in general different from x1,xs,.... A natural solution to the problem is to go from @
to the quotient-quandle S, of S obtained by identifying y; with x; for each 7. Thus, the idea
is no longer to use the same fixed algebraic system for each topological object, but rather to
associate with every topological object a specific algebraic system, which, in good cases, we can
hope to be an invariant of the considered knot or link (Figure 10).

— Qpy=Q/(y1 =x1,y2 = T2,...)

FIGURE 10. Using link colourings: extracting information about the link L from
the associated quotient-structure

In this approach, the more general the initial quandle is, the most powerful the associated
invariant is likely to be. In particular, for the closure L of an n strand braid, we can start with
the free quandle on n generators. Then the associated quotient @y, is called the fundamental
quandle of L, and we have the following optimal result:
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Proposition 1.5 (Joyce [37], Matveev [49]). The fundamental quandle is a complete invariant
of the isotopy type up to a mirror symmetry.

Example 1.6. The trefoil knot of Figure 1 is the closure of the braid o3, and the reader will
easily check that its fundamental quandle is the finitely generated quandle that (as a quandle)
admits the presentation (z,y; ((x *y) *z) * (x xy) = z, (r *x y) * x = y), hence also

(T, Y, 2, T*Y =2, Y*2=1T,2%T =y).

Proposition 1.5 shows that the fundamental quandle of a link captures almost completely
the topological structure of that link, which is not surprising as the quandle identities are the
exact algebraic counterpart of the Reidemeister transformations. The problem is that there
is no known solution to the general isomorphism problem for finitely presented quandles, i.e.,
there is no algorithm to decide whether two finitely presented quandles are isomorphic or not—
and therefore Proposition 1.5 cannot be converted into an algorithm deciding whether two link
diagrams are isotopic. Even recognizing free quandles, i.e., recognizing unknottedness, remains
problematic.

More partial information about the link can be extracted by considering quotients of the
fundamental quandle. In terms of colourings, this amounts to starting with more particular
quandles instead of free quandles. For instance, one can restrict to involutory quandles, which
are those quandles in which the two operations coincide, i.e., that satisfy = x (z x y) = y for
all z,y. General references in this direction are [31, 32].

Remark 1.7. Constructing an algebraic structure that is specific to the considered knot or link
is not the only approach developed so far for using diagram colourings. In particular, counting
the possible colourings associated with some fixed quandle is another possibility. With the help
of some (co)-homological methods, it leads to link invariants of state-sum type [10, 11, 25].

Remark 1.8. Instead of calling x %y the colour obtained when y is overcrossed by z, we could
call it y*x as well: both conventions equally appear in literature, our current one “x*y” seems
to be more common in the case of braids, while the other one “y * 2”—often denoted z > y—is
more common in the case of knots and links. Of course, when the alternative convention is
used, the identities are to be replaced with their symmetrized counterpart, in particular, left
self-distributivity is to be replaced with right self-distributivity (x> y) >z = (x> 2) > (y > 2).

2. CLASSICAL EXAMPLES OF RACKS AND QUANDLES

In this section, we review the classical examples of racks, and describe the properties of braids
or links one captures by using the corresponding colourings. All results here are well-known,
but, at the least, this review shows that the approach is useful, and it is a sort of warm-up
before more sophisticated developments are mentioned.

2.1. The trivial rack. As already mentioned, any (nonempty) set S equipped with z xy =
x*y =y is a rack, and even a quandle. We shall refer to this structure as the trivial rack on S.
Using a trivial rack to colour the arcs of a diagram amounts to deciding that the colours do not
change at crossings.

In the case of braids and their action on sequences of colours, the output colours make a
permutation of the input colours, so the action of a braid b on a trivial rack S factors through
the permutation of b. Formally, for each braid b in B,,, and every sequence x in S™, we have

(2.1) x o b = perm(b)(x),

where perm(b) denotes the permutation that specifies the initial positions of the strands in
terms of their final positions. Thus, the Hurwitz action associated with this particular rack
leads to the surjective homomorphism

perm : B, —»G,,.
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In the case of a link, using the most general trivial rack means starting with a cardinality n
set S when we are considering a link diagram that is the closure of an n strand braid diagram.
Then identifying the sequence of output colours with the sequence of input colours yields a
quotient Sy, of S that has k elements if the represented link has k components. Thus the piece
of information we can extract using trivial racks is the number of components.

2.2. The shift rack. Let Z denote the set of all integers. Then the operations
(2.2) rxy=1y-+1, r¥y=y—1

turn Z into a rack. For every braid b in B,,, and every sequence x in Z™, we find

(2.3) D (@eb) =) x+sum(b),

where > @ denotes 21 + - - - + 2, and sum(b) denotes the exponent sum of b, defined to be the
difference between the number of positive and legative letters in any expression of b. Thus,the
Hurwitz action leads here to the augmentation homomorphism

sum : B, —(Z,+)

that maps every generator o, to 1.

The current rack is not a quandle, as, for instance, we have 0« 0 = 1 # 0, so there is no
direct way to use it to obtain a link invariant. Observe that the current rack as well as the
trivial ones belong to the more general type = xy = f(y), xxy = f~1(y), where f is a bijection
of the underlying domain.

2.3. The Alexander rack. Assume that E be a Z[t,t~!]-module. The binary operations
(2.4) xxy=(1—1t)x+ty, rxy=(1—tHr+tly
turn F into a rack, actually a quandle. For every n-strand braid b, and every sequence x in E™,
the output colours @ e b are linear combinations of the input colours . Therefore, there exists
an n X n-matrix rp(b) satisfying
(2.5) CL’obZCL’XTB(b).
Thus we obtain a linear representation

rp : By — GL,(Z[t,t']).

It turns out that this representation is the (unreduced) Burau representation.

Considering the case of links amounts to quotienting under the relations « « b = x: these
relations generate the Alexander ideal of the link B, and, in particular, the Alexander polynomial
can be recovered from this ideal.

2.4. The conjugacy rack. Let G be a group. Then the binary operations defined by

(2.6) Txy=ayxr L, T¥y=a lyx

turn G into a rack, and even a quandle. In particular, let F,, be the free group based on
{z1,...,z,}. Then define elements y1, ..., y, of F, by

(2.7) (1, Tn) eb=(y1,-- -, Yn),

and let ¢(b) be the endomorphism of F,, that maps z; to y; for every ¢. Then ¢ is an endo-
morphism of B, into End(F,), and, as ¢(b~!) = ¢(b)~! holds by construction, the image of ¢
is actually included in Aut(F,). Thus, the Hurwitz action associated with the conjugacy rack
leads to Artin’s representation
p: B, — Aut(F,),

which is known to be faithful—a proof will be mentioned below.

According to our general scheme, going to links means attaching to the closure b of the
braid b the quotient of the free group F), under the relations y; = x;: the resulting group is
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the fundamental group of the complement of 37 and the obtained presentation is known as the
Wirtinger presentation.

Using Fox’ free differential calculus, it is standard to derive the Alexander rack from the
conjugacy rack of a free group—hence the Alexander polynomial of a link from the Wirtinger
presentation of its group.

2.5. Free racks. The previous examples show that a number of classical results about braids
or links can be obtained using diagram colourings and self-distributive systems. We are thus led
to the natural question: Can we get more by considering further examples of racks or quandles?

We do not claim that the answer is negative, but we shall see now that, in some sense, we
are close to the optimum when considering the conjugacy rack of a free group. Indeed, we can
expect that using the most general racks will lead to the most powerful results, and, in this
respect, using free racks is the best we can do. Now free racks are very close to conjugacy racks.

Assume that G is a group, and X is a subset of G. We define binary operations on G x X
by

(2.8) (a,z) * (b,y) = (axa™'b,y), (a,z) % (b,y) = (axz™'a b, y).

The operations of (2.8) can valuably be called half-conjugacy as, when G is a free group, they
amounts to selecting the first half of the conjugacy words; in any case, mapping (a, x) to axa™!
yields a morphism of G x X equipped with the half-conjugacy operations into G equipped with
the conjugacy operations.

Proposition 2.1 ([24]). For G a group and X C G, the set G x X equipped with half-conjugacy
is a rack. Moreover, if G is the free group based on X, then the half-conjugacy rack X C G is
a free rack based on X —more ezactly on {1} x X.

The verifications are easy. In X x G, we have (a,x) *(a,z) = (ax,z). Thus, a free rack is not
a quandle. But we see that the difference between the half-conjugacy rack and the conjugacy
rack on a free group only lies in the repetition of the central letter, making the half-conjugacy
rack appear as a sort of product of the conjugacy rack and the shift rack of Subsection 2.2.

A consequence of this is that free racks, and therefore, arbitrary racks, satisfy some extra
identities that, we shall see in the sequel, have no direct connection with self-distributivity.
Excepted the shift rack and the free racks, all above mentioned examples are idempotent, i.e.,
they satisfy the identity « * x = . We observed that this is not the case of the free racks, but
the latter are so close to conjugacy racks implies that they inherit a weak form of idempotence:

Lemma 2.2. Fvery rack satisfies the identity
(2.9) (xxx)xy=xx*y.
The verification is trivial using the explicit formulas in (2.8):

((a,2) % (a,2)) * (b,y) = (az,z) * (b,y) = (aza™'b,y) = (a,z) * (b,y)-
Alternatively, we may observe that Identity (2.9) follows from the rack identities:
Important from our point of view is the fact that Identity (2.9) prevents racks from being
orderable in any reasonable sense. Indeed, on the shape of natural numbers and, more generally,
of free semigroups, it is natural to consider possible orderings that extend the left divisibility
relation, i.e., orderings in which y = x * z implies < y. A necessary condition for such an
ordering to possibly exist is that no element is a left divisor of itself. Now, Lemma 2.2 shows

that, if (R, ) is a rack, then every element of the form x x x is a left divisor of itself, since we
have x *x x = (x * x) x 2. So, at this point, we are led to the following double question:

Question 2.3. Does there exist some LD-system (necessarily not an rack) where left division
admits no cycle? If so, can we use such an LD-system to colour braids?
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We shall see in the sequel that the answer to both questions is positive. For the moment, let
us conclude with a last example, which provides a (very) partial answer to Question 2.3. We
denote by I, the monoid of all injective, non-bijective mappings of N into itself equipped with
composition. For f, g in I, let us define the injection f x g by

(2.10) Fxgln) = {fgfl(n) if n belongs to the image of f,

n otherwise.

It is easy to verify that this operation is left self-distributive, and that the coimage of f * g is
the image under f of the coimage of g—the coimage being the complement of the image in IN.
Hence no equality of the form f % g = f is possible in I, for the coimage of f * g is included
in the image of f, hence disjoint from the coimage of f. It follows that left division in (I, *)
admits no cycle of length 1—but it can be seen that it admits cycles of length 2.

3. COLOURING WITH MORE GENERAL LD-SYSTEMS

A few more examples of LD-systems still exist, but most of them are connected with the
conjugacy operation of a group, and, in particular, they are racks (or even quandles)—here we
think in particular of the LD-systems one can build using root systems and their reflections [6],
or alternating bilinear forms [54]. The situation radically changed when new LD-systems of a
completely different flavour appeared at the end of the 1980’s in connection with set theoretical
objects called elementary embeddings [16, 19]. There is no need that we describe these examples
here, but we shall just say that these examples did seem strange and promising enough to give
a strong motivation for investigating Question 2.3, and, in particular, proving that the Hurwitz
action of braids can be extended to arbitrary left cancellative LD-systems, at the expense of
becoming a partial action.

This extension is what we shall explain in this section.

3.1. Braid word reversing. We have to begin with a detour. Lemma 1.1 tells us that we
can use (5, %) to colour the strands of a positive braid whenever (S, x*) is an LD-system, i.e.,
whenever x is a left self-distributive operation on S. On the other hand, Garside’s theory [34]
guarantees that every braid is the quotient of two positive braids: for each b in B,,, there exist
b1,be in B, such that b equals bl_lbg7 i.e., equivalently, b can be represented by a word of the
form u~!v where u,v are positive braid words (no letter o, 1). Using this result to extend the
action of positive braids into an action on arbitrary braids is natural.

However, things are not so easy. The problem is that, if b is represented by u~'v, then we
can use an arbitrary LD-system (S, ) to colour the strands of the diagram encoded by u~!v,
but, in general, we cannot prove uniqueness and compatibility with respect to the braid and
free group relations. Going further requires that we improve on Garside’s result and use a
decomposition result that is more precise than the mere existence of a fractional expression.
This is where the technique called word reversing is useful.

In the sequel, we denote by o the alphabet {0, 0,,...}. We use o* for the set of all words
on o, i.e., for the set of all positive braid words. Braid word equivalence is denoted by =: if
w,w’ are braid words, w = w’ means that w and w’ represent the same braid.

Now, let us observe that, if f is the mapping of o X o to o* defined by

o; for |i — j| > 2,
flo;,05) = o0, forli—j|=1,
€ for i = j,

then the presentation (1.2) of the braid group consists of all relations

(3.1) ; f(0i7aj):0j f(ajvgi)
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with ¢ # j. Now (3.1) also implies
-1 _ —1
(3.2) o, 0;= f(ai7aj) f(aj7ai) )

It follows that, if we replace in a braid word w a subword of the form o; 1O’j with the corre-

sponding word f(o;,0;)f(0;,0;)"", then the new word is equivalent to w.

Definition. Assume that w,w’ are braid words. We say that w is right reversible to w’ (in
k steps) if one can transform w into w’ by successively replacing k subwords of the type o, Lo,

j
with the corresponding subwords f(o;,0;) f(o;,0;)7"

Example 3.1. Consider w = o, '05'0,0,. Then w contains the subword o3 '0,, and this

is the only subword of the type o; 10j in w: so the only way of applying right reversing

to w is to go to wy = oy 0,050, 05 0,. Now, in wy, there are two subwords of the
type o; 1Jj, namely the initial subword o 102, and the final subword o5 104. Hence two words
can be obtained from w by two steps of word reversing, namely oy0,05 'oy toyo5 tog o, and
o1 toy0oy05 o050, oyt The reader can continue, and check that all sequences of word revers-
ing from w end in 16 steps with the word oy0,03050,050,0,0; 05 oy oy o oy o tog .
The latter word can no longer be reversed, for it contains no more factor of the form o;” 10j.
By construction, w being right reversible to w’ implies that w and w’ are equivalent. Of
course, the converse implication need not be true. However, in good cases [20], typically in the
case of the standard braid presentation, as well as in the case of the alternative band generator
presentation of [4] (after some technical adaptation), there is a sort of converse implication:

Lemma 3.2 ([15]). Assume that u,v are positive braid words. Then u and v are equivalent,
i.e., they represent the same (positive) braid if and only if the word u™1v is right reversible to
the empty word.

This technical result is instrumental in the following property, which will be crucial here:

Proposition 3.3. For every braid word w, there exist unique positive words Ng(w), Dg(w)
such that w is right reversible to Ny(w)Dg(w)™t. Then, w = w' holds if and only if there exist
positive words v, v’ satisfying

(3.3) No(w) v=Np(w') v and Dy(w) v= Dy(w') v'.

In the above result, N; and Dy stand for “right numerator” and “right denominator”.
For instance, in the case of the word w of Example 3.1, the words N;(w) and Dg(w) are
090103090,03050; and 050,0,050,05030,, respectively.

(The easy part of) Lemma 3.2 guarantees that w is equivalent to Ny(w) Dp(w)~!, and,
therefore, a consequence of Proposition 3.3 is that every braid can be expressed as a right
fraction ab~! with a, b in Bf—as asserted by Garside’s theory. However, Proposition 3.3 gives
us more than the mere equivalence of the words w and Ny (w)Dg(w)™!: it gives a distinguished
way for transforming w into Ni(w)Dy(w)™!, one that avoids introducing any subword of the
type Ji_lai or o; (Ti_l.

As braid relations are symmetric, everything we said so far about right reversing can be
transposed into similar statements about a symmetric left reversing, in which the basic step
consists in replacing o, 0;1 with g(aj ,o,) L glo;, Uj)7 where ¢ is a mapping of o X o into o*
that the reader will easily find by himself. The counterpart of Proposition 3.3 is:

Proposition 3.4. For every braid word w, there exist unique positive words Ny (w), D, (w)
such that w is left reversible to D, (w) 1N, (w). Then, w = w' holds if and only if there exist
positive words u,u’ satisfying

(3.4) u Ny(w)=u' N, (w') and wu Dy(w) = D,(w').
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Remark 3.5. Braid word reversing is defined at the level of braid words only, and not at the
level of braids. Indeed, the functions N; and D, do not induce well-defined mapping of B,
into Bf. For instance, let w = 0,07 " and w’ = ¢. Then w and w’ are equivalent, as both
represent the unit braid. Now, by definition, each of w,w’ is terminal with respect to right
reversing, as it contains no subword o, crj_l, and we find Ny(0,07") = Dp(o,07") = 0, and
Ni(e) = Dg(e) = & (the empty word). This shows that w = w’ does not imply N;(w) = Ny(w')
or Dp(w) = Dp(w'), and (3.3) is optimal in some sense.

Of course, the functions IV, and D, do not induce well-defined mappings on braids either.
However, let us mention that using a double, left and right, word reversing results in mappings
that are invariant under braid equivalence: if we define Ny, (w) = N (Ngz(w)Dg(w)~!) and
Dy (w) = Dy (Nz(w)Dg(w) 1), then the mappings Ny, and Dy, induce well-defined mappings
on braids, i.e., w = w’ implies Ny, (w) = Npp(w') and Dy, (w) = Dro(w’'). It follows in
particular that w = € holds if and only if the words Nz (w) and Dy, (w) are empty, i.e., if,
starting from w, the double reversing process consisting in right reversing w and then left
reversing the result ends up with an empty word.

3.2. The Hurwitz partial action of braids on left cancellative LD-systems. Using braid
word reversing, we shall now be able to extend the action of B;" on S™ into a partial action
of B, on S™ when (S, %) is a left cancellative LD-system, i.e., one in which left translations are
injective, but not necessarily surjective. However, the price to pay for such an extension is that,
in general, we shall obtain a partial action only, i.e., one that need not be defined everywhere.

Assume that (S, *) is a fixed LD-system and w is an n-strand braid word, n < co. The rule of
Figure 2 left tells us how to use (5, *) to colour positive crossings in w. As for negative crossings,
we have so far no way of colouring them, as no second operation * is specified. However, we
have seen in Lemma 1.2 that the only way that guarantees compatibility with the free group

relations o, 0; ' = 0; ‘o, = ¢ is to use

7/ N
/ N\

Txy x x z such that y = x % 2

If we do not assume the operation * to admit left cancellation, then there can exist more than
one element z satisfying x * z = y, and our principle of putting input colours at the top of the
strands and pushing them to the bottom cannot be applied. But if the operation * admits left
cancellation, then we are not sure that every sequence of colours can be propagated but, at
the least, we know that each sequence of input colours leads to at most one sequence of output
colours. This is the approach we will develop now.

From now on, we shall consider LD-systems (.5, *) that admit left cancellation, and try to
use them to colour braid diagrams—or, possibly, link diagrams. If (S, #) is not a rack, then it
is not clear that every braid diagram can be coloured using .S, or that the action leads to a
well-defined result, i.e., that equivalent diagrams lead to coherent results. Actually, this is the
case, and, to prove it, braid word reversing is the main ingredient.

Lemma 3.6. Assume that (S, ) is a left cancellation LD-system.

(i) Let wy, ..., wp, be arbitrary n strand braid words. Then there exists at least one sequence x
in S™ such that x e w; is defined for each i.

(i1) Assume that w,w’ are equivalent n strand braid words, and x is a sequence in S™ such
that both x e w and T e w’ are defined. Then the latter sequences are equal.

Proof. We outline the argument, because it is crucial. For (i), let us first consider the case of
a single word w. By Proposition 3.4, there exist two positive braid words u, v, namely the left
denominators and numerators of w, such that w is left reversible to v~ 'v, and, therefore, uw
is left reversible to v. Let z be an arbitrary sequence in S™. Then we can colour v (which is
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a positive diagram) starting from colours z, and we obtain z e v as output colours. We claim
that z is also eligible for colouring uw, i.e., no obstruction can happen with negative crossings.
Indeed, we observe that, when w’ is left reversible to w”, then zew” = y implies zow’ = y, this
meaning in particular that the considered action is defined. To prove this, it suffices to consider
each elementary reversing step. The typical case of 0,05 L left reversing to g 101_ 10201 is
illustrated in Figure 11. So we conclude that, for every sequence z, the sequence z e u is eligible
as input colours for colouring w, and the output colours are then z e v.

In the case of several words wi,...,wp, we use the fact that the left denominators of w,

., wp admit a common right multiple in B; to find a positive word u such that each word
uw; is left reversible to some positive word. The sequel of the argument is then the same.

For (i), the argument is analogous, but it now involves right reversing. Here the point is
that, if w is right reversible to w’, then every sequence of colours that is eligible for colouring w
must be eligible for colouring w'—so the deduction goes in the opposite direction as for left
reversing. Then one uses the fact that, if w and w’ are equivalent, then there exists equivalent
positive word u, u’ such that wu and w'u’ are right reversible to equivalent positive words. [

y satisfying
TaxYy =T 1 T2 T3
—Z satlsfylng
T3 *x 2 =
T * T3
r To*Ty ToxZ o

To*X3 To*Z

FIGURE 11. The colourability of the left diagram guarantees that of the right dia-
gram: indeed we have (z2 * x3) * (x2 % 2) = X2 * (T3 % 2) = T2 xy = 21

The previous technical result enable us to define a partial action of braids on the powers of
any left cancellative LD-system: the action need not be defined for any initial choice of colours
but we know that, for a given braid, there always exists some initial choice of colours for which
the action is defined, and that any such choice leads to the same final result. If « is a sequence
of colours and b is a braid, we shall denote by @ ¢ b the sequence @ ¢ w for w any braid word
representing b such that the sequence is defined, if there is one.

4. NON-CLASSICAL LD-SYSTEMS

The interest of extending the Hurwitz action to left cancellative LD-systems that are not
racks is that new systems of a different flavour become eligible. We shall see now how using
such non-classical LD-systems naturally leads to new applications, such as ordering the braids.
According to our general approach, we shall put the emphasis on the role of braid colourings
in the construction. We shall successively appeal to two LD-systems, and, therefore, to two
Hurwitz actions, namely free LD-systems firstly, and then another LD-system involving braids
themselves.

4.1. Free LD-systems. For rather trivial general reasons there exists for every nonempty
set X a free LD-system based on X, thus an analog of a free group or a free monoid in the
category of LD-systems.

Definition. We define D to be the free LD-system on one generator. The generators of D
(which turns out to be unique) will be denoted g, and its operation by .
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Thus D consists of all formal expressions g, g*g, g * (g* g), etc., two such expressions being
identified when one can go from one to the other applying the left self-distributivity identity.
One should think of the LD-system D as a counterpart to the semigroup of positive integers Z ..
(equipped with addition): the latter is the free semigroup with one generator, i.e., the free
object of rank 1 in the category (or variety) associated with the identity z(yz) = (zy)z, while
D is the free object of rank 1 in the category associated with the identity z(yz) = (zy)(zz).
Both algebraic systems share some properties, but the LD-system D turns out to be much more
complicated than its counterpart Z,—and than free racks and free quandles. We refer to [19]
for a thorough study of free LD-systems.

Definition. For * a binary operation on S and x,y in S, we say that x is a left divisor of y if
y = x*z holds for some z, and denote by = the transitive closure of the left divisibility relation.

In the case of the free semigroup Z, , the left divisibility relation is transitive, and it coincides
with the usual ordering of the integers. In a self-distributive framework, the idea remains the
same, but transitivity is no longer guaranteed, and that is why we must appeal to the transitive
closure explicitly. So, x © y is true if and only if there exists a nonempty finite sequence
(z1,...,2p) satistying

(4.1) y=(..((z*xz1)*2)...)*2zp.

The similarity with the integers should make the following crucial result natural:

Proposition 4.1 ([14]). The relation c is a linear ordering on D, and it is compatible with
multiplication on the left.

As in the case of positive integers (with 1 instead of g), the generator g turns out to be the
minimal element of (D, ), and, for each = in D, the element = x ¢ is an immediate successor
of x with respect to , so that the first elements of D are g, g * g, (g * g) * g, etc.—exactly as
1,141, (1+1)+1, etc. are the first elements of Z,. However, the similarity stops here, as D
contains a number of elements beyond the latter elements: for instance, the element g * (g * g)
is larger than all of them.

Although the statement of Proposition 4.1 looks simple, no easy proof is known so far.
The only trivial point is the compatibity with left multiplication, which follows from self-
distributivity immediately. The remaining part splits into two non-trivial results, namely that
any two elements of D always are comparable with respect to c, i.e., at least one of =z & y,
z =y, y Cc x holds for all =,y in D—called Comparison Property—and that the relation c
has no cycle, i.e., x £ x is impossible for every z in D—called Acyclicity Property. It can
be mentioned that Proposition 4.1 extends to free LD-systems with more than one generator
(using using some lexicographic extension of £), but we shall not use this result in the sequel.
Proposition 4.1 shows that free LD-systems are very different from racks. In particular, the
identity x xy = (x*x)*y, which we have seen holds in every rack, badly fails in D: for instance,
g * g is a left divisor of (g * g) * g, so these elements cannot be equal. Actually it can be shown
that, in many aspects, racks and free LD-systems are diametrally opposed in the category of
all LD-systems.

An easy consequence of Proposition 4.1 is that the LD-system D admits left cancellation.
Indeed, assume z * x = z *x y in D. By the Comparison Property, at least one of x c y, x = y,
y € z holds. Now z £ y implies z xx £ z xy, hence z *xx # z*y, and so does y c . So x =y is
the only possibility.

It follows that D is eligible for colouring braid diagrams and that there exists a well-defined
partial Hurwitz action of B,, on D" for every n. Proposition 4.1 shows that D is, in a natural
sense, an orderable LD-system, so it is not suprising that using this LD-system leads to ordering
braids. To this end, we first order each power D" using the lexicographical extension =" of r:
x ™ y holds if and only if, for some 4, we have z; c y; and z; = y; for j < i. Now, we have
a linear ordering on sequences of colours, and the idea for ordering braids is straightforward:
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starting with two braids by, ba, we put some initial colours @ from D, which we know is possible
by Lemma 3.6(i), and we compare the output colours « e b; and @ e by using the lexicographic
order on sequences of colours. This obvious application of the colouring principle works, and
the result is:

Proposition 4.2 ([14]). For by, by in By, say that by < by is true if there exists a sequence x
in D™ such that @ ¢ by " @ e by holds. Then the relation < is a linear ordering on B, that is
compatible with multiplication on the left.

As one can expect, the main point is to prove that the relation < does not depend on the
choice of the initial sequence of colours x.

We conclude the section with another application of colourings associated with the free
LD-system D.

Definition. We say that a braid b is o, -positive if, among all possible expressions of b, there is
at least one in which o; occurs, but afl does not. We say that a braid b is o-positive if b can
be expressed as 9%by for some o,-positive braid by and some k > 0.

Thus, for instance, the braid o,0,07 Lis 0,-positive—hence o-positive—because, among its
(infinitely many) expressions, there is 05 'o, 05, in which ¢, occurs, but o7 * does not.

Proposition 4.3 (“Property A”). A o-positive braid is not trivial.

As the shift endomorphism 0 is injective, it suffices to consider the case of a o, -positive braid,
and the complete proof is then given in Figure 12: once we know that every braid diagram can
be coloured in at least one way using colours from D, the result is straightforward.

S]]
:E’III
-

FIGURE 12. Proof of Property A: Consider a diagram in which o1 occurs but oy *
does not, and put colours from D; the left colours make an increasing sequence
Z0C 21 C 2 C ..., as, for each i, by construction, z;11 = z; * x; holds for some x;.
So we have z, # 2o, and the output colour cannot be the input colours

4.2. Twisted braid conjugation. We shall now consider a new non-classical left self-distributive
operation, namely one that involves braids themselves.

We recall that B,, denotes the braid group on infinitely many strands indexed by positive
integers: B is the direct limit of all groups B;, when B,, is embedded into B, 1 by adding a new
strand at the right. The group By is equipped with an injective, non-surjective endomorphism,
namely the shift homomorphism 0 that maps o, to o,,, for each i.

The following binary operation on B,, can be seen as a sort of twisted version of the usual
conjugation operation.



16 PATRICK DEHORNOY

Definition. For b1, b in By, we put
(4.2) by by =by -Oby -0, - Ob7 .

We say that a braid b is special if it belongs to the closure of {1} under operation *. The set of
all special braids is denoted BP.

For instance, the reader can check equalities like 1x1 = o, 1x(1x1) = oy, (1x1)*1 = oi0; ',

etc. Thus the braids o,, 0y0,, and ofo, ' are special. Some motivation for introducing the
above operation wil be given below; however, for a complete explanation, we refer to [19] once
again.

Lemma 4.4. The set By, equipped with the operation x of (4.2) is a left cancellative LD-system,
and so is its subsystem BJP.

The easy verifications are left to the reader. It follows that we can use the left cancellative
LD-system (B, *) to colour the strands of the braid diagrams. In other words, we have obtained
a partial Hurwitz action of B, on BY. Technically, the point will be the following easy, but
surprising result that connects two a priori unrelated things, namely the internal product of
braids and the external Hurwitz action of braids on (B, *)—in our approach, this lemma can
be taken as the actual motivation for the definition of the operation x: it is easy to see that
(4.2) is the only possible definition leading to (4.3).

Lemma 4.5. For x in BT, define eval(x) = x1-0x9-0%x3-.... Then, if x is a sequence in By,
and x « b is defined, we have
(4.3) eval(x « b) = eval(x) - b.

Proof. An easy computation just relying on the explicit definition of the operation *. Indeed,
we have

eval(x e o, ) = eval((@1,...,T; % Tiy1, Tiy...))
=x1-0r9-..." 81_1(a:i * xi+1) ' 8’951 - 81“95”2 R
=x1-019-...- 0 ;- 8iwi+1 -0, - (9%{1 SO - 6i+1xi+2 ..
=x1-019-...- 0 ;- 8ixi+1 o 8”1:10”2 ..
=x1-0x9 ... -0ty O'wiyy -0 wiyn. . -0, = eval(z) - o,
which gives the basic case b =0, . (]

Lemma 4.5 implies that the Hurwitz action of By, on (B, *) is strongly faithful in the sense
that, if there exists at least one sequence of braids x such that x ¢ b and x « ' are defined and
equal, then b and b’ are equal. Indeed, T ob = x o b’ = y implies b = eval(y) - eval(z) ™! = b'.

For our purpose, Lemma 4.5 is important because it guarantees that every braid can be
expressed in terms of special braids, i.e., in terms of braids constructed from the trivial braid
using the operation * exclusively.

Proposition 4.6. Fvery braid b in B,, admits a decomposition of the form
(4.4) b=0""tb, - 0by byt b OO,

where by, ..., by, bY,... bl are special braids. If b belongs to B;r, we may assume by = --- =

rvn

b, = 1, and the decomposition is then unique.

Proof. First assume that b lies in B, and consider the Hurwitz (total) action of B;} on BZ,
and put (b},...,0)) = (1,...,1) eb. By construction, the braids b/, ..., b/, are special. Then we
apply (4.3). Uniqueness comes from the fact that special braids are self-colouring, in the sense
that, if b is special, then we have (1,...,1)eb = (b,1,...,1), as is shown in Figure 13.

For the general case, we write b = by by with bg, by in B;. O
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1 1 1 1
| | | | |
b1
IR
ba
EEN
1
-1
1
| | | |
b1 * by 1 1 1

FIGURE 13. Special braids are self-colouring: the property is true for 1, and the
diagram above shows that it is true for by * by whenever it is for b1 and bs.

As an application of diagram colourings appealing to braid twisted conjugacy, we shall come
back to the braid ordering of Proposition 4.2, and give a more intrinsic characterization of this
ordering not involving the free LD-system D. Let us mention that many constructions of this
ordering are possible, see [23].

Proposition 4.7 ([14]). The relation “by by is o-positive” is a linear ordering on B,, that is
compatible with multiplication on the left and that coincides with the ordering of Proposition 4.2.

As the shift endomorphism 0 is injective, it is easy to see that proving Proposition 4.7 reduces
to proving the following two results:
e Property A: A oy -positive braid is not trivial;
e Property C: Every braid is o, -positive, or o,-negative, or o, -free,
where b being o, -negative means that b=! is o,-positive, and b being o,-free means that
b belongs to the image of 9, hence admits an expression where neither o; nor oy L oceurs.

We already saw how to prove Property A using D-colourings in the previous section, and
we shall see now how to establish Property C using B,-colourings. The latter almost directly
follows from the decomposition of an arbitrary braid in terms of special braids given in (4.4).
Indeed, we have to show that every braid can be expressed without using at least one of o, 07 L
Now, in (4.4), the only factors that do not lie in the image of 0 are the central factors bfl and b.
So the missing part for deducing property C' is the following result:

Lemma 4.8. Ifb,b" are special braids, then the braid b=V is either oy -positive, or o, -negative,
or equal to 1.

Proof. In any LD-system S with one generator, any two elements are comparable with respect
to c: indeed S is a projection of the free LD-system D, so the result for D, which is what
was called the Comparison Property above, implies the result for S. Applying this to the LD-
system (B2P, x), we deduce that, if b, b’ are special braids, then at least one of b = ¥, b =¥/,
b £ b holds. Now, by definition of the relation = and of the specific operation * we consider,
b c b implies that b=’ is o,-positive: the basic case is b’ = b * 2, in which case we obtain
b= =0z -0, - b~ !, an explicitly o,-positive expression. O

Using Lemma 4.8, we deduce Property C, which we saw was the only missing piece in a
proof of Proposition 4.7.

Let us conclude with an application to braid groups representations. Once we know that
every non-trivial braid is either o-positive or o-negative, an obvious criterion for proving that
a certain representation p of B,, is faithful is to prove that the image under p of a o-positive
braid is not trivial. Provided p is sufficiently compatible with the shift endomorphism 09, it is
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even sufficient to prove that the image of a oy-positive braid is not trivial. This applies for
instance to Artin’s representation of B,, in Aut(F;,): D. Larue observed that the automorphism
associated with a o, -positive braid must map z; to some reduced word ending in 7' [47], which
gives a quite straightforward proof for the injectivity of this representation—see also [52, 13]
for further examples. On the other hand, very little is known about the possible application
of the method to linear representations like the Burau, the Jones or the Lawrence-Krammer
representations.

5. MORE NON-CLASSICAL LD-SYSTEMS AND OPEN QUESTIONS

We saw in the previous section how colouring braid diagrams using non-classical LD-systems
leads to non-trivial results about braids. In this last section, we briefly mention some open
questions related to the current approach, as well as some further examples of non-classical
LD-systems with a potential interest in braid or link theory.

5.1. The braid ordering. We have seen how to construct the braid ordering using the Hurwitz
action of braids on the power of a free LD-system. Many alternative approaches are now known.
Some of them are more combinatorial in spirit, others are completely geometric and appeal to
the realization of B, as the mapping class group of a punctured disk. We refer to [23] for an
introduction to these various approaches and a list of open questions.

Here we shall only mention some questions related to our current approach. One of the
main and most intriguing property of the braid ordering is the result, proved by R. Laver,
that, for each n, the restriction of the order to B; is a well-ordering, whose ordinal type was
subsequently shown by S. Burckel to be w®" ", This theorem is closely connected with

Proposition 5.1 (Property S). For every braid b, one has bo; > b for each i.

As the braid ordering is not compatible with multiplication on the right in general, Property S
is not obvious. Actually, there exist several proofs, based on combinatorial results about free
LD-systems (Laver), or on a very tricky analysis of positive braids in terms of finite trees
(Burckel), or on an interpretation in hyperbolic geometry (Short and Wiest), but, frustratingly,
the following problem remains open:

Question 5.2. Is there a natural proof of Property S based on diagram colourings?

5.2. Handle reduction. One of the main applications of the braid ordering is an efficient
algorithm for solving the isotopy problem of braids, i.e., for recognizing whether a braid word w
represents the trivial braid. The method is as follows.

Definition. A braid word is defined to be a o, -handle if it has the form ofwo;  where e is £1

and w contains no letter O’;tl with j < ¢ and, in addition, w does not contain both o, ,; and az;ll.

Then reducing a handle ofwo; © is defined to mean deleting the final aiie and substituting each
letter o' | with 0,4 0d0¢, ;.

Observe that reducing a handle of the form ofo; © means just deleting it: handle reduction
is an extension of the usual free group word reduction.

Proposition 5.3 ([17]). Let w be an arbitrary braid word. Then starting from w and itera-
tively reducing handles (in any order) always ends up in a finite number of steps in a word w’
containing no handle, and w represents the trivial braid if and only if w’ is the empty word.

The method is extremely efficient in practice: typically, braid words with 10,000 crossings
and any number of strands are reduced in 1 sec. on a microcomputer. This efficiency, together
with the simplicity of implementation, makes handle reduction relevant for cryptographical
applications. However, it should be noted that, contrary to other solutions to the isotopy
problem based on Garside’s theory, handle reduction is a priori connected with no normal
form: the final word w’ obtained by reducing handles in w depends on the chosen reductions.
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This fact does not dismiss handle reduction in possible applications, but it requires that the
algorithms are designed accordingly [22].

The convergence of handle reduction directly follows from the existence of the braid ordering,
but, so far, the only proved upper bound for the number of reduction steps when one starts
with a length ¢ braid word is exponential in ¢, while experiments suggest a quadratic bound in
the worst case. A puzzling open problem is:

Question 5.4. What is the complexity of handle reduction?

5.3. The operation * on B,,. The colouring approach naturally leads to the notion of a
special braid: we have seen that the latter are those braids that produce themselves when one
uses (B, *) to colour the strands of the braid diagrams, ¢f. Figure 13.

As the shift endomorphism 0 appears in the definition of the operation *, the latter is defined
in By, only: it makes no sense to restrict * to B,. Similarly, special braids as defined in B,.
The decompositions of Proposition 4.6 live in B,: when we consider a braid b in B, its
(unique) expression as a shifted product of n special braids involves in general special braids
lying in By for some very large N (which can be effectively computed), typically exponential
in n. However, it would be interesting to precisely control the width of special braids. This
leads to the following open problem:

Question 5.5. How many special braids lie in B, ?

Experiments suggest that 2™ could be an upper bound.

More generally, many open problems involve the operation * on braids, cf. [18]. Here we would
like to draw the attention on the possibility of using * as an alternative to conjugacy in braid
groups. Starting with [41]—see also [2, 22, 43, 44, 45, 46]—several cryptosystems based on braid
groups have been proposed in the recent years. The supposedly difficult problem on which these
systems rely is the conjugacy problem, i.e., the problem of recognizing whether two braids are
conjugate, or more exactly in the considered case, the conjugator search problem, which is the
variant in which one starts with conjugate braids and the unknown element is a braid witnessing
for conjugacy. A potential weakness of these systems is that no lower complexity bound is proved
for the braid conjugacy problems. Now, the operation * on braids, i.e., (x,y) +— x(dy)o, (0x) 1,
appears as a sort of twisted version of standard conjugacy operation (z,y) — zyz~1!.

Question 5.6. Can one replace the standard conjugacy operation with its twisted version in-
volving * in the design of braid-based cryptosystems?

So far no lower complexity bound for any problem involving twisted conjugacy is known, but
the very little we know suggest that the latter operation is at least as difficult—and presumably
much more difficult—as its standard counterpart. It is not clear how to solve the following basic
problem (which is natural although twisted-conjugacy is not an equivalence relation):

Question 5.7. Is there an algorithm deciding whether two braids b,b' are twisted-conjugate,
i.e., there exists x satisfying b’ = x xb?

Even the following more particular problem seems to be open: it is easy to check that the
function that maps every braid b to b 1, i.e., to boy (0b) ™1, is injective.

Question 5.8. Is there a constructive way to recover b from b 17

One point that makes the above questions possibly difficult is that Garside’s theory, which
proves to be very efficient in many situations, seems to be of very little use here: as far as braid
ordering and the operation * are concerned, no connection with positive braids and normal
forms seems to exist.

5.4. The Laver tables. We mentioned applications of diagram colourings involving two non-
standard LD-systems, namely the free LD-system D and the system (B, *). This naturally
leads to the problem of using further types of LD-systems:
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Question 5.9. Can one use arbitrary LD-systems, in particular those that are mot left can-
cellative, to colour braid (or link) diagrams?

If an LD-system (.5, *) is not left cancellative, then it is not clear how to extend the Hurwitz
action itself, but diagram colourings are still well-defined, and we could think of other ways to
use them, for instance by counting the number of different colourings of a given diagram as in
state-sum invariant.

There exist good candidates for such an approach, namely finite LD-systems. There happens
to exist a very interesting family of finite LD-systems called the Laver tables. These are easily
constructed as follows. Let us try to construct a left self-distributive operation on the set
{1,2,...,N} starting with px 1 =p+1for 1 < p < N and N x1 = 1. In other words, we
try to build a self-distributive table so that the first column enumerated from top to bottom is
2,3,...,N,1. It is easy to see that there exists at most one way to complete the table, by first
completing the last raw, then the forelast raw, etc. It is also not very hard to prove that the
table so obtained is actually self-distributive if and only if the size N of the table is a power
of 2. We shall denote by A,, the table of size 2", and call it the nth Laver table, after Richard
Laver who discovered them at the end of the 1980’s in connection with deep work in set theory.
The reader might will to check that the first four Laver tables are as indicated in Table 1.

A3 |1 2 3 45 6 7 8

12468246 8

A |1 2 34 2347834738

a1 A2 112 4 2 4 3|48 48 48 4 8
R 122 2|3 434 4]5678756 78
21 2 3|4 444 5|68686 86 8

401 234 6|78 787 8T8

78 88 88 8 8 8

81 23456 78

TABLE 1. The first Laver tables: the first column is a cyclic shift, and then there is
one way only to fill the table so as to force self-distributivity.

The Laver tables are fascinating objects which so far remain rather mysterious. By construc-
tion, 1 is a generator of A,, and the sequence of all A,,’s is an inverse system: projecting A,,+1
mod 2" yields A,,. The limit of that inverse system is conjectured to be the free LD-system on
one generator, but the only known proof of this result involves a so-called large cardinal axiom
in set theory, thus an unprovable logical axiom.

We would like to raise:

Question 5.10. Can one use the Laver tables to colour braid or link diagrams?

The Laver tables play a special role among finite LD-systems: a theorem by A. Drapal shows
that every finite LD-system with one generator admits a canonical construction from Laver
tables [26]. The latter can be thought of as similar to cyclic groups with respect to finite
commutative groups—but with a much higher combinatorial complexity. These tables capture
in some sense the whole complexity of LD-systems, and one might expect that, if they can be
used, then they have the intrinsic power to lead to really deep results.

5.5. More actions. Another direction is to use standard sets of colours, for instance free
groups, for colouring braid diagrams, but to use more complicated rules for changes of colours
than those of Figure 2, in particular allowing both strands to change colours at crossings. Then
the constraints are relaxed, and self-distributivity is to be replaced with more general identities
involving two binary operations. In the case of a free group, this means considering crossing
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rules of the form

v(z,y) v'(z,y)
u(z,y) (l—fﬂ x_l> ' (z,y)
) )

where u(x,y), v(z,y), u'(z,y), v'(z,y) are (reduced) words in the variables z,y and their
inverses. For instance, the Hurwitz action corresponds to the choice u(z,y) = v'(z,y) = =,
v(z,y) = xyz~t, and v'(x,y) = v~ Ly,

Question 5.11. Can one list all possible choices for u,...,v" that make the rules compatible
with braid relations?

The question was addressed by Wada in [53]. Several variations of the Hurwitz action
are possible, but at least one example of a different type exists, namely u(x,y) = y~ o1y,
v(z,y) = 2%y, v/ (z,y) = ya~ly~, v'(z,y) = yz®. The complete list is unknown, but some
results about the existing solutions and the induced representations of B,, into Aut(F,,) can be

found in [13].

5.6. More diagrams. Let us conclude with one more possible extension, in a very different
direction, namely Richard Thompson’s groups. These remarkable groups have received great
interest in the recent years [9]. They appear in several different frameworks, from computer
science to geometry and topology. In particular, they can be realized as subgroups of mapping
class groups—therefore as groups of automorphisms of a free group—and they are not so far from
Artin’s braid groups. For our current approach, the point is that the elements of Thompson’s
groups F' and V are naturally associated with pairs of diagrams that are finite binary trees,
which we can see as cousins of braid diagrams in which the strands merge instead of crossing.

In several recent works [6, 21, 33, 35|, braided versions of the Thompson groups are been
introduced. These new groups include both Artin’s braid group B,, and Thompson’s group F'.
Their elements are associated with diagrams of which Figure 14 givs an example. Diagram
colouring techniques prove to be relevant for investigating such groups. In particular, it is
proved in [21] that both the braid ordering and the braid twisted conjugacy operation * extend
to the braided Thompson group BV. To mention one precise open problem in the spirit of the
current paper, we ask:

Question 5.12. Can one realize free LD-systems of arbitrary finite rank inside the group BV ?

It is known that special braids make a realization of the free LD-system D inside Artin’s
braid group By. So far, it is unknown whether B, is large enough to similarly include a copy
of the free LD-system on two generators, say. We conjecture a negative answer, but we also
conjecture that the answer becomes positive when B, is replaced with its natural extension BV .

The above question may appear quite technical. Let us insist that the interest of the braided
Thompson group seems to go far beyond such a question. In particular, as BV is equipped
with a left cancellative self-distributive operation, we may ask:

Question 5.13. Can one use BV -colourings to establish new results about braids and links?

As in the case of the Laver tables, the group BV seems to be complicated enough to make
non-trivial applications plausible.
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