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Artin–Tits groups are Coxeter groups with torsion removed (but, in the general case, no proof that
they are torsion free is known...); they are also generalized braid groups, according to the equation

Artin–Tits groups
Coxeter groups

=
braid groups

symmetric groups
, which also reads

Artin–Tits groups
braid groups

=
Coxeter groups

symmetric groups
.

Not much is known in the general case. The only well-understood case is the spherical case, i.e., when
the associated Coxeter group is finite. Even more results are known in the case of braids, i.e., when the
associated Coxeter group is a symmetric group.

0.1. Braid groups. In terms of transpositions, the symmetric group Sn admits the presentation

(0.1) 〈σ1, . . . , σn−1 ; σ2
i = 1, σiσj = σjσi for |i− j| > 2, σiσjσi = σjσiσj for |i− j| = 1〉.

When the torsion relations σ2
i = 1 are removed, one obtains Artin’s braid group Bn:

(0.2) 〈σ1, . . . , σn−1 ; σiσj = σjσi for |i− j| > 2, σiσjσi = σjσiσj for |i− j| = 1〉,
investigated by Emil Artin [1, 2]; braids have been mentionned by Gauss seemingly, and by Hurwitz
certainly. Braid groups have a very rich theory. One of the reasons that makes them popular is that they
admit (a number of) nice geometric definitions. The simplest one involves braid diagrams.

The principle is to associate with every word in the letters σ±1
i a plane diagram by concatenating the

elementary diagrams of Figure 1 corresponding to the successive letters. Such a diagram can be seen
as a plane projection of a three-dimentional figure consisting on n disjoint curves connecting the points
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(1, 0, 0), . . . , (n, 0, 0) to the points (1, 0, 1), . . . , (n, 0, 1) in R3, and, then, (0.2) is a translation of ambient
isotopy, i.e., the result of continuously moving the curves without moving their ends and without allowing
them to intersect. It is easy to check on Figure 2 that each relation in (0.2) corresponds to an isotopy;
the converse implication, i.e., the fact that the projections of isotopic three-dimentional geometric braids
always can be encoded in words connected by (0.2) was proved by E. Artin.
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Figure 1. Braid diagrams associated with σi, σ−1
i , and with σ1σ
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Figure 2. Geometric interpretation of the braid relations: in each case, the involved diagrams
are projection of isotopic 3D figures

The geometric interpretation makes it clear that mapping the braid σi to the transposition (i, i + 1)
induces a surjective homomorphism π : Bn → Sn. Under π, a braid b is mapped to the permutation f
of 1, . . . , n such that the strand that finishes at position i begins at position f(i) in some/any diagram
associated with b. The kernel of π is the normal subgroup of Bn generated by the braids σ2

i and their
conjugates (the pure braids)—a counterpart to the fact that Sn admits the presentation (0.1).

0.2. Artin–Tits groups. On the shape of Sn, Coxeter groups are defined by presentations of the form

(0.3) 〈{σi ; i ∈ I}; σ2
i = 1, prod(σi, σj ,mi,j〉 = prod(σj , σi,mj,i)),

where prod(x, y,m) stands for xyxy . . ., m letters, and mi,j is a positive integer with mi,j > 2, and
mi,j = mj,i. Note that, when the torsion relations σ2

i = 1 are present, the relation prod(σi, σj ,mi,j) =
prod(σj , σi,mj,i) is equivalent to (σiσj)mi,j = 1.

For instance, Sn corresponds to choosing I = {1, . . . , n} and mi,j = 2 for |i − j| > 2 and mi,j = 3
for |i − j| = 1. All the needed data can be stored as the list of the indices mi,j , hence as a so-called

Coxeter matrix, e.g.,

1 3 2
3 1 3
2 3 1

 for the group S4. An alternative way is to draw a Coxeter graph with

one vertex for each generator, and one (unoriented) edge labelled mi,j between the vertices σi and σj ; the
conventions are that 2-labeled edges are skipped, and 3-labelled edges are represented unlabelled. Also,
one allows the case when there is no relation between σi and σj , and one considers that it corresponds
to mi,j = ∞. The Coxeter graph for Sn is

1 2 3 n− 1

When we start with a Coxeter presentation, i.e., equivalently, with a Coxeter matrix, or with a Coxeter
graph, and remove the torsion relations σ2

i = 1, one obtains a new group presentation

(0.4) 〈{σi ; i ∈ I}; prod(σi, σj ,mi,j) = prod(σj , σi,mj,i)〉 :

this is what is called the Artin group associated with the Coxeter presentation/matrix/graph. Artin
groups have been investigated by Jacques Tits in the 1960’s as “generalized braid groups” (but never by
Artin), which makes it reasonable to call them Artin–Tits groups.

So, for instance, Bn is the Artin–Tits group corresponding to the symmetric group Sn.
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Definition. For Γ a Coxeter graph, we denote by
- ΣΓ the associated set of generators, i.e., the vertices of Γ;
- RΓ the associated Artin–Tits relations, i.e., the relations defined by the weights of the edges in Γ;
- A+

Γ the associated Artin–Tits group, i.e., the group 〈ΣΓ ;RΓ〉;
- A+

Γ the associated Artin–Tits monoid, i.e., the monoid 〈ΣΓ ;RΓ〉+;
- WΓ the associated Coxeter group, i.e., the quotient of AΓ obtained by adding all relations σ2

i = 1.

Remark. One often calls Coxeter system a pair (W,Σ) consisting of a Coxeter group W together with a
generating family of reflections (order 2 elements); such datum determines a presentation unambigously,
and, therefore, one Artin–Tits group. If we just start with a Coxeter group W , it is not a priori obvious
that different Coxeter systems for W lead to the same Artin–Tits group: proving this requires to find a
more intrinsic definition of the Artin–Tits group from the Coxeter group (it exists).

1. The general case

What can one say about an Artin–Tits group starting from its presentation? Not much in general...
In good cases, there is a satisfactory theory, originating from Garside’s work on Bn [32]. Here we address
the question using word reversing, a general combinatorial method for studying presented groups [23, 24],
which is relevant for establishing properties like cancellativity or embeddability in a group of fractions.

1.1. The word reversing technique. For Σ a nonempty set (of letters), we call Σ-word a word made
of letters from Σ, and Σ±-word a word made of letters from Σ ∪ Σ−1, where Σ−1 is a disjoint copy
of Σ containing one letter σ−1

i for each σi in Σ. Then Σ-words are called positive, and we say that
a group presentation (Σ, R) is positive if R exclusively consists of relations u = v with u, v nonempty
positive words. We use 〈Σ ;R〉 for the group and 〈Σ ;R〉+ for the monoid defined by (Σ, R). Note that an
Artin–Tits presentation is positive—but a Coxeter presentation is not: a relation x2 = 1 is not allowed..

Definition. Let (Σ, R) be a positive group presentation, and w,w′ be Σ±-words. We say that w is right
R-reversible to w′, denoted w yR w′, if w′ can be obtained from w using finitely many steps consisting
either in deleting some length 2 subword σ−1

i σi, or in replacing a length 2 subword σ−1
i σj by a word vu−1

such that σiv = σju is a relation of R.

Right R-reversing uses the relations of R to push the negative letters (those in Σ−1) to the right and
the positive letters (those in Σ) to the left by iteratively reversing −+ patterns into +− patterns. Note
that deleting σ−1

i σi enters the general scheme if we assume that, for every letter σi in Σ, the trivial
relation σi = σi belongs to R.

Left R-reversing is defined symmetrically: the basic step consists in deleting a subword σiσ
−1
i , or

replacing a subword σiσ
−1
j with v−1u such that vσi = uσj is a relation of R.

Example 1.1. Consider the presentation (0.2). Let w = σ−1
3 σ1σ

−1
2 σ1. Then w contains two −+-

subwords, namely σ−1
3 σ1 and σ−1

2 σ1. So there are two ways of starting a right reversing from w: replacing
σ−1

3 σ1 with σ1σ
−1
3 , which is legal as σ1σ3 = σ3σ1 is a relation, or replacing σ−1

2 σ1 with σ1σ2σ
−1
1 σ−1

2 ,
owing to the relation σ1(σ1σ2) = σ1(σ2σ1). In any case, iterating the process leads in four steps to
σ1σ1σ2σ3σ

−1
2 σ−1

3 σ−1
1 σ−1

2 . The latter word is terminal since it contains no −+ subword. It is helpful to
visualize the process using a planar diagram similar to a Van Kampen diagram as shown in Figure 3.

σ1 σ1 σ2 σ3

σ3 σ3 σ3 σ2

σ3

σ1 σ1 σ2

σ2 σ1

σ2

σ1

Figure 3. Right reversing diagram for σ−1
3 σ1σ

−1
2 σ1: one starts with a staircase labelled σ−1

3 σ1

and σ−1
2 σ1 by drawing a vertical σi-labelled arrow for each letter σ−1

i , and an horizontal σj-
labelled arrow for each positive letter σj . Then, when σ−1

i σj is replaced with vu−1, we complete
the open pattern corresponding to σ−1

i σj into a square by adding horizontal v-labelled arrows
and vertical u-labelled arrows.

If σiu = σjv is a relation of R, then σ−1
i σj and vu−1 are R-equivalent, hence w yR w′ implies that w

and w′ represent the same element of 〈Σ ;R〉. A slightly more careful argument shows that, if u, v, u′, v′
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are positive words, then u−1v yR v′u′
−1 implies that uv′ and vu′ represent the same element of 〈Σ ;R〉+.

So, in particular, if u, v are positive words, u−1v yR ε (the empty word) implies that u and v represent
the same element of 〈Σ ;R〉+. The converse need not be true in general, but the interesting case is when
this happens:

Definition. A positive presentation (Σ, R) is said to be complete for right reversing if right reversing
always detects positive equivalence, i.e., for all Σ-words u, v, one has u−1v yR ε whenever u and v
represent the same element of 〈Σ ;R〉+.

Symmetrically, we say that (Σ;R) is complete with respect to left reversing if uv−1 is left R-reversible
to ε whenever u and v represent the same element of 〈Σ ;R〉+. The point is that there exists a tractable cri-
terion for recognizing whether a given presentation is complete for reversing—or for adding new relations
if it is not.

Definition. A positive presentation (Σ, R) is called homogeneous if there exists an R-invariant mapping λ
from Σ-words to N satisfying λ(σi) > 1 for every σi in Σ, and λ(uv) > λ(u) + λ(v) for all Σ-words u, v.

If all relations in R preserve the length of the words, then the length satisfies the requirements for the
function λ and the presentation is homogeneous: this is the case for all Artin–Tits presentations.

Proposition 1.2. A homogeneous positive presentation (Σ, R) is complete for right reversing if and only
if the following condition holds for each triple (σi, σj , σk) of letters:

(1.1) σ−1
i σjσ

−1
j σk yR vu−1 with u, v positive implies v−1σ−1

i σku yR ε.

Condition (1.1) is called the right cube condition for (σi, σj , σk). A symmetric left cube condition
guarantees completeness for left reversing.

Lemma 1.3. For each Coxeter graph Γ, the presentation (ΣΓ, RΓ) is homogeneous and satisfies the right
and left cube condition, hence it is complete for right and left reversing.

1.2. Artin–Tits monoids. Once a presentation (Σ, R) is known to be complete for reversing, some
results can be established easily. We begin with results involving the monoid.

Lemma 1.4. Assume that (Σ, R) is a positive presentation that is complete for right reversing. Then
〈Σ ;R〉+ is left cancellative whenever R contains no relation of the form σiu = σiv.

There is no relation of the form σiu = σiv or uσi = vσi in RΓ, so we deduce:

Proposition 1.5. Each Artin–Tits monoid admits left and right cancellation.

Let us now consider common multiples. Say that z is a least common right multiple, or right lcm,
of two elements x, y in a monoid M if z is a right multiple of x and y, i.e., z = xx′ = yy′ holds for
some x′, y′, and every common right multiple of x and y is a right multiple of z.

Lemma 1.6. Assume that (Σ, R) is a positive presentation that is complete for right reversing. Then
a sufficient condition for any two elements admitting a common right multiple to admit a right lcm is
that, for all σi, σj in Σ, there is at most one relation of the form σiu = σjv in R. In that case, for all
Σ-words u, v, the word u−1v is right reversible to a word of the form v′u′

−1 with u′, v′ positive if and only
if the elements represented by u and v in 〈Σ ;R〉+ admit a common right multiple, and then uv′ represents
the right lcm of these elements.

By construction, there is at most one relation σiu = σjv in an Artin–Tits presentation; hence:

Proposition 1.7. Any two elements x, y of an Artin–Tits monoid admit a right lcm if and only if they
admit a common right multiple if and only if, for u, v any positive words that represent x, y, the right
reversing of u−1v converges in a finite number of steps.

(Say that the right reversing of w converges if there exist positive words u, v satisfying w y uv−1.)

Corollary 1.8. Any two elements of an Artin–Tits monoid admit a left and a right gcd.

It remains to study whether common multiples do exist. This need not be the case, but, at least, one
has sufficient conditions:

Lemma 1.9. Assume that (Σ, R) is a positive presentation that is complete for right reversing. Then a
sufficient condition for any two elements to admit a common right multiple is that there exists a set of
positive words Σ̂ that includes Σ and is closed under right reversing, in the sense that, for all u, v in Σ̂,
there exist u′, v′ in Σ̂ satisfying u−1v y v′u′−1.
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If there exists a finite set Σ̂ as above, then a computer can find it. In the case of Artin–Tits groups, a
direct answer will come from the study of Coxeter groups and the following obvious criterion:

Lemma 1.10. Assume that M is a monoid generated by Σ and

(C) (∃Σ̃ ⊇ Σ)(∀x, y ∈ Σ̃)(∃x′, y′ ∈ Σ̃)(xy′ = yx′).

Then any two elements of M admit a common right multiple.

We write (Cfin) for (C) with the additional requirement that the involved set Σ̃ is finite.

Proposition 1.11. Assume that A+
Γ is an Artin–Tits monoid satisfying (C). Then any two elements

of A+
Γ admit left and right lcm’s and gcd’s. If, moreover, (Cfin) is satisfied, then word reversing solves

the word problem of the monoid in quadratic time and linear space.

Proof. Reversing solves the word problem only if its always converges. Under the hypotheses of the
proposition, there exists a finite set of words Σ̂ satisfying the conditions of Lemma 1.9. �

1.3. Artin–Tits groups. In good cases, namely when Condition (C) holds, we deduce results for the
group.

Lemma 1.12 (Ore). Assume that M is a cancellative monoid and any two elements of M admit a
common right multiple. Then M embeds in a group of right fractions, i.e., there exists a group G in
which M embeds and that is every element of G admits a decomposition xy−1 with x, y in M .

Proposition 1.13. Assume that A+
Γ is an Artin–Tits monoid satisfying Condition (C). Then A+

Γ embeds
in AΓ, and AΓ is a group of left and right fractions of A+

Γ.

Under the previous hypotheses, word reversing solves the word problem for the group.

Proposition 1.14. Assume that A+
Γ is an Artin–Tits monoid satisfying Condition (C). Then a word w

represents 1 in A+
Γ if and only if its double right reversing ends up with an empty word, where double

right reversing consists in right reversing w into uv−1 with u, v positive, and then right reversing v−1u.
If (Cfin) is satisfied, the complexity of the algorithm is quadratic in time and linear in space.

There are many case when (C) is false. In such cases, the previous results about the monoid do not
say anything about the group. In particular, it is not clear whether the monoid embeds in the group.

Theorem 1.15 (Luis Paris, [49]). For every Coxeter graph Γ, the Artin–Tits monoid A+
Γ embeds in the

group AΓ.

The proof consists in proving that the monoid A+
Γ always admits a (possibly infinite–dimensional)

linear representation by extending the Lawrence–Krammer representation of Bn [37, 38].
When (C) is not satisfied, i.e., when word reversing need not converge, it is not clear that the word

problem of the group is solved by (multiple) word reversing, in any sense.

Definition. Say that a word w is reversible to w′ if one can transform w into w′ using finitely right and
left reversing steps, as well as positive and negative equivalences consisting in replacing some positive
(resp. negative) subword w0 with an equivalent positive (resp. negative) word w′0. Say that reversing
solves the word problem of a presentation (Σ, R) is every word representing 1 is reversible to the empty
word.

Question 1.16. Does reversing solve the word problem of every Artin–Tits presentation?

1.4. Exercises.

Exercise 1.1. (*) What is the Coxeter graph for a free group? For a free Abelian group?

Exercise 1.2. (*) Reverse the braid word σ−1
1 σ2σ

−1
2 σ3 to the right.

Exercise 1.3. (*) Consider the presentation (a, b; ab = ba2) (Baumslag–Solitar). Reverse the word a−pbq

to the right.

Exercise 1.4. (**) Consider the Artin–Tits presentation with ΣΓ = {1, 2, 3} and m12 = m23 = m13 = 3
(type Ã2). Reverse the word σ−1

1 σ2σ3 to the right.

Exercise 1.5. (*) Prove that the presentation (a, b; aba = bb) is homogeneous.

Exercise 1.6. (**) Prove that the presentation (a, b; ab = baa) is homogeneous.
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Exercise 1.7. (***) Prove that the presentation (a, b; ababa = bb) is homogeneous.

Exercise 1.8. (*) Prove that every homogeneous presentation with two generators a, b and one relation
of the type av = bu is complete for reversing.

Exercise 1.9. (*) Prove that the presentation (a, b; a2 = b2, ab = ba) is complete for reversing.

Exercise 1.10. (*) Prove the Lemma 1.3, i.e., check the right of left cube conditions for Artin–Tits
presentations.

Exercise 1.11. (**) Show that right reversing the braid word (σ1σ3σ5 . . . σ2n−1)−1(σ2σ4 . . . σ2n) requires
O(n3) steps and finishes with a word of length O(n2).

Exercise 1.12. (**) Assume that (Σ, R) is a positive presentation such that, for all σi, σj in Σ, there is
at most one relation σiv = σju in R. For u, v positive Σ-words, let C(u, v) denote the unique positive
word v1 such that u−1v is right R-reversible to v1u−1

1 for some positive u1, if it exists.
Prove that the presentation is complete for right reversing if and only if C is compatible with R-

equivalence, i.e., if u′ is equivalent to u and v′ is equivalent to v, then C(u′, v′) is equivalent to c(u, v).
Deduce that every presentation of the type (a, b; av = bu) is complete (the differn ce with Exercise 1.8

is that we do not assume that the presentation is homogeneous).

Exercise 1.13. (**) Prove Lemma 1.4 (cancellativity); extend the statement so as to make it a necessary
and sufficient condition.

Exercise 1.14. (**) Assume that (Σ, R) is a positive presentation that is complete for right reversing,
and Σ0 is a subset of Σ. Let R0 be the set of all relations σiv = σjv in R with σi, σj ∈ Σ0. Assume that
all words occurring in R0 are Σ0-words. Show that the submonoid of 〈Σ ;R〉+ generated by Σ0 admits the
presentation 〈Σ0 ;R0〉+. Same question for the group, assuming in addition that right reversing always
converges.

Exercise 1.15. (***) Assume that reversing solves the word problem of the presentation (Σ, R). Prove
that the monoid 〈Σ ;R〉+ embeds in the group (Σ;R).

2. The spherical case

When (C) is satisfied, one obtains a good control of the Artin–Tits group AΓ using its connection
to A+

Γ. We aim at connecting the above condition with the associated Coxeter group: when the latter is
finite, (Cfin) holds, and the Artin–Tits group has a so-called Garside structure.

2.1. Background about Coxeter groups. We borrow without proof two results about Coxeter groups.
A word u in ΣΓ is called reduced if no shorter word represents the same element of WΓ.

Lemma 2.1. Let Γ be any Coxeter graph.
(i) (Exchange Lemma) If u is a reduced word and σiu is not reduced, there exists a reduced word u′

obtained by removing one letter in u such that σiu
′ and u represent the same element of WΓ.

(ii) If u, u′ are reduced words representing the same element of WΓ, then one can go from u to u′ using
the relations of RΓ exclusively.

Point (i) is the crucial one; it implies (ii). The combinatorial proofs are rather easy [27].

Corollary 2.2. Let Γ be any Coxeter graph.
(i) All reduced expressions of an element x of WΓ have the same length, henceforth denoted `(x).
(ii) For every x, one has `(xσi) = `(x)± 1.
(iii) There exists an element w0 with maximal length if and only if WΓ is finite, and, in this case,

the element w0 is unique and, if u is a reduced word, w0 admits an expression beginning with u, and an
expression ending with u.

Proof. (i) The relations of RΓ preserve the length. Apply Lemma 2.1(ii).
(ii) If u is a reduced expression of x in WΓ, uσi is an expression of xσi, so we have `(xσi) 6 `(x) + 1.

Applying this to xσ−1
i , which is also xσi, we obtain `(x) 6 `(xσi) + 1, hence `(xσi) > `(x) − 1. Finally

`(xσi) = `(x) is impossible as the relations presenting WΓ preserve the parity of the length.
(iii) If WΓ is has N elements, the relation of (ii) implies that every element has length at most N , so

there must exist an element with maximal length.
Conversely, assume that w0 is an element of maximal length. Let u be any reduced word, say u =

σi1 . . . σip . We claim that w0 has a reduced expression beginning with u. To this end, we prove using
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induction on k descending from p to 0 that w0 has a reduced expression of the form σik+1 . . . σip
uk.

For k = p, we choose up to be any reduced expression of w0. Now, σik
σii+1 . . . σip

uk cannot be reduced,
hence, by the Exchange Lemma, there exists a word obtained by removing a letter for σik+1 . . . σip

uk that
is a reduced expresion of σik

w0. If the letter is removed from uk, we call the remaining word uuk−1,
and we are done. Now, if the letter is removed from σik+1 . . . σip , we obtain, by cancelling uk on the
right, that σik

. . . σip
is equal to something obtained by removing one letter in σik

. . . σip
, contradicting

the hypothesis that σik
. . . σip

is reduced. So the induction goes on. For k = 0, we obtain an expression
of w0 that begins with u.

Consider all reduced expressions of w0. By Lemma 2.1(ii), they all are RΓ-equivalent, hence they
all contain the same letters. This implies that only finitely many different letters may occur in reduced
expressions of w0, and, therefore, that there are only finitely mant reduced expressions of w0. Now we
showed above that every reduced word appears in a reduced expression of w0, hence there are only finitely
many such reduced expressions, and, therefore, finitely many elements in WΓ.

Finally, assume that w′0 is a maximal length element. Then w0 has a reduced expression u0 beginning
with a reduced expression u′0 of w′0: by maximality of w′0, we have u′0 = u0, hence w′0 = w0. �

Let π denote the canonical surjective morphism of AΓ onto WΓ. Lemma 2.1(ii) gives a (set-theoretical)
section σ to π: for x in WΓ, define σ(x) to be the element of AΓ represented by any reduced length
decomposition of x. By the lemma, the definition is unambiguous.

Lemma 2.3. Assume that WΓ is finite and w0 is the longest element. Let ∆ = σ(w0). Then, for each
element x of A+

Γ, the following are equivalent:
(i) x belongs to the image of σ; (ii) x is a left divisor of ∆; (iii) x is a right divisor of ∆.

Proof. Assume (i). This means that x has an expression u that is reduced (in the sense of WΓ). By
Corollary 2.2(iii), this implies that w0 has a reduced expression of the form uv. Lifting this by σ, we
obtain ∆ = xσ(v), which implies (ii); the argument for (iii) is symmetric.

On the other hand, let S denote the image of σ. We claim that a left divisor of an element x of S still
lies in S. Indeed, assume that y is a left divisor of x in A+

Γ. Then there exists an expression σi1 . . . σip
of x

such that y is σi1 . . . σiq
for some q with q 6 p. As the relations of RΓ preserve length, all expressions of x

in A+
Γ have length p, hence (σi1 , . . . , σip

) is a reduced decomposition of π(x) in WΓ. As multiplying by
one σi increases the length by 1 at most, an initial subsequence of a reduced decomposition is a reduced
decomposition, and y is σ(π(y)), hence lies in S. In particular, any left divisor of ∆ belongs to S, i.e.,
(ii) implies (i). The argument for right divisors is similar. �

2.2. Garside structure. In the 1960’s, Garside investigated the braid groups Bn using the monoids B+
n

[32]. It subsequently appeared that all Garside uses is the existence of what is now called a Garside
structure, and that other examples exist, even in the case of braids themselves.

Say that a monoid is an lcm monoid if any two elements admit a left and a right lcm. Provided no
element has an infinite chain of divisors (as is the case with every Artin–Tits monoid), the existence of
lcm’s implies that of gcd’s.

Definition. (i) An element ∆ of a monoid M is called a Garside element if the left and right divisors
of ∆ coincide, they generate M , and they are finite in number.

(ii) A Garside monoid is a pair (M,∆) where M is a cancellative monoid in which any two elements
of M admit a left and a right lcm, and ∆ is a Garside element in M .

(iii) Let G be a group. A Garside structure for G is a Garside monoid (M,∆) such that M is a
submonoid of G and G is a group of left and right fractions of M .

Note that the hypothesis that M is a submonoid of G implies that M is cancellative, and the hypothesis
that G is a grou pof fractions of M implies that any two elements of M admit common left and right
multiples (but not necessarily lcm’s).

Proposition 2.4. Assume that Γ is a Coxeter graph such that WΓ is finite. Let ∆ be the lifting of the
longest element of WΓ in A+

Γ. Then (A+
Γ,∆) is a Garside structure for the Artin–Tits group AΓ.

Proof. First ∆ is a Garside element in A+
Γ. Indeed, each generator σi belongs to the image of s, hence,

by Lemma 2.3, it divides ∆, so the divisors of ∆ generate A+
Γ. On the other hand, Lemma 2.3 says that

the left and right divisors of ∆ coincide. Finally, the divisors of ∆ are in one-to-one correspondence with
the elements of WΓ, hence they are finite in number. Hence ∆ is a Garside element in A+

Γ.
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Let S be the set of (left and right) divisors of ∆. Any two elements of S admit a common right
multiple, namely ∆. Hence (Cfin) holds. By the results of Section 1, the monoid A+

Γ is cancellative, and
any two elements admit a left and a right lcm. Hence AΓ is a group of (left and right) fractions of A+

Γ. �

2.3. Normal form. The existence of a Garside structure on a group gives lots of information about
that group; in the case of Artin groups associated with finite Coxeter groups, a large amount of the
known results follow from the Garside structure. We establish a few results involving in particular the
construction of unique normal forms. We denote by x ∧ y the left gcd of x and y.

Proposition 2.5. (i) Assume that (M,∆) is a Garside structure for G. Then every element of G admits
a unique expression x−1y with x, y in M and x ∧ y = 1.

(ii) If (Σ, R) is a presentation of M that is complete for reversing, the irreducible decomposition of the
element represented by a word w is obtained by double reversing from w: transform w into vu−1 using
right reversing, then vu−1 into u′−1v′ using left reversing; then u′ (resp. v′) represents x (resp. y).

Proof. (i) Uniqueness: assume x−1y = x′−1y′. Choose z, z′ satisfying zx = z′x′. Then one has zy =
zxx−1y = z′x′x′−1y′ = z′y′. The assumption x ∧ y = 1 implies zx ∧ zy = z, and, similarly, x′ ∧ y′ = 1
implies z′x′ ∧ z′y′ = z′, hence z = zx ∧ zy = z′x′ ∧ z′y′ = z′ = z′, then x = x′ and y = y′.

(ii) First w, vu−1 and u′−1v′ represent the same element of G. By construction, u′v and v′u represent
the left lcm of the elements represented by v and u, hence they have no common left divisor but 1. �

So, now, it suffices to look for normal forms in a Garside monoid. For (M,∆) a Garside monoid, the
divisors of ∆ are called simple. Now comes the main property. For x, y in a Garside monoid (M,∆), say
that x ⊇ y holds if every simple left divisor of xy is a left divisor of y.

Lemma 2.6. Let (M,∆) be a Garside monoid. Then x ⊇ y ⊇ z implies x ⊇ yz.

Proof. Let s a simple left divisor of xyz. Let x = x1 · · ·xp be a decomposition of x as a product of simple
elements. Let x1s1 = x1 ∨ s, and, inductively, let xksk = xk ∨ sk−1. Then, inductively, each sk is simple.
The hypothesis that s divides xyz, i.e., x1 . . . xpyz, implies that sk divides yz. The hypothesis y ⊇ z
implies that sp divides y. Hence, coming back, this implies that s divides xy, and the hypothesis x ⊇ y
then implies that s′ divides x. �

Proposition 2.7. (i) Let (M,∆) be a Garside monoid. Then every element of M admits a unique
decomposition x1 . . . xp with x1, . . . , xp simple and xk ⊇ xk+1 for every k.

(ii) If x1 . . . xp is the normal decomposition of x and s is a simple right divisor of x, then the normal
decomposition of xs−1 is x′1 . . . x

′
p, with sp+1 = s and x′ksk+1 = skxk = xk ∨left sk+1.

(iii) If x1 . . . xp is the normal decomposition of x, then the normal decomposition of x∆ is ∆x′1 . . . x
′
p,

with x′k = ∆−1xk∆ for each k.
(iv) If (Σ, R) is a presentation of M that is complete for reversing, and (u1, . . . , up) is a normal

decomposition of an element x, i.e., for each k, the word uk represents the simple element that is the kth
factor of the normal decomposition of x, then, for every simple element s and every expression v of s,
the normal decomposition of xs−1 is obtained by reversing u1 . . . upv

−1 to the left.

Proof. (i) First, every element x of M admits a maximal simple divisor, namely x ∧∆. Starting with x,
let s1 = x∧∆, and, inductively, let σk = (s−1

k−1 . . . s
−1
1 x)∧∆. If x divides ∆e, the process must stop after

e steps at most. Then sk ⊇ sk+1 . . . sp holds for every k, hence so does sk ⊇ sk+1 a fortiori.
Conversely, assume that s1 . . . sp is a decomposition satisfying the hypotheses of the proposition. Then,

by Lemma 2.6, we have sk ⊇ sk+1 . . . sp, so sk is the maximal simple divisor of sk . . . sp for each k, and
the decomposition is the one above.

(ii) The hypothesis that s is a right divisor of x guarantees that s0 = 1, so x′1 . . . x
′
p is a decomposition

of xs−1. The point is to prove that the sequence (x′1, . . . , x
′
p) is normal, i.e., that x′k ⊇ x′k+1 holds for

each k. Assume that s′ is a simple left divisor of x′kx
′
k+1. Then s′ is a left divisor of x′kx

′
k+1sk+1, which

is skxkxk+1. Let sks
′′ = s′ ∨ sk. Then the hypothesis that s′ divides skxkxk+1 implies that s′′ divides

xkxk+1, so xk ⊇ xk+1 implies that s′′ divides xk, and, therefore, s′ divides skxk, which is x′ksk+1. So
s′ is a left divisor of x′kx

′
k+1 ∨left x

′
ksk+1, which is x′k as x′k+1 and sk+1 are left co-prime by hypothesis.

Hence x′k ⊇ x′k+1.
(iii) is left as an exercise (use Exercise 2.9 below); (iv) is a direct translation of (ii). �

The Garside structure arising on the group AΓ in connection with the monoid A+
Γ is not the only

possible Garside structure. It was recently shown that alternative Garside structures exist: see [10] for
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the braid groups, and [7, 6] for some other Artin–Tits groups associated with finite Coxeter groups. Very
recently, quasi-Garside structures (a variant in which one does not require that the divisors of the Garside
element be finite in number) have been found on some Artin–Tits groups associated with infinite Coxeter
groups, firstly the free groups [5] and, conjecturally, all Artin–Tits groups (N. Brady, J. Crisp, A.Kaul,
J.McCammond).

2.4. Exercises.

Exercise 2.1. (*) What is the normal form in the case of a free Abelian group? Write the normal form
of a−2bcb−1aca2b3.

Exercise 2.2. (*) Draw the restriction of the Cayley graph of A+
Γ to the divisors of ∆ when A+

Γ is a free
Abelian monoid of rank 3, or the braid monoid B+

3 , or the braid monoid B+
4 .

Exercise 2.3. (i) (**) Assume that (M,∆) is a Garside structure for a group G. Show that every
element of M has finitely many divisors only. Deduce that there exists a mapping λ : M → N such that
x 6= 1 implies λ(x) > 1 and λ(xy) > λ(x) + λ(y).

(ii) (***) Assume that Σ is a set of divisors of ∆ that generates M (for instance, the set of all divisors
of ∆). For σi, σj in Σ, choose two words u, v in Σ such that σiv and σjv represent the right lcm of x
and y. Let R be the set of all relations σiv = σju arising in this way. Show that (Σ, R) is a presentation
of M and of G that is complete for right reversing. [Hint: Show that u, v representing the same element
of M implies u, v R-equivalent using induction on λ(u).]

Exercise 2.4. (**) Prove the Exchange Lemma for a free Abelian group, and for a symmetric group.

Exercise 2.5. (**) Let M be the submonoid of B3 generated by a = σ1 and b = σ2σ1, and let ∆ = b3.
Show that (M,∆) is a Garside structure for B3.

Exercise 2.6. (**) Let M be the submonoid of B3 generated by a = σ1, b = σ2 and c = σ−1
2 σ1σ2, and

let ∆ = ab. Show that (M,∆) is a Garside structure for B3 (one more!).

Exercise 2.7. (**) Assume that (M,∆) is a Garside structure for G. Show that (M,∆e) is also a Garside
structure for G for e > 1.

Exercise 2.8. (i) (**) Let M be a cancellative lcm monoid. For x, y in M , denote by x ∨ y the right
lcm of x and y, and by x\y the unique z satisfying x ∨ y = xz. Prove

(xy)\z = y\(x\z), z\(xy) = (z\x) · ((x\z)\y)
(x ∨ y)\z = (x\y)\(x\z) = (y\x)\(y\z), z\(x ∨ y) = (z\x) ∨ (z\y)

(ii) (***) Under the same hypotheses, show that x1x2 = y1y2 is equivalent to

x2\(x1\y1) = 1, ((x1\y1)\x2)\((y1\x1)\y2) = 1,

y2\(y1\x1) = 1, ((y1\x1)\y2)\((x1\y1)\x2) = 1.

By extending this example, prove that, if Σ is a generating subset of M that is closed under \, then the
monoid structure of M is fully determined by the restriction of \ to Σ. Apply this to show that, if (M,∆)
is a Garside structure for a group G, then G is fully determined by the restriction of \ to the divisors
of ∆ in M .

Exercise 2.9. (**) Assume that (M,∆) is a Garside structure for G. Show that conjugation by ∆
induces an automorphism φ of M . Prove that φ has finite order, and deduce that some power of ∆
belongs to the centre of G.

Exercise 2.10. (***) Assume that G is the group of fractions of a monoid M with any two elements
admit a right lcm. Prove that every torsion element of M can be expressed as xtx−1 with x in M and t
a torsion element of M . Deduce that Artin–Tits group of spherical type have no torsion.

Exercise 2.11. (***) Prove that the normal form given by Propositions 2.5 and 2.7 gives rise to an
automatic structure, i.e., the set of normal words can be decided by a finite state automaton and the
Fellow Traveler Property holds: there exists a constant C such that, if u, v are normal words representing
elements of the group that differ by one generator, then the distance between the paths specified by u
and v in the Cayley graph are uniformly bounded by C.
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3. The braid case

The Artin–Tits groups of type An, i.e., the braid groups, have additional properties not shared by
the other groups of the family. Here we describe an explicit ordering with a very simple combinatorial
characterization. The braid ordering has many equivalent constructions, and many properties [25]. Here
we try to give the shortest possible access. In the sequel, the following braid words will play a crucial
role.

Definition. We say that a braid word is σi-positive if it contains at least one letter σi, but no σ−1
i or σ±1

j

with j < i. We say that a braid is σ-positive if, among its various expressions by braid words, there is at
least one that is σi-positive for some i.

3.1. The Artin representation. The Artin representation of Bn into the automorphisms of a free
group is important in itself, so it is interesting to mention it independently of its subsequent use for
constructing the braid ordering.

The very elegant construction relies on a topological approach, and we shall be sketchy. However, as
topology is used here for guessing the explicit formulas only, the subsequent proof that one obtains a
faithful representation of Bn will be complete.

The starting point is to identify the braid group Bn with the group of homotopy classes of self-
homeomorphisms of an n-punctured disk. The idea is simply to look at braids from one end rather than
from the side. Let D2 be a disk. We denote by Dn the pair (D2, Pn), where Pn is a set of n points in the
interior of D2 (punctures). The mapping class group MCG(Dn) is defined to be the group of all isotopy
classes of orientation-preserving homeomorphisms ϕ : D2 → D2 that fixe the boundary pointwise and
map Pn to itself. Note that the punctures may be permuted by ϕ. Two homeomorphisms ϕ,ψ represent
the same element if and only if they are isotopic through a family of boundary-fixing homeomorphisms
which also fix Pn. The group structure on MCG(Dn) is given by composition.

Proposition 3.1. The groups Bn and MCG(Dn) are isomorphic.

Proof. Let β be a geometric n-braid, sitting in the cylinder [0, 1]×D2, whose n strands are starting at the
puncture points of {0}×Dn and ending at the puncture points of {1}×Dn. The braid may be considered
as the graph of the motion, as time goes from 1 to 0, of n points moving in the disk, starting and ending
at the puncture points (letting time go from 0 to 1 would lead to an anti-isomorphism). It can be proved
that this motion extends to a continuous family of homeomorphisms of the disk, starting with the identity
and fixed on the boundary at all times. The end map of this isotopy is the corresponding homeomorphism
ϕ : Dn → Dn, which is well-defined up to isotopy fixed on the punctures and the boundary.

Conversely, given a homeomorphism ϕ : Dn → Dn, representing some element of the mapping class
group, we want to get a geometric n-braid. By a well-known trick of Alexander, any homeomorphism of
a disk which fixes the boundary is isotopic to the identity, through homeomorphisms fixing the boundary.
The corresponding braid is the graph of the restriction of such an isotopy to the puncture points. �

An homeomorphism of Dn takes loops in Dn to themselves, and it therefore induces an automorphism
of its fundamental group. The latter is a free group of rank n: for each puncture, we fix a loop that
makes one turn around that puncture. By reading Figure 4, we obtain a homomorphism of Bn into the
automorphism of the free group of rank n, denoted Fn:

1 i i+1

xi xi+1

σ̂i

1 i i+1
xi

xixi+1x
−1
iDn Dn

Figure 4. Artin representation of Bn: action of braids on the generators of the fundamental
group of the punctured disk Dn.
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Lemma 3.2. For 1 6 i < n let σ̂i be the automorphism of Fn defined by

(3.1) σ̂i : xi 7→ xixi+1x
−1
i , xi+1 7→ xi, xk 7→ xk for k 6= i, i+ 1;

Then mapping σi to σ̂i defines a homomorphism of Bn into Aut(Fn).

In the sequel, we identify Fn with the set of all freely reduced words on the letters x±1
1 , . . . , x±1

n ; we
denote by red the operation of iteratively removing all subowrds xx−1 or x−1x.

Lemma 3.3. The image of a reduced word ending with x−1
i under σ̂i or σ̂±1

j with j > i ends with x−1
i .

Proof. Assume that u ends with x−1
i , say u = u′x−1

i . Then we have

(3.2) σ̂i(u) = red(σ̂i(u′)xix
−1
i+1x

−1
i ).

In order to prove that the word above ends with x−1
i , it is sufficient to check that the final x−1

i cannot be
cancelled during the reduction by some xi coming from σ̂i(u′). By definition, an xi in σ̂i(u′) must come
from some xi, x−1

i , or xi+1 in u′. We consider the three cases, displaying the supposed involved letter
in u′. For u′ = u′′xiu

′′′, (3.2) becomes

σ̂i(u) = red(σ̂i(u′′)xixi+1x
−1
i σ̂1(u′′′)xix

−1
i+1x

−1
i ).

The assumption that the first xi cancels the final x−1
i implies σ̂i(u′′′) = ε, hence u′′′ = ε, contradicting

the hypothesis that u′′xiu
′′′x−1

i is reduced. For u′ = u′′x−1
i u′′′, (3.2) is

σ̂i(u) = red(σ̂i(u′′)xix
−1
i+1x

−1
i σ̂1(u′′′)xix

−1
i+1x

−1
i ).

The assumption that the first xi cancels the final x−1
i implies now that x−1

i+1x
−1
i σ̂i(u′′′)xix

−1
i+1 reduces to ε,

hence σ̂i(u′′′) = xix
2
i+1x

−1
i , and, therefore, u′′′ = x2

i , again contradicting the hypothesis that u′′x−1
i u′′′ is

reduced. Finally, for u′ = u′′xi+1u
′′′, (3.2) says

σ̂i(u) = red(σ̂i(u′′)xiσ̂1(u′′′)xix
−1
i+1x

−1
i ).

The assumption that the first xi cancels the final x−1
i implies that σ̂i(u′′′)xix

−1
i+1 reduces to ε, hence

σ̂i(u′′′) = xi+1x
−1
i , and, then, u′′′ = x−1

i+1xi, contradicting the hypothesis that u′′xi+1u
′′′ is reduced. We

similarly consider the action of σ̂e
j with j > i and e = ±1. We find

(3.3) σ̂j(u) = red(σ̂e
j (u

′)x−1
i ),

and aim at proving that the final x−1
i cannot vanish in reduction. Now it could do it only with some xi

in σ̂e
j (u

′), itself coming from some xi in u′. For a contradiction, we display the latter as u′ = u′′xiu
′′′.

Then (3.3) becomes σ̂j(u) = red(σ̂e
j (u

′′)xiσ̂
e
j (u

′′′)x−1
i ). As above, we must have σ̂e

j (u
′′′) = ε, hence

u′′′ = ε, contradicting the hypothesis that u′′xiu
′′′x−1

i is reduced. �

For w a braid word, we denote by ŵ the automorphism of Fn associated with w.

Proposition 3.4. Let w be a σi-positive braid word. Then the automorphism ŵ is not trivial.

Proof. Write w = w0σiw1σi . . . σiwr, where wk contains no σ±1
j with j 6 i. Then ŵr fixes xi, while σi

maps it to xixi+1x
−1
i , a reduced word ending with x−1

i . Applying Lemma 3.3 repeatedly, we deduce that
the final x−1

i cannot disappear, and, so, ŵ(xi) is a reduced word ending with x−1
i . Hence ŵ cannot be

the identity mapping. �

Corollary 3.5. A σ-positive braid is not trivial (i.e., equal to 1).

3.2. Handle reduction. Our aim isnow to prove

Proposition 3.6. Every non-trivial braid is either σ-positive or σ-negative.

In the above statement, a σ-negative braid is one whose inverse is σ-positive. As σ-positive braids are
clearly closed under multiplication, Corollary 3.5 implies that a braid cannot be simultaneously σ-positive
and σ-negative, as this would imply that 1 is σ-positive.

We shall not only prove Proposition 3.6, but also describe an algorithmic process that, starting with
an arbitrary braid word w, returns an equivalent braid word that is either σ-positive, or σ-negative, or
empty. The idea of the method is simple. Assume that w is a nonempty braid word that is neither
σ-positive nor σ-negative: this means that, if i is the smallest index such that σ±1

i appears in w, then
both σi and σ−1

i appear in w. So, necessarily, w contains some subword of the form σe
i ∂

i(u)σ−e
i with

e = ±1, where ∂ denotes the word homomorphism that maps every letter σ±1
i to σ±1

i+1—as well as the
induced endomorphism of B∞.
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Definition. A braid word of the form σe
i ∂

i(u)σ−e
i with e = ±1 is called a σi-handle.

Thus, every braid word that is neither σ-positive nor σ-negative must contain a σi-handle. We can
get rid of a handle by pushing the strand involved in the handleas shown in Figure 5(left). We call this
transformation reduction of the handle. We can then iterate handle reduction until no handle is left: if
the process converges, then, by construction, the final word contains no handle, which implies that it is
either σ-positive, or σ-negative, or empty. This naive approach does not work readily: when applied to
the word w = σ1σ2σ3σ

−1
2 σ−1

1 , it leads in one step to the word w′ = σ−1
2 wσ2: the initial handle is still

there, and iterating the process leads to nothing but longer and longer words. Now, the handle in w′ is
not the original handle of w, but it comes from the σ2-handle σ2σ3σ

−1
2 of w. If we reduce the latter handle

into σ−1
3 σ2σ3 before reducing the main handle of w, i.e., if we first go from w to w′′ = σ1σ

−1
3 σ2σ3σ

−1
1 ,

then applying handle reduction yields σ−1
3 σ−1

2 σ1σ2σ3, a σ-positive word equivalent to w.

Figure 5. A permitted handle (left), and its reduction (right)

Definition. A handle σe
i vσ

−e
i is said to be permitted if the word v includes no σi+1-handle. We say that

the braid word w′ is obtained from the braid word w by a one-step handle reduction if some subword
of w is a permitted σi-handle, say σe

i vσ
−e
i , and w′ is obtained from w by applying in the latter handle

the alphabetical homomorphism

σ±1
i 7→ ε, σ±1

i+1 7→ σ−e
i+1σ

±1
i σe

i+1, σ±1
k 7→ σ±1

k for k > i+ 2.

The general form of a σi-handle is

σe
i v0 σ

d1
i+1 v1 σ

d2
i+1 . . . σ

dk
i+1 vk σ

−e
i

with dj = ±1 and vj ∈ ∂i+1(B∞). Saying that this handle is permitted amounts to saying that all
exponents dj have a common value d. Then, reducing the handle means replacing it with

v0 σ
−e
i+1σ

d
i σ

e
i+1 v1 σ

−e
i+1σ

d
i σ

e
i+1 . . . σ

−e
i+1σ

d
i σ

e
i+1 vk :

we remove the initial and final σ±1
i , and replace each σd

i+1 with σ−e
i+1σ

d
i σ

e
i+1.

Lemma 3.7. Handle reduction transforms a word into an equivalent word. If a nonempty braid word w
is terminal w.r.t. handle reduction, i.e., if w contains no handle, then w is σ-positive or σ-negative.

Observe that handle reduction generalizes free reduction: σiσ
−1
i and σ−1

i σi are particular σi-handles,
and reducing them amounts to deleting them.

Definition. We say that a nonempty braid word w has width n if the difference between the smallest
and the largest indices i such that σi or σ−1

i occurs in w is n− 2.

The width of w is the size of the smallest interval containing the indices of all strands really braided
in w. So, every n-strand braid word has width at most n, but the inequality may be strict: for instance,
the 8-strand braid word σ3σ

−1
7 has width 6.

We shall prove:

Proposition 3.8. Let w be a braid word of length ` and width n. Then every sequence of handle
reductions from w converges in at most 2n4` steps.

Clearly, Proposition 3.8 implies Proposition 3.6.
Handle reduction may increase the length of the braid word it is applied to. Our first task for proving

convergence of handle reduction will be to show that all words obtained w using handle reduction remain
traced in some finite region of the Cayley graph of B∞ depending on w . To this end, we connect
the operation of handle reduction with the operations of left and right reversing defined in Section 1.
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Figure 6. Closure of words traced under left reversing

For every braid word w, we denote by NL(w) and DL(w) the unique positive words such that w is left
reversible to DL(w)−1NL(w), and, symmetrically, by NR(w) and DR(w) the positive words such that w
is right reversible to NR(w)DR(w)−1.

The general notion of the Cayley graph of a group (with respect to specified generators) is well-known.
Here we consider finite fragments of such graphs.

Definition. Assume that β is a positive braid. The Cayley graph of β is the finite labelled oriented
graph Γ(β) defined as follows: the vertices are the left divisors of β, and there exists an edge labelled σi

from the vertex β1 to the vertex β2 if β2 = β1σi holds.

When we are given a graph Γ whose (oriented) edges are labelled using letters from some alphabet A,
we have the natural notion of a word traced in Γ: for w a word on the alphabet A, we say that w is
traced in Γ from the vertex β0 if there exists in Γ a path starting at β0 labelled w, i.e., w is the word
obtained by concatenating the labels of the edges in that path, with exponents ±1 according as the edge
orientation agrees or disagrees with that of the path. For our current purpose, the point is that, for every
positive braid β, the set of all words traced in the Cayley graph of β enjoys good closure properties.

Lemma 3.9. Assume that β is a positive braid. Then the set of all words traced in Γ(β) from a given
point is closed under left and right reversing.

Proof. Let us consider left reversing. So we assume that some word v σi σ
−1
j v′ is traced from β0 in Γ(β),

and we have to show that v f(σj , σi)−1 f(σi, σj) v′ is also traced from β0 in Γ(β). Let u0 be a positive
word representing β0. The hypothesis means that there exist positive braid words u, u′ such that both
uσi and u′σj are traced from 1 in Γ(β), the equivalence uσi ≡ u′σj is satisfied, and, moreover, we have
u ≡ u0v (Figure 6). Right lcm’s exist in B+

∞, hence uσi ≡ u′σj implies that there exists a positive braid
word u′′ satisfying u ≡ u′′f(σj , σi) and u′ ≡ u′′f(σi, σj). By definition of the Cayley graph of β, the words
u′′f(σj , σi)σi and u′′f(σi, σj)σj are traced in Γ(β), since they are both equivalent to uσi. This shows that
the edges f(σj , σi)−1 and f(σi, σj) needed to complete the path labelled vf(σj , σi)−1f(σi, σj)v′ from β0

are in Γ(β), as was expected. The argument is symmetric for right reversing. �

Say that two (not necessarily positive) braid words w, w′ are positively (resp. negatively) equivalent if
one can transform w into w′ using the positive braid relations (resp. the inversed braid relations).

Lemma 3.10. Assume that β is a positive braid. Then the set of all words traced in Γ(β) from a given
point is closed under positive and negative equivalence.

Proof. Assume, for instance, that vσiσi+1σiv
′ is traced in Γ(β) from β0. Let u0 be a positive word

representing β0. Now v is not necessarily a positive word, but, by definition, there exists a positive
word u such that uσiσi+1σi is traced in Γ(β) from 1 and u0v ≡ u holds. Now uσi+1σiσi+1 is a positive
word equivalent to uσiσi+1σi, so it is traced from 1 in Γ(β), and, therefore, vσi+1σiσi+1v

′ is still traced
in Γ(β) from β0. The case of negative equivalence is similar and corresponds to traversing the edges with
reversed orientation. �



14 PATRICK DEHORNOY

If w is a braid word, we use w for the braid represented by w. The following result gives a sort of upper
bound for the words that can be deduced from a given braid word using reversing and signed equivalence,
i.e., essentially, when introducing new patterns σiσ

−1
i or σ−1

i σi is forbiden.

Proposition 3.11. Assume that w is a braid word. Denote by |w| the positive braid represented by the
(equivalent) words DL(w)NR(w) and NL(w)DR(w). Then every word obtained from w using left reversing,
right reversing, positive equivalence, and negative equivalence is traced from DL(w) in Γ(|w|).

Owing to Lemmas 3.9 and 3.10, it only remains to show that w itself is traced from D(w) in Γ(|w|).
The verification is an easy exercise.

If w′ is obtained from w using handle reduction, then w′ is equivalent to w. This obvious fact can be
refined into the following result.

Lemma 3.12. Assume that w′ is obtained from w using handle reduction. Then one can transform w
into w′ using right reversing, left reversing, positive equivalence, and negative equivalence.

Proof. The point is to show that, for v0, . . . , vk in ∂i+1(B∞), we can go from

(3.4) σe
i v0 σ

d
i+1 v1 σ

d
i+1 . . . σ

d
i+1 vk σ

−e
i

to

(3.5) v0 σ
−e
i+1σ

d
i σ

e
i+1 v1 σ

−e
i+1σ

d
i σ

e
i+1 . . . σ

−e
i+1σ

d
i σ

e
i+1 vk :

using the transformations mentioned in the statement. Assume for instance e = +1 and d = −1. Then
reduction can be done by moving the initial σi to the right. First transforming σiv0 into v0σi can be made
by a sequence of left reversings (in the case of negative letters) and positive equivalences (in the case of
positive letters). Then we find the pattern σiσ

−1
i+1, which becomes σ−1

i+1σ
−1
i σi+1σi by a left reversing. So,

at this point, we have transformed the initial word into

(3.6) v0 σ
−1
i+1σ

−1
i σi+1σi v1 σ

−1
i+1 v2 . . . vk−1 σ

−1
i+1 vk σ

−1
i .

After k such sequences of reductions, and a last left reversing to delete the final pattern σiσ
−1
i , we

reach the form (3.5), as we wished. The argument is similar in the case e = −1, d = 1, with negative
equivalences instead of positive equivalences, and right reversing instead of left reversing. In the case
when the exponents e and d have the same sign, we use a similar procedure to move the final generator σ−e

i

to the left. �

By applying Proposition 3.11, we deduce:

Proposition 3.13. Assume that the braid word w′ is obtained from w using handle reduction. Then w′

is traced in the Cayley graph of |w| from D(w).

The previous result is not sufficient for proving that handle reduction converges. In particular, it does
not discard the possibility that loops occur. To go further, we need a new parameter.

Definition. Assume that w is a braid word. The height of w is defined to be the maximal number, over
all i, of letters σi occurring in σi-positive word traced in the Cayley graph of |w|.

Lemma 3.14. Let w be a braid word of length ` and width n. Then the height of w is bounded above
by (n− 1)`n(n−1)/2.

Proof. Assume that u is a σi-positive word traced in Γ(|w|). By Corollary 3.5, the edges σi involved in
the path associated with u must be pairwise distinct. So an upper bound on the number of σi in u is the
total number of σi’s in Γ(|w|). The latter can be roughly bounded by the given value. �

Let us now consider handle reduction. Assume that w0 = w, w1, . . . is a sequence of handle reductions
from w. The first point is that the number of σ1-handles in wi is not larger than the number of σ1-handles
in w, as reducing one σ1-handle lets at most one new σ1-handle appear. We deduce a well-defined notion
of inheriting between σ1-handles such that each σ1-handle in the initial word w possesses at most one
heir in each word wk. We shall assume that the number of σ1-handles in every word wk is the same as
in w0. If it is not the case, i.e., if some σ1-handle vanishes without heir, say from wk to wk+1, we cut the
sequence at wk and restart from wk+1. In this way, the heir of the pth σ1-handle of w0 (when enumerated
from the left) is the pth σ1-handle of wk. Let us define the pth critical prefix πp(wk) of wk to be the
braid represented by the prefix of wk ending at the first letter of the pth σ1-handle. There are two cases
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¾

2

¼
p(wk)
oldp-thhandle

new p-thhandle

The ¾

2
-positive case

¾

1 ¾


1
¾

1

¾

1

¾

1

¾

2

¼
p(wk)
oldp-thhandle

new p-thhandle

¾

1 ¾


1

¾

1

The ¾

2
-negative case

¼
p(wk+1 )

¼
p(wk+1 )

¾

1

¼
p(wk)
oldp-thhandle

new p-thhandle

¾

1 ¾


1
¾

1

¼
p(wk+1 )

The ¾

2
-neutralcase

Figure 7. Critical prefixes

according to whether the first letter of the handle is σ1 or σ−1
1 . We shall assume here that this letter

is σ1, and briefly mention at the end of the argument the changes for the σ−1
1 -case.

The key point is the following observation:

Lemma 3.15. Assume that the pth σ1-handle is reduced from wk to wk+1, and that the handle begins
with σ+1

1 . Then some braid word up,k traced in Γ(|w|) from πp(wk) to πp(wk+1) contains one σ−1
1 and

no σ1.

Proof. The result can be read on the diagrams of Figure 7, where we have represented the paths associated
respectively with wk (up) and wk+1 (down) in the Cayley graph of B∞, assuming that the pth σ1-handle
has been reduced. The word up,k appears in grey, and the point is that, in every case, i.e., both if σ2

appears positively or negatively (or not at all) in the handle, this word up,k contains one letter σ−1
1 and

no letter σ1. �

If the handle reduction from wk to wk+1 is not the pth σ1-handle, several cases are possible. If the
reduction involves a σi-handle with i > 2, or it involves the qth σ1-handle with q 6= p± 1, then we have
πp(wk) ≡ πp(wk+1), and we complete the definition with up,k = ε. If the reduction involves the p ± 1st
σ1-handle, the equivalence πp(wk) ≡ πp(wk+1) need not be true in general, but, as can be seen on Figure 7
again, some word up,k containing neither σ1 nor σ−1

1 goes from πp(wk) to πp(wk+1) in Γ(|w|). Now, by
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1

w0

w1
w2

w3

|w|

¡( |w|)

D (w)

N (w)

up

¾

1

¾

1

¾

1

¾

1

Figure 8. Upper bound on the number of σ1-handle reductions: the witness word up contains
one letter σ1 for each reduction of the pth σ1-handle—and no letter σ−1

1 .

construction, the word up = up,0up,1up,2 . . . is traced in the Cayley graph of |w|, it is σ1-negative, and
the number N of steps in the sequence (w0, w1, . . .) where the pth σ1-handle has been reduced is equal
to the number of letters σ−1

1 in u (see Figure 8). It follows that the number N is bounded above by the
height of w, say h. In the case of a pth handle beginning with σ−1

1 , the argument is similar, with σ1 and
σ−1

1 exchanged in Lemma 3.15.
Finally, in every case, the heirs of each σ1-handle of the initial word w are involved in at most

h reduction steps, and we can state:

Lemma 3.16. Assume that w is a braid word of height h containing c σ1-handles. Then the number of
σ1-handle reductions in any sequence of handle reductions from w is bounded above by ch.

Assuming again that w0 = w,w1, . . . is a sequence of handle reductions from w, we can now iterate
the result and consider the σ2-handle reductions: the previous argument gives an upper bound for the
number of σ2-handle reductions between two successive σ1-handle reductions, and, more generally, for
the number of σi+1-handle reductions between two σi-handle reductions. Using a coarse upper bound on
the lengths of the words wi, one obtains the following generalization of Lemma 3.16:

Lemma 3.17. Assume that w is a braid word of length `, width n, and height h. Then the number of
handle reductions in any sequence of handle reductions from w is bounded above by `(2h)2n−1.

Proof (sketch). There are two key points. Firstly, when handle reduction is performed, the height of the
words never increases, so it remains bounded by h. Indeed, positive and negative equivalences preserve
the absolute value, while left and right reversing preserve it or, possibly, replace it by a word that is a
left or a right divisor of the previous absolute value. Secondly, reducing a σ1-handle may create new σ2-
handles, but this number is bounded by the number of σ2 (or σ−1

2 ) that were present in the σ1-handle that
has been reduced. As, by hypothesis, a permitted σ1-handle includes no σ2-handle, the number of σ2’s in
a permitted σ1-handle is bounded above by the height h, and, therefore, reducing the σ1-handles creates
at most h+ 1 new σ2-handles.

Let us consider an arbitrary (finite, or possibly infinite) sequence of reductions starting from w. Writing
Ni for the number of σi-reductions in this sequence, and ci for the initial number of σi-handles in w, we
obtain N1 6 c1h by Lemma 3.16, then N2 6 (c2 +N1(h+1))h, and, similarly, Ni+1 6 (ci+1 +Ni(h+1))h
for every i. Using the obvious bound ci 6 `, we deduce Ni 6 (2i − 1)`h2i−1 for each i, and the coarse
bound

∑
Ni 6 `(2h)2n−1 follows. �

Inserting the previous bound on the height given by Lemma 3.14, we deduce Proposition 3.8: for every
braid word w, any sequence of handle reductions from w converges in a finite number of steps with an
absolute upper bound (exponentially) depending on the length and the width of w only.

Handle reduction is very easy to implement, and its practical efficiency is much better than what the
proved complexity bound suggests: all experiments are compatible with a bound quadratic in the length.
The following question is puzzling:

Question 3.18. What is the true complexity of handle reduction?
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3.3. The braid ordering. Waht is involved in the previous results is a linear ordering on braids.

Proposition 3.19. For x, x′ in B∞—the group defined by (0.2) using an unbounded sequence of genera-
tors σ1, σ2, . . .—say that x < x′ holds if the braid x−1x′ is σ-positive. Then < is a linear ordering on B∞
that is compatible with multiplication on the left.

Proof. As the product of two σ-positive braids is clearly σ-positive, the relation < is transitive. It is
antireflexive as we know that 1 is not σ-positive. Hence it is a (strict) order. This order is linear, as, by
Proposition 3.6, if a non-trivial braid is not σ-positive, its inverse must be σ-positive. The compatibility
with multiplication follows from the definition. �

Corollary 3.20. For n 6 ∞ the group Bn is an orderable group.

Corollary 3.21. The Artin representation of Bn is faithful.

Proof. By Property 3.6, every non-trivial braid admits a σ-positive or a σ-negative expression. By
Proposition 3.4, the automorphism associated with such a word is not the identity mapping: so the
automorphism associated to a non-trivial braid is never trivial. �

We refer to the exercises for a few more applications.
The main further property of the braid ordering known to date is:

Proposition 3.22. [39, 14] For each n, the restriction of < to the monoid Bn+ is a well-ordering of
type ωωn−2

.

3.4. Exercises.

Exercise 3.1. (*) Put the following braids in increasing order: σ1, σ2, σ1σ2, σ2σ1, σ−1
1 σ2, σ2σ

−1
1 , σ1σ

−1
2 ,

σ−1
2 σ1, σ1σ2σ1.

Exercise 3.2. (*) Prove that Bn is not bi-orderable, i.e., there can exist no linear ordering on Bn that
is compatible with multiplication on both sides [Hint: Conjugate σ1σ

−1
2 by σ1σ2σ1.]

Exercise 3.3. (*) Give an exemple of braids x, y satisfying x < y and x−1 < y−1. Give an example of
braids satisfying x > 1 and y < xy.

Exercise 3.4. (**) Show that the height of the braid ∆2k
3 is at least 2k2. [Hint (σ2k

1 σ2σ1σ
−2k
2 σ1σ2)k is

traced in the Cayley graph of ∆32k.] Extend to ∆2k
n with height 2kn−1 at least.

Exercise 3.5. (**) Show that, for f1, f2 in Sn, one has s(f1) < s(f2) if and only if the sequence
(f1(1), . . . , f1(n)) is lexicographically smaller than (f2(1), . . . , f2(n)).

Exercise 3.6. (**) Show that the group algebra C[Bn] has no non-trivial zero-divisor.

Exercise 3.7. (**) Show that the group Bn is isolated in B∞, i.e., if x lies in B∞ and xk belongs to Bn,
then x belongs to Bn.

Exercise 3.8. (**) Show that the mapping x 7→ xσ1∂x
−1 of B∞ into itself is injective.

Exercise 3.9. (**) Show that (B∞, <) is order-isomorphic to (Q, <) (the rational numbers).

Exercise 3.10. (**) For x, y in B∞, define the distance of x and y to be 2−k where k is maximal such
that x−1y belongs to the image of ∂k. Show that the topology associated with < is the ultrametric
topology associated with the above distance.

Exercise 3.11. (**) For w a braid word, define rev(w) to be the word obtained by reversing the order of
letters in w. Show that rev induces a well-defined anti-automorphism of B∞. Denoting the latter by rev,
show that x 6= 1 implies x · rev(x) 6= 1.

Exercise 3.12. (***) Assuming the (true) result that a conjugate of a braid in Bn+ is always > 1,
prove that any braid of the form x−1∂xσ1 has a σ1-positive expression. [Hint: Show that x−1∂xσ1 is the
product of the commutator [x−1, σ2 . . . σn] and of (∂x · σ1)−1σ1(∂x · σ1).]

Exercise 3.13. [43] (***) Show that, for every braid x in Bn, there exists a unique integer e satisfying
∆e

n 6 x < ∆e+1
n . Assume x′ is conjugate to x in Bn. Prove that ∆2e

n 6 x < ∆2e+2
n implies ∆2e−2

n 6 x′ <
∆2e+4

n , hence x∆−4
n 6 x′ < x∆4

n.
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[1] E. Artin, Theorie des Zöpfe, Abh. Math. Sem. Univ. Hamburg 4 (1925) 47–72.

[2] E. Artin, Theory of Braids, Ann. of Math. 48 (1947) 101–126.

[3] G. Baumslag & C.F. Miller III (eds), Algorithms and Classification in Combinatorial Group Theory, MSRI Publications
23, Springer Verlag (1992).

[4] D. Bessis, The dual braid monoid, An. Sci. Ec. Norm. Sup.; 36; 2003; 647–683.
[5] D. Bessis, Variations on Van Kampen’s method, arXiv:math.GR/0301327.

[6] D.Bessis & R. Corran, Garside structure for the braid group of G(e, e, r), arXiv:math.GR/0306186.

[7] M. Bestvina, Non-positively curved aspects of Artin groups of finite type, Geometry & Topology 3 (1999) 269–302.
[8] S. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001) 471–486.

[9] J. Birman, Braids, links, and mapping class groups, Annals of Math. Studies 82, Princeton Univ. Press (1975).

[10] J. Birman, K.H. Ko & S.J. Lee, A new approach to the word problem in the braid groups, Advances in Math. 139-2
(1998) 322-353.

[11] E. Brieskorn, Automorphic sets and braids and singularities, Braids, Contemporary Math. 78 (1988) 45–117.

[12] E. Brieskorn & K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972) 245–271.
[13] M. Broué, G. Malle & R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew. Math.

500 (1998) 127–190.

[14] S. Burckel, The wellordering on positive braids, J. Pure Appl. Algebra 120-1 (1997) 1–17.
[15] G. Burde & H. Zieschang, Knots, de Gruyter, Berlin (1985).
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