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Abstract. We give a proof for the convergence of the handle reduction al-

gorithm of braids that is both more simple and more precise than the ones
of [2] or [3]. The prerequisites are Garside’s theory of positive braids, and one

technical result about Artin’s representation of braids available in chapter V

of [3].

For n > 2, Artin’s braid group Bn is defined to be the group with presentation

(*) 〈σ1, ..., σn−1 ; σiσj = σjσi for |i− j| > 2, σiσjσi = σjσiσj for |i− j| = 1〉.
For each n, the identity mapping on {σ1, ..., σn−1} induces an embedding of Bn

into Bn+1, so that the groups Bn naturally arrange into an inductive system of
groups, and the limit is denoted by B∞: this is just the group generated by an
infinite family σ1, σ2, ... subject to the relations (*).

The elements of the group B∞ are represented by words in the letters σ±1
i ,

which will be called braid words. In the sequel, we mainly deal with braid words
(not braids). If w is a braid word, we denote by w the braid represented by w. Two
braid words w,w′ representing the same braid are called equivalent, written w ≡ w′.
A braid word w of length ` is viewed as a length ` sequence of letters. For 1 6 p 6
q 6 `, the word obtained from w by deleting all letters before position p and after
position q is called the (p, q)-subword of w. A prefix of w is a (1, q)-subword of q,
i.e., a subword that starts at the first letter of w.

1. The main result

Definition 1.1. Assume that w is a nonempty braid word. We say that σm is the
main letter of w if σ±1

m occurs in w, but no σ±1
i with i > m does. We say that

w is σ-positive (resp. σ-negative) if the main letter σm of w occurs only positively
(resp. negatively) in w, i.e., σm occurs in w but σ−1

m does not.

Our aim is to prove

Proposition 1.2. [1, 3] Every braid word is equivalent to a word that is either
empty, or σ-positive, or σ-negative.

The proof given below relies on the following notion.

Definition 1.3. We say that a braid word v is a σi-handle of sign + (resp. −) if
v is σiuσ−1

i (resp. σ−1
i uσi) with u containing no letter σ±1

j with j > i; we say that
v is a good σi-handle if, in addition, at least one of the letters σi−1, σ−1

i−1 does not
occur in u, i.e., no subword of v is a σi−1-handle.

Thus Proposition 1.2 claims that every braid word w with main letter σm is
equivalent to a braid word w′ containing no σm-handle, this meaning that no sub-
word of w′ is a σm-handle.

1
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A premilinary remark is that each word containing a handle contains a good
handle.

Definition 1.4. Let w be a braid word. We say that v is the first handle in w if v
is a handle, there exist p, q such that v is the (p, q)-subword of w, and there exist
no p′, q′ with q′ < q such that the (p′, q′)-subword of w is a handle.

Thus the first handle in a word w that contains a handle is the one that is first
completed when one starts reading w from the left.

Lemma 1.5. Assume that w is a braid word containing at least one handle. Then
the first handle in w is good.

Proof. Let q be minimal such that the length q prefix w′ of w contains a handle. By
hypothesis, there exists p such that the (p, q)-subword of w is a handle, say σe

i uσ−e
i ,

and, by construction, this handle is the first handle in w. We claim that this handle
is good. Indeed, the contrary would mean that there exist p′, q′ < q such that the
(p′, q′)-subword of w is a σi−1-handle, which implies that the length q′ prefix of w
contains a handle and contradicts the choice of q. �

Thus, in order to prove Proposition 1.2, it is sufficient to prove that every braid
word is equivalent to a braid word that contains no good handle.

2. Handle reduction

Our task is to get rid of good handles. We do that using an iterative process,
called handle reduction, that gets rid of the first handle and is repeated until no
handle is left.

Definition 2.1. (i) Assume that v is a good σi-handle, say v = σe
i uσ−e

i . The
reduct of v is defined to be the word obtained from u by replacing each letter σi−1

with σ−e
i−1σiσ

e
i−1, and each letter σ−1

i−1 with σ−e
i−1σ

−1
i σe

i−1.
(ii) Assume that w is a braid word that contains at least one handle. Then red(w)

denotes the word obtained from w by replacing the first handle by its reduct.

We write redk(w) for red(red(...(red(w))...)), red repeated k times, when the
latter word exists; each word of the form redk(w) is said to be obtained from w by
first handle reduction.

Remark 2.2. (i) One can introduce a similar reduction process for an arbitrary
good handle, not necessarily the first one. All results established below extend to
this general handle reduction. The only difference is that the latter is not deter-
ministic in general, i.e., there may be more than one way to reduce a given initial
word.

(ii) Each braid word σiσ
−1
i and σ−1

i σi is a good handle, and its reduct is the
empty word ε. Thus handle reduction extends free group reduction.

The first, obvious result about handle reduction is:

Lemma 2.3. Each good handle is equivalent to its reduct.

Proof. Make a picture. �

Hence, Proposition 1.2 follows from the convergence (or termination) of first
handle reduction as stated in
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Proposition 2.4. [2] For every braid word w, there exists k such that redk(w)
contains no handle.

Indeed, assume that w is a braid word and redk(w) contains no handle. Then,
by Lemma 1.5, the word redk(w) is either empty, or σ-positive, or σ-negative, and,
by Lemma 2.3, the words w and redk(w) are equivalent.

Our task from now will be to prove Proposition 2.4, i.e., to prove the convergence
of first handle reduction. The proof relies on three auxiliary results, called Main
Lemmas A, B, and C.

3. Main Lemma A

The key notion is the notion of a braid word drawn in some subset of the braid
group.

Definition 3.1. Assume X ⊆ B∞, and a ∈ X. We say that a braid word w is
drawn from a in X if, for each prefix u of w, the braid au belongs to X.

It is useful to think of X as the subgraph of the Cayley graph of the group B∞
obtained by restricting the vertices to the elements of X and keeping those edges
that connect two vertices in X. Then saying that w is drawn from a in X means
that, starting from the vertex a, there exists inside X a path labeled by w. When
X is the whole Cayley graph of B∞, then every word is drawn from every vertex
in X, but, when X is a proper subgraph, the condition of being drawn becomes
nontrivial. Observe that, even if X is finite, arbitrary long words may be drawn
in X: for instance, if X consists of 1 and σ1, then, for every k, the word (σ1σ

−1
1 )k

is drawn from 1 in X.
As usual, B+

∞ denotes the submonoid of B∞ generated by the elements σi. An
element of B+

∞ is called a positive braid.

Definition 3.2. If a, b are braids, we say that a is a left divisor of b, denoted a 4 b,
if b = ax holds for some x in B+

∞. For b in B+
∞, we denote by Div(b) the family of

all left divisors of b in B+
∞, i.e., the set of all braids x satisfying 1 4 x 4 b.

Garside’s theory shows that the relation 4 is a partial ordering on B∞ and that
any two elements of B∞ admit a lower bound (greatest common left divisor) and
an upper bound (least common right multiple) with respect to 4.

Main Lemma A. For each braid word w, there exist two positive braids a, b such
that every word of the form redk(w) is drawn from a in Div(b).

Main Lemma A follows from two results:

Lemma 3.3. For each braid word w, there exist two positive braids a, b such that
w is drawn from a in Div(b).

Lemma 3.4. Assume that w is drawn from a in Div(b). Then so is red(w), when
it exists.

Proof of Lemma 3.3. Assume that w has length ` and main letter σm. For p 6 `, let
wp be the length p prefix of w. Garside’s theory implies that, for each p, there exist
integers dp, ep > 0 satisfying 1 4 ∆dp

m+1wp 4 ∆dp+ep

m+1 . Let d := max{d1, · · · , dp}
and e := max{e1, · · · , ep}. Then, for each p, we have 1 4 ∆d

m+1wp 4 ∆d+e
m+1, which

means that w is drawn from ∆d
m+1 in Div(∆d+e

m+1). �
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The proof of Lemma 3.4 consists in decomposing handle reduction into more
elementary transformations and showing that the words drawn from a in Div(b)
are closed under these elementary transformations.

Definition 3.5. Let w,w′ be braid words. We say that w′ is obtained from w
by a type 1, 2, 3, or 4 transformation if w′ is obtained from w by replacing some
subword of the following type by the associated one:

- type 1: σiσj 7→ σjσi with |i− j| > 2;
- type 2: σ−1

i σ−1
j 7→ σ−1

j σ−1
i with |i− j| > 2;

- type 3: σ−1
i σj 7→ σjσ

−1
i with |i− j| > 2,

or σ−1
i σj 7→ σjσiσ

−1
j σ−1

i with |i− j| = 1,
or σ−1

i σi 7→ ε;
- type 4: σiσ

−1
j 7→ σ−1

j σi with |i− j| > 2,
or σiσ

−1
j 7→ σ−1

j σ−1
i σjσi with |i− j| = 1,

or σiσ
−1
i 7→ ε.

Then Lemma 3.4 follows from the next two results:

Lemma 3.6. From each braid word w such that red(w) exists, one can go from w
to red(w) by a finite sequence of type 1–4 transformations.

Lemma 3.7. Assume that w is drawn from a in Div(b), and w′ is obtained from w
by a transformation of type 1–4. Then w′ is drawn from a in Div(b).

Proof of Lemma 3.6. The point is to prove that, if v is a good handle, and v′ is its
reduct, then one can go from v to v′ by composing types 1–4 transformations. By
definition, there exist exponents e, d = ±1 such that v has the form

(3.1) v = σe
i u0 σd

i−1 u1 · · · ur−1 σd
i−1 ur σ−e

i ,

where u0, · · · , ur contain only letters σ±1
j with j 6 i− 2, and we have then

(3.2) v′ = u0 σ−e
i−1σ

d
i σe

i−1 u1 · · · ur−1 σ−e
i−1σ

d
i σe

i−1 ur.

Assume first d = 1, e = −1. The involved words are

v = σ−1
i u0 σi−1 u1 · · · ur−1 σi−1 ur σi,

v′ = u0 σi−1σiσ
−1
i−1 u1 · · · ur−1 σi−1σiσ

−1
i−1 ur .

The principle is to use type 2 and 3 transformations to let the initial letter σ−1
i in v

migrate to the right until it reaches to the final letter σi. First, σ−1
i crosses u0 using

type 3 transformations for the positive letters in u0, and type 2 transformations for
the negative ones. In this way, we reach the word

u0 σ−1
i σi−1 u1 · · · ur−1 σi−1 ur σi.

One more type 3 transformation lets σ−1
i cross σi−1, resulting in the word

u0 σi−1σiσ
−1
i−1σ

−1
i u1 · · · ur−1 σi−1 ur σi.

The same process lets σ−1
i cross u1, and the next σi−1, and, after r such steps, we

reach the word

u0 σi−1σiσ
−1
i−1 u1 · · · ur−1 σi−1σiσ

−1
i−1 ur σ−1

i σi,

and a final type 3 transformation leads to the expected word v′.
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The argument for the case d = −1, e = +1 is similar, with transformations of
type 1 and 4 instead of 2 and 3.

For the case d = 1, e = 1, the argument is symmetric, i.e., we start with the
final letter σ−1

i and let it migrate to the left, using transformations of type 2 and 4.
Finally, the case d = e = −1 is similar, with transformations of type 1 and 3

instead of 2 and 4. �

Proof of Lemma 3.7. We assume that w is drawn from a in Div(b), and that w′

is obtained from w by one type 1 transformation. This means that there exist
words w1, w2 and letters σi, σj with |i− j| > 2 satisfying

w = w1 σiσj w2 and w′ = w1 σjσi w2.

Our task is to show that, for every prefix u of w′, the braid au belongs to Div(b). By
construction, all prefixes of w′ are prefixes of w, except u1 = w1σj . The question
is to show 1 4 au1 4 b. Let c = aw1 and d = aw1σiσj . By construction, we have
c 4 au1 4 d, and it is sufficient to show 1 4 c and d 4 b. Now the latter relations
directly follow from the hypothesis that w is drawn from a in Div(b), as w1 and
w1σiσj are prefixes of w. So w′ is drawn from a in Div(b).

Consider now a type 2 transformation. By definition, we have

w = w1 σ−1
i σ−1

j w2 and w′ = w1 σ−1
j σ−1

i w2,

again with |i− j| > 2. The only prefix of w′ that is not a prefix of w is u1 = w1σ
−1
j .

Let c = aw1σ
−1
i σ−1

j , and d = aw1. By construction, we have c 4 au1 4 d, and,
once again, it is sufficient to show 1 4 c and d 4 b. The latter relations follow from
the hypothesis that w is drawn from a in Div(b), as w1σ

−1
i σ−1

j and w1 are prefixes
of w. So w′ is drawn from a in Div(b).

We turn to type 3, and consider the case

w = w1 σ−1
i σj w2 and w′ = w1 σjσiσ

−1
j σ−1

i w2

with |i− j| = 1. The other two cases, namely |i− j| > 2 and i = j, are similar and
easier. Three prefixes of w′ are not prefixes of w, namely u1 = w1σj , u2 = w1σjσi,
and u3 = w1σjσiσ

−1
j . Let c = aw1σ

−1
i , and d = aw1σjσi. By construction, we

have c 4 auk 4 d for k = 1, 2, 3, and, here again, it suffices to prove 1 4 c and
d 4 b. Now 1 4 c follows from the hypothesis that w is drawn from a in Div(b), as
w1σ

−1
i is a prefix of w. On the other hand, the hypothesis that both cσi and cσj

are left divisors of b implies that their least common multiple, which is d, is also a
divisor of b. So w′ is drawn from a in Div(b).

Finally, consider type 4. We consider the case of

w = w1 σiσ
−1
j w2 and w′ = w1 σ−1

j σ−1
i σjσi w2

with |i− j| = 1. Three prefixes of w′ fail to be prefixes of w, namely u1 = w1σ
−1
j ,

u2 = w1σ
−1
j σ−1

i , and u3 = w1σ
−1
j σ−1

i σj . Let c = aw1σ
−1
j σ−1

i , and d = aw1σi. By
construction, we have c 4 auk 4 d for k = 1, 2, 3. So the point again is to check
the relations 1 4 c and d 4 b. The latter directly follows from the hypothesis that
w is drawn from a in Div(b) since w1σi is a prefix of w. On the other hand, w1 and
w1σiσ

−1
j are prefixes of w, hence the hypothesis that w is drawn from a in Div(b)

implies that 1 is a left divisor both of dσ−1
i and dσ−1

j , hence it is left divisor of
their greatest common left divisor, which is c. Once again, w′ is drawn from a
in Div(b). �
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Thus the proof of Main Lemma A is complete.

4. Main Lemma B

Main Lemma B enables one to convert the geometric boundedness result of
Main Lemma A (all words obtained by handle reduction remain drawn in some
finite subset of the braid monoid B+

∞) into an actual finiteness result.

Main Lemma B. A σ-positive word is not equivalent to the empty word.

Proof. (see Chapter V of [3]) Use the Artin representation of the braid groups into
the automorphisms of a free group. �

Corollary 4.1. Assume that a, b are positive braids and w is a σ-positive braid
word drawn from a in Div(b). Then the number of occurrences of the main letter
of w is at most the cardinality of Div(b).

Proof. Assume that the main letter σm of w occurs r times in w. Let u1, . . . , ur

be the prefixes of w such that uj finishes just before the jth letter σm in w. By
hypothesis, all braids auj belong to Div(b). Now j < j′ implies auj 6= auj′ : indeed,
by construction, we have uj′ = ujv, where v contains at least one letter σm, and
no letter σ−1

m , so, by Main Lemma B, the braid v is not 1. Hence au1, . . . , aur are
pairwise distincts elements of Div(b), and, therefore, we have r 6 card(Div(b)). �

5. Main Lemma C

The last ingredient is a monotonicity result actually showing that some param-
eter either always increases or always decreases when first handle reductions are
performed. Here we give the argument without mentioning the order phenomenon
explicitly.

Definition 5.1. Assume that w is a braid word with main letter σi. We denote by
h(w) the number of σi-handles in w, and, assuming h(w) > 1, we denote by e(w)
the sign of the first σi-handle in w and by π(w) the prefix of w that finishes with
the first letter of the first σi-handle of w.

Main Lemma C. Assume that w is a braid word drawn from a in Div(b) contain-
ing at least one handle, that the main letter of w is σm and that the first handle
in w is a σi-handle. Let w′ be obtained from w by reducing the first handle of w.
Then three cases are possible:

Case 1: h(w′) = h(w) = 0;
Case 2: h(w′) < h(w);
Case 3: h(w′) = h(w) > 1.

Moreover, in Case 3, we have e(w′) = e(w), and there exists a word γ(w) satisfying
(a) the word γ(w) is drawn from aπ(w) in Div(b),
(b) we have π(w′) ≡ π(w)γ(w),
(c) if i < m holds, then γ(w) is empty,
(d) if i = m holds, then γ(w) contains one letter σ

−e(w)
i and no letter σ

e(w)
i .

Proof. Let w∗ be the word obtained from w by deleting all letters σ±1
i with i < m.

Then w∗ consists of an alternating sequence of blocks of σm and σ−1
m . We define

the profile P (w) of w to be the finite sequence made by the sizes of these blocks.
For instance, for w = σ2σ1σ2σ

−1
1 σ−1

2 σ2σ2σ2σ1, the main letter of w is σ2, we have



CONVERGENCE OF HANDLE REDUCTION OF BRAIDS 7

w∗ = σ2σ2σ
−1
2 σ2σ2σ2, and P (w) = (2, 1, 3) as w∗ consists of two σ2’s, followed

by one σ−1
2 , followed by three σ2’s. The σm-handles in w correspond to the sign

alternations in the exponents of the letters σm and, therefore, P (w) is a sequence
of length h(w) + 1.

If w contains no σm-handle, i.e., if P (w) is a length 1 sequence, then one goes
from w to w′ by reducing some σi-handle wit i < m, and w′ contains no σm-handle
either. So we are in Case 1.

From now on, we assume h(w) > 1. Then P (w) is some sequence (r, s, . . . ) of
length > 2, and the generic form of w is

(5.1) w = v0 σe
m v1 σe

m · · · vr−2 σe
m vr−1 σe

m vr σ−e
m vr+1 σ−e

m · · · ,

where the v words contain no σ±1
m and the underlined subword is the first σm-handle

in w. With this notation, we have π(w) = v0σ
e
m · · · vr−1σ

e
m.

Assume first i < m, i.e., the first handle in w is not the underlined σm-handle.
Then the reduction from w to w′ occurs inside one of the words v0, . . . , vr, i.e.,
it consists in replacing some subword vj with the corresponding word red(vj). In
this case, we have P (w′) = P (w), and, therefore, h(w′) = h(w) and e(w′) = e(w).
Moreover, π(w′) is either equal to π(w) (case j = r), or obtained from π(w) by
replacing the subword vj with red(vj) (case j < r). In all cases, π(w′) ≡ π(w)
holds, and all requirements of Case 3 are fulfilled with γ(w) = ε (the empty word).

Assume now i = m, i.e., w′ is obtained from w by reducing the underlined σm-
handle of (5.1). We compare the profiles of w′ and w according to the letters σ±1

m−1

possibly occurring in vr. The hypothesis that the word σe
mvrσ

−e
m is a good handle

implies that σm−1 and σ−1
m−1 do not simultaneously occur in vr, and, therefore, the

latter can be written as

u0 σd
m−1 u2 σd

m−1 · · · ut−1 σd
m−1 ut

for some t > 0, d = ±1, and the u words containing no σ±1
m or σ±1

m−1.
Assume first t = 0, i.e., vr contains no σ±1

m−1. Then the reduct of σe
mvrσ

−e
m

is vr, so here reduction amounts to deleting the underlined letters σe
m and σ−e

m

of (5.1). Hence, P (w′) is the sequence obtained from (r − 1, s− 1, · · · ) by possibly
regrouping entries if some zero value appears. Therefore, in all cases, we have
h(w′) 6 h(w), and equality holds if and only if we have r > 2 and s > 2. The latter
case corresponds to

(5.2) w′ = v0 σe
m v1 σe

m · · · vr−2 σe
m vr−1 vr vr+1 σ−e

m · · · ,

in which the new first σm-handle is underlined. We read on (5.2) the relations
e(w′) = e(w) = e and π(w′) = v0σ

e
m · · · vr−2σ

e
m, and, therefore,

π(w) = π(w′)vr−1σ
e
m.

We deduce π(w′) ≡ π(w) σ−e
m v−1

r−1, which gives the expected properties for γ(w) =
σ−e

m v−1
r−1, as, by construction, the word γ(w) is drawn from aπ(w) in Div(b) since

vr−1σ
e
m is a suffix of π(w), which by hypothesis is drawn from a in Div(b).

Assume now t > 1 with d = −e, i.e., the letter σ−e
m−1 occurs in the handle vr.

Then each letter σ−e
m−1 in vr gives rise to a letter σ−e

m in the reduct of vr, hence
in w′. Hence P (w′) is the sequence obtained from (r− 1, s− 1 + t, · · · ) by possibly
regrouping entries if some zero value appears. Therefore, in all cases, we have
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h(w′) 6 h(w), and equality holds if and only if we have r > 2. The latter case
corresponds to

(5.3) w′ = v0 σe
m v1 σe

m · · · vr−2 σe
m vr−1 u0 σ−e

m−1σ
−e
m σe

m−1 u1 · · · ,

in which the new first σm-handle is underlined. We read on (5.3) the relations
e(w′) = e(w) = e and π(w′) = v0σ

e
m · · · vr−2σ

e
m, hence π(w) = π(w′)vr−1σ

e
m as

above, and we conclude exactly as in the previous case.
Finally, assume t > 1 with d = e, i.e., the letter σe

m−1 occurs in the handle vr.
Each letter σe

m−1 in vr gives rise to a letter σ−e
m in the reduct of vr, hence in w′. It

follows that the profile of w′ is the sequence obtained from (r− 1 + t, s− 1, · · · ) by
possibly regrouping entries if some zero value appears. Therefore, in all cases, we
have h(w′) 6 h(w), and equality holds if and only if we have s > 2. Writing v for
v0σ

e
m · · · vr−1, the latter case corresponds to

(5.4) w′ = v u0 σ−e
m−1σ

e
mσe

m−1 u1 · · · ut−1 σ−e
m−1σ

e
mσe

m−1 ut vr+1 σ−e
m · · ·

in which the new first σm-handle is underlined. We read on (5.4) the relation
e(w′) = e(w) = e. Moreover, with our notations, we have π(w) = vσe

m, and (5.4)
gives

π(w)vrσ
−e
m ≡ π(w′)σe

m−1ut.

We deduce π(w′) ≡ π(w) vrσ
−e
m u−1

t σ−e
m−1, which gives the expected properties for

γ(w) = vrσ
−e
m u−1

t σ−e
m−1, as the word γ(w) is drawn from aπ(w) in Div(b). Indeed,

w is drawn from a in Div(b) by hypothesis and π(w)vrσ
−e
m is a prefix of w, hence

vrσ
−e
m is drawn from aπ(w) in Div(b); on the other hand, by Main Lemma A, w′ is

drawn from a in Div(b) too, and π(w′)σe
m−1ut is a prefix of w′, hence u−1

t σ−e
m−1 is

drawn from aπ(w′)σe
m−1ut, which is also aπ(w)vrσ

−e
m , in Div(b). So γ(w) is drawn

from aπ(w) in Div(b), and the proof is complete. �

We are now ready to conclude, i.e., to prove Proposition 2.4.

Proof of Proposition 2.4. We prove the following result using induction on m > 1:
For every braid word w with main letter σm, there exists k such
that redk(w) contains no handle (and therefore redk+1(w) does not
exist).

For m = 1, the only possible letters in w are σ1 and σ−1
1 , handle reduction is a free

group reduction, and the result is clear, with k at most the half of the length of w.
Assume m > 2, and assume for a contradiction that w is a braid word with main

letter σm such that redk(w) exists for every k. We write wk for redk(w).
By Main Lemma C, the numbers h(wk) make a nonincreasing sequence, hence

the latter must be eventually constant. So, at the expense of possibly deleting the
first wk’s, we can assume that there exists h such that h(wk) = h holds for every k.

By hypothesis, wk+1 is obtained from wk by reducing its first handle, which is
either a σm-handle, or a σi-handle for some i < m. Let K be the set of all k’s such
that the first handle in wk is a σm-handle.

Firstly, we claim that K is infinite. Indeed, let k be any nonnegative integer.
Then we can write

wk = v0 σe
m v1 σe

m v2 · · · vr−1 σe
m vr v

where v either begins with σ−e
m (case h > 0) or is empty (case h = 0). By con-

struction, the main letter of each of the words vj is σm′ with m′ < m. Hence,
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by induction hypothesis, there exists for each j an integer kj such that redkj (vj)
contains no handle. Let k′ = k + k0 + · · ·+ kr. Then, by construction, we have

wk′ = redk0(v0) σe
m redk1(v1) σe

m v2 · · · redkr−1(vr−1) σe
m redkr (vr) v.

If v were empty, wk′ would contain no handle, contradicting our hypothesis that
the sequence (wk)k>0 is infinite. Hence v begins with σ−e

m , and the first handle
in wk′ is a σm-handle. Thus we found an element k′ of K which is > k, and K is
infinite.

On the other hand, we claim that K is finite, thus getting the expected contra-
diction. Indeed, let a, b be positive braids such that w, hence, by Main Lemma A,
all words wk are drawn from a in Div(b). We apply Main Lemma C to wk. By
hypothesis, we always are in Case 3. Let e be the common value of e(wk) for all k,
and let γ be the (infinite) word γ(w0)γ(w1) . . . . By construction, the word γ is
drawn from aπ(w) in Div(b), it contains no letter σe

m, and it contains exactly one
letter σ−e

m for each k in K. By Main Lemma B, the number of such letters, and
therefore the cardinal of K, is at most the cardinal of Div(b). In particular K is
finite.

Hence the existence of a word w with main letter σm such that redk(w) exists
for every k is a contradictory assumption, and the proof is complete. �
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