
Notes on the Braid Isotopy Problem

Patrick DEHORNOY
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CHAPTER I

Braids

1. The Braid Isotopy Problem

1.1. Material braids. We start from the intuitive idea of a material braid, as illustrated in Figure 1.
What we shall take into account is not the metric aspects of such an object (length and thickness of the
strands), but only crossings : which strand goes over which one, in which order, etc. Braid theory is a
calculus of crossings.

Figure 1. A material braid

1.2. Braids in history. Braid diagrams appear in Gauss’ notebooks (end of the 1700’s, beginning
of 1800’s), without any theory.

The first mathematical use seems to be in Hurwitz’ works, around 1900: not a theory of braids, but
a description of an action of braids on sequences of elements of a group under conjugacy (the ‘Hurwitz
action”).

Braids themselves have been investigated by E. Artin around 1925 [1], and then in [2].

1.3. Braid diagrams. The starting point for a mathematical theory of braids is the notion of a
braid diagram. Informally, an n-strand braid diagram is a plane figure that consists of n curves, with an
interruption of one of the two curves when they are close to cross, as shown on Figure 2, which corresponds
to n = 3. The strands connect 3 points located on a vertical line on the left to 3 points located on a
parallel vertical line on the right, and the rule is that strands keep moving from left to right1—a more
precise definition will be given below.

x

z

y

Figure 2. A 3-strand braid diagram.

The Braid Isotopy Problem is the following problem:

Given two braid diagrams D, D′, recognize whether one can deform D into D′.

Remark 1.1.— Solving the Braid Isotopy Problem means finding a uniform algorithm that works for
all initial pairs of braid diagrams, not only for some particular pairs.

To make the problem precise, we must say what deforming a diagram means. To this end, we go
to R3 and view an n-strand braid diagram as the projection of a 3D-object, called a geometric braid, the
interruptions in the projections corresponding to one strand lying in front (the uninterrupted one), and
the other lying behind (the one that is interrupted).

1U-turns are forbidden: if we allow them, we obtain a more general class of objects, called string link diagrams
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2 P. Dehornoy, The Braid Isotopy Problem, Chapter I: Braids

Definition 1.2.— An n-strand geometric braid is a collection of n disjoint curves that connect the
points (1, 0, 0), ..., (n, 0, 0) to the points (1, 0, 1), ..., (n, 0, 1) inside the band R2 × [0, 1].

For such 3D-objects we have a natural notion of deformation of the ambient space.

Definition 1.3.— (i) Assume that X, Y are topological spaces and f, f ′ are homeomorphisms of X
into Y . Then f, f ′ are called isotopic if there exists a continuous map F of X × [0, 1] into Y satisfying
F (−, 0) = f and F (−, 1) = f ′ and such that F (−, t) is a homeomorphism for each t.

(ii) Two geometric braids b, b′ are called (ambient) isotopic if there exists an isotopy F from the
identity map of R2 × [0, 1] to a homeomophism h of R2 × [0, 1] that maps b to b′ and is such that, for
each t, the restriction of F (−, t) to the planes R2 × {0} and R2 × {1} is the identity.

So two geometric braids are isotopic if there is a continuous deformation of the ambient space that
deforms one into the other, by a deformation that keeps every point in the two bordering planes fixed—see
Figure 3.

Remark 1.4.— An ambient isotopy between two geometric figures Γ, Γ′ of R3—or, here, R2 × [0, 1]—
is more than a homeomorphism of Γ to Γ′. As a topological space, any n-strand geometric braid is
homeomorphic to the union of n copies of [0, 1], and so any two such geometric braids are homeomorphic.
This does not mean that they are isotopic, because the homeomorphisms that connect them need not be
the restriction of a homeomorphism of the ambient space.

Figure 3. Isotopy transforming the left braid diagram into the right one: the front strand
(dotted) is moved to the right, while the crossing of the back strands is moved to the left.

We can now come back to braid diagrams and put a precise definition.

Definition 1.5.— Two braid diagrams D, D′ are called isotopic, denoted D ≈ D′, if they are projections
of isotopic geometric braids, A braid is defined to be an isotopy class of braid diagrams. The set of all
n-strand braids is denoted Bn.

Exercise 1.6.— Show that, if two geometric braids project to the same braid diagram, then they are
isotopic. Deduce that a braid is also an isotopy class of geometric braids.

1.4. Why is the Braid Isotopy Problem interesting? Braids appear in many domains of math-
ematics. In that respect, solving the Braid Isotopy Problem is a preliminary step to any attempt to use
braids in an effective way, i.e., to develop braid algorithms. Indeed, defining braids to be the equivalence
classes of braid diagrams—we shall see in Section 3 that there are good reasons to do so, i.e., not to define
a braid to be simply a braid diagram. In practice, braids are always represented by braid diagrams—just
as integers are represented by numbers, i.e., finite sequences of digits—so that the question of recognizing
whether two diagrams are isotopic is just the question of recognizing of which braid one talks about. If
the Braid Isotopy Problem were unsolvable, one could never know that, exactly as if an integer might be
represented by different numbers and there were no way of comparing these numbers.

In particular, there are applications of braids to cryptography in which braids replace numbers.
Clearly, one can use braids for such purpose only if one can recognize that two braids are equal.

Also, the Braid Isotopy Problem is connected with other mathematical problem, in particular the
Knot and Link Isotopy Problems. The closure procedure of Figure 4 associates with every braid diagram
a link diagram. Isotopic braid diagrams give isotopic link diagrams, but, conversely, non-istopic braid
diagrams may have isotopic closures: the Link Isotopy Problem is (much) more difficult than the Braid
Isotopy Problem.

Exercise 1.7.— Show that the closure of isotopic braid diagrams are isotopic link diagrams. Give a
counter-example for the converse, i.e., exhibit two braid diagrams that are not isotopic but whose closure
are isotopic link diagrams. [Hint: Use the braids of Figure 5 and note that we do not consider the same
notion of isotopy: in the case of links, no plane is supposed to be fixed.]
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Figure 4. Closure of a braid diagram, to obtain a link diagram.

2. Basic remarks and first attempts

2.1. Decidability problems. The Braid Isotopy Problem belongs to the general family of decision
problems. As every such problem, it consists of two half-problems of a different flavour.

Proving an isotopy is a priori easy or, more exactly, is easy to check when one has guessed a solution:
if two diagrams are isotopic and we found a candidate for transforming the first diagram into the second,
checking that the candidate-isotopy is actually an isotopy should be easy—as in the case of Figure 3.

Proving a non-isotopy seems more difficult: the fact that we cannot find an isotopy between two
diagrams is not a proof that such an isotopy cannot exist, and it is not clear what can be done to prove
this.

In such a context, the usual solution consists in trying to use an isotopy invariant, i.e., a map I from
the set of all braid diagrams to some space X with the property that, if D and D′ are isotopic, then
I(D) and I(D′) are equal. Then, if we have I(D) 6= I(D′)—in which case one says that I separates D
and D′—we can deduce that D and D′ are not isotopic. The question is to find an invariant (or a family
of invariants) that separates all pairs of non-isotopic diagrams. Such an invariant (or family of invariants)
is called complete.

2.2. The permutation of a braid. Let us look for simple isotopy invariants of braid diagrams.
The first example is the permutation of a braid. By definition, the strands of an n-strand braid

diagram connect the n points (i, 0, 0) to the n-points (i, 1, 0). These points come with a natural numbering
from 1 to n. Let fD(i) be the initial position of the strand that finishes at position i in a diagram D2. As
the strands cannot touch each other in a geometric braid, fD is a permutation of {1, ..., n}. By definition,
all isotopies we consider leave the points of the planes R2×{0} and R2×{1} fixed, hence isotopic diagrams
must give the same permutation: the maps D 7→ fD is an isotopy invariant.

Hence, if we have fD 6= fD′ , we can conclude that D and D′ are not isotopic, see Figure 5.
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6≈

Figure 5. Two diagrams that give different permutations are not isotopic.

(As can be expected), the permutation is not a complete invariant: there exists nonisotopic diagrams
with the same permutation. This will be proved subsequently, precisely when we have more powerful
ways of proving non-isotopy results.

2.3. Counting crossings. Another idea for attaching a parameter to a braid diagram is to count
crossing. This is not an isotopy invariant: Figure 6 shows that a diagram with 2 crossings may be isotopic
to a diagram with 0 crossing.

However, an invariant is obtained when one considers the number of crossings mod. 2, or when one
counts the crossings with a sign, for instance +1 when the front strand is the one that comes from the
top, −1 when the front strand is the one that comes from the bottom—the proof that these are isotopy
invariants follows from the more precise description of isotopy that will be given in Chapter ??: for the
moment, we are informal.

2It could seem more natural to consider the final position of the strand that starts at position i: the current choice
is more convenient for the sequel, as it is the one that yields homomorphisms (and not antihomomorphisms) of the braid
groups to the symmetric groups.
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Figure 6. The number of crossings in a braid diagram is not an isotopy invariant.

2.4. Linking numbers. Still another invariant is obtained by considering the linking number of
two fixed strands. Let D be an n-strand braid diagram, and let 1 6 i < j 6 n. When we consider the
ith and the jth strands in isolation, we just see a sequence of oriented half-turns. Counting them with a
sign that corresponds to the orientation yields an invariant, called the linking number of i and j.

+2 −2

6≈

Figure 7. The linking number of the plain strands is +2 on the left, and −2 on the right,
hence the diagrams are not isotopic.

Exercise 2.1.— Show that, if N(D) denotes the algebraid number of crossings in the braid diagram D
and if Li,j(D) denotes the (i, j)-linking number of the ith and the jth strands in D, then we have
N(D) =

∑
i<j Li,j(D).

More generally, for each subset I of {1, ..., n} with p elements, one obtains a projection from n-strand
braid diagrams to p-strand braid diagrams by forgetting the n−p strands that start at positions not in I.
The isotopy type of the projection is an invariant.

In this way, we obtained a series of isotopy invariants for braid diagrams. Is this family complete,
i.e., can we separate any pair of non-isotopic diagrams? The answer is negative: Figure 8 displays
two diagrams that are not isotopic—this will be proved in the sequel—but nevertheless have the same
permutation, the same algebraic number of crossings, and the same linking numbers.

≈
?

Figure 8. Two braid diagrams that are separated by none of the easy invariants described
in this section.

The Braid Isotopy Problem is a problem of medium difficulty, not a trivial problem. More sophisti-
cated methods are needed.

3. Braid groups

All solutions to the Braid Isotopy Problem rely on the fact that braids can be given a group structure.
The existence of this structure is what makes the Braid Isopoty Problem much easier than the Link Isotopy
Problem.

3.1. Product of braid diagrams. First we define a product of braid diagrams.

Definition 3.1.— (Figure 9) If D1, D2 are n-strand braid diagrams, their product D1D2 is defined to
be the n-strand braid diagram obtained by concatenating the right ends of the strands of D1 with the
left ends of the strands of D2.

The product of braid diagrams is the projection of a similar product on geometric braids; we occa-
sionally denote Γ1Γ2 the product of two geometric braids Γ1, Γ2.

Remark 3.2.— Formally, if we insist that the strand of a braid diagram start on the line y = 0 and
finish on the line y = 1, defining the product forces to rescale the diagrams by a factor 1/2 along the
y-axis.
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· =

Figure 9. Product of two braid diagrams.

Lemma 3.3.— The product of braid diagrams is compatible with isotopy.

Proof. Assume that D1, D
′
1, D2, D

′
2 are projections of geometric braids Γ1, Γ

′
1, Γ2, Γ

′
2, respectively.

If F1 is an isotopy of Γ1 to Γ′
1 and F2 is an isotopy of Γ2 to Γ′

2, on obtains an isotopy of Γ1Γ2 to Γ′
1Γ

′
2

by applying (a rescaled version of) F1 in R2 × [0, 1/2] and (a rescaled and translated version of) F2

in R2 × [1/2, 1]. The point is that, by definition, the two transformations agree on the median plane
R2 × {1/2}. �

Hence the product of diagrams induces a well-defined operation, also called product, on braids, i.e.,
on isotopy classes of braid diagrams.

Lemma 3.4.— The product of braids is associative, and the class of the trivial diagram is a neutral
element.

Proof. Do it. �

3.2. Inverses. The advantage of considering braids, i.e., isotopy classes, rather than braid diagrams
becomes clear when one consider possible inverses for the braid product. Concatenating any diagram to
a diagram that contains at least one crossing can never result in a diagram with no crossing, so no braid
diagram except the trivial one admits an inverse. But, up to isoopy, inverses always exist.

Lemma 3.5.— For each n-strand braid diagram D, let D̃ denote the image of D in a vertical mirror.

Then DD̃ and D̃D both are isotopic to the trivial n-strand diagram.

Proof. (See Figure 10) Crossings pairwise cancel starting from the middle. �

· = ≈

Figure 10. Inverse for the braid product.

We deduce

Proposition 3.6.— For each n, the set Bn equipped with the product is a group: the n-strand braid
group.

3.3. The Braid Triviality Problem. The first benefit of the group structure on Bn is to reduce
the Braid Isotopy Problem to the Braid Triviality Problem:

Given one braid diagram D, recognize whether one can deform D into the trivial
diagram.

Indeed, D ≈ D′ is equivalent to D̃D′ ≈ 1, where we use 1 as a generic notation for any trivial braid
diagram. A priori, we may expect the Braid Triviality Problem (a one-variable problem) to be more
simple than the Braid Isotopy Problem (a two-variable problem).





CHAPTER II

Presentation of braid groups

In order to possibly use the group structure of Bn to solve the Braid Isotopy Problem (or the Braid
Triviality Problem), we need to characterize the group Bn in some way. To this end, we use a presentation.
In this chapter, we first explain what a presentation is, and then describe a presentation of Bn.

1. Monoid presentations

Before explaining group presentations, we begin with monoid presentations, which are more simple,
and which will be needed anyway.

1.1. Free monoids.

Definition 1.1.— A monoid is a set equipped with a binary operation that is associative and admits a
neutral element.

Every group is a monoid. Conversely, (N, +, 0) is a monoid that is not a group. By default (and
contrary to the latter example), the neutral element in a monoid is denoted 1 and the product is omitted.
One often says “the monoid M” instead of “the monoid (M, ·, 1)”.

Exercise 1.2.— Prove that a monoid contains one neutral element only.

We now construct particular monoids that will play an important role.

Definition 1.3.— Let S be a nonempty set. A word on S is a finite sequence w of elements of S, i.e.,
a mapping of some interval {1, 2, ..., ℓ} to S. The parameter ℓ is called the length of w, and denoted |w|.
The set of all words on S is denoted S∗. For u, v in S∗, the product of u and v, denoted u · v or uv, is
the word w of length |u| + |v| defined by w(i) = u(i) for i 6 |u| and w(i) = v(i − |u|) for i > |u|. The
unique word of length 0 is called the empty word and denoted by ε.

In the above context, S is often called an alphabet, and its elements are referred to as letters. Also,
for s in S, it is customary to identify s with the length 1 word (s). Therefore, a length ℓ word whose
successive letters are s1, ..., sℓ is denoted as s1...sℓ instead of (s1, ..., sℓ).

Proposition 1.4.— For each S, the structure (S∗, ·, ε) is a monoid.

Exercise 1.5.— Prove it.

As in the case of groups, we have the natural notion of a submonoid of a monoid.

Definition 1.6.— A subset M ′ of a monoid M is said to be a submonoid of M if M ′ equipped with the
restriction of the product of M and its neutral element is itself a monoid.

Exercise 1.7.— Prove that M ′ is a sumonoid of M if and only if M ′ contains 1 and is closed under
product, i.e., the product of any two elements of M ′ belongs to M ′.

Then we have the notion of submonoid generated by a set S. If M is a monoid and S ⊆M holds, the
submonoid of M generated by S is the smallest submonoid of M that includes S. It exists because any
intersection of submonoids is a submonoid (prove it) and, therefore, the intersection of all submonoids
of M that include S is the smallest submonoid that includes S.

Next, we have the notion of generating set in a monoid: S is said to generate M if the submonoid
of M generated by S is M itself.

Exercise 1.8.— (i) Prove that the submonoid of M generated by a set X is the union of {1} and the
set of all elements of M that can be expressed as products of (finitely many) elements of X .

7
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(ii) Deduce that X generates M if and only if every element of M except possibly 1 can be expressed
as a finite product of elements of X .

(iii) Show that a subset X of S∗ generates S∗ if and only if X includes S. [Hint: Letters have
length 1, so the only way to decompose a letter into a product of words is to write s = ε...εsε...ε.]

1.2. Evalution mappings. The following result says that every monoid generated by a set S is a
homomorphic image of the monoid S∗. This shows that S∗ is a sort of universal object among all monoids
generated by S. One says that the monoid S∗ is a free monoid with base S—see Appendix.

Proposition 1.9.— Assume that (M, ∗, 1) is a monoid generated by S. Then there exists a unique
homomorphism of S∗ onto M that is the identity on S, namely the M -evaluation mapping defined by

(1.10) evalM (ε) = 1 and evalM (s1...sℓ) = s1 ∗ ... ∗ sℓ.

Proof. The only potential problem is that (1.10) could be ambiguous if decomposition of words as
products of letters were not unique. But they are: the only decomposition of a length ℓ word w into
a product of letters is w(1)...w(ℓ)—we recall that a length ℓ sequence is considered as a mapping with
domain {1, ..., ℓ}, so w(i) means the ith letter of w. Then evalM is a homomorphism by construction.
The hypothesis that S generates M implies that evalM is surjective. Finally, any homomorphism of S∗

to M must satisfy (1.10), hence it coincides with evalM . �

Definition 1.11.— In the context of Proposition 1.9, ones says that a word w represents an element a
of M if we have a = evalM (w).

When M and S are clear, one often writes a = w for a = evalM (w).

1.3. Monoid congruences. The result that every monoid generated by S is a homomorphic image
of S∗ can be restated in terms of quotient-monoid.

Lemma 1.12.— Assume that ≡ is an equivalence relation on a monoid M . Then the operation of M
induces a well defined operation on the quotient-set M/≡ if and only if the product and the relation are
compatible, i.e., if the conjunction of a′ ≡ a and b′ ≡ b implies a′b′ ≡ ab.

Exercise 1.13.— Prove it.

Definition 1.14.— An equivalence relation on a monoid that is compatible with the product is called
a congruence.

Lemma 1.15.— Let M, M ′ be two monoids. Then the following are equivalent:
(i) There exists a surjective homomorphism of M onto M ′;
(ii) There exists a congruence ∼ on M such that M ′ is isomorphic to M/∼.

Proof. Assume that f is a surjective homomorphism of M to M ′. Define a binary relation ∼ on M
by a ∼ a′ if f(a) = f(a′). Then ∼ is a congruence on M , and f induces a well defined mapping of M/∼
to M ′ by a 7→ f(a).

Conversely, if ∼ is a congruence on M , the map a 7→ a is a surjective homomorphism of M onto M/∼.
Composing the latter by an isomorphism gives a surjective homomorphism of M onto every monoid that
is isomorphic to M/∼. �

Proposition 1.9 and Lemma 1.15 imply that every monoid M generated by a set S is a quotient of
the free monoid S∗. This just corresponds to the fact that every element of M is a product of elements
of S, i.e., it is the evaluation in M of some word of S∗ using (1.10). Now two different words of S∗ may
represent the same element of M , i.e., a given element of M may have several expressions in terms of the
elements of S. Applying Lemma 1.15, we deduce from Proposition 1.9:

Corollary 1.16.— Assume that M is a monoid generated by S. Then M is isomorphic to S∗/ ∼M ,
where ∼M is the congruence evalM (w) = evalM (w′) on S∗.

1.4. Monoid presentation. One way of specifying a monoid M (up to isomorphism) consists of
giving a generating set S and the corresponding congruence ∼M on S∗. In good cases, S may be finite.
However, even in that case, ∼M is an infinite object, as there are infinitely many words on S. So we look
for more economical (= possibly finite) ways of specifying a congruence.
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Definition 1.17.— Assume that M is a monoid, and R is a subset of M2. A finite sequence (a0, ..., an)
of elements of M is called an R-derivation from a0 to an if, for each i, there exist a pair (b, b′) in R and
elements x, y of M satisfying {ai−1, ai} = {xby, xb′y}.

Lemma 1.18.— Assume that M is a monoid, and R ⊆M2. Then there exists a smallest congruence ≡R

that includes R, namely the relation “there is exists an R-derivation from a to a′”.

Proof. First ≡R is a congruence on M that includes R. Indeed, ≡R is reflexive: the sequence (a) is
an R-derivation from a to a. Next, ≡R is symmetric: if (a0, ..., an) is an R-derivation from a to a′, then
(an, ..., a0) is an R-derivation from a′ to a. Then, ≡R is transitive: if (a0, ..., an) is an R-derivation from a
to a′ and (a′

0, ..., a
′
n′) is an R-derivation from a′ to a′′, then (a0, ..., an, a′

1, ..., a
′
n′) is an R-derivation from a

to a′′. So ≡R is an equivalence relation. Moreover, assume a ≡R a′. Let (a0, ..., an) be an R-derivation
from a to a′. Then (xa0y, ..., xany) is an R-derivation from xay to xa′y. Hence ≡R is a congruence.
Finally, assume (b, b′) ∈ R. Then (b, b′) is an R-derivation from b to b′.

Conversely, assume that ∼ be any congruence on M that includes R. First both (y, y′) ∈ R and
(y′, y) ∈ R imply y ∼ y′ since ∼ is symmetric, and xyz ∼ xy′z since ∼ is a congruence. Now, assume
that (a0, ..., an) is an R-derivation from a to a′. By the previous remark, we have ai−1 ∼ ai for each i,
hence a = a0 ∼ an = a′ since ∼ is transitive. Therefore a ≡R a′ implies a ∼ a′, i.e., ∼ includes ≡R as a
set of pairs. �

Definition 1.19.— In the context of Lemma 1.18, we say that ≡R is the congruence generated by R.

Exercise 1.20.— Let ≡ be the relation “to have the same length” on S∗. Show that ≡ is a congruence
on S∗ and that ≡ is generated by S × S, i.e., by the set of all pairs (s, t) with s, t in S.

As every monoid is a quotient of a free monoid under a convenient congruence, we obtain a compact
way of specifying a monoid by using a generating set of elements for the monoid and a generating set of
pairs for the associated congruence.

Definition 1.21.— Let M be a monoid, S be a subset of M , and R be a subset of S∗ × S∗. We say
that (S, R) is a presentation of M with set of generators S and set of relations R, also denoted

(1.22) M = 〈S | R〉+,

if S generates M and R generates the congruence ∼M , i.e., we have ∼M=≡R.

(Using equality in (2.5) is an abuse as 〈S | R〉+ only defines M up to isomorphism.)

Example 1.23.— The congruence of S∗ generated by the empty set is the smallest congruence on S∗,
which is equality. So the monoid 〈S | ∅〉+ is S∗/=, i.e., it is S∗ itself.

If (S, R) is a presentation of M , then ∼M includes R. Hence, for each pair (u, v) in R, we have
evalM (u) = evalM (v) in M : putting the pair (u, v) in the set of relations amounts to force the words u
and v to represent the same element of the monoid. This explains the following notation.

Convention 1.24.— When displaying the relations of a presentation, one usually writes u = v instead
of (u, v). Also, one writes 〈s1, ..., sn | r1, ..., rN 〉+ instead of 〈{s1, ..., sn} | {r1, ..., rN}〉+, and (often) 1
instead of ε.

Exercise 1.25.— Show that the congruence on {a, b}∗ generated by the relation ab = ba is the con-
gruence |w|a = |w′|a & |w|b = |w′|b, where |w|s denotes the number of s in w. Deduce that the monoid
〈a, b | ab = ba〉+ is (isomorphic to) the monoid (N, +)2. [Hint: Show that w 7→ (|w|a, |w|b) induces the
expected isomorphism.]

Exercise 1.26.— (i) Let p be a fixed positive integer. Show that the congruence on {a}∗ generated
by the relation ap = 1 is the congruence |w| = |w′| (mod p). Deduce that the monoid 〈a | ap = 1〉+ is
(isomorphic to) the group (Z/pZ, +).

(ii) Describe 〈a | am+p = am〉+.

The following statement is easy, but it is very useful.

Proposition 1.27.— Assume that M is a monoid generated by S, and R is a set of relations on S (i.e.,
a subset of S2). Then the following are equivalent:
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(i) The relations of R hold in M , i.e., evalM (u) = evalM (v) holds for each relation u = v of R.
(ii) The monoid M is a quotient of 〈S | R〉+.

Proof. Both (i) and (ii) are equivalent to saying that ∼M includes ≡R, i.e., that any two ≡R-
equivalent words have the same evaluation in M . (Check details.) �

1.5. The Word Problem. Once again, saying that S generates a monoid M implies that every
element of M can be expressed as a product of elements of S, i.e., is the M -evaluation of some word
of S∗.

Definition 1.28.— Assume that M is a monoid generated by S. The Word Problem of M relative S is
the algorithmic question: Given two words w, w′ in S∗, decide whether w and w′ are M -equivalent, i.e.,
whether evalM (w) = evalM (w′) holds.

For the monoids of Exercises 1.25 and 1.26, we have an explicit description of ∼M and we easily
deduce a solution to the Word Problem. In the case of Exercise 1.25, the algorithm could be:

Count the letters a in w and w′;
If the numbers are different, say NO;
Otherwise count the letters b in w and w′;

If the numbers are different, say NO;
Otherwise say YES.

(Being more precise would require defining a universal language for specifying algorithms.)
When we start with a finite monoid presentation, i.e., a presentation with a finite set of generators

and a finite set of relations, we might hope to obtain a universal way for solving the word problem. This
is not the case.

Theorem 1.29 (Markov, Post, 1944).— There exists a finite monoid presentation whose Word Problem
is unsolvable.

The reason why there is no simple solution is the following one. Owing to Lemma 1.18, two words
of S∗ have the same 〈S | R〉+-evaluation if and only if they are ≡R-equivalent, i.e., there exists an
R-derivation from w to w′.

Lemma 1.30.— Assume that (S, R) is a finite monoid presentation. Then there exists an algorithm
that, for each finite sequence (w0, ..., wn) in S∗, recognizes whether it is an R-derivation.

Proof. As R is finite, deciding whether a length 2 sequence (w1, w2) is an R-derivation is doable
by systematically enumerating all decompositions of w1 and applying all possible relations of R. Then
(w0, ..., wn) is an R-derivation if and only if (wi−1, wi) is an R-derivation for each i. �

Given a finite monoid presentation (S, R) and two words w, w′ of S∗, we can always enumerate all
R-derivationes that start from w, i.e., apply to w all possible relations of R in all possible ways, thus
obtaining a list of words w0 = w, w1, .... If w′ is R-equivalent to w, then it will appear in the list and,
therefore, we shall know that w and w′ are ≡R-equivalent after a finite number of steps. On the other
hand, if w′ is not ≡R-equivalent to w, we shall in general never know it for sure: at each step, we can
only see that w′ has not yet occurred in the list, but this does not prove in general that it cannot appear
later. The theorem of Markov and Post says that there is no uniform way to overcome the problem.

Of course, this does not say that, for one given presentation, the Word Problem is necessarily un-
solvable. For instance, Exercise 1.25 shows that the Word Problem of 〈a, b | ab = ba〉+ is solvable. But
the solutions to the Word Problem must be specific.

Exercise 1.31.— Show that, if for each word w of S∗ only finitely many words may be ≡R-equivalent
to w, then the Word Problem of (S, R) is solvable. Apply this to the case when the relations of R preserve
the length, i.e., are of the form u = v with |u| = |v|.

1.6. Normal forms. A usual method for solving a Word Problem consists in using normal forms,
i.e., in identifying one distinguished element (= “normal element”) in each equivalence class.

Proposition 1.32.— Assume that M is generated by S and N is a subset of S∗ that contains exactly
one element in each ∼M -equivalence class. Then M is isomorphic to (N, ∗, NF(ε)), where ∗ is defined by
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u ∗ v = NF(uv) and NF(w) denotes the unique element of N that is M -equivalent to w. Moreover, if the
map NF is computable, the Word Problem of M relative S is solvable.

Exercise 1.33.— Prove it.

The problem is that, in many cases, it is possible to guess a subset N of S∗ that contains at least
one element in each ∼M -equivalence class, typically by playing with the relations when M is given by an
explicit presentation, but, then, it is difficult to prove that the elements of N are pairwise M -inequivalent
(as a general rule, it is more difficult to prove a non-equivalence than an equivalence). The usual solution
is to look for an ≡R-invariant, namely a map I defined on S∗ that takes the same value for all ≡R-
equivalent words, so that I(w) 6= I(w′) implies that w, w′ are not ≡R-equivalent.

Example 1.34.— As in Exercise 1.25, let S = {a, b} and let R = {ab = ba}. An easy induction shows
that every word of S∗ is ≡R-equivalent to a special word, defined as those words of the form apbq with
p, q > 0 (prove it). It follows that each ≡R-equivalence class contains at least one special word. In
order to prove that each ≡R-equivalence class contains one special word exactly, we have to prove that
distinct special words are not ≡R-equivalent. Let Ia(w) be the number of letters a in w. We observe
that Ia(ab) = Ia(ba) is true, and that the relation Ia(w) = Ia(w

′) is a congruence. Hence this relation
includes the congruence ≡R generated by R, i.e., w ≡R w′ implies Ia(w) = Ia(w

′). Similarly the number

of letters b give a similar invariant Ib. Now we observe that, if two special words apbq and ap′

bq′

are
distinct, at least one of the two invariants Ia, Ib separates them.

Exercise 1.35.— Treat the case of the monoid 〈a, b | ab2 = ba〉+ similarly. (This is more tricky.)

2. Group presentations

Every group is a monoid, and we can apply the previous notion of presentation to groups, up to some
adaptation.

2.1. From monoids to groups. A group is a particular monoid in which every element admits an
inverse, i.e., for each g there exists a (necessarily unique) element g−1 satisfying gg−1 = g−1g = 1.

A subset G′ of a group G is a subgroup if and only if the operations of G, namely the product and
the inverse operation, induce the structure of a group on G′. It follows that G′ is a subgroup if and only
if it contains 1 and it is closed under the product and the inverse operation. In particular, a subgroup is
always a submonoid, but the converse is not true: for instance, N is a submonoid of the group Z, but it
is not a subgroup.

It follows that the submonoid of a group G generated by a subset S is in general smaller in the
subgroup generated by S: the former is the closure of S ∪ {1} under product, whereas the latter is the
closure both on closure and inverse. For instance, the submonoid of the group Z generated by 1 is N,
whereas the subgroup generated by 1 is Z.

It follows in turn that the notion of generating subset differ according to whether we look at a group
as at a monoid.

Lemma 2.1.— Assume that G is a group and S is a subset of G. Then the subgroup generated by S is
the submonoid generated by S∪S−1. In particular, if G is generated as a group by S, then it is generated
by S ∪ S−1 as a monoid.

Proof. The submonoid of G generated by S ∪ S−1 contains 1 and is closed under product and
inverse, hence it is a subgroup of G. Conversely, every subgroup of G that includes S also includes S−1,
hence it includes the submonoid generated by S ∪ S−1. �

A congruence on a group G is an equivalence relation on G that is compatible with the operations
of the structure, namely the product and the inverse operation—whereas a congruence on a monoid is
supposed to be compatible with the product only. However, there is no problem here.

Lemma 2.2.— Assume that G is a group and ≡ is a monoid congruence on G. Then ≡ is also a group
congruence, i.e., it is automatically compatible with the inverse operation.

Proof. Assume g ≡ g′. Then we deduce

g−1 = g−1g′g′
−1
≡ g−1gg′

−1
= g′

−1
,

hence ≡ is compatible with the inverse operation and it is a group congruence. �
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2.2. Group presentation.

Proposition 2.3.— Assume that G is a monoid generated by S, and R is a set of relations on S ∪ S−1

(i.e., a subset of (S ∪ S−1)2). Then the following are equivalent:
(i) the relations of R hold in G, i.e., evalG(u) = evalG(v) holds for each relation u = v of R.
(ii) the group G is a quotient of 〈S ∪ S−1 | R ∪ {ss−1 = s−1s = 1 | s ∈ S}〉+.

Proof. The hypothesis that G is generated by S as a group implies that it is generated by S ∪ S−1

as a monoid.
Assume (i). As G is a group, the relations ss−1 = 1 and s−1s = 1 hold in G for each s in S. By

Proposition 1.27, we deduce that, as a monoid, G is a quotient of the monoid 〈S ∪ S−1 | R ∪ {ss−1 =
s−1s = 1 | s ∈ S}〉+. By Lemma 2.2, there is no need to distinguish between quotient-monoid and
quotient-group.

Conversely, assume (ii). By Proposition 1.27, the relations of R hold in G. �

Definition 2.4.— Let G be a group, S be a subset of M , and R be a subset of ((S ∪ S−1)∗)2. We say
that (S, R) is a presentation of G with set of generators S and set of relations R, also denoted

(2.5) G = 〈S | R〉,

if S generates G and R plus all relations ss−1 = s−1s = 1 for s in S generate the congruence ∼G, i.e., if
G admits, as a monoid, the presentation 〈S ∪ S−1 | R ∪ {ss−1 = s−1s = 1 | s ∈ S}〉+.

Then we can restate Proposition 2.3 as follows.

Proposition 2.6.— Assume that G is a group generated by S, and R is a set of relations on S ∪ S−1.
Then the following are equivalent:

(i) the relations of R hold in G, i.e., evalG(u) = evalG(v) holds for each relation u = v of R.
(ii) the group G is a quotient of 〈S | R〉.

Remark 2.7.— In the case of a group, the relations can always be assumed to be of the form u = 1.

2.3. Free groups.

Definition 2.8.— Let S be a nonempty set. A group admitting the presentation 〈S | ∅〉 is called free
of with base S.

Proposition 2.6 immediately implies:

Proposition 2.9.— Every group generated by a set S is isomorphic to a quotient of (any) free group
based on S.

Exercise 2.10.— Show that Z is a free group on one generator.

Definition 2.8 characterizes a free group only up to isomorphism only. We shall now describe a more
concrete free group of base S. By construction, the monoid

〈S ∪ S−1 | {ss−1 = s−1s = 1 | s ∈ S}〉+,

i.e., the quotient S∗/ ≡ where ≡ is the smallest congruence on (S ∪ S−1)∗ that contains all relations
ss−1 = s−1s = 1 with s in S is a free group based on S. As in Section 1.6, we shall extract a subset of S∗

that contains exactly one element in each ≡-class.

Definition 2.11.— A word over S ∪ S−1 is called reduced if it contains no subword s−1s or ss−1. The
set of all reduced words over S ∪ S−1 is denoted FS .

The notation ≡ always referring to the congruence generated by the relations ss−1 = s−1s = 1 with s
in S, we shall prove

Proposition 2.12.— Every word in (S ∪ S−1)∗ is ≡-equivalent to a unique reduced word.

Applying Proposition 1.32, we deduce
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Corollary 2.13.— For w in (S ∪S−1)∗, let red(w) denote the unique reduced word that is ≡-equivalent
to w. Then (FS , ∗) is a free group based on S, where ∗ is defined by u ∗ v = red(uv).

To prove Proposition 2.12, one introduces a rewrite rule on (S ∪ S−1)∗, i.e., a binary relation.

Definition 2.14.— For w, w′ in (S ∪ S−1)∗, we say that w reduces to w′ in one step, denoted w → w′,
if there exist words u, v and a letter s in S such that w is uss−1v or us−1sv and w′ is uv. We we say
that w reduces to w′, denoted w →∗ w′, if there exists a finite sequence (w0, ..., wn) satisfying w0 = w,
wn = w′ and wi−1 → wi for each i.

Thus w →∗ w′ holds if one can go from w to w′ by deleting subwords of the form ss−1 or s−1s. The
words that are terminal for →∗ are the reduced words. As reduction diminishes the length by 2, there is
no infinite sequence of reductions, and, therefore, every word reduces to a reduced word in finitely many
steps. However, it is not a priori obvious that this reduced word is unique.

Lemma 2.15.— Every word reduces to a unique reduced word.

Proof. Write w →p if w reduces to w′ in exactly p steps. First, we claim that, if w →p w1 and
w →q w2 hold, then there exists w′ and p′ 6 p, q′ 6 q satisfying w1 →p′

w′ and w2 →q′

w′. We use
induction on p + q. The cases p = 0 and q = 0 are trivial. The case p = q = 1 is treated directly. Then
the induction is easy (do it).

Now, assume w →∗ w1 and w→∗ w2 where w1 and w2 are reduced. By Lemma 2.15, there exists w′

satisfying w1 →
∗ w′ and w2 →

∗ w′. As w1 and w2 are reduced, the only possibility is w′ = w1 = w2. �

Hereafter we denote by red(w) the unique reduced word w′ satisfying w →∗ w′.

Proof of Proposition 2.12. By Lemma 2.15, and because w → w′ implies w ≡ w′, every ≡-
equivalence class contains at least one reduced word.

Now consider the relation red(w) = red(w′) on (S ∪ S−1)∗. As red is a well defined mapping,
this relation is an equivalence relation. Moreover, it is compatible with the product. Indeed, assume
red(w) = red(w′) and let u, v be arbitrary words. First w →∗ red(w) implies uwv →∗ ured(w)v. We
deduce uwv →∗ red(ured(w)v), hence red(uwv) = red(ured(w)v). Similarly, w′ →∗ red(w) implies
uw′v →∗ ured(w)v, and we deduce

red(uw′v) = red(ured(w)v) = red(uw′v).

So the relation red(w) = red(w′) is a congruence. Moreover we have red(ss−1) = red(s−1s) = ε = red(ε)
for each s in S. By definition of ≡, this implies that w ≡ w′ implies red(w) = red(w′). It follows that an
≡-class contains at most one reduced word. �

Example 2.16.— Assume S = {a, b}. Then we consider words over the alphabet {a, b, a−1, b−1}. In
examples, it is convenient to use A for a−1 and B for b−1. Reduced words are those words that contain no
factor aA, Aa, bB, or Bb. The free group based on {a, b} is the family of all such reduced words, equipped
with the product ∗. For instance, we find

(abA) ∗ (aB2a) = red(abAaB2a) = red(abBBa) = aBa.

Exercise 2.17.— Show that the group 〈S | R〉 is the quotient of the free group FS by the normal
subgroup generated by the elements red(u−1v) for u = v a relation of R.

2.4. The Word Problem. The Word Problem for a group is similar to the Word Problem for a
monoid. The only difference is that, as inverses always exist, it is enough to decide whether one word
represents 1: indeed, if G is a group generated by S, then two words w, w′ of (S ∪ S−1)∗ represent the
same element of G if and only if the word w−1w′ represents 1—where w−1 denotes the word obtained
from w by reversing the order of letters and exchanging s and s−1 everywhere.

As groups are particular cases of monoids, the Word Problem of groups is a more restricted problem
than the Word Problem of monoids, and therefore it might be easier. This is not the case.

Theorem 2.18 (P. Novikov, 1952).— There exists a finite group presentation whose Word Problem is
unsolvable.

So, once again, we cannot hope for a uniform method for solving the Word Problem, but only for
solutions in particular cases.
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Exercise 2.19.— Solve the Word Problem for the group 〈a, b | ab = ba〉. What is this group?

Example 2.20.— Let G be the group 〈a, b | a2 = b2 = 1, aba = bab〉. Let us try to recognize this
group. Let ≡R denote the congruence associated with the relations of the presentation (including the
relations aA = 1, etc.). First, a2 ≡R 1 implies A ≡R a and, similiarly, b2 ≡R 1 implies B ≡R b. Hence
every word on {a, b, A, B} is ≡R-equivalent to a word on {a, b}. Next we claim that every such word is
≡R-equivalent to at least one of the six words ε, a, b, ab, ba, aba. The reason is that, when we append
a or b to the right of any one of these six words, the resulting word is again ≡R-equivalent to one of the
six words. Hence, ≡R has at most six classes, and G has at most 6 elements.

To prove that G has exactly six elements (and to recognize G) demands to prove that the six
words ε, ..., aba are not pairwise ≡-equivalent. This can be done using an ≡R-invariant. Define I :
{a, b} → S3 by I(a) = (1, 2) and I(b) = (2, 3). The transpositions (1, 2) and (2, 3) satisfy the relations
of R: we have (1, 2)2 = (2, 3)2 = id and (1, 2)(2, 3)(1, 2) = (2, 3)(1, 2)(2, 3), hence I induces a well
defined homomorphism of G to S3. One checks that the images under I of the six words ε, ..., aba are
pairwise distinct permutations of {1, 2, 3}, hence they are paiwise ≡R-unequivalent. Hence G has six
elements. As I is injective, it is also surjective, and I is an isomorphism of G onto S3. In other words,
〈a, b | a2 = b2 = 1, aba = bab〉 is a presentation of the symmetric group S3.

3. Presentation of braid groups

We shall now find a proesentation for the braid groups Bn of Chapter ??.

3.1. Generators. We recall that the elements of the group Bn are isotopy classes of n-strand braid
diagrams, i.e., of projections of n-strand geometric braids. There are many such diagrams, and, in order
to find a generating family that is not too large, we will show that we can restrict to particular diagrams,
i.e., that every diagram is isotopic to a diagram of this particular type.

Definition 3.1.— A geometric braid is called piecewise linear if it consists of line segments. A geometric
braid is called regular if it is piecewise linear and its projection is a braid diagram in which any two
crossings have different z-coordinate.

Lemma 3.2.— Every geometric braid is isotopic to a regular geometric braid.

Proof. Let Γ be a geometric braid. By definition, each strand of Γ is compact, so there exists a
positive constant δ so that any two strands of Γ remain at distance > δ, and their projection contains
finitely many crossings only. Replacing the portions of curves that separate the crossings of the projection
by line segments correspond to an isotopy, see Figure 1. Next, if two crossings of the projection have the
same z-coordinate, we push one to the left and one to the right to obtain a regular braid. �

≈ ≈

σ1 σ2 σ−1
1 σ−1

1

Figure 1. Normalization of a braid diagram and expression as a product of elementary
diagrams σi et σ−1

i .

It is then easy to identify a family of generators for Bn.

Lemma 3.3.— Let Γi be the n-strand geometric braid consisting of n+1 segments [(k, 0, 0), (k, 0, 1)] for
k 6= i, i + 1, plus [(i, 0, 0), (i + 1, 0, 1)], [(i + 1, 0, 0), (i + 1/2, 1/2, 1/2)] and [(i + 1/2, 1/2, 1/2), (i, 0, 1)],
and let σi be the isotopy class of Γi. Then the group Bn is generated by σ1, ..., σn−1.

Proof. Assume that Γ is a regular geometric braid. By an isotopy, we can transform Γ into a
regular geometric braid Γ′ that consists of translated copies of the braids Γi and their mirror images1—
see Figure 1. Then, the braid diagram that is the projection of Γ′ can be cut into slices so that each slice
contains exactly one crossing. By definition, such an elementary diagram is either a σi, or the mirror

1When doing that, a diagram with ℓ crossings is drawn in {1, ..., n}×{0, ..., ℓ}, and not in {1, ..., n}× [0, 1] as it should
be: rescaling is easy.
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image of a σi, i.e., σ−1
i . This means that every braid that is not 1 can be expressed as a product of

braids σi and σ−1
i , i.e., that {σ1, ..., σn−1} generates the group Bn. �

Remark 3.4.— The final normalization step in the proof of Lemma 3.3 is superfluous: whenever Γ is
a regular geometric braid Γ, we can encode Γ by a sequence of letters σi and σ−1

i , i.e., by a word over

the alphabet of σi’s and σ−1
i ’s—called a braid word—that indicates which strands are involved in the

successive crossings of the projection of Γ. Such a braid word will be called the code of the geometric
braid Γ.

Remark 3.5.— The braids σi are called the Artin generators of the braid group Bn. It might be
reasonable to write σi,n rather than σi in order to indicate the considered total number of strands. We
shall see below that Bn embeds as a subgroup of Bn+p so that there is no danger in not distinguishing σi,n

and σi,n+p.

3.2. Relations. For n > 3, the braid group Bn is not a free group: some relations other than the
trivial group relations σiσ

−1
i = σ−1

i σi connect the braids σi. It is easy to find such relations by looking at
braid diagrams.

Lemma 3.6.— The following relations are satisfied in the group Bn:

σiσj = σjσi for |i− j| > 2,(3.7)

σiσjσi = σjσiσj for |i− j| = 1.(3.8)

Proof. See Figure 2. �

≈ ≈

σ1 σ2 σ1 σ2 σ1 σ2

σ1 σ3 σ3 σ1

Figure 2. Two types of relations connecting the Artin generators σi.

Saying that Bn satisfies the relations of Lemma 3.6 does not prove that these relations make a
presentation of Bn: there might still exist other relations that hold in Bn and that are not consequences
of the relations of Lemma 3.6. Actually, this is not the case.

Theorem 3.9 (Artin, 1925).— The group Bn admits the presentation

(3.10)

〈
σ1, ... , σn−1

∣∣∣∣
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

〉
.

The problem is to prove that, if two diagrams are isotopic, then one can transform one into the other
using the relations of (??), or, more exactly that, if two geometric braids Γ, Γ′ are isotopic, then one can
transform Γ into Γ′ using elementary steps that, when coded into braid words, correspond to applying
the relations of (??) plus the relations σiσ

−1
i = σ−1

i σi = 1. To do that, we shall consider the notion of a
∆-move between piecewise linear geometric braids.

Definition 3.11.— (See Figure 3.) Assume that Γ, Γ′ are regular geometric braids. We say that Γ′ is
obtained by a ∆-move from Γ if Γ′ is obtained by replacing one segment [AB] of Γ with two adjacent
segments [AC], [CB] such that no strand of Γ intersect the triangle [ABC].

Lemma 3.12.— Two regular geometric braids Γ, Γ′ are isotopic if and only if Γ can be transformed
into Γ′ using a finite sequence of ∆-moves.

Proof. An isotopy can be decomposed into steps that only involve the neighbourhood of one segment
at a time, and, from there, can themselves be decomposed into a sequence of ∆-moves. Compactness
guarantees that only a finite number of ∆-moves are needed. �
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σ2 σ−1
1 σ−1

1 σ−1
2 σ1 σ2

Figure 3. ∆-move: when the bold segment on the left is replaced with the two bold
segments on the right, the crossings of the projection change, hence the coding by a braid
word changes as well, but one goes from the old coding to the new coding by applying a
relation that is a consequence of the relations of Lemma 3.6. In the current example, the
relation is σ2σ

−1
1 = σ−1

1 σ−1
2 σ1σ2, which is a consequence of σ1σ2σ1 = σ2σ1σ2 and of the

implicit relations σiσ
−1
i = σ−1

i σi = 1.

Proof of Theorem 3.9. Assume that Γ, Γ′ are isotopic geometric braids. By Lemma 3.2, we can
assume without loss of generality that Γ and Γ′ are regular. Then, by Lemma 3.12, Γ and Γ′ are connected
by a sequence of ∆-moves, and it is enough to consider one ∆-move, i.e., to compare the braid words
that code the two geometric braids occurring in a ∆-move. The point is that only finitely many cases
may occur, according to the relative positions of the various segments that possibly cross in the interval
between the old and the new crossings. Figure 3 gives a typical example, in which we see that the old
code, here σ2σ

−1
1 , and the new code, here σ−1

1 σ−1
2 σ1σ2, are connected by a relation that follows from (??):

σ2σ
−1
1 = σ−1

1 σ1σ2σ
−1
1 = σ−1

1 σ−1
2 σ2σ1σ2σ

−1
1 = σ−1

1 σ−1
2 σ1σ2σ1σ

−1
1 = σ−1

1 σ−1
2 σ1σ2.

The other cases are similar. �

3.3. Back to the Braid Isotopy Problem. Once a presentation of the groups Bn is known, one
can restate the Braid Isotopy Problem. Theorem 3.9 implies

Corollary 3.13.— The Braid Isotopy Problem in the case of n-strand braid diagrams is equivalent to
the Word Problem for the presentation (??) of the group Bn:

Given two braid diagrams D, D′, that can be supposed to be regular:
- 1. Code the crossings of D and D′ by two braid words w, w′;
- 2. Then D and D′ are isotopic if and only if w ≡ w′ holds, where ≡ is the

congruence on braid words generated by the relations of (??).

Example 3.14.— Consider the diagrams D, D′ of Figure ??.8, the ones that could not be distinguished
using easy invariants. The coding of the crossings of D is σ2

1 σ2
2 , that of D′ is σ2

2 σ2
1 . Proving D and D′

are not isotopic (this is what will be done eventually) reduces to proving σ2
1 σ2

2 6≡ σ2
2 σ2

1 , or, equivalently,
σ−2
2 σ−2

1 σ2
2 σ2

1 6≡ ε. In concrete example, it is convenient to use a = σ1, b = σ2, ... and A = σ1, B = σ2, ...
In this way, the question is to prove BBAAbbaa 6≡ ε.

Of course, we are not yet done. The Novikov theorem says that there is no uniform method for
solving a Word Problem. Therefore the best we can hope for is to find a specific method that works for
the presentations (??).



CHAPTER III

Braid monoids

At this point, we reduces the Braid Isotopy Problem for n-strand braids to an algebraic problem,
namely the Word Problem of the braid group Bn with respect to the presentation

(∗)

〈
σ1, ... , σn−1

∣∣∣∣
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

〉
.

By Novikov’s Theorem, we know that there is no hope to find a uniform method for solving this kind
of Word Problem. Hence we have to find a specific method taking the particular relations of (∗) into
account.

1. Using monoids

The method we shall describe here was discovered by F.A. Garside at the end of the 1960’s [11]. It
relies on using monoids.

1.1. The monoids B+
n and B+

n . The relations of (∗) involve no letter σ−1
i . Hence it makes sense

to introduce the monoid for which (∗) is a presentation.

Definition 1.1 (monoid B+
n).— We denote by B+

n the monoid that admits the presentation

(1.2)

〈
σ1, ... , σn−1

∣∣∣∣
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

〉+

.

On the other hand, whenever G is a group and S is a subset of G, there exists a smallest submonoid
of G that is generated by S, namely the family of all elements of G that can be expressed as products of
elements of S, plus 1.

Definition 1.3 (monoid B+
n).— We denote by B+

n the submonoid of the group Bn generated by the
elements σ1, ..., σn−1.

By construction, all relations of (1.2) are satisfied in B+
n . Hence Proposition II.1.27 implies

Proposition 1.4.— For each n, the monoid B+
n is a quotient of the monoid B+

n .

By construction, the elements of the monoids B+
n and B+

n are represented by words over the alpha-
bet {σ1, ..., σn−1}, whereas the elements of the group Bn are represented by words over the larger alphabet

{σ1, ..., σn−1, σ
−1
1 , ..., σ−1

n−1}.

Definition 1.5 (positive braid word, braid word equivalence).— A word over the alphabet {σ1,
..., σn−1, σ

−1
1 , ..., σ−1

n−1} is called a braid word ; a word over the alphabet {σ1, ..., σn−1} is called a positive
braid word. Two braid words w, w′ are called equivalent, denoted w ≡ w′, if they represent the same
element of Bn. Two positive braid words w, w′, are called positively equivalent, denoted w ≡+ w′, if they
represent the same element of B+

n .

According to the description of Chapter II, two braid words w, w′ are equivalent if and only if there
exists an R-derivation from w to w′, where R consists of the relations of (∗) plus the free group relations
σiσ

−1
i = σiσi = 1, whereas two positive braid words w, w′ are positively equivalent if and only if there

exists an R+-derivation from w to w′, where R+ consists of the relations of (∗), i.e., of (1.2), exclusively.
Hence it is clear that, for w, w′ positive,

(1.6) w ≡+ w′ implies w ≡ w′.

17
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≈

Figure 1. Two diagrams representing the fundazmental braid ∆4.

By construction we have

B+

n = {σ1, ..., σn−1}
∗/≡+ and B+

n = {σ1, ..., σn−1}
∗/≡ 1,

so (1.6) is just another statement of Proposition 1.4.

Question 1.7.— Is the implication of (1.6) an equivalence? In other words: Is B+
n isomorphic to B+

n?

We shall eventually see that the answer is positive but, at the moment, this is not clear at all.

1.2. Reducing to B+
n . For the moment we leave Question 1.7 open and return to the Word Problem

of Bn. Here we shall reduce this problem to the Word Problem of the monoid B+
n with respect to

{σ1, ..., σn−1}. To this end, we introduce a specific positive braid that plays an important role.

Definition 1.8 (fundamental braid ∆n).— For n > 1, the fundamental braid ∆n is defined by

(1.9) ∆1 = 1 and ∆n = ∆n−1 σn−1...σ2σ1 for n > 2.

The braid ∆n corresponds to a complete half-turn of the n strands, see Figure 1.
In the sequel, we also denote by ∆n the positive braid word recursively defined by (1.9). So the

word ∆n represents the braid ∆n—as the letter σi represents the braid σi. We hope the context will make
it clear whether we speak of braids or of braid words.

We begin with three technical results involving positive braid equivalence.

Lemma 1.10.— For i 6 j < k, we have

σj (σkσk−1...σi+1σi) ≡
+ (σkσk−1...σi+1σi) σj+1,(1.11)

σj+1 (σiσi+1...σk−1σk) ≡+ (σiσi+1...σk−1σk) σj .(1.12)

Proof. We prove (1.11) using induction on |k − i|. For k = i + 1, we necessarily have j = i, and
(1.11) reduces to σi(σi+1σi) ≡

+ (σi+1σi)σi+1, which is true. Assume k > i + 2. Assume first j = i. Then
we have σjσk ≡

+ σkσj and |(k − 1)− i| < |k − i|, so, using the induction hypothesis, we find

σj (σkσk−1...σi) = σj σk (σk−1...σi) ≡
+ σk σj (σk−1...σi) ≡

+ σk (σk−1...σi) σj+1,

which is (1.11). Assume now j > i + 1. Then we have σj+1σi ≡
+ σiσj+1 and |k − (i + 1)| < |k − i|, so,

using the induction hypothesis, we find

σj (σk...σi+1σi) = σj (σk...σi+1) σi ≡
+ (σk...σi+1) σj+1 σi ≡

+ (σk...σi+1) σi σj+1,

again the expected result. The proof of (1.12) is entirely symmetric (do it). �

Lemma 1.13.— For each n, we have

(1.14) ∆n ≡
+ σ1σ2...σn−1∆n−1.

Proof. Use induction on n > 1. The result is clear for n = 1 and n = 2. Assume n > 3. Using the
induction hypothesis, and using the fact that ∆n−2 contains only letters σi with i 6 n− 3, hence letters
that satisfy σiσn−1 ≡

+ σn−1σi, we find

∆n = ∆n−1σn−1...σ1 ≡
+ (σ1 ... σn−2∆n−2) (σn−1 ... σ1) = (σ1 ... σn−2) ∆n−2 σn−1 (σn−2 ... σ1)

≡+ (σ1 ... σn−2) σn−1 ∆n−2 (σn−2 ... σ1) = σ1 ... σn−1∆n−1,

as expected. �

1more exactly {σ
1
, ..., σ

n−1
}∗ quotiented by the restriction of ≡ to {σ

1
, ..., σ

n−1
}∗



P. Dehornoy, The Braid Isotopy Problem; Section III.1: Using monoids 19

Lemma 1.15.— For 1 6 i 6 n− 1, we have

(1.16) σi ∆n ≡
+ ∆n σn−i.

Proof. Use induction on n > 1. The result is vacuously true for n = 1. For n = 2, it reduces to
σ2
1 ≡

+ σ2
1 . Assume n > 3. Assume first i 6 n − 2. Applying the induction hypothesis and (1.11) for 1,

n− i− 1 and n− 1, we find

σi∆n = σi ∆n−1 (σn−1...σ1) ≡
+ ∆n−1 σn−i−1 (σn−1...σ1) ≡

+ ∆n−1 (σn−1...σ1) σn−i.

Assume now i = n− 1. Using (1.14), (1.12), and the induction hypothesis, and (1.14) again, we find

σn−1∆n ≡
+ σn−1 (σ1...σn−1) ∆n−1 ≡

+ (σ1...σn−1) σn−2 ∆n−1 ≡
+ (σ1...σn−1) ∆n−1 σ1 ≡

+ ∆nσ1. �

Lemma 1.17.— For 1 6 i 6 n− 1, there exists a positive word wi,n satisfying ∆n ≡+ σi wi,n.

Proof. Use induction on n > 1. The result is vacuously true for n = 1, and trivial for n = 2.
Assume n > 3. For i 6 n− 2, the induction hypothesis gives a word wi,n−1 satisfying ∆n−1 ≡+ σiwi,n−1,
and, applying (1.9), we find

∆n = ∆n−1 (σn−1...σ1) ≡
+ σi wi,n−1 (σn−1...σ1),

i.e., the result is true with wi,n = wi,n−1σn−1...σ1.
There only remains the case of σn−1. By construction, the word ∆n−1 only contains letters σi with

1 6 i 6 n− 2. Each of these letters σi is eligible for Lemma 1.10 with respect to σn−1...σ1, i.e., satisfies
σi (σn−1...σ1) ≡

+ (σn−1...σ1) σi+1. It follows that one has ∆n ≡
+ σn−1...σ1w, where w is the braid word

obtained from ∆n−1 by shifting all indices by +1, i.e., replacing σi with σi+1 everywhere. We obtained
the expected result with wn−1,n = σn−2...σ1w

′. �

Remark 1.18.— The above positive equivalences (involving ≡+) imply similar equivalences (involv-
ing ≡). The latter correspond to diagrams that could easily be seen to be isotopic. However, as long
as we did not prove a positive answer to Question 1.7, such diagrams would prove nothing about the
relation ≡+. In the current section, results involving ≡ would be sufficient, but the stronger versions
involving ≡+ will be needed in Section 2, and that is why we established them here.

With the previous results at hand, we can easily deduce the following results about the group Bn

and its submonoid B+
n .

Proposition 1.19.— (i) For each n, the braid ∆2
n belongs to the center of Bn.

(ii) For 1 6 i 6 n− 1, the braid σ−1
i ∆n belongs to B+

n .

Proof. (i) Applying Lemma 1.15 twice shows that σi∆
2
n ≡

+ ∆2
nσi holds for 1 6 i 6 n− 1. This

implies σi∆
2
n ≡ ∆2

nσi, so, in the group Bn, the element ∆2
n commutes with every element of the generating

family {σ1, ..., σn−1}. Hence ∆2
n commutes with every element of Bn, i.e., it belongs to its center.

(ii) Applying Lemma 1.17, we obtain that the words ∆n and σiwi,n are positively equivalent, hence

equivalent. It follows that, in the group Bn, the element σ−1
i ∆n is represented by the positive word wi,n.

This means that σ−1
i ∆n belongs to the submonoid B+

n , which, by definition, consists of those braids that
can be represented by at least one positive braid word. �

Corollary 1.20.— Each braid β in Bn can be expressed as ∆−2d
n β′ for some d > 0 and β′ ∈ B+

n .

Proof. Assume that w is a braid word containing d letters σ−1
i . Let w′ be the word obtained from w

by replacing each letter σ−1
i with wi,n∆n, where wi,n is as in Lemma 1.17. Then, by construction, w′ is

a positive braid word, and ∆2d
n w′ is equivalent to w. Indeed, starting from ∆2d

n w′, we can freely move
the factors ∆2

n up to braid equivalence, since σ−1
i ∆2

n ≡ ∆2
nσ−1

i holds for each i, and σ−1
i ∆2

n is equivalent
to wi,n∆n by Lemma 1.17. Let β′ be the positive braid represented by w′. Then, by construction, we
have β′ = ∆2d

n β, hence β = ∆−2d
n β′ in Bn. �

Actually, we have more, namely an algorithm for transforming an arbitrary n-strand braid word into
an equivalent word which is positive up to an initial possible negative power of the word ∆n.

Algorithm 1.21.— Input: An n-strand braid word w.
Output: A nonnegative integer d and positive braid word w1 satisfying w ≡ ∆−2d

n w1.
Method: - Let d be the number of negative letters σ−1

i in w;
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- Let w1 be the positive braid word obtained by replacing each letter σ−1
i of w with the word wi,n∆n.

Corollary 1.22.— The Word Problem of the group Bn (with respect to σ1, ..., σn−1) is equivalent to the

Word Problem of the monoid B+
n (with respect to σ1, ..., σn−1).

Proof. Having to decide whether w ≡?ε is true, we apply Algorithm 1.21 to find a positive word w1

satisfying w ≡ ∆−2d
n w1. Then w ≡ ε is equivalent to ∆2d

n ≡ w1, which is an instance of the Word Problem

for the monoid B+
n . So any algorithm solving the latter will provide an algorithm for the former. �

Example 1.23.— Let w be the braid word σ−2
2 σ−2

1 σ2
2 σ2

1 , which corresponds to the quotient of the
braids that resisted to all naive invariants of Chapter I. As above we use the simplified expression
BBAAbbaa corresponding to a = σ1, b = σ2, ... A = σ−1

1 , B = σ−1
2 , ... In order to decide w ≡?ε, we run

Algorithm 1.21. First, the proof of Lemma 1.17 gives the values w1,3 = ba, w2,3 = ab. So, starting from
w = BBAAbbaa, we find

w1 = (ababa) (ababa) (baaba) (baaba) bbaa,

and w ≡?ε is equivalent to ∆8
3 ≡?w1, i.e., (aba)8 ≡? ababaabababaababaababbaa, an instance of the

Word Problem of the monoid B+

3 .

Exercise 1.24.— Compute the words wi,4. [Solution: w1,4 = bacba, w2,4 = abcba, w3,4 = babcb.]

Exercise 1.25.— (i) Fix n. Prove that the map Φn : σi 7→ σn−i extends into a well defined automorphism

of the group Bn, as well as into a well defined automorphism of the monoids B+
n and B+

n . Show that Φn

is the inner automorphism of Bn associated with ∆n. [Use Lemma 1.15.]
(ii) Use Lemma 1.15 and the automorphism Φn to refine the method used to prove Corollary 1.20

and show that, if an n-strand braid β can be represented by a word containing d letters σ−1
i , then ∆d

nβ

belongs to B+
n .

1.3. The Word Problem of B+
n . We begin with a trivial observation.

Proposition 1.26.— The Word Problem of the monoid B+
n is decidable, i.e., there is an algorithm that

solves it.

Proof. All relations appearing in the presentation (1.2) are of the form u = v with u and v of
equal length (2 or 3 in the current case). An induction on the length of a derivation shows that any two
positively equivalent words have the same length. On the other hand, {σ1, ..., σn−1} is a finite set, so, for
each ℓ, there exists only finitely many positive n-strand braid words of length ℓ. �

We deduce the following stupid algorithm for solving the word problem of B+
n (cf. Exercise II.II.1.31).

Algorithm 1.27.— Input: Two positive braid words u, v.
Ouput: YES or NO;
Method: - Enumerate all positive words that are ≡+-equivalent to u by systematically applying all braid
relations at all possible positions, until no more word appears

- Return YES if v appears in the list so obtained, and NO otherwise.

At this point, we reduced the Word Problem of Bn to that of B+
n and, on the other hand, we know

how to solve the Word Problem of B+
n . So there remains an obvious question, namely Question 1.7: Are

B+
n and B+

n isomorphic? Equivalently: Is (1.2) a presentation of B+
n? At the moment, we know of no

presentation of B+
n , and there might very well exist in Bn relations that involve positive braids and are

not consequences of the braid relations of (1.2).

1.4. Ores’s Theorem. We need a criterion for connecting the monoids B+
n and B+

n . It will be
provided by the following result.

Proposition 1.28 (Ore’s Theorem, 1931).— Assume that M is a cancellative monoid and any two
elements of M admit a common right-multiple. Then there exists a group G, unique up to isomorphism,
with the following properties:

(i) there is an injective homomorphism I of M into G;
(ii) every element of G can be expressed as I(a)I(b)−1 for some a, b in M .

Moreover, if 〈S | R〉+ is a monoid presentation of M , then 〈S | R〉 is a group presentation of G.
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First, some words must be defined.

Definition 1.29 (cancellative).— A monoid M is said to be left-cancellative (resp.right-cancellative)
if xa = xb (resp.ax = bx) implies a = b in M . It is said to be cancellative if it is both left- and
rihght-cancellative.

Definition 1.30 (divisor, multiple).— Assume that M is a monoid. We say that an element a of M
is a left-divisor b, denoted a 4 b, or, equivalently, that b is a righth-multiple of a, if there exists c satisfying
ac = b.

The proof of Ore’s Theorem is a little long, but it is not difficult. It is a natural extension of the
construction of (Z, +) from (N, +), or of (Q, ∗) from (Z, ∗), namely constructing a group by considering
pairs (= fractions) of elements of the monoid.

Proof of Ore’s Theorem. Define a binary relation ∼ on M ×M by

(1.31) (a, b) ∼ (a′, b′) ⇔ ∃x, x′ (ax = a′x′ & bx = b′x′).

Claim 1. The relation ∼ is reflexive and symmetric.
Indeed, say that (x, x′) witnesses for (a, b) ∼ (a′, b′) if we have ax = a′x′ and bx = b′x′. Then

(1, 1) witnesses for (a, b) ∼ (a, b), and, if (x, x′) witnesses for (a, b) ∼ (a′, b′), then (x′, x) witnesses for
(a′, b′) ∼ (a, b).
Claim 2. The relation (a, b) ∼ (a′, b′) holds if and only we have (∗) ∀y, y′ (ay = a′y′ ⇔ by = b′y′).

Indeed, assume that (x, x′) is a witness for (a, b) ∼ (a′, b′) and we have ay = a′y′. By hypothesis,
the elements x and y admit a common right-multiple in M , i.e., there exist c, d satisfying xd = yc.
Then we find a′x′d = axd = ayc = a′y′c, hence x′d = y′c since a′ is left-cancellable in M . We deduce
byc = bxd = b′x′d = b′y′c, hence by = b′y′ since c is right-cancellable in M . So (a, b) ∼ (a′, b′) implies (∗).

Conversely, (∗) implies (a, b) ∼ (a′, b′). Indeed, assume (∗). By hypothesis, a and a′ admit a common
right-multiple, so there exist x, x′ satisfying ax = a′x′. Applying our hypothesis, we deduce bx = b′x′,
i.e., (x, x′) is a witness for (a, b) ∼ (a′, b′).
Claim 3. The relation ∼ is an equivalence relation.

Indeed, after Claim 1, it remains to verify that ∼ is transitive. Assume (a, b) ∼ (a′, b′) ∼ (a′′, b′′). By
hypothesis, the elements a, a′, a′′ admit some common right-multiple, say ax = a′x′ = a′′x′′. By Claim 2,
the hypothesis (a, b) ∼ (a′, b′) plus the equality ax = a′x′ imply bx = b′x′. Similarly, the hypothesis
(a′, b′) ∼ (a′′, b′′) plus the equality a′x′ = a′′x′′ imply b′x′ = b′′x′′. Therefore, we have ax = a′′x′′ and
bx = b′′x′′, hence (a, b) ∼ (a′′, b′′), and ∼ is an equivalence relation.

For a, b in M , we shall denote by a/b the ∼-class of (a, b). We denote by G the quotient-set M2/∼.
Claim 4. The map I : M → G defined by I(a) = a/1 is injective.

Indeed, assume I(a) = I(a′). This means that we have (a, 1) ∼ (a′, 1), i.e., there exist x, x′ satisfying
ax = a′x′ and 1x = 1x′. This forces x = x′ and then a = a′ since x is right-cancellable in M .
Claim 5. For a, b, c, d, x, y satisfying bx = cy, the ∼-class of (ax, dy) does not depend on x and y.

Indeed, assume bx = cy and bx′ = cy′. The elements y and y′ admit a common right-multiple in M ,
so there exist t, t′ satisfying yt = y′t′. Then we have bxt = cyt = cy′t′ = bx′t′, hence xt = x′t′ since b is
left-cancellable in M . So, we have dyt = dy′t′ and axt = ax′t′, hence (ax, by) ∼ (ax′, by′).

Therefore, we can unambiguously define a well defined (external) binary operation ∗ of M2 to G by

(1.32) (a, b) ∗ (c, d) = (ax)/(dy) whenever bx = cy.

Claim 6. The operation ∗ induces an (internal) binary operation on G.
The question is to prove that (a, b) ∗ (c, d) only depends on the ∼-classes of (a, b) and (c, d). Assume

(a, b) ∼ (a′, b′), and (c, d) ∼ (c′, d′). By hypothesis, the elements b, b′, c, c′ admit a common right-multiple,
i.e., there exist x, x′, y, y′ satisfying bx = b′x′ = cy = c′y′. By definition, we have (a, b)∗(c, d) = (ax)/(dy)
and (a′, b′) ∗ (c′, d′) = (a′x′)/(d′y′). Now, by Claim 2, bx = b′x′ implies ax = a′x′, and cy = c′y′ implies
dy = d′y′, whence (ax)/(dy) = (a′x′)/(d′y′).

Hereafter, we use · (or nothing) for the binary operation induced by ∗ on G.
Claim 7. The product on G is associative.

Let a, b, c, d, e, f belong to M . Choose x, y, z, t, u, v satisfying bx = cy, dz = et, and yu = zv—see
Figure 2. By definition, we have

a/b · (c/d · e/f) = a/b · (cz)/(ft) = (axu)/(ftv),(1.33)

(a/b · (c/d) · e/f = (ax)/(dy) · e/f = (axu)/(ftv).(1.34)
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a b c d e f

x y z t

u v

Figure 2. Associativity of the product of fractions in the proof of Ore’s Theorem; we
associate an s-labeled arrow with each element s, and represent equalities of products (for
instance bx = cy) by a (commutative) square; in this way any two paths from one vertex to
another one give the same value.

Indeed, the second equality in (1.33) is true because we have b · xu = cyu = cz · v, and that in (1.34)
because we have dy · u = dzv = e · tv.
Claim 8. The set G equipped with · is a group with neutral element 1/1; the inverse of a/b is b/a.

Let a, b be arbitrary elements of M . We have b · 1 = 1 · b, hence a/b ∗ 1/1 = (a · 1)/(1 · b) = a/b by
defintion. Similarly, we have 1 · a = a · 1, hence 1/1 ∗ a/b = (1 · a)/(b · 1) = a/b, so 1/1 is neutral on the
left. A similar computation shows it is neutral on the right. Moreover, we have (x, x) ∼ (1, 1) for each x,
hence x/x = 1/1. Finally, we have a/b ∗ b/a = (ab)/(ab) = 1/1, and b/a ∗ a/b = (ba)/(ba) = 1/1.
Claim 9. The map I is an embedding (= injective homomorphism) of M into G.

Let a, b be arbitrary elements of M . We have 1 · b = b · 1, hence

I(a) · I(b) = a/1 · b/1 = (a · b)/(1 · 1) = (ab)/(1) = I(ab).

Claim 10. Every element of G has an expression as I(a)I(b)−1 with a, b in M .
Indeed, by construction, we have a/b = a/1 · 1/b = a/1 · (b/1)−1 = I(a)I(b)−1

Claim 11. If a subset S of M generates M as a monoid, then I(S) generates G as a group.
Indeed, the hypothesis guarantees that every element of G can be expressed as a finite product of

elements of I(S) and of inverses of elements of I(S).
Assume now that 〈S | R〉+ is a monoid presentation of M . By Claim 10, we know that I(S)

generates G. We want to prove that G admits the presentation 〈I(S) | I(R)〉, where I(R) consists of
I-copies of the relations of R, i.e., of one relation I(u) = I(v) for each relation u = v of R. The question is
to show that, for each word w over the alphabet S∪S−1, we have evalG(I(w)) = 1⇔ I(w) ≡I(R) ε, where

≡I(R) is the congruence generated by I(R) and the free group relations I(s)I(s)−1 = I(s−1)I(s) = 1.
The letters I(s) are just copies of the letters of S, so the question is also the question of proving

(1.35) evalG(I(w)) = 1 ⇔ w ≡R ε

for each word w in (S ∪ S−1)∗, where ≡R is the congruence generated by R and the free group relations
ss−1 = s−1s = 1.
Claim 12. The relation w ≡R ε implies evalG(I(w)) = 1.

Indeed, if u = v is a relation of R, we have evalM (u) = evalM (v) by hypothesis, hence evalG(I(u)) =
I(evalM (u)) = I(evalM (v) = evalG(I(v)). On the other hand, evalG(I(s)I(s)−1) = evalG(I(s)−1I(s)) =
1 = evalG(ε) holds for each s in S. As the previous pairs generate ≡R, the result follows.
Claim 13. Every word w in (S ∪ S−1)∗ is ≡R-equivalent to some word uv−1 with u, v in S∗.

Indeed, w can always be expressed as u1v
−1
1 u2v

−1
2 ...udv

−1
d , where u1, ..., vd belong to S∗. We use

induction on d. For d = 1, there is nothing to prove. Assume d > 2. By induction hypothesis, there
exist u′, v′ in S∗ satisfying u1v

−1
1 u2v

−1
2 ...ud−1v

−1
d−1 ≡R u′v′−1. In the monoid M , the elements represented

by v′ and ud have a common right-multiple. This means that there exist two words u′′, v′′ in S∗ satisfying
udv

′′ ≡R v′u′′ (and even udv
′′ ≡+

R v′u′′, where ≡+

R is the positive equivalence generated by R). Using the

free groupu relations we deduce v′−1ud ≡R u′′v′′−1, and, from there, w ≡R u′v′−1udv
−1
d ≡R u′u′′v′′−1v−1

d ,
as expected.
Claim 14. The relation evalG(I(w)) = 1 implies w ≡R ε.

Indeed, assume evalG(I(w)) = 1. By Claim 10, there exist words u, v in S∗ satisfying w ≡R uv−1.
Then evalG(I(w)) = 1 implies evalGI(u) = evalGI(v), which is also I(evalM (u)) = I(evalM (v)). As I
is injective, this implies evalM (u) = evalM (v), hence u ≡+

R v since 〈S | R〉+ is a presentation of M . A
fortiori, we have u ≡R v, hence uv−1 ≡R ε, and, finally, w ≡R ε by transitivity.

The proof of Ore’s Theorem is complete. �

Corollary 1.36.— Under the hypotheses of Proposition 1.28 (Ore’s Theorem), the monoid M is iso-
morphic to the submonoid of G generated by I(S).
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Proof. As I is injective, it is an isomorphism of M onto its image in G. By hypothesis, M is
generated by S, so its image is generated by I(S), hence it is the submonoid of G that is generated
by I(S). �

Exercise 1.37.— Prove that the sufficient conditions of Ore’s Theorem are also sufficient: If there
exists an injective homomorphism I of a monoid M into a group G such that every element of G has
an expression of the form I(a)I(b)−1 with a, b in M , then M is cancellative and any two elements of M
admit a common right-multiple.

Exercise 1.38.— Let M be the monoid 〈a, b, c, d, a′, b′, c′, d′ | ac = a′c′, ad = a′d′, bc = b′c′〉+. Prove
that M is cancellative, but M embeds in no group. [Hint: Prove that bd = b′d′ fails in M , but holds in
every group that satisfies the three defining relations of M .]

2. Garside theory

At this point, we proved the following results:
- by Corollary ??, the Braid Isotopy Problem reduces to the Word Problem of Bn with respect to

Artin’s generators σi;
- by Corollary 1.22, the Word Problem of the group Bn with respect to Artin’s generators σi reduces

to the Word Problem of the monoid B+
n with respect to Artin’s generators σi;

- by Proposition 1.26, the Word Problem of the monoid B+
n with respect to Artin’s generators σi is

solvable;
- by Corollary 1.36 (Ore’s Theorem), if the monoid B+

n is cancellative and admits common right-

multiples, then it is isomorphic to B+
n .

So, if the monoid B+
n is cancellative and admits common right-multiples, we shall have solved the Braid

Isotopy Problem (at last).

2.1. Common multiples in B+
n . So, the strategy is clear: it remains to prove that the monoid B+

n ,
i.e., the monoid defined by the braid relations of (∗), is cancellative and admits common right-multiples.
We begin with the latter point, which is easy.

Proposition 2.1.— Any two elements of the monoid B+
n admit a common right-multiple.

We begin with an auxiliary result.

Lemma 2.2.— Assume that u is a positive n-strand braid word of length at most ℓ. Then there exists
a positive braid word v satisfying uv ≡+ ∆ℓ

n.

Proof. We use induction on ℓ > 0. The result is obvious for ℓ = 0. Assume ℓ > 1. The result is
obvious if u is empty. Otherwise, we have u = u′σi for some u′ of length at most ℓ − 1. By induction
hypothesis, there exists a word v′ satisfying u′v′ ≡+ ∆ℓ−1

n . Let φn(v′) denote the word obtained from v′ by
exchanging the letters σi and σn−i everywhere. By Lemma 1.15, we have ∆n φn(v′) ≡+ v′∆n. On the other
hand, by Lemma 1.15, there exists a positive word wi,n satisfying σi wi,n ≡+ ∆n. Put v = wi,nφn(v′).
Then we obtain

uv = u′ σi wi,nφn(v′) ≡+ u′ ∆n φn(v′) ≡+ u′v′∆n ≡
+ ∆ℓ−1

n ∆n = ∆ℓ
n. �

Proof of Proposition 2.1. Let a, b be any two elements of B+
n . By definition, there exist positive

n-strand braid words u, v representing a and b. Let d be any number satisfying d > |u| and d > |v|.
By Lemma 2.2, the element of B+

n represented by the word ∆d
n is a common right-multiple of a and b

in B+
n . �

2.2. Complemented presentations. So we are left with the question of proving that the monoid B+
n

is cancellative. The result is true, but this is a difficult question, and no very simple proof is known. The
first proof was due to F.A. Garside in his 1969 paper [11]. The proof we shall give now is a variant of
Garside’s proof that relies on a combinatorial method called word reversing. It uses the specific form of
the braid relations.

Definition 2.3 (complement, complemented presentation).— Let S be an alphabet (nonempty
set). A complement on S is a mapping C : S × S → S∗ satisfying C(s, s) = ε for each s in S. We say
that a monoid M is associated with C if M admits the presentation 〈S | RC〉+ where RC is the family of
all relations sC(s, t) = tC(t, s) for s 6= t in S.
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Lemma 2.4.— The monoid B+
n is associated with the complement C on {σ1, ..., σn−1} defined by

(2.5) C(σi, σj) =





ε for i = j,

σjσi for |i− j| = 1,

σj for |i− j| > 2.

Proof. Check it. �

Complemented presentations are rather special, and we shall establish a specific criterion for recog-
nizing whether a monoid with a complemented presentation is cancellative.

2.3. Subword reversing. We introduce a rewrite system, i.e., a collection of rules that transform
words into new words. We are interested in the special case of braids, but it will be more simple to state
a general definition.

Definition 2.6 (alphabet duplication).— Assume that C is a complement on the alphabet S. We
consider a duplicated alphabet S± obtained by adding to S a copy denoted s−1 for each letter s. The
letters of S are called positive, those of the form s−1 are called negative. A word on S± is called an
S±-word. If w is a S±-word, we denote by w−1 the word obtained from w by reversing the order of the
letters and exchanging s and s−1 everywhere.

In examples like S = {a, b}, it is convenient to use A for a−1, B for b−1, etc. So, for w = abaA, we find
w−1 = aABA. Remember that we work with words, and not with elements of a group. So, for instance,
aA is not the same as the empty word. In any case, we are now considering monoids, and there are no
inverses.

Definition 2.7 (subword reversing).— Assume that w, w′ are S±-words. We say that w is re-
versible to w′ in one step, denoted w y1

C w′ or, simply, w y1 w′, if w′ either by deleting some
length two subword s−1s, or by replacing a length two subword s−1t with s 6= t by the correspond-
ing word C(s, t)C(t, s)−1. We say that (w0, ..., wN ) is a reversing sequence if wk−1 y wk holds for
each k, and that w is reversible to w′, denoted w y w′, if there is a (finite) reversing sequence that starts
with w and finishes with w′.

Reversing uses the complement C as a recipe to push the negative letters to the right and the positive
letters to the left by iteratively reversing −+-subwords into +−-subword (whence the name). Note that
deleting s−1s enters the general scheme as we assume that, for every letter s in S, we have C(s, s) = ε.

Example 2.8.— Consider the complement associated with the braid relations (∗). Put w = σ−1
3 σ1σ

−1
2 σ1.

Then w contains two −+-subwords, namely σ−1
3 σ1 and σ−1

2 σ1. So there are two ways of starting a right
reversing from w: replacing σ−1

3 σ1 with σ1σ
−1
3 , or replacing σ−1

2 σ1 with σ1σ2σ
−1
1 σ−1

2 . A typical reversing
sequence is (we use a for σ1, etc.

(2.9) CaBa y1 aCBa y1 aCabAB y1 aaCbAB y1 aabcBCAB.

We cannot continue, since the latter word contains no −+ subword.

Exercise 2.10.— Let C be the complement on {a, b, c} defined by C(a, b) = ba, C(b, a) = ab, C(b, c) =
cb, C(c, b) = bc, C(a, c) = ca, C(c, a) = ac. Show that there exist arbitrarily long reversing sequences
starting from Bac.

2.4. Reversing diagrams. It is useful to visualize the reversing process by associating with every
reversing sequence a certain planar diagram (which is connected with what is called a van Kampen
diagram in general).

Assume that C is a complement on S, and (w0, ..., wN ) is a reversing sequence for C. The associ-
ated reversing diagram will contain right-oriented horizontal and down-oriented vertical edges labeled by
letters s of S, plus (possibly) ε-labeled arcs.

First, we draw a connected path indexed by the successive letters of w0 by attaching a horizontal

arrow
s
→ with each letter s, and a vertical arrow ↓s with each letter s−1. Then, we inductively complete

the diagram as follows. Assume that one goes from wk−1 to wk by reversing some subword s−1t. By

induction hypothesis, the latter subword s−1t corresponds to an open pattern s
t

in the diagram.
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σ1 σ1 σ2 σ3

σ3 σ3 σ3 σ2

σ3

σ1 σ1 σ2

σ2 σ1

σ2

σ1

Figure 3. Reversing diagram starting from σ−1
3 σ1σ

−1
2 σ1: one starts with a staircase la-

belled σ−1
3 σ1σ

−1
2 σ1 by drawing a vertical σi-labelled arrow for each letter σ−1

i , and an hor-

izontal σi-labelled arrow for each positive letter σi. Then, when σ−1
i σj is reversed into

C(σi, σj)C(σj , σi)
−1, we complete the open pattern corresponding to σ−1

i σj into a square by

adding horizontal arrows labeled C(σi, σj) and vertical arrows labeled C(σj , σi).

Then we complete that pattern with new arrows, according to the rule

s

t

→ s

t

C(s, t)

C(t, s) for s 6= t, s

t

ε for s = t,

with the convention that ε-labeled dotted arcs are subsequently ignored. For instance, the reversing
diagram associated with the reversing sequence (2.9) is displayed in Figure 3 (and a more complex
example is given in Figure 5 below).

Remark 2.11.— Because of the ε-labelled arcs, the above patterns are not the most general ones
appearing in a reversing diagram. The general patterns are actually

εεε

s

t

→ s

t

C(s, t)

C(t, s) for s 6= t,
s

t

ε for s = t,

In this way, we associated with every reversing sequence a reversing diagram. Conversely, it is easy to
see that, starting with a diagram as above, we can recover a (not necessarily unique) reversing sequence
by reading the labels of the various paths going from the bottom-left corner to the top-right corner, and
using the convention that a vertical σi-labeled edge contributes σ−1

i .
The following result should be clear:

Lemma 2.12.— For each S±-word w, there is a unique maximal reversing diagram Dw starting from w
(up to changing the lengths of the edges).

Note that the diagram Dw need not be finite in general, cf. Exercise 2.10.

Definition 2.13 (extended complement).— Assume that C is a complement on an alphabet S. We
define a (possibly partial) mapping C∗ : S∗×S∗ → S∗ as follows: C∗(u, v) = v′ holds if and only if there
exists a word u′ on S such that u−1v reverses to v′u′−1.

Lemma 2.14.— (i) If u and v have length one, i.e., if they are letters in S, then C∗(u, v) exists and is
equal to C(u, v).

(ii) The words C∗(u, v) and C∗(v, u) exist if and only if the reversing diagram Du−1v is finite, and,
in this case, we have

(2.15) u C∗(u, v) ≡+ vC∗(v, u),

where ≡+ is the congruence on S∗ generated by the relations RC .

Proof. Point (i) is clear. As for (ii), we observe that, if u, v are any two positive words labelling
two paths in a reversing diagram with the same origin and the same end, then u ≡+ v holds. This follows
from an induction on the number of tiles lying between the two considered paths. When the number is
one, the only possibility is that the words have the form sC(s, t), tC(t, s) for some letters s, t, and the
result is true by definition of the relations RC . �

2.5. The completeness property. In general, not much can be said about monoids that are
associated with a complement. In particular, it is impossible to recognize in general whether they are
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cancellative or not. However, there is one good case where this is possible, namely when the considered
complement turns out to be complete.

Definition 2.16 (completeness).— Assume that C is a complement on S. We say that C is complete
if the operation C∗ is compatible with the congruence ≡+ generated by RC , in the following sense: for
all words u, v, u′, v′ in S∗, if C∗(u, v) is defined and if u′ ≡+ u and v′ ≡+ v hold, then C∗(u′, v′) is defined
as well and we have C∗(u′, v′) ≡+ C∗(u, v).

Lemma 2.17.— Assume that C is a complete complement. Then, for all words u, v in S∗, we have

(2.18) u ≡+ v ⇔ C∗(u, v)=C∗(v, u)=ε ⇔ u−1v y ε.

Proof. The right equivalence is just the definition of C∗.
Assume u ≡+ v. For each complement C and each word u on S, we have u−1u y ε, hence C∗(u, u) =

ε. If, in addition, C is complete, we deduce C∗(u, v) ≡+ ε and C∗(v, u) ≡+ ε by stusbtituting u with v in
one of the two arguments of C∗(u, u) = ε. Then, we observe that, by construction, all relations of RC have
nonempty left and right hand terms. So w ≡+ ε implies w = ε. So, u ≡+ v implies C∗(u, v)=C∗(v, u)=ε.

Conversely, if we have C∗(u, v) = C∗(v, u) = ε, then (2.15) directly gives u ≡+ v (without using any
completeness assumption). �

Completeness of the complement directly implies a cancellability result.

Proposition 2.19.— Assume that C is a complete complement. Then the monoid associated with C is
left-cancellative.

Proof. Assume that C is a complement on the alphabet S, and M is the monoid associated with C.
Proving that M is left-cancellative amounts to proving that, for all words u, v on S, and for each letter s
in S, the relation su ≡+ sv implies u ≡+ v (where ≡+ is the congruence generated by RC).

Assume su ≡+ sv. By Lemma 2.17, we deduce (su)−1(sv) y ε, i.e., u−1s−1sv y ε. Now, by
definition, the first step in reversing the latter word is u−1s−1sv y u−1v (there is no other possibility).
So we necessarily have u−1v y ε, hence, by Lemma 2.17 again, u ≡+ v. �

So the strategy is clear: in order to prove that the monoid B+
n is left-cancellative, it suffices to prove

that the braid complement of (2.5) is complete. As there are infinitely many braid words, this is in
principle difficult. However, we shall see now that, instead of having to verify the compatibility of C∗

and ≡+ for all words, it is sufficient to verify it for a small family of words only.

Lemma 2.20.— Assume that C is a complement on S satisfying the following two properties:
(i) For all s, t in S, we have |C(s, t)| = |C(t, s)|;
(ii) For all r, s, t in S, we have

(2.21) C∗(r, sC(s, t)) ≡+ C∗(r, tC(t, s)) and C∗(sC(s, t), r) ≡+ C∗(tC(t, s), r),

this meaning, as usual, that neither side of the relation is defined, or that both are defined and they are
equivalent. Then C is complete.

The meaning of (2.21) is clear: this is an instance of the compatibility of C∗ and ≡+, namely the
case when one of the words is just a letter r, and the other is a word involved in the basic relations of RC ,
i.e., the simplest possible type of word equivalence. So what Lemma 2.20 says is that, provided the
relations of RC preserve the length (condition (i)), then the most simple case of compatibility is enough
to guarantee the general case.

Proof of Lemma 2.20. We shall prove using induction on ℓ the implication:

(Pℓ)
If C∗(u, v) is defined and |uC∗(u, v)| 6 ℓ holds,

then (u′ ≡+ u & v′ ≡+ v) implies (C∗(u′, v′) ≡+ C∗(u, v) & C∗(v′, u′) ≡+ C∗(v, u)).

First, (P0) is obvious. As the first and the second argument play symmetric roles, (Pℓ) follows from

(P ′

ℓ)
If C∗(u, v) is defined and |uC∗(u, v)| 6 ℓ holds,

then v′ ≡+ v implies (C∗(u, v′) ≡+ C∗(u, v) & C∗(v′, u) ≡+ C∗(v, u)).

Now saying that v′ is ≡+-equivalent to v means that there exists an RC -derivation of v′ from v, i.e., v′ is
obtained from v by appying a sequence of relations of RC . For an obvious induction, it is enough that we
prove (Pℓ) when v′ is obtained from v by applying one relation of RC . This means that there exist s, t
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in S and v1, v2 in S∗ satisfying v = v1sC(s, t)v2 and v′ = v1tC(t, s)v2. So, in order to prove (Pℓ), it is
enough that we assume (Pℓ−1) and prove

(P ′′

ℓ )
Assume v = v1sC(s, t)v2, v′ = v1tC(t, s)v2 and |uC∗(u, v)| 6 ℓ.

Then we have (C∗(u, v′) ≡+ C∗(u, v) & C∗(v′, u) ≡+ C∗(v, u)).

We consider the reversing diagram for u−1v, which is assumed to be finite, and compare it with the
reversing diagram for u−1v′, which a priori need not be finite. Now see Figure 4. The hypothesis that
C∗(u, v) exists implies that there exist a letter r and words u0, ..., u4, v0, ..., v6 as indicated on the left
diagram2—or that u−1v1 y v0 holds, in which case there is no letter r, and everything is obvious. The
hypothesis (2.21) implies that u′

1 and v′3 exist, and that one has u′
1 ≡

+ u1 and v′3 ≡
+ v3. Then we look

at the reversing of u−1
0 v3 and u−1

0 v′3.
The point is as follows: by hypothesis, C∗(u0, v3) exists (this is the word w4) and, by construction,

the length of u0C
∗(u0, v3), i.e., of u0v4, is at most ℓ− 1, because we have

|uC∗(u, v)| = |v1ru0v4v6| 6 ℓ,

and r has length one. So the induction hypothesis Pℓ−1 implies that C∗(u0, v
′
3) exists and is equivalent

to C∗(u,v3), so v′4 exists, and we have v′4 ≡
+ v4 and, similarly, u′

2 ≡
+ u2.

The same argument applies to the reversings of u−1
1 v2 and u′

1v
′
2 as, now, the letter s forces |u1C

∗(u1, v2)| 6
ℓ− 1. So u′

3 and v′5 exist and satisfy u′
3 ≡

+ u3 and v′5 ≡
+ v5.

Finally, the same argument applies to u2 and v5, proving the existence of u′
4 and v′6 that satisfy

u′
4 ≡

+ u4 and v′6 ≡
+ v6. We deduce that the reversing of u−1v′ terminates in finitely many steps with

the word v0v
′
4v

′
6u

′
4
−1u′

3
−1, and we find C∗(u, v′) = v0v

′
4v

′
6 ≡

+ v0v4v6 = C∗(u, v) and C∗(v′, u) = u′
3u

′
4 ≡

+

u3u4 = C∗(u, v). This proves Pℓ, and completes the induction. �

u

v1

v0

s C(s, t) v2

r

u0

v3

v4

u1

u2

u3

u4

v5

v6

u

v1

v0

s C(s, t) v2

r

u0

v′3

v′4

u′
1

u′
2

u′
3

u′
4

v′5

v′6

Figure 4. Proof of Lemma 2.20: Comparing the reversing diagrams for u−1v and u−1v′.

We are nearly done.

Lemma 2.22.— The braid complement C is complete.

Proof. It suffices to check that the braid complement (2.5) satisfies the hypotheses of Lemma 2.20.
Now, as for (i), we see that |C(σi, σj)| = |C(σj , σi)| is true for all i, j.

As for (ii), we have to consider all triples {σi, σj , σk}. It should be clear that only the relative
distances, 0, 1, or > 2, matter. The result is straightforward when at least two indices coincides. So,
essentially, it remains the three cases (1, 3, 5), (1, 2, 4), and (1, 2, 3) and their cyclic permutations. Here
is a typical verification for the case 1, 2, 3 (there are two more cyclic permutations to consider).

σ−1
1 σ2σ3σ2 y σ2σ1σ3σ2σ1σ

−1
3 σ−1

2 σ−1
1 and σ−1

1 σ3σ2σ3 y σ3σ2σ1σ3σ2σ
−1
3 σ−1

2 σ−1
1

whence

C∗(σ1, σ2σ3σ2) = σ2σ1σ3σ2σ1 ≡
+ σ2σ3σ1σ2σ1 ≡

+ σ2σ3σ2σ1σ2 ≡
+ σ3σ2σ3σ1σ2 ≡

+ σ3σ2σ1σ3σ2 = C∗(σ1, σ3σ2σ3),

and
C∗(σ2σ3σ2, σ1) = σ1σ2σ3 = C∗(σ3σ2σ3, σ1). The other cases are similar. �

Putting the pieces together we deduce

Proposition 2.23.— For each n, the monoid B+
n is cancellative.

Proof. The criterion of Proposition 2.19 applies, and we deduce that B+
n is left-cancellative.

As for right-cancellation, we observe that, due to the symmetry of the braid relations, there exists
an involutive antiautomorphism ι of B+

n that, for each i, maps σi to itself: ι is the antihomomorphism
that reverses the order of letters—so, for the corresponding braid diagrams, it corresponds to taking a
mirror-image with respect to a mirror orthogonal to the main direction of the strands. Now assume

2or that u0 is empty, in which case the argument is similar and simpler
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ab = a′b in B+
n . Then we have ι(b)ι(a) = ι(b)ι(a′), hence ι(a) = ι(a′) since B+

n is left-cancellative, hence
a = a′ since ι is involutive (applying ι twice is the identity). �

Corollary 2.24.— (i) For each n, the monoids B+
n and B+

n are isomorphic, i.e., the monoid B+
n admits

the presentation (1.2).
(ii) For all positive braid words u, v, we have

(2.25) u ≡ v ⇔ u ≡+ v.

Proof. (i) The monoid B+
n is cancellative and admits common right-multiples, hence it is eligible for

Ore’s Theorem. Hence, by Corollary 1.36, B+
n is isomorphic to the submonoid of the group Bn generated

by σ1, ..., σn−1, which, by definition, is B+
n .

(ii) We know that u ≡+ v always implies u ≡ v. Conversely, u ≡ v means that u and v represent the

same element of B+
n , hence by (i) the same element of B+

n , hence that u ≡+ v holds. �

WE ARE DONE:

Theorem 2.26.— The Braid Isotopy Problem is decidable.

Proof. The proof scheme planned at the beginning of this section has been completed. �

Exercise 2.27.— Show that the conclusion of Lemma 2.20 remains valid when Condition (i) is relaxed
to: There exists a map: λ : S∗ → N such that u′ ≡+ u implies λ(u′) = λ(u) and λ(su) > λ(u) holds for
each letter s of S.

Exercise 2.28.— Show that Condition (ii) of Lemma 2.20 is also true when S has two elements.

3. Algorithms

We just have seen that the Braid Isotopy Problem is decidable, i.e., there exist algorithms that solve
it. We first summarize the algorithm that comes from the above argument. Then we observe that, owing
to the auxiliary results that have been proved in the meanwhile, we can describe better algorithms.

3.1. The stupid monoid algorithm. The algorithm that directly comes from Section 2 is as
follows.

Algorithm 3.1.— Input: Two n-strand braid diagrams D, D′.
Ouput: YES if D and D′ are isotopic, NO otherwise.

Method: - Encode D̃D′ into a braid word w;
- Run Algorithm 1.21 on w to obtain d and w1;
- Run Algorithm 1.27 on ∆2d

n and w1, and return its answer.

Proof. First, D and D′ are isotopic if and only if w ≡ ε holds. Then, by construction, we
have∆2d

n w ≡+ w1, hence w ≡ ε is equivalent to ∆2d
n ≡ w1. By Corollary 2.25(ii), the latter is equivalent

to ∆2d
n ≡

+ w1, and this is what Algorithm 1.27 tests. �

Example 3.2.— Let D, D′ be the resisting diagrams of Chapter I. We saw that D̃D′ is encoded in
σ−2
2 σ−2

1 σ2
2 σ2

1 , and found in Example 1.23 the values

d = 4, w1 = ababaabababaababaababbaa.

It remains to run Algorithm 1.27 on the words (aba)8 and w1 above, i.e., to enumerate all positive words
equivalent to (aba)8. If we were doing it, we would never see w1 in the list, and we would conclude that
D is not trivial—but we shall not do it, because the list of words equivalent to (aba)8 is very long.

Remark 3.3.— Initially, our aim was to decide whether the braids represented by σ2
1 σ2

2 and σ2
2 σ2

1 are
isotopic. The latter braid words are positive, and forming the quotient is stupid. Actually, we can
immediately see, in this very special case, that σ2

1 σ2
2 and σ2

2 σ2
1 are not equivalent: indeed, σ2

1 σ2
2 ≡

+ σ2
2 σ2

1

is impossible, as no braid relation can be applied to σ2
1 σ2

2 or σ2
2 σ2

1 , so this words are alone in their
equivalence class. So, in this way, we did prove that the braids represented by σ2

1 σ2
2 and σ2

2 σ2
1 are not

isotopic.

3.2. Using reversing. A much better algorithm can be obtained by replacing the systematic enu-
meration of Algorithm 1.27 with subword reversing.
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Proposition 3.4.— For all positive braid words u, v, reversing u−1v terminates in a finite number of
steps. In other words, C∗(u, v) is always defined.

Proof. Let u, v be arbitrary positive words. By Proposition 2.1, the braids represented by u and v

admit a common right-multiple in B+
n , i.e., there exist positive braid words u′, v′ satisfying uv ≡+ vu′.

By Lemma 2.17, this implies (uv′)−1(vu′) y ε. Hence the reversing diagram for (uv′)−1(vu′), i.e., from
v′−1u−1vu′, is finite. But then the reversing diagram for u−1v, which is included in the latter, is finite
as well. �

We deduce a new algorithm for solving the Word Problem of B+
n with respect to {σ1, ..., σn−1}.

Algorithm 3.5.—
Input: Two positive braid words u, v.
Ouput: YES, if u and v are positively equivalent, NO otherwise;
Method: - Reverse u−1v;

- Return YES if the final word is empty, and NO otherwise.

Note that it is crucial to know that reversing always terminates: otherwise, we would not solve the
Word Problem, as we would risk to never conclude in the case when the initial words are not equivalent.

Example 3.6.— Assume u = σ2
1 σ2

2 and v = σ2
2 σ2

1 . Reversing u−1v leads to σ1σ
3
2 σ1σ

−1
2 σ−3

1 σ−1
2 , a

nonempty word, so u and v are not equivalent (see Figure 5).

Figure 5. Reversing of the braid word σ−2
2 σ−2

1 σ2
2 σ2

1 . Thin arrows correspon to σ1, thick
arrows correspond to σ2. One starts with the dark grey path, and finishes with the light grey
path, which is terminal as it contains no σ−1

i σj .

Inserting Algorithm 3.5 in Algorithm 3.1 gives a more realistic solution to the Braid Triviality Prob-
lem.

Algorithm 3.7.— Input: Two n-strand braid diagrams D, D′.
Ouput: YES if D and D′ are isotopic, NO otherwise.

Method: - Encode D̃D′ into a braid word w;
- Run Algorithm 1.21 on w to obtain d and w1;
- Run Algorithm 3.5 on ∆2d

n and w1, and return its answer.

3.3. More reversing. Instead of using the word ∆n to eliminate negative letters, we can use
reversing.

Proposition 3.8.— For every braid word w, reversing w terminates in a finite number of steps.

Proof. Using induction on p, we show the result for w of the form u−1
1 v1u

−1
2 v2...u

−1
p vp with u1, ..., vp

positive. For p = 1, this is Proposition 3.4. Assume p > 2. By Proposition 3.4, there exist positive
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words u′
1, v

′
1 satisfying u−1

1 v1 y v′1u
′
1
−1. By induction hypothesis, there exist positive words u′

2, v
′
2

satisfying u−1
2 v2...u

−1
p vp y v′2u

′
2
−1. By Proposition 3.4 again, there exist positive words u′

3, v
′
3 satisfying

u′
1
−1v′2 y v′3u

′
3
−1. Then we find

w y v′1u
′

1
−1u−1

2 v2...u
−1
p vp y v′1u

′

1
−1v′2u

′

2
−1 y v′1v

′

3u
′

3
−1u′

2
−1,

hence w y (v′1v
′
3)(u

′
2u

′
3)

−1, as expected. �

We deduce a new solution to the Braid Isotopy Problem using two reversings.

Algorithm 3.9.—
Input: Two n-strand braid diagrams D, D′.
Ouput: YES if D and D′ are isotopic, NO otherwise.

Method: - Encode D̃D′ into a braid word w;
- Reverse w into vu−1 with u, v positive;
- Run Algorithm 3.5 on u and v, i.e., reverse u−1v;
- Return YES if the final word is empty, NO otherwise.

Example 3.10.— Starting with D, D′ as in Example 1.23, we encode D̃D′ into (a2b2)−1(b2a2). The
first reversing leads to (ab3a)(ba3b)−1, see Figure 5. We exchange the numerator and the denominator,
and reverse (ba3b)−1(ab3a). We find (a2b2)(b2a2)−1 (the initial word); this is not the empty word, we
deduce that D and D′ are not isotopic.



CHAPTER IV

The Artin representation

We turn to a completely different solution to the Braid Isotopy Problem, namely one based on
algebraic topology. This solution is the original one used by Emil Artin. It relies on viewing a braid as
the isotopy class of a homeomorphism of a punctured disk and deducing an action on the fundamental
group of a disk with holes, which is a free group.

1. The braid group as a mapping class group

For every surface (2-dimensional manifold) one introduces a certain group called the mapping class
group of the surface. When the surface is a disk with n marked points, the mapping class group is
precisely the braid group Bn.

1.1. The principle. A geometric braid (or the braid diagram that is its projection) can be seen as
a picture movie of the danse of n points in a disk: see Figure 1.

z=
0

z=
1

2

z=
1

1

2

3

1

2

3

2

31

z=0 z= 1
2

Figure 1. A geometric braid (drawn in a cylinder) viewed as the danse of n points in a disk
(here n = 3): the coordinate z is the time that goes from 0 to 1; the intersection of each
plane z = z0 with the n strands of the braid consists of n points that continuously move in
the disk.

Starting with this observation, one obtains a one-to-one correspondence between isotopy classes of
geometric braids, i.e., braids, and isotopy classes of homeomorphisms of the punctured disk.

1.2. The mapping class group of a surface with marked points. For each surface and each
choice of finitely many points on this surface, one introduces a certain group called the mapping class
group.

Definition 1.1 (mapping class group).— Let Σ be an oriented compact surface, possibly with
boundary, and let {P1, ..., Pn} be a finite set of distinguished interior points of Σ. The mapping class
group MCG(Σ, {P1, ..., Pn}) of the surface Σ relative to {P1, ..., Pn} is the group of all isotopy classes
of orientation-preserving self-homeomorphisms of Σ that fix the boundary ∂Σ pointwise and preserve
{P1, ..., Pn} globally.

Mapping class groups play an important role in low-dimensional topology (study of surfaces and 3-
dimensional manifolds). A deep theorem of Epstein states that two homeomorphisms of a compact surface
are homotopic if and only if they are isotopic. We recall from Chapter ?? that two homeomorphisms ϕ, ϕ′

of Σ into itself are called homotopic (resp.isotopic) if there exists a continuous map F : Σ × [0, 1] → Σ
satisfying F (−, 0) = ϕ and F (−, 1) = ϕ′ (resp.this and, in addition, F (−, t) is a homeomorphism for
each t). In the case of Definition 1.1, one requires moreover that F (−, t) fixes the boundary pointwise,
and the set of punctures globally.

Exercise 1.2.— Show that isotopic homeomorphisms necessarily induce the same permutation of the
punctures. [Hint: Use the fact that the set of all permutations of n points is finite, hence discrete.]

31
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In the sequel we shall be interested in one particular case, namely that of a disk, and we fix some
notation.

Notation 1.3.— We denote by Dn the disk of R2 with center (0, (n + 1)/2) and radius n/2 + 1, with
the n marked points (0, 1), ..., (0, n). We denote by D−

n the complement of {P1, ..., Pn} in Dn.

So D−
n is a disk with n holes.

As announced above, there is a simple connection between braids and the mapping class group of Dn.

Proposition 1.4.— The braid group Bn is isomorphic to the mapping class group MCG(Dn).

Proof (Sketch). Let Γ be an n-strand geometric braid, sitting in the cylinder D2 × [0, 1]. By
construction, the n strands are starting at the puncture points of Dn × {0} and ending at the puncture
points of Dn × {1}. As explained in Figure 1, Γ may be considered to be the graph of the motion, as
time goes from 0 to 1, of n points moving in the disk, starting and ending at the puncture points. It can
be proved that this motion extends to a continuous family of homeomorphisms of the disk, starting with
the identity and fixed on the boundary at all times: think that the disk is filled with jelly: the danse
of the punctures causes the jelly around them to move; if we insist that nothing moves in a neighbour
of the boundary disk, then the extension is unique up to isotopy. The end map of this isotopy is the
corresponding homeomorphism ϕ : Dn → Dn, which is well defined up to isotopy fixing the punctures
globally and the boundary pointwise.

Conversely, given a homeomorphism ϕ : Dn → Dn, representing some element of the mapping class
group, we want to get an n-strand geometric braid. By a trick of Alexander, every homeomorphism of
a disk that fixes the boundary is isotopic to the identity, through homeomorphisms fixing the boundary.
The corresponding braid is then the graph of the restriction of such an isotopy to the marked points. �

So, from now on, we can view an n-strand braid as an isotopy class of homeomorphisms of Dn that
leave ∂Dn, and preserve the n punctures globally.

2. The fundamental group

One associates with every topological space various homotopy invariants, i.e., objects (numbers,
functions, groups, algebras) that only depend on the homeomorphism type of the considered space and
that are constructed by means of homotopy classes. One of the main such homotopy invariant is the
fundamental group.

2.1. Loops. In the sequel, a curve γ in the plane, or more generally in any surface, is identified with
a parametrization, i.e., with a continuous map of the interval [0, 1] of R to the considered surface, of the
form t 7→ (x(t), y(t)).

Definition 2.1 (loop).— Let X be a topological space, and P0 be a point in X . A loop in X with
basepoint P0 is a continuous map γ : [0, 1] → X satisfying γ(0) = γ(1) = P0. The set of all loops in X
with basepoint P0 is denoted Ω1(X ; P0).

Then, as above, we have the natural notion of homotopic loops. Two loops γ, γ′ with basepoint P0

in X are called homotopic, denoted γ ∼ γ′ if there exists F : [0, 1]× [0, 1] → X satisfying F (−, 0) = γ,
F (−, 1) = γ′, and F (0, t) = F (1, t) = P0 for every t. So two loops are homotopic if one can continuously
deform one to the other.

Notation 2.2.— The quotient-set Ω1(X ; P0)/∼ is denoted π1(X ; P0). For f in Ω1(X ; P0), the homotopy
class of a loop γ is denoted [γ].

As we did in Chapter ?? with geometric braids, we can define a binary operation on loops.

Definition 2.3 (product).— For γ1, γ2 in Ω1(X ; P0), the product of γ1 and γ2 is defined by

(2.4) γ1γ2(t) =

{
γ1(2t) for 0 6 t 6 1/2,

γ2(2t− 1) for 1/2 6 t 6 1.

The product is well defined since the values are coherent at 1/2.

Lemma 2.5.— The product of loops is compatible with homotopy, and it induces a group structure
on π1(X ; P0).
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Proof. Do it. �

Lemma 2.6.— Assume that X is a path-connected space, i.e., for any two points P, P ′ in X, there
exists at least one continuous map π : [0, 1] → X satisfying π(0) = P and π(1) = P ′ (called a path
from P to P ′). Then, for all P0, P

′
0 in X, the groups π(X ; P0) and π(X ; P ′

0) are isomorphic.

Proof. Let π be a fixed path connecting P0 to P ′
0 in X . Then the map γ 7→ π−1γπ induces

a well defined morphism of π(X ; P0) and π(X ; P ′
0) (why?), and the map γ 7→ πγπ−1 induces a well

defined morphism of π(X ; P ′
0) and π(X ; P0) which is the inverse of the previous one. Hence both are

isomorphisms. �

(Above and as in the case of braids, we always denote by fg the product “f then g”, i.e., g ◦ f .)
Owing to Lemma 2.6, we can forget about basepoints, and put:

Definition 2.7 (fundamental group).— Assume that X is a path-connected space. The fundamental
group π1(X) of X is the (isomorphism class) of π1(X ; P0), where P0 is any point of X .

Exercise 2.8.— Show that the fundamental group is a homeomorphism invariant, i.e., that homeomor-
phic spaces have the same fundamental group (up to isomorphism).

Exercise 2.9.— Show that the fundamental group of the plane is the trivial group. [Hint: For each
loop γ with basepoint P0, define a homotopy that contracts γ to the constant loop of value P0.]

2.2. The fundamental group of a disk with one hole. Our aim now is to compute the funda-
mental group of a disk with n holes. We begin with n = 1.

Proposition 2.10.— The fundamental group of a circle is Z.

Proof. Let S1 be the circle x2 + y2 = 1 in R2, and P0 be the point (1, 0). For each integer n, let γn

be the curve t 7→ (cos(2πnt), sin(2πnt)). Then γn is drawn inside S1, and both the initial and final ends
are the point P0. So γn is a loop based on P0 in S1, i.e., it belongs to Ω1(S

1; P0). We recall that [γn]
denotes the homotopy class of γn. We shall see that I : n 7→ [γn] defines an isomorphism of Z to π1(S

1).
First, I is a homomorphism: there is a homotopy from γnγm to γn+m (write it explicitly).
We have to prove that I is injective, and surjective. To do that, we use the covering of S1 by a helix—

hence by R—illustrated in Figure 2. So let H be the circular helix t 7→ (cos t, sin t, t) with t ∈ R, and let
pr denote the restriction of the projection pr : (x, y, z) 7→ (x, y) to H . Then pr is continuous, surjective.
It is not injective globally, but, locally, it is: there exists a finite covering of S1 by open subsets U1, ..., Up

(for instance, any two arcs of length ℓ satisfying π < ℓ < 2π) such that, for each point M in Ui and any

point M̃ in H , there is an open neighbourhood Ũ of M̃ in H such that pr induces a homeomophism of Ũ
onto Ui.

For each integer n, let P̃n be the point (1, 0, n). The points P̃n are the various preimages of P0

in H . Let γ be a loop in S1 with basepoint P0. Then we can lift γ (i.e., find a path that projects on γ)

into a unique path γ̃ in H that starts with P̃0, : the uniqueness follows from the property that pr is a

homeomorphism on each arc Ui. We claim that γ is homotopic to γn if and only if γ̃ finishes at P̃n. Since

γ̃n finishes at P̃n, this will show that I is bijective.
The reason why the claim is true is that, if F is a homotopy between two loops γ, γ′ in S1, then F

lifts into a unique homotopy between the paths γ̃ and γ̃′, always because pr is locally a homeomorphism.

Then it is impossible that the liftings of two homotopic loops finishes at different endpoints P̃n because
the restriction of the homotopy to the final point is a continuous map of [0, 1] into a discrete set, hence
it is constant. So I is injective.

On the other hand, if γ is any loop in S1 such that γ̃ finishes at P̃n, then there is the path γ̃ · γ̃n
−1

is a loop in H . The fundamental group of H is trivial, hence there is a homotopy of that loop to the
constant loop, and projecting this homotopy gives a homotopy of γγ−1

n to the constant loop of S1. So I
is surjective. �

Corollary 2.11.— The fundamental group of D−

1 is Z.

Proof. A disk with one hole is just a thickened version of a circle. Every loop in the circle is a
loop in D−

1 . Conversely, using radial projection, we associate with every loop in D−

1 a homotopic loop
in S1. �
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pr

P0

← P̃−1

← P̃0

← P̃1

Figure 2. Every loop in the circle can be lifted into a path in the helix that covers it; what matters
is the final point of that path.

2.3. The fundamental group of a disk with n holes. Up to a homeomorphism, a disk with
n holes can be obtained by gluing one besides the other n disks with one hole. So we need a method for
determining the fundamental group of a space obtained by gluing two (or any finite number of) spaces
starting with the fundamental groups of the spaces. This is what the Van Kampen Theorem does.

Proposition 2.12 (van Kampen Theorem, special case).— Assume that X is a topological space, and
X1, X2 are open, path-connected subspaces of X that cover X (i.e., X is X1 ∪X2). Assume that π1(Xi)
has the presentation 〈Si | Ri〉 for i = 1, 2, and that X1∩X2 is path-connected and has a trivial fundamental
group. Then π1(X) admits the presentation 〈S1 ∪ S2 | R1 ∪R2〉.

Proof (Sketch). The hypothesis that X1 and X2 are path-connected implies that X is path-
connected. Choose the basepoint P0 in the intersection X1 ∩X2. Then each loop in X decomposes into
a finite sequence of paths γk alternately inside X1 and X2, with endpoints in X1 ∩ X2. As X1 ∩ X2 is
path-connected, we can assume that the ends of each γk is P0. Hence each γk is a loop, hence a finite
product of loops representing elements of Si and their inverses. Therefore, S1 ∪ S2 generates π1(X).

It is clear that the relations of R1 and R2 are true in π1(X). So the point is to prove that, conversely,
if some loop in X is homotopic to the constant loop, then we can deform it to the constant loop using
only relations from R1 ∪ R2. If the decomposition of γ into loops inside X1 and loops inside X2 were
unique, we could follow the fragments one by one and say that a trivial loop inside X1 can be homotoped
to the constant loop using relations of R1, and similarly for the fragments in X2 nd R2. Some care is
needed as, a priori, a homotopy from γ to the constant loop need not induce homotopies from each of
the Xi-subloops to the constant loops: for instance, additional fragments may appear in the process.
However, as [0, 1] is compact, there is a number N such that, for every t, there are at most N fragments
involved in the intermediate loop F (−, t). �

The general van Kampen Theorem deals with the case when the intersection X1 ∩X2 is not assumed
to have a trivial fundamental group. In this case, the generators and relations of π1(X1 ∩X2) enter the
picture: roughly speaking, one has to make sure that the nontrivial loops inside X1 ∩X2 are not counted
twice, once for X1 and once for X2. The general form is not needed here.

Proposition 2.13.— The fundamental group of D−
n is a free group with n generators.

Proof. We use induction on n. For n = 1, this is Corollary 2.11. Assume n > 2. Then D−
n admits a

covering by (a space homeomorphic to) D−

n−1 plus (a space homeomorphic to) D−

1 , intersecting in a disk
with no hole, see Figure 3. The fundamental group of the latter is trivial. By induction hypothesis, the
fundamental group of D−

n−1 has presentation 〈g1, ..., gn−1 | −〉, whereas, by Corollary 2.11, that of D−

1 ,
which is Z, has presentation 〈gn | −〉. The van Kampen Theorem implies that the fundamental group
of D−

n admits the presentation 〈g1, ..., gn | −〉. �

In addition to the result, the van Kampen Theorem gives natural generators for the fundamental
group of a disk with n holes. Indeed, first, by Corollary 2.11, the fundamental group of a disk with one
hole is generated by the class of a loop that turns once around the hole. By the van Kampen Theorem,
the fundamental group of a disk with n holes is generated by the classes of n loops that turn around each
of the n holes, see Figure 4.

Notation 2.14.— Hereafter, we denote by γk the loop of D−
n that turns once around the kth hole, and

by gn the homotopy class of γn, called the standard generators of π1(D
−
n ).



P. Dehornoy, The Braid Isotopy Problem; Section IV.3: The Artin representation 35





X1 = D◦
n



X2 = D◦

1

Figure 3. Decomposition of D−

n into a space homeomorphic to D−

n−1
and a space homeomoprhic

to D−

1
, with an intersection that has trivial fundamental group.

•

γ1

γi

γn

... ...

Figure 4. Standard generators of the fundamental group of a disk with n holes: the loop γk turns
once around the kth hole clockwise.

3. The Artin representation

We are ready to define a mapping of the braid group Bn into the automorphisms of a free group,
that will provide a new solution to the Braid Isotopy Problem.

3.1. Action of homeomorphisms on the fundamental group. For each topological space X , we
construct a natural action of the isotopy classes of homeomorphisms of X into itself on the group π1(X).

Notation 3.1.— Hereafter we write Homeo(X) for the group of all homeomorphisms of a space X into
itself, and Homeo(X)/∼ for the group of isotopy classes of homeomorphisms of X .

(We recall that γ is a map of [0, 1] to X .)

Proposition 3.2.— For ϕ in Homeo(X) and γ a loop in X, putting

(3.3) γ • ϕ(t) = ϕ(γ(t))

induces a well defined map ϕ̂ : [γ] 7→ [γ • ϕ] that is an automorphism of π1(X), and ρ : ϕ 7→ ϕ̂ is a
homomorphism of Homeo(X)/∼ into Aut(π1(X)).

Proof. First, we prove that the homotopy class of γ • ϕ depends only on the homotopy class of γ
and on the isotopy class of ϕ. First, if F is a homotopy from γ to γ′, hence is a map from [0, 1]× [0, 1]
to X , then, as ϕ is a homeomorphism, F • ϕ, defined by (t, t′) 7→ ϕ(F (t, t′)) is a homotopy from γ • ϕ
to γ′

• ϕ.
Similarly, if F ′ is an isotopy of ϕ to ϕ′, hence a map from X × [0, 1] to X , then, assuming that γ is

t 7→ (x(t), y(t)), the map (t, t′) 7→ F ′((x(t), y(t)), t′) is a homotopy from γ • ϕ to γ • ϕ′.
So, for each homeomorphism ϕ of X , we have a well defined map ϕ̂ of π1(X) into itself. By construc-

tion, if γ1, γ2 are two loops in X , we have

(γ1γ2) • ϕ = (γ1 • ϕ)(γ2 • ϕ),

which means that ϕ̂ is an endomorphism of π1(X). Moreover, ϕ has an inverse, and we obtain

(γ • ϕ) • ϕ−1 = γ = (γ • ϕ−1) • ϕ,

which shows that ϕ̂−1 is an inverse for ϕ̂. So ϕ̂ is an automorphism of π1(X). So, we have a map ρ : ϕ 7→ ϕ̂
of Homeo(X)/∼ to the group Aut(π1(X)).
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It remains to check that ρ is itself a homomorphism, i.e., that we have ϕ̂1ϕ2 = ϕ̂1 ϕ̂2. That follows
from (3.3) directly. �

3.2. The case of braids. Applying Proposition 3.4, we deduce:

Proposition 3.4.— The action (3.3) induces a homomorphism ρ of Homeo(D−
n )/∼ into Aut(π1(D

−
n )).

The homomorphism ρ restricts to every group that is isomorphic to a subgroup of Homeo(D−
n )/∼.

Among such subgroups is the mapping class group of Dn, by the following observation:

Lemma 3.5.— Restriction induces an injective homomorphism of MCG(Dn) into Homeo(D−
n )/∼.

Proof. Let ϕ be any homeomorphism of Dn that globally preserves the marked points P1, ..., Pn.
Then ϕ maps D−

n into itself, hence its restriction to D−
n is a homeomorphism of D−

n . Moreover, iso-
topic homeomorphisms have isotopic restrictions. Hence the mapping ϕ 7→ ϕ|D−

n
induces an injective

homomorphism ofMCG(Dn) into Homeo(D−
n )/∼. �

So we deduce a homomorphism of MCG(Dn) into Aut(π1(D
−
n ). Now, we saw in Section 1 that

MCG(Dn) is isomorphic to the braid group Bn, and in Section 2 that π1(D
−
n ) is a free group of rank n.

We deduce:

Corollary 3.6.— The action (3.3) induces a homomorphism ρ of Bn into Aut(Fn).

The homomorphism ρ is called the Artin representation. The nice point is that it is easy to describe
the above homomorphism explicitly. Indeed, by Proposition 2.13, a generating family of π1(D

−
n ) consist

of the classes g1, ..., gn of the loops γ1, ..., γn of Figure 4. On the other hand, a generating family of Bn

consists of the braids σ1, ..., σn−1. So, in order to specify ρ, it suffices to describe the images of the loops γk

under the braids σi. This is done in Figure 5.

γi

γi+1
σi

γiγi+1γ
−1
i

γi

Figure 5. Action of the braid σi on the standard generators of π1(D
−
n ).

Proposition 3.7.— For each i, the action of the braid σi on the generators gk of π1(D
−
n ) is given by

(3.8) ρ(σi)(gk) = gk • σi =





gigi+1g
−1
i for k = i,

gi for k = i + 1,

gk for k 6= i, i + 1.

Proof. Look at Figure 5. �

Remark 3.9.— Once the defining formulas of (3.8) are given, we may forget about their topological
origin, and directly check that they define a representation of braid groups. To this end, for each braid
word w, say w = σe1

i1
...σeℓ

i(ℓ
, we define ρ(w) to be the automorphism ρ(σe1

i1
)...ρ(σeℓ

i(ℓ
). Then, in order to check

that ρ induces a well defined homomorphism on Bn, it suffices to show the equalities ρ(σiσj) = ρ(σjσi)

for |i− j| > 2 and ρ(σiσjσi) = ρ(σjσiσj) for |i− j| = 1. This is easy.

3.3. Injectivity of the Artin representation.

Theorem 3.10 (Artin, 1947).— The homomorphism ρ is injective.

We shall prove Theorem 3.10 using an auxiliary result that we shall not prove, because this would
require too long developments. We state this auxiliary result as a lemma.
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Lemma 3.11.— Every nontrivial braid has an expression by a braid word in which the letter σi with
minimal index i occurs only positively (no σ−1

i ) or negatively (no σi).

Owing to Lemma 3.11, it is enough to prove that, if w is a braid word in which the letter σ1 occurs
but σ−1

1 does not occur, then ρ(w) is not the identity automorphism of Fn. To this end, we will show

that the last letter in the freely reduced word ρ(w)(g1) is g−1
1 .

Notation 3.12.— For g a letter gi or g−1
i , we denote by W (g) the subset of F∞ consisting of all freely

reduced words that end with the letter g.

We shall investigate the image of the set W (g−1
1 ) under the automorphism σ̂i

±1.

Lemma 3.13.— Every automorphism σ̂i
±1 with i > 2 maps W (g−1

1 ) into itself.

Proof. Consider an arbitrary element of W (g−1
1 ), say vg−1

1 with v /∈ W (g1). By construction,
we have σ̂i(vg−1

1 ) = red
(
σ̂i(v) g−1

1

)
. Assume that σ̂i(vg−1

1 ) does not belong to W (g−1
1 ). Then the final

letter g−1
1 in σ̂i(v)g−1

1 is cancelled by some letter g1 occurring in σ̂i(v). Such a letter g1 in σ̂i(v) must
come from a letter g1 in v. So there exists a decomposition v = v′g1v

′′ satisfying σ̂i(v
′′) = 1. As σ̂i is

injective, the latter condition implies v′′ = 1, hence v ∈ W (g1), which contradicts the hypothesis. The

argument is the same for σ̂i
−1. �

Lemma 3.14.— The automorphism σ̂1 maps both W (g1) and W (g−1
1 ) into W (g−1

1 ).

Proof. Let us consider an arbitrary element of W (g1) ∪ W (g−1
1 ), say vge

1 with e = ±1 and v /∈
W (g−e

1 ). Then we have σ̂1(vge
1) = red

(
σ̂1(v)g1g

e
2g

−1
1

)
. Assume σ̂1(vge

1) /∈ W (g−1
1 ). This means that the

final g−1
1 in σ̂1(vge

1) is cancelled by some letter g1 in σ̂1(v). This letter comes either from some g2 or from

some ge′

1 in v.
In the first case, we display the letter g2 involved in the cancellation by writing v = v′g2v

′′, where v′′

is a reduced word. We find

(3.15) σ̂1(vge
1) = red

(
σ̂1(v

′)g1σ̂1(v
′′)g1g

e
2g

−1
1

)
.

By hypothesis, we have red
(
σ̂1(v

′′)g1g
e
2

)
= ε, where we recall ε denotes the empty word. Hence (3.15)

implies σ̂1(v
′′) = g−e

2 g−1
1 = σ̂1(g

−1
2 g−e

1 ). We deduce v′′ = g−1
2 g−e

1 , which contradicts v /∈ W (g−e
1 ).

In the second case, we write similarly u = v′ge′

1 v′′ with e′ = ±1. So we have

σ̂1(vge
1) = red

(
σ̂1(v

′)g1g
e′

2 g−1
1 σ̂1(v

′′)g1g
e
2g

−1
1

)
,

and the hypothesis is red
(
ge′

2 g−1
1 σ̂1(v

′′)g1g
e
2

)
= ε. This implies red

(
σ̂1(v

′′)
)

= g1g
−e−e′

2 g−1
1 = σ̂1(g

−e−e′

1 ),

hence v′′ = g−e−e′

1 . For e = +1, we obtain either v′′ = g−2
1 (for e′ = +1) or v′′ = ε (for e′ = −1), and, in

both cases, v ∈ W (g−e
1 ), a contradiction. Similarly, for e = −1, we obtain either v′′ = ε (for e′ = +1) or

v′′ = g2
1 (for e′ = −1), and, in both cases, v ∈ W (g−e

1 ), again a contradiction. �

We can now complete the proof of Theorem 3.10.

Proof of Theorem 3.10. Assume that β is a nontrivial braid. By Lemma 3.11, β admits an
expression w in which either σ1 or σ−1

1 does not appear. Assume first that σ1 appears in w and σ−1
1 does

not. Then w has the form w0 σ1 w1 σ1 ... σwp where the words wk contain neither σ1 nor σ−1
1 . We claim

that the freely reduced word ρ(w)(g1) belongs to W (g−1
1 ), hence it cannot be g1, and ρ(w), which is ρ(β)

by hypothesis, is not the identity automorphism of Fn. To prove the claim, we write

g1 • w = (...((g1 • w0) • σ1) • (w1 σ1 ... wp).

By construction, g1 • w0 is equal to g1. The image of the latter is g1g2g
−1
1 , hence an element of W (g−1

1 ).
From there, by Lemmas 3.13 and 3.14, the successive images remain words in W (g1).

The argument is symmetric when w contains at least one letter σ−1
1 and no letter σ1. Finally, if w

contains neither σ1 nor σ−1
1 , we similarly consider σ2 and σ−1

2 , i.e., we appeal to an induction on the
braid index. �

3.4. Another solution to the Braid Isotopy Problem.

Corollary 3.16.— The map ρ defines a complete braid isotopy invariant: two braid words w, w′ repre-
sent isotopic braid diagrams if and only if the automorphisms ρ(w) and ρ(w′) coincide.
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As an automorphism on a group is entirely determined by the images of the elements of a generating
family, we deduce a new method for solving the Braid Isotopy Problem.

Algorithm 3.17.— Input: Two n-strand braid diagrams D, D′;
Ouput: YES if D and D′ are isotopic, NO otherwise.

Method: - Encode D̃D′ into a braid word w;
- Compute the values of ρ(w)(g1), ..., ρ(w)(gn) as freely reduced words in the letters g±1

k ;
- If ρ(w)(gk) = gk holds for each k, return YES, otherwise return NO.

Example 3.18.— For w = σ−2
2 σ−2

1 σ2
2 σ2

1 as in Example III.1.23, we find

ρ(w)(g1) = g1g2g
−1
1 g3g1g

−1
2 g−1

1 ,

and we deduce w 6≡ ε, as the above freely reduced word is not g1.

The algorithmic complexity of Algorithm 3.17 is poor: for w of length ℓ, the length of the words ρ(w)(gk)
may be exponential in ℓ.

3.5. The Burau representation. The Artin representation gives a representation (= homomor-
phism) of n-strand braids in the group Aut(Fn). It is not hard to derive from this representation a linear
representation, i.e., a representation in a group of matrices. As this approach does not lead to a solution
of the Braid Isotopy Problem, we just mention the result without details.

Proposition 3.19.— For 1 6 i 6 n− 1, define the n× n-matrix ρB(σi) (with entries in Z[t, t−1]) by

(3.20) ρB(σi) = Ii−1 ⊗

(
1− t t

1 0

)
⊗ In−i−1.

Then ρB induces a well defined linear representation of Bn into GLn(Z[t, t−1]).

Proof. As said above, one can deduce ρB from the Artin representation using what is called the
Fox free differential calculus. However, one can also check by hand that the matrices defined in (3.20)
satisfy the braid relations. �

The linear representation of Proposition 3.19 is called the Burau representation. It is not directly
useful for the Braid Isotopy Problem, because, at least for n > 5, it is not a complete braid isotopy
invariant: different braids may have the same image under the Burau representation.

Let us mention that there exist other linear representations of braid groups, among which some
are faithful (i.e., injective), hence eligible for solving the Braid Isotopy Problem, namely the so-called
Lawrence–Krammer representation, which takes values in GLn(n−1)/2)(Z[t, t−1, q, q−1]).



CHAPTER V

The Dynnikov formulas

Here we present still another solution to the Braid Isotopy Problem. This solution relies on an intu-
ition of geometry, namely using triangulations of a surface, and it involves strange formulas constructed
on the operations max and + (the so-called tropical operations). Contrary to the solution based on the
Artin representation, it is quite efficient from the algorithmic viewpoint. The solution was proposed by
I. Dynnikov in 2000.

1. The formulas

What we shall do here is to describe the solution (which is very simple) first, and give the explanation
(which is not so simple) afterwards.

1.1. The Dynnikov coordinates. For x in Z, we put x+ = max(x, 0) and x− = min(x, 0).

Definition 1.1 (Dynnikov coordinates).— First we introduce deux functions F+ and F− of Z4 to Z4

by F+ = (F+
1 , ..., F+

4 ), F− = (F−

1 , ..., F−

4 ) with

F+
1 (x1, y1, x2, y2) = x1 + y+

1 + (y+
2 − z1)

+, F+
2 (x1, y1, x2, y2) = y2 − z+

1 ,

F+
3 (x1, y1, x2, y2) = x2 + y−

2 + (y−

1 + z1)
−, F+

4 (x1, y1, x2, y2) = y1 + z+
1 ,

F−

1 (x1, y1, x2, y2) = x1 − y+
1 − (y+

2 + z2)
+, F−

2 (x1, y1, x2, y2) = y2 + z−2 ,

F−

3 (x1, y1, x2, y2) = x2 − y−

2 − (y−

1 − z2)
−, F−

4 (x1, y1, x2, y2) = y1 − z−2 ,

where we put z1 = x1 − y−

1 − x2 + y+
2 and z2 = x1 + y−

1 − x2 − y+
2 .

Then one defines an action of n-strand braids on Z2n by

(a1, b1, ..., an, bn) • σe
i = (a′

1, b
′

1, ..., a
′

n, b′n)

with a′

k = ak et b′k = bk for k 6= i, i + 1, and

(a′

i, b
′

i, a
′

i+1, b
′

i+1) =

{
F+(ai, bi, ai+1, bi+1) for e = +1,

F−(ai, bi, ai+1, bi+1) for e = −1.

The Dynnikov coordinates of an n-strand braid word w are defined to be the sequence (0, 1, 0, 1, ..., 0, 1)•w.

Example 1.2.— Put w = σ−2
2 σ−2

1 σ2
2 σ2

1 once more. Then the Dynnikov coordinates of w turn out to be
(1,−19,−12, 9, 0, 13, 0, 1).

1.2. The main result. The above formulas look complicated, but they can be implemented very
easily, and, then, the computation is fast. The main result is

Theorem 1.3 (Dynnikov, 2000).— The coordinates of a braid word w only depend on the braid repre-
sented by w, and they characterize the latter.

In other words, the Dynnikov coordinates make a complete isotopy invariant. We immediately deduce
a new algorithm for solving the Braid Isotopy Problem.

Algorithm 1.4.— Input: Two n-strand braid diagrams D, D′;
Ouput: YES if D and D′ are isotopic, NO otherwise.

Method: - Encode D̃D′ into a braid word w;
- Compute the Dynnikov coordinates of w;
- If the latter are (0, 1, 0, 1, ..., 0, 1), return YES, otherwise return NO.

Example 1.5.— We saw above that the coordinates of σ−2
2 σ−2

1 σ2
2 σ2

1 are (1,−19,−12, 9, 0, 13, 0, 1). They
are not (0, 1, 0, 1, 0, 1, 0, 1), so the braid σ−2

2 σ−2
1 σ2

2 σ2
1 is not trivial.

39
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The integers that appear in Dynnikov coordinates may be very large. However, adding one more σ±1
i

cannot do more than adding three binary digits, because it involves only max operations, which do not
increase the size, and at most three additions, which in the worst case, increase the size by one digit
(that would be different if multiplication were involved). It follows that the global space complexity of
the method is linear, whereas the time complexity is quadratic, independently of the braid index n. (The
subword reversing method of Chapter III also has a quadratic complexity, but only for each fixed value
of the braid index n.)

2. Explanation

We shall now explain where do the strange formulas for the Dynnikov coordinates come from. As a
preliminary remark, we observe that, as in the case of the Artin representation of Chapter IV, once we
guessed the formulas for the action of σi, we can always check by hand that one obtains a representation
of braids, i.e., that the images of σiσi+1σi and σi+1σiσi+1 coincide (and the other cases too).

2.1. Laminations. As in Chapter IV, one starts with the isomorphism of the braid group Bn and
the mapping class group of the disk with n marked points, i.e., we see a braid as an isotopy class of
homeomorphisms of the disk that preserve the boundary circle pointwise and the marked points globally.

The new point here is that, instead of considering the action of the braid (actually, of the homeomor-
phism) on the loops that are the standard generators of π1(D

−
n ), we look at its action on the specific family

of curves L∗ displayed in Figure 1. Such families of disjoint curves are generically called laminations.

σ1

L∗ L∗ • σ1

Figure 1. The lamination L∗, a collection of n curves surrounding the marked points of the disk
Dn (here with n = 3), and its image under the braid (= homeomorphism) σ1. Note that L∗ is not
drawn inside the disk, but rather inside a larger surface that includes it, a sphere in the current case.

By doing this, we obtain a new lamination denoted β(L∗)—or better L∗ • β as we think of homeo-
morphisms as acting on the right (to obtain the expected order for the terms in a product).

2.2. Triangulations. The main idea is to describe laminations by counting their intersections with
a fixed triangulation of Dn—or rather of a 2-sphere in which Dn is embedded once for all.

A triangulation consists of a finite number of adjacent triangles that cover the considered surface,
here a 2-sphere, and are such that the intersection of any two triangles either is empty, or consists of one
edge. In the sequel, we use a specific triangulation, namely the triangulation T∗ displayed in Figure 2.
This triangulation T∗ has n+3 vertices, namely the n marked points of Dn, plus three points outside Dn,
one of which is considered to be at infinity, viewing the sphere S2 as a plane plus one point at infinity;
T∗ has 3n + 3 edges.

∞ ∞ ∞

6

3

4

2

2

1

0

3

2

1

3

0

6

4

4

3

2

1

0

2

3

1

3

0

Figure 2. The triangulation T∗. The shape of the triangles looks unusual, because one vertex is
at infinity, and some of them have two coinciding vertices (degenerate triangles). On the rigtht, we
count the intersections of the edges of T∗ with the curves of L∗ and of L∗ • σ1.
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Definition 2.1 (T∗-coordinates).— Fix a numbering e1, ..., e3n+3 of the edges of T∗. Then the T∗-
coordinates of a lamination is the length 3n + 3 sequence of natural numbers whose kth entry is the
number of intersections between the curves of the lamination and the edge ek.

This definition is not well posed. To obtain a number that is intrinsic and only depends on the
homotopy type of the lamination, we must assume that the curves of the lamination are transversal to
the edges of T∗, and there is no digon, which are those domains that arise when a curve has two adjacent
intersections with the same edge. When this is done carefully, one obtains number that characterize the
lamination up to homotopy.

Dynnikov’s idea is to define coordinates for a braid β by comparing the T∗-coordinates of the lami-
nations L∗ and L∗ • β. For an induction, the problem is to express, for each lamination L (not only L∗),
the T∗-coordinates of L • σi in terms of the T∗-coordinates of L. Here comes Dynnikov’s trick.

Lemma 2.2.— For each lamination L, the T∗-coordinates of L • σi are the (T∗ • σ−1
i )-coordinates of L.

Proof. As σi is a homeomorphism, it is in particular a bijection, so, for every curve γ and every
edge e of a tringulation T , the number of intersections of γ • σi and e • σi is the same as the number of
intersections of γ and e. So the (T∗ • σ−1

i )-coordinates of L are the ((T∗ • σ−1
i ) • σi)-coordinates of L • σi,

i.e., the T∗-coordinates of L • σi. �

2.3. Flips. Hence the problem becomes that of comparing the coordinates of a given lamination L
with respect to the two triangulations T∗ and T∗ • σ−1

i . This is easy. Indeed, it is known that one can
always go from one triangulation to another one using a finite sequence of flips.

Definition 2.3 (flip).— Assume that T, T ′ are triangulations of some surface. One says that T ′ is
obtained by flipping the edge e in T if e is the common edge of two triangles t1, t2 of T and T ′ is obtained
by removing e and adding the other diagonal e′ of the quadrilateral made by the triangles t1 and t2, see
Figure 3).

Figure 3. A flip: exchanging the diagonals in the quadrilateral made by two adjacent triangles.

Hence, on can certainly go from T∗ to T∗ • σ−1
i by a finite sequence of flips.

Lemma 2.4.— One goesfrom T∗ to T∗ • σ−1
i using the four flips of Figure 4.

Figure 4. Going from T∗ to T∗ • σ−1

i
by a sequence of four flips; because of the point at infinity

and of the degenerate triangles, it is not obvious at first that the steps are flips, but they are?

At this point, it only remains to investigate the action of one flip on the T∗-coordinates of a lamination.
This is where the strange formulas involving tropical operations arise.

Lemma 2.5.— Assume that C is a family of non-intersecting curves drawn on a triangulated surface,
and x1, ..., x4, x, x′ are the intersection numbers of C with the edges e1, ..., e4, e, e

′ of Figure 5. Then one
has

x + x′ = max(x1 + x3, x2 + x4).
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Proof. Decompose the numbers xk so as to count how many curves enter through the edge ei and
exit through the edge ej . The point is that the curves are non-intersecting, so, if there is a curve entering
through e2 and exiting through e4, so curve may enter through e1 and exit e3. �

e1

e2

e4

e3

e

e1

e2

e4

e3

e′

Figure 5. Relation between the intersection numbers of a family of non-intersecting curves with
the edges of a triangulation when one flip is performed. Here we have x1 = 4, x2 = 5, x3 = 2,
x4 = 3, x = 3, and x′ = 5, and we find 3 + 5 = max(4 + 2, 5 + 3).

Building on Lemma 2.5, one expresses the (T∗ • σ−1
i )-coordinates of L in terms of its T∗-coordinates.

By Lemma 2.2, one deduces a formula expressing the 3n + 3 T∗-coordinates of L • σi in terms of the
T∗-coordinates of L. These are not yet the Dynnikov formulas, but almost. By choosing convenient
differences, one defines from the 3n + 3 coordinates 2n integers called the reduced T∗-coordinates, and,
then, the formulas for the reduced coordinates are exactly those of Definition 1.1. We skip details.

2.4. Completeness of Dynnikov’s formulas. We conclude with an argument showing that the
Dynnikov coordinate do characterize the involved braid, i.e., that Algorithm 1.4 actually solves the Braid
Isotopy Problem.

Proposition 2.6.— Every nontrivial braid has nontrivial Dynnikov coordinates.

Proof. As in the case of the Artin representation, we use as a black box the result that every
nontrivial braid admits an expression by a braid word in which the generator σi with minimal index
occurs only positively (no σ−1

i ) or negatively (no σi). So the point is to prove that, if w is a braid word

that contains at least one σ1 and no σ−1
1 , then the Dynnikov coordinates of w are not (0, 1, ..., 0, 1). We

prove the more precise result a1 > 0.
Write w as w0σ1w1σ1...σ1wp where there is no σ−1

1 in the words wk. Let us follow the first coordinate a1

when the successive letters of w are taken into account. By definition, we start with a1 = 1. As long as
we are inside w0, the first two coordinates do not change, so they remain 0, 1. When we pass the first
letter σ1, the coordinate a1 changes according to a formula of the form

a1 + (b1 + c+)+ = 0 + (1 + c+)+ > 1,

so the new value is positive. Then the explicit formulas show that the value of a1 cannot decrease when
we apply further letters σ1 or σ±1

i with i > 2. �



CHAPTER VI

Handle reduction

We describe a new solution to the Braid Isotopy Problem called handle reduction. This method has
a very simple combinatorial description, but it relies on the geometric properties of the so-called Cayley
graph associated with the braid groups, and with some underlying order properties. The specificity of
the method is that it is extremely efficient in practice—but, at the moment, there is no theoretical proof
of that efficiency: the only proved upper bound for the complexity is exponential with respect to the
length of the initial braid word, whereas extensive computer experiments suggest a much lower value.

1. The main result

For each n, the identity mapping on {σ1, ..., σn−1} induces an embedding of Bn into Bn+1, so that
the groups Bn naturally arrange into an inductive system of groups, and the limit is denoted by B∞:
this is just the group generated by an infinite family σ1, σ2, ... subject to the relations (II.3.10).

The elements of the group B∞ are represented by words in the letters σ±1
i , which will be called

braid words. In the sequel, we mainly deal with braid words (not braids). If w is a braid word, we
denote by w the braid represented by w. Two braid words w, w′ representing the same braid are called
equivalent, written w ≡ w′. A braid word w of length ℓ is viewed as a length ℓ sequence of letters. For
1 6 p 6 q 6 ℓ, the word obtained from w by deleting all letters before position p and after position q is
called the (p, q)-subword of w. A prefix of w is a (1, q)-subword of q, i.e., a subword that starts at the
first letter of w.

Definition 1.1.— Assume that w is a nonempty braid word. We say that σm is the main letter of w if
σ±1
m occurs in w, but no σ±1

i with i > m does. We say that w is σ-positive (resp.σ-negative) if the main
letter σm of w occurs only positively (resp.negatively) in w, i.e., σm occurs in w but σ−1

m does not.

Our aim is to prove

Proposition 1.2.— [?, ?] Every braid word is equivalent to a word that is either empty, or σ-positive,
or σ-negative.

The proof given below relies on the following notion.

Definition 1.3.— We say that a braid word v is a σi-handle of sign + (resp.−) if v is σiuσ−1
i (resp.σ−1

i uσi)

with u containing no letter σ±1
j with j > i; we say that v is a good σi-handle if, in addition, at least one

of the letters σi−1, σ−1
i−1 does not occur in u, i.e., no subword of v is a σi−1-handle.

Thus Proposition 1.2 claims that every braid word w with main letter σm is equivalent to a braid
word w′ containing no σm-handle, this meaning that no subword of w′ is a σm-handle.

A premilinary remark is that each word containing a handle contains a good handle.

Definition 1.4.— Let w be a braid word. We say that v is the first handle in w if v is a handle,
there exist p, q such that v is the (p, q)-subword of w, and there exist no p′, q′ with q′ < q such that the
(p′, q′)-subword of w is a handle.

Thus the first handle in a word w that contains a handle is the one that is first completed when one
starts reading w from the left.

Lemma 1.5.— Assume that w is a braid word containing at least one handle. Then the first handle
in w is good.

Proof. Let q be minimal such that the length q prefix w′ of w contains a handle. By hypothesis,
there exists p such that the (p, q)-subword of w is a handle, say σe

i uσ−e
i , and, by construction, this handle

is the first handle in w. We claim that this handle is good. Indeed, the contrary would mean that there
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exist p′, q′ < q such that the (p′, q′)-subword of w is a σi−1-handle, which implies that the length q′ prefix
of w contains a handle and contradicts the choice of q. �

Thus, in order to prove Proposition 1.2, it is sufficient to prove that every braid word is equivalent
to a braid word that contains no good handle.

2. Handle reduction

Our task is to get rid of good handles. We do that using an iterative process, called handle reduction,
that gets rid of the first handle and is repeated until no handle is left.

Definition 2.1.— (i) Assume that v is a good σi-handle, say v = σe
i uσ−e

i . The reduct of v is defined

to be the word obtained from u by replacing each letter σi−1 with σ−e
i−1σiσ

e
i−1, and each letter σ−1

i−1 with

σ−e
i−1σ

−1
i σe

i−1.
(ii) Assume that w is a braid word that contains at least one handle. Then red(w) denotes the word

obtained from w by replacing the first handle by its reduct.

We write redk(w) for red(red(...(red(w))...)), red repeated k times, when the latter word exists; each

word of the form redk(w) is said to be obtained from w by first handle reduction.

Remark 2.2.— (i) One can introduce a similar reduction process for an arbitrary good handle, not
necessarily the first one. All results established below extend to this general handle reduction. The only
difference is that the latter is not deterministic in general, i.e., there may be more than one way to reduce
a given initial word.

(ii) Each braid word σiσ
−1
i and σ−1

i σi is a good handle, and its reduct is the empty word ε. Thus
handle reduction extends free group reduction.

The first, obvious result about handle reduction is:

Lemma 2.3.— Each good handle is equivalent to its reduct.

Proof. Make a picture. �

Hence, Proposition 1.2 follows from the convergence (or termination) of first handle reduction as
stated in

Proposition 2.4.— For every braid word w, there exists k such that redk(w) contains no handle.

Indeed, assume that w is a braid word and redk(w) contains no handle. Then, by Lemma 1.5, the

word redk(w) is either empty, or σ-positive, or σ-negative, and, by Lemma 2.3, the words w and redk(w)
are equivalent.

Our task from now will be to prove Proposition 2.4, i.e., to prove the convergence of first handle
reduction. The proof relies on three auxiliary results, called Main Lemmas A, B, and C.

3. Main Lemma A

The key notion is the notion of a braid word drawn in some subset of the braid group.

Definition 3.1.— Assume X ⊆ B∞, and a ∈ X . We say that a braid word w is drawn from a in X if,
for each prefix u of w, the braid au belongs to X .

It is useful to think of X as the subgraph of the Cayley graph of the group B∞ obtained by restricting
the vertices to the elements of X and keeping those edges that connect two vertices in X . Then saying
that w is drawn from a in X means that, starting from the vertex a, there exists inside X a path labeled
by w. When X is the whole Cayley graph of B∞, then every word is drawn from every vertex in X , but,
when X is a proper subgraph, the condition of being drawn becomes nontrivial. Observe that, even if
X is finite, arbitrary long words may be drawn in X : for instance, if X consists of 1 and σ1, then, for
every k, the word (σ1σ

−1
1 )k is drawn from 1 in X .

As usual, B+
∞ denotes the submonoid of B∞ generated by the elements σi. An element of B+

∞ is
called a positive braid.
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Definition 3.2.— If a, b are braids, we say that a is a left divisor of b, denoted a ≺ b, if b = ax holds
for some x in B+

∞. For b in B+
∞, we denote by Div(b) the family of all left divisors of b in B+

∞, i.e., the
set of all braids x satisfying 1 ≺ x ≺ b.

Garside’s theory shows that the relation ≺ is a partial ordering on B∞ and that any two elements
of B∞ admit a lower bound (greatest common left divisor) and an upper bound (least common right
multiple) with respect to ≺.

Main Lemma A.— For each braid word w, there exist two positive braids a, b such that every word
of the form redk(w) is drawn from a in Div(b).

Main Lemma A follows from two results:

Lemma 3.3.— For each braid word w, there exist two positive braids a, b such that w is drawn from a
in Div(b).

Lemma 3.4.— Assume that w is drawn from a in Div(b). Then so is red(w), when it exists.

Proof of Lemma 3.3. Assume that w has length ℓ and main letter σm. For p 6 ℓ, let wp be the
length p prefix of w. Garside’s theory implies that, for each p, there exist integers dp, ep > 0 satisfying

1 ≺ ∆
dp

m+1wp ≺ ∆
dp+ep

m+1 . Let d := max{d1, · · · , dp} and e := max{e1, · · · , ep}. Then, for each p, we have

1 ≺ ∆d
m+1wp ≺ ∆d+e

m+1, which means that w is drawn from ∆d
m+1 in Div(∆d+e

m+1). �

The proof of Lemma 3.4 consists in decomposing handle reduction into more elementary transforma-
tions and showing that the words drawn from a in Div(b) are closed under these elementary transforma-
tions.

Definition 3.5.— Let w, w′ be braid words. We say that w′ is obtained from w by a type 1, 2, 3, or 4
transformation if w′ is obtained from w by replacing some subword of the following type by the associated
one:

- type 1: σiσj 7→ σjσi with |i− j| > 2;

- type 2: σ−1
i σ−1

j 7→ σ−1
j σ−1

i with |i− j| > 2;

- type 3: σ−1
i σj 7→ σjσ

−1
i with |i− j| > 2,

or σ−1
i σj 7→ σjσiσ

−1
j σ−1

i with |i− j| = 1,

or σ−1
i σi 7→ ε;

- type 4: σiσ
−1
j 7→ σ−1

j σi with |i− j| > 2,

or σiσ
−1
j 7→ σ−1

j σ−1
i σjσi with |i− j| = 1,

or σiσ
−1
i 7→ ε.

Then Lemma 3.4 follows from the next two results:

Lemma 3.6.— From each braid word w such that red(w) exists, one can go from w to red(w) by a finite
sequence of type 1–4 transformations.

Lemma 3.7.— Assume that w is drawn from a in Div(b), and w′ is obtained from w by a transformation
of type 1–4. Then w′ is drawn from a in Div(b).

Proof of Lemma 3.6. The point is to prove that, if v is a good handle, and v′ is its reduct, then
one can go from v to v′ by composing types 1–4 transformations. By definition, there exist exponents
e, d = ±1 such that v has the form

(3.8) v = σe
i u0 σd

i−1 u1 · · · ur−1 σd
i−1 ur σ−e

i ,

where u0, · · · , ur contain only letters σ±1
j with j 6 i− 2, and we have then

(3.9) v′ = u0 σ−e
i−1σ

d
i σe

i−1 u1 · · · ur−1 σ−e
i−1σ

d
i σe

i−1 ur.

Assume first d = 1, e = −1. The involved words are

v = σ−1
i u0 σi−1 u1 · · · ur−1 σi−1 ur σi,

v′ = u0 σi−1σiσ
−1
i−1 u1 · · · ur−1 σi−1σiσ

−1
i−1 ur .
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The principle is to use type 2 and 3 transformations to let the initial letter σ−1
i in v migrate to the right

until it reaches to the final letter σi. First, σ−1
i crosses u0 using type 3 transformations for the positive

letters in u0, and type 2 transformations for the negative ones. In this way, we reach the word

u0 σ−1
i σi−1 u1 · · · ur−1 σi−1 ur σi.

One more type 3 transformation lets σ−1
i cross σi−1, resulting in the word

u0 σi−1σiσ
−1
i−1σ

−1
i u1 · · · ur−1 σi−1 ur σi.

The same process lets σ−1
i cross u1, and the next σi−1, and, after r such steps, we reach the word

u0 σi−1σiσ
−1
i−1 u1 · · · ur−1 σi−1σiσ

−1
i−1 ur σ−1

i σi,

and a final type 3 transformation leads to the expected word v′.
The argument for the case d = −1, e = +1 is similar, with transformations of type 1 and 4 instead

of 2 and 3.
For the case d = 1, e = 1, the argument is symmetric, i.e., we start with the final letter σ−1

i and let
it migrate to the left, using transformations of type 2 and 4.

Finally, the case d = e = −1 is similar, with transformations of type 1 and 3 instead of 2 and 4. �

Proof of Lemma 3.7. We assume that w is drawn from a in Div(b), and that w′ is obtained from w
by one type 1 transformation. This means that there exist words w1, w2 and letters σi, σj with |i− j| > 2
satisfying

w = w1 σiσj w2 and w′ = w1 σjσi w2.

Our task is to show that, for every prefix u of w′, the braid au belongs to Div(b). By construction, all
prefixes of w′ are prefixes of w, except u1 = w1σj . The question is to show 1 ≺ au1 ≺ b. Let c = aw1

and d = aw1σiσj . By construction, we have c ≺ au1 ≺ d, and it is sufficient to show 1 ≺ c and d ≺ b.

Now the latter relations directly follow from the hypothesis that w is drawn from a in Div(b), as w1 and
w1σiσj are prefixes of w. So w′ is drawn from a in Div(b).

Consider now a type 2 transformation. By definition, we have

w = w1 σ−1
i σ−1

j w2 and w′ = w1 σ−1
j σ−1

i w2,

again with |i− j| > 2. The only prefix of w′ that is not a prefix of w is u1 = w1σ
−1
j . Let c = aw1σ

−1
i σ−1

j ,
and d = aw1. By construction, we have c ≺ au1 ≺ d, and, once again, it is sufficient to show 1 ≺ c and
d ≺ b. The latter relations follow from the hypothesis that w is drawn from a in Div(b), as w1σ

−1
i σ−1

j

and w1 are prefixes of w. So w′ is drawn from a in Div(b).
We turn to type 3, and consider the case

w = w1 σ−1
i σj w2 and w′ = w1 σjσiσ

−1
j σ−1

i w2

with |i− j| = 1. The other two cases, namely |i− j| > 2 and i = j, are similar and easier. Three prefixes
of w′ are not prefixes of w, namely u1 = w1σj , u2 = w1σjσi, and u3 = w1σjσiσ

−1
j . Let c = aw1σ

−1
i , and

d = aw1σjσi. By construction, we have c ≺ auk ≺ d for k = 1, 2, 3, and, here again, it suffices to prove

1 ≺ c and d ≺ b. Now 1 ≺ c follows from the hypothesis that w is drawn from a in Div(b), as w1σ
−1
i is

a prefix of w. On the other hand, the hypothesis that both cσi and cσj are left divisors of b implies that
their least common multiple, which is d, is also a divisor of b. So w′ is drawn from a in Div(b).

Finally, consider type 4. We consider the case of

w = w1 σiσ
−1
j w2 and w′ = w1 σ−1

j σ−1
i σjσi w2

with |i − j| = 1. Three prefixes of w′ fail to be prefixes of w, namely u1 = w1σ
−1
j , u2 = w1σ

−1
j σ−1

i ,

and u3 = w1σ
−1
j σ−1

i σj . Let c = aw1σ
−1
j σ−1

i , and d = aw1σi. By construction, we have c ≺ auk ≺ d for
k = 1, 2, 3. So the point again is to check the relations 1 ≺ c and d ≺ b. The latter directly follows from
the hypothesis that w is drawn from a in Div(b) since w1σi is a prefix of w. On the other hand, w1 and
w1σiσ

−1
j are prefixes of w, hence the hypothesis that w is drawn from a in Div(b) implies that 1 is a left

divisor both of dσ−1
i and dσ−1

j , hence it is left divisor of their greatest common left divisor, which is c.

Once again, w′ is drawn from a in Div(b). �

Thus the proof of Main Lemma A is complete.
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4. Main Lemma B

Main Lemma B enables one to convert the geometric boundedness result of Main Lemma A (all
words obtained by handle reduction remain drawn in some finite subset of the braid monoid B+

∞) into
an actual finiteness result.

Main Lemma B.— A σ-positive word is not equivalent to the empty word.

Proof. The result has been proved in Chapter IV, in the course of establishing Theorem IV.??.
Indeed, what we proved is that, if a braid word w contains at least one letter σ1 and no letter σ−1

1 , then
the associated Artin automorphism is not the identity and, therefore, the word w cannot represent the
unit braid. As mentioned above, using the flip aitomrphism Φn, we deduce that, symmetrically, the Artin
automorphism associated with a σ-positive word is not the identity, hence that a σ-positive word cannot
be equivalent to the empty word. �

Corollary 4.1.— Assume that a, b are positive braids and w is a σ-positive braid word drawn from a
in Div(b). Then the number of occurrences of the main letter of w is at most the cardinality of Div(b).

Proof. Assume that the main letter σm of w occurs r times in w. Let u1, . . . , ur be the prefixes of w
such that uj finishes just before the jth letter σm in w. By hypothesis, all braids auj belong to Div(b).
Now j < j′ implies auj 6= auj′ : indeed, by construction, we have uj′ = ujv, where v contains at least
one letter σm, and no letter σ−1

m , so, by Main Lemma B, the braid v is not 1. Hence au1, . . . , aur are
pairwise distincts elements of Div(b), and, therefore, we have r 6 card(Div(b)). �

5. Main Lemma C

The last ingredient is a monotonicity result actually showing that some parameter either always
increases or always decreases when first handle reductions are performed. Here we give the argument
without mentioning the order phenomenon explicitly.

Definition 5.1.— Assume that w is a braid word with main letter σi. We denote by h(w) the number
of σi-handles in w, and, assuming h(w) > 1, we denote by e(w) the sign of the first σi-handle in w and
by P (w) the prefix of w that finishes with the first letter of the first σi-handle of w.

Main Lemma C.— Assume that w is a braid word drawn from a in Div(b) containing at least one
handle, that the main letter of w is σm and that the first handle in w is a σi-handle. Let w′ be obtained
from w by reducing the first handle of w. Then three cases are possible:

Case 1: h(w′) = h(w) = 0;
Case 2: h(w′) < h(w);
Case 3: h(w′) = h(w) > 1.

Moreover, in Case 3, we have e(w′) = e(w), and there exists a word γ(w) satisfying

(a) the word γ(w) is drawn from aP (w) in Div(b),
(b) we have P (w′) ≡ P (w)γ(w),
(c) if i < m holds, then γ(w) is empty,

(d) if i = m holds, then γ(w) contains one letter σ
−e(w)
i and no letter σ

e(w)
i .

Proof. Let w∗ be the word obtained from w by deleting all letters σ±1
i with i < m. Then w∗

consists of an alternating sequence of blocks of σm and σ−1
m . We define the profile Π(w) of w to be the

finite sequence made by the sizes of these blocks. For instance, for w = σ2σ1σ2σ
−1
1 σ−1

2 σ2σ2σ2σ1, the main

letter of w is σ2, we have w∗ = σ2σ2σ
−1
2 σ2σ2σ2, and Π(w) = (2, 1, 3) as w∗ consists of two σ2’s, followed by

one σ−1
2 , followed by three σ2’s. The σm-handles in w correspond to the sign alternations in the exponents

of the letters σm and, therefore, Π(w) is a sequence of length h(w) + 1.
If w contains no σm-handle, i.e., if Π(w) is a length 1 sequence, then one goes from w to w′ by

reducing some σi-handle wit i < m, and w′ contains no σm-handle either. So we are in Case 1.
From now on, we assume h(w) > 1. Then Π(w) is some sequence (r, s, . . . ) of length > 2, and the

generic form of w is

(5.2) w = v0 σme v1 σme · · · vr−2 σme vr−1 σme vr σm−e vr+1 σm−e · · · ,

where the v words contain no σ±1
m and the underlined subword is the first σm-handle in w. With this

notation, we have P (w) = v0σme · · · vr−1σme.
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Assume first i < m, i.e., the first handle in w is not the underlined σm-handle. Then the reduction
from w to w′ occurs inside one of the words v0, . . . , vr, i.e., it consists in replacing some subword vj with
the corresponding word red(vj). In this case, we have Π(w′) = Π(w), and, therefore, h(w′) = h(w) and
e(w′) = e(w). Moreover, P (w′) is either equal to P (w) (case j = r), or obtained from P (w) by replacing
the subword vj with red(vj) (case j < r). In all cases, P (w′) ≡ P (w) holds, and all requirements of
Case 3 are fulfilled with γ(w) = ε (the empty word).

Assume now i = m, i.e., w′ is obtained from w by reducing the underlined σm-handle of (5.2). We
compare the profiles of w′ and w according to the letters σ±1

m−1 possibly occurring in vr. The hypothesis

that the word σmevrσm−e is a good handle implies that σm−1 and σ−1
m−1 do not simultaneously occur

in vr, and, therefore, the latter can be written as

u0 σm−1d u2 σm−1d · · · ut−1 σm−1d ut

for some t > 0, d = ±1, and the u words containing no σ±1
m or σ±1

m−1.

Assume first t = 0, i.e., vr contains no σ±1
m−1. Then the reduct of σmevrσm−e is vr, so here reduction

amounts to deleting the underlined letters σme and σm−e of (5.2). Hence, Π(w′) is the sequence obtained
from (r − 1, s− 1, · · · ) by possibly regrouping entries if some zero value appears. Therefore, in all cases,
we have h(w′) 6 h(w), and equality holds if and only if we have r > 2 and s > 2. The latter case
corresponds to

(5.3) w′ = v0 σme v1 σme · · · vr−2 σme vr−1 vr vr+1 σm−e · · · ,

in which the new first σm-handle is underlined. We read on (5.3) the relations e(w′) = e(w) = e and
P (w′) = v0σme · · · vr−2σme, and, therefore,

P (w) = P (w′)vr−1σme.

We deduce P (w′) ≡ P (w) σm−ev−1
r−1, which gives the expected properties for γ(w) = σm−ev−1

r−1, as, by

construction, the word γ(w) is drawn from aP (w) in Div(b) since vr−1σme is a suffix of P (w), which by
hypothesis is drawn from a in Div(b).

Assume now t > 1 with d = −e, i.e., the letter σm−1−e occurs in the handle vr. Then each
letter σm−1−e in vr gives rise to a letter σ−e

m in the reduct of vr, hence in w′. Hence Π(w′) is the sequence
obtained from (r− 1, s− 1 + t, · · · ) by possibly regrouping entries if some zero value appears. Therefore,
in all cases, we have h(w′) 6 h(w), and equality holds if and only if we have r > 2. The latter case
corresponds to

(5.4) w′ = v0 σme v1 σme · · · vr−2 σme vr−1 u0 σm−1−eσm−eσm−1e u1 · · · ,

in which the new first σm-handle is underlined. We read on (5.4) the relations e(w′) = e(w) = e and
P (w′) = v0σme · · · vr−2σme, hence P (w) = P (w′)vr−1σme as above, and we conclude exactly as in the
previous case.

Finally, assume t > 1 with d = e, i.e., the letter σm−1e occurs in the handle vr. Each letter σm−1e
in vr gives rise to a letter σ−e

m in the reduct of vr, hence in w′. It follows that the profile of w′ is the
sequence obtained from (r − 1 + t, s− 1, · · · ) by possibly regrouping entries if some zero value appears.
Therefore, in all cases, we have h(w′) 6 h(w), and equality holds if and only if we have s > 2. Writing v
for v0σme · · · vr−1, the latter case corresponds to

(5.5) w′ = v u0 σm−1−eσmeσm−1e u1 · · · ut−1 σm−1−eσmeσm−1e ut vr+1 σm−e · · ·

in which the new first σm-handle is underlined. We read on (5.5) the relation e(w′) = e(w) = e. Moreover,
with our notations, we have P (w) = vσme, and (5.5) gives

P (w)vrσm−e ≡ P (w′)σm−1eut.

We deduce P (w′) ≡ P (w) vrσm−eu−1
t σm−1−e, which gives the expected properties for γ(w) = vrσm−eu−1

t σm−1−e,

as the word γ(w) is drawn from aP (w) in Div(b). Indeed, w is drawn from a in Div(b) by hypothesis

and P (w)vrσm−e is a prefix of w, hence vrσm−e is drawn from aP (w) in Div(b); on the other hand, by
Main Lemma A, w′ is drawn from a in Div(b) too, and P (w′)σm−1eut is a prefix of w′, hence u−1

t σm−1−e

is drawn from aP (w′)σm−1eut, which is also aP (w)vrσm−e, in Div(b). So γ(w) is drawn from aP (w)
in Div(b), and the proof is complete. �

We are now ready to conclude, i.e., to prove Proposition 2.4.

Proof of Proposition 2.4. We prove the following result using induction on m > 1:

For every braid word w with main letter σm, there exists k such that redk(w) contains

no handle (and therefore redk+1(w) does not exist).
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For m = 1, the only possible letters in w are σ1 and σ−1
1 , handle reduction is a free group reduction, and

the result is clear, with k at most the half of the length of w.
Assume m > 2, and assume for a contradiction that w is a braid word with main letter σm such that

redk(w) exists for every k. We write wk for redk(w).
By Main Lemma C, the numbers h(wk) make a nonincreasing sequence, hence the latter must be

eventually constant. So, at the expense of possibly deleting the first wk’s, we can assume that there
exists h such that h(wk) = h holds for every k.

By hypothesis, wk+1 is obtained from wk by reducing its first handle, which is either a σm-handle, or
a σi-handle for some i < m. Let K be the set of all k’s such that the first handle in wk is a σm-handle.

Firstly, we claim that K is infinite. Indeed, let k be any nonnegative integer. Then we can write

wk = v0 σme v1 σme v2 · · · vr−1 σme vr v

where v either begins with σm−e (case h > 0) or is empty (case h = 0). By construction, the main letter
of each of the words vj is σm′ with m′ < m. Hence, by induction hypothesis, there exists for each j an

integer kj such that redkj (vj) contains no handle. Let k′ = k + k0 + · · ·+ kr. Then, by construction, we
have

wk′ = redk0(v0) σme redk1(v1) σme v2 · · · redkr−1(vr−1) σme redkr (vr) v.

If v were empty, wk′ would contain no handle, contradicting our hypothesis that the sequence (wk)k>0

is infinite. Hence v begins with σm−e, and the first handle in wk′ is a σm-handle. Thus we found an
element k′ of K which is > k, and K is infinite.

On the other hand, we claim that K is finite, thus getting the expected contradiction. Indeed, let
a, b be positive braids such that w, hence, by Main Lemma A, all words wk are drawn from a in Div(b).
We apply Main Lemma C to wk. By hypothesis, we always are in Case 3. Let e be the common value
of e(wk) for all k, and let γ be the (infinite) word γ(w0)γ(w1) . . . . By construction, the word γ is drawn

from aP (w) in Div(b), it contains no letter σme, and it contains exactly one letter σm−e for each k in K.
By Main Lemma B, the number of such letters, and therefore the cardinal of K, is at most the cardinal
of Div(b). In particular K is finite.

Hence the existence of a word w with main letter σm such that redk(w) exists for every k is a
contradictory assumption, and the proof is complete. �





CHAPTER VII

The greedy normal form

We now consider a solution to the Braid Isotopy Problem of a completely if and only iferent type,
namely a solution based on a normal form approach: a braid is an equivalence class of braid words and
we shall choose in each equivalence class a distinguished word called normal. Then, by construction, a
braid word represents the trivial braid if and only if it is equal to the unique normal word that represents
the trivial braid (usually the empty word, but this is not necessary). Equivalently, two braid words w, w′

are equivalent if and only if the (unique) normal words w̃, w̃′ that are equivalent to w and w′ coincide.
Of course, this gives an algorithmic solution only if the procedure that chooses the distinguished element
in each equivalence class is itself effective.

In the case of braid groups, several normal forms have been constructed. Here we consider one that
relies on Garside’s results of Chapter III and was discovered by several researchers about at the same
time (Adjan, Thurston, ElRifai and Morton), called the greedy normal form. Its specific interest is that
it enjoys many nice combinatorial properties, in particular those involved for a bi-automatic structure.

1. Summary of previous results

1.1. Braid groups. We recall that the n-strand braid group Bn is defined for n > 1 by the presen-
tation

(1.1) Bn =

〈
σ1, ..., σn−1

∣∣∣∣
σiσj = σjσi for |i− j| > 2

σiσjσi = σjσiσj for |i− j| = 1

〉
.

So, B1 is a trivial group {1}, while B2 is the free group generated by σ1. The elements of Bn are called
n strand braids, or simply n-braids. We use B∞ for the group generated by an infinite sequence of σi’s
subject to the relations of (1.1), i.e., the direct limit of all Bn’s under the inclusion of Bn into Bn+1.

By definition, every n-braid x admits (infinitely many) expressions in terms of the generators σi and
their inverses. Such a expression is called an n strand braid word. Two braid words w, w′ representing
the same braid are said to be equivalent, denoted w ≡ w′; the braid represented by a braid word w is
denoted w. By definition, two words w, w′ are equivalent if and only if one can go from w to w′ by a
finite sequence of elementary transformations of the following types:

- replacing a subword σiσj with |i− j| > 2 with the corresponding word σjσi,

- replacing a subword σiσjσi with |i− j| = 1 with the corresponding word σjσiσj ,

- deleting a subword σiσ
−1
i or σ−1

i σi,

- inserting a word of the form σiσ
−1
i or σ−1

i σi.
By definition, solving the Word Problem for the group presentation (1.1)—one sometimes simply say
“solving the Word Problem for Bn”—means describing an algorithm that, given an arbitrary braid
word w, decides whether w represents 1 in the group Bn.

1.2. Braid diagrams. One associates with every n strand braid word w an n strand braid diagram
by stacking elementary diagrams associated with the successive letters according to the rules

σi 7→

1 2 i i+1

... ...

σ−1
i 7→ ... ...

Then two braid words are equivalent if and only if the diagrams they encode are the projections of ambient
isotopic figures in R3, i.e., one can deform one diagram into the other without allowing the strands to
cross or moving the endpoints (see details in Chapter II).

It follows that the Word Problem for the presentation (1.1) of Bn is equivalent to solving the n-
strand Braid Isotopy Problem, i.e., the problem of recognizing whether a given n-strand braid diagram
is isotopic to the trivial diagram (the one with no crossing) or not.

51
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1.3. Braid monoids. For each n, one introduces the monoid1 B+
n that admits, as a monoid, the

presentation (1.1). The elements of B+
n are called positive n-braids.

By construction, the elements of B+
n are represented by braid words that contain no letter σ−1

i : such
words are called positive braid words. Two positive braid words w, w′ represent the same element of the
monoid B+

n , denoted w ≡+ w′, if and only if one can go from w to w′ by a finite sequence of elementary
transformations of the following types:

- replacing a subword σiσj with |i− j| > 2 with the corresponding word σjσi,
- replacing a subword σiσjσi with |i− j| = 1 with the corresponding word σjσiσj ,

i.e., the same transformations as for braid word equivalence, but without using the inverses of the
generators σi. It is clear that, if w, w′ are positive braid words, w ≡+ w′ implies w ≡ w′, but the contrary
is not clear at all: one might be able to go from w to w′ by introducing some auxoliary pairs σiσ

−1
i or

σ−1
i σi that subsequently vanish but be unable to do it without introducing such pairs. This does not

happen: we proved in Chapter III (Corollary III.2.24)

Proposition 1.2.— The relation ≡+ is the restriction of the relation ≡ to positive braid words: for all
positive braid words w, w′ one has

(1.3) w ≡+ w′ ⇔ w ≡ w′.

The proof is delicate and requires long developments.
By contrast, a trivial but useful fact is that, because the relations in (1.1) have the property that,

in each case, both sides are words with the same length, then w ≡+ w′ always implies that the length of
the word w is equal to the length of the word w′, denoted |w| = |w′|. It follows that the length function
induces a well defined function on the braid monoid B+

n : for x a positive braid, we denote by |x| the
length of every positive braid word that represents x, and call it the length of x. The following results
are then easy.

Proposition 1.4.— (i) The length function is a homomorphism of B+
n to N that takes σi to 1 for each i.

(ii) The trivial braid 1 is the only positive braid with length zero.
(iii) For each n, and for each number ℓ, there exists only finitely many positive braids x in B+

n

satisfying |x| 6 ℓ.

Proof. Point (i) directly follows from the definition. For (ii), the empty word is the only word
with length zero. As for (iii), such a positive braid has to be represented by at least one word of length
at most ℓ on the finite alphabet {σ1, ..., σn−1}, and the number of such words is at most 1 + (n− 1) +

(n− 1)2 + · · ·+ (n− 1)ℓ. �

2. The lattice structure of B+
n

2.1. The left-divisibility relation on positive braids. First we recall the notion of left- and
right-divisiblity in the monoid B+

n .

Definition 2.1 (left-divisor, right-multiple).— For x, y in B+
n , we say that x is a left-divisor of y,

denoted x 4 y, or, equivalently, that y is a right multiple of x, if y = xz holds for some z in B+
n . We

denote by Div(y) the (finite) set of all left-divisors of y in B+
n .

Note that x is a (left) divisor of y in the sense of B+
n if and only if it is a (left) divisor in the sense

of B+
∞, so there is no need to specify the index n.

Lemma 2.2.— For each n, the left-divisibility relation is an ordering2.

Proof. The only point that is not completely obvious (check the others!) is antisymmetry. Assume
x 4 y and y 4 x. By Proposition 1.4, y = xy′ implies |y| = |x|+ |y′|. So, if we have x 4 y, say y = xy′,
and |x| = |y|, then we have |y′| = 0, whence y′ = 1, and y = x. �

1a monoid is an algebraic structure consisting of a set equipped of a binary operation that is associative and admits
a neutral element; so a group is a special type of monoid in which, in addition, all elements admit an inverse; in a general
monoid, inverses need not exist.

2i.e., a binary relation that is reflexive (x 4 x always holds), antisymmetric (the conjunction of x 4 y and y 4 x

implies x = y), transitive (the conjunction of x 4 y and y 4 z implies x 4 z)
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2.2. Lcm’s and gcd’s. In Proposition III.2.1, we have seen that any two elements of the monoid B+
n

admit a common right-multiple. The (easy) proof is based on the fact that every element of B+
n that can

be expressed as a product of at most k letters σi is a left-divisor of ∆k
n, where ∆n is is inductively defined

by

(2.3) ∆1 = 1, ∆n = σ1σ2...σn−1 ∆n−1.

Then we have seen that every positive braid x of B+
n with length at most ℓ is a left-divisor of ∆k

n, i.e., in
other words, ∆ℓ

n is a common right-multiple of all positive braids of B+
n with length at most ℓ.

Using the reversing technique of Section III.2, we can establish a more precise result, namely that
any two elements of B+

n admit a least common right-multiple. In the sequel we shall use W+ for the set
of all positive braid words. The only result we need to know here is that there exists a function C from
W+ ×W+ to W+ such that, for all braid words u, v, u′, v′, the following relations hold

u C(u, v) ≡+ v C(v, u),(2.4)

uv′ ≡ vu′ =⇒ ∃w(u′ ≡+ C(v, u)w and v′ ≡+ C(u, v)w).(2.5)

Definition 2.6 (least common right-multiple or right-lcm).— Assume that x, y, z belong to the
monoid B+

n
3. We say that z is a least common right-multiple, or right-lcm, of x and y if z is a right-multiple

of x and of y, and, for every z′ that is a right-multiple of x and y, we have z 4 z′.

In other words, a right-lcm is a supremum with respect to the left-divisibility relation.

Proposition 2.7 (existence of lcm).— Any two elements of B+
n admit a unique right-lcm.

Proof. Let x, y be elements of B+
n . By construction, there exist positive braid words u, v that

represent x and y. Let z be the braid represented by the words uC(u, v) and vC(v, u) (which, by (2.4))
are equivalent. By construction, z is a right-multiple of x and of y.

Now that z′ is an arbitrary common right-multiple of x and y. This means that there exist positive
braid words u′, v′ satisfying uv′ ≡+ vu′ and such that z′ is represented by uv′ and vu′. By (2.5), there
must exist a positive braid word w satisfying

u′ ≡+ C(v, u)w and v′ ≡+ C(u, v)w.

This means that we have z′ = z · w, i.e., z′ is right-multiple of z. So z is a right-lcm of x and y.
Finally, assume that z′ is another right-lcm of x and y. Because z′ is a common right-multiple of x

and y, we have z 4 z′ by the above argument. On the other hand, as z is a common right-multiple of x
and y and z is a right-lcm of x and y, we must have z′ 4 z as well. By Lemma 2.2, the left-divisibility
relation is antisymmetric, we deduce z′ = z. �

In the sequel, the right-lcm of two positive braids x, y is denoted by lcmR(x, y). Using an induction
on the cardinal, it is easy to deduce

Corollary 2.8.— Every nonempty finite set of positive braids admits a right-lcm4.

Symmetrically, there is the notion of a greatest common left-divisor.

Definition 2.9 (greatest common left-divisor or left-gcd).— Assume that x, y, z belong to the
monoid B+

n . We say that z is a greatest common left-divisor, or left-gcd, of x and y if z is a left-divisor
of x and of y, and, for every z′ that is a left-divisor of x and y, we have z′ 4 z.

In other words, a left-gcd is an infimum with respect to the left-divisibility relation.

Proposition 2.10 (existence of gcd).— Any two elements of B+
n admit a unique left-gcd.

Proof. Let x, y be positive braids in B+
n , and let X be the set of all common left-divisors of x and y.

The set X is nonempty as it contains at least the trivail braid 1, and, by Proposition 1.4(iii), it is finite
since z ≺ x implies |z| 6 |x|. By Corollary 2.8, the set X admits a right-lcm z.

First, we claim that z belongs to X , i.e., z is a left-divisor of x and y. Indeed, by hypothesis, x is
a right-multiple of every element of X , hence, by definition of a right-lcm, it is a right-multiple of the
right-lcm of X , i.e., z 4 x holds. For symmetric reasons, we have z 4 y.

3or, similarly, to any monoid
4We say that z is a right-lcm for a set X if z is a right-multiple of every element of X and every element that is a

right-multiple of every element of X is a right-multiple of z
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Now, let z′ be any common left-divisor of x and y. By definition, z′ belongs to X , hence, as z is a
right-lcm of X , we have z′ 4 z. Hence z is a left-gcd for x and y.

As for uniqueness, the argument is the same as for the uniqueness of the lcm, and it follows from
Proposition 1.4(ii). �

Thus we proved that, for each n, the left-divisibility relation gives to the ordered set (B+
n , 4) the

structure of a lattice.
Finally, we observe that, as B+

n is not commutative for n > 3, there are the symmetric notions of a
right-divisor and a left multiple. It is easy to check that the right-divisibility relation enjoys the same
lattice properties as the left-divisibility relations—but we shall mostly use left-divisors here.

2.3. The right-complement operation \. We introduce one more binary operation, derived from
the right-lcm operation.

Definition 2.11 (right-complement).— If x, y are positive braids, the right-complement of x in y,
denoted x\y (“x under y”) is the unique braid z that satisfies xz = lcmR(x, y).

The uniqueness of the right-complement is guaranteed by the fact that the monoid B+
n is left-

cancellative, i.e., xz = xz′ implies z = z′, as was shown in Chapter III.

Lemma 2.12.— For all positive braids x, y, z,
(i) x 4 y is equivalent to y\x = 1,
(ii) we have x\(yz) = x\y · (y\x)\z and (yz)\x = z\(y\x),
(iii) x 4 yz is equivalent to y\x 4 z.

The proof is left as an exercise.

Exercise 2.13.— Show that every (finite or infinite) set of positive braids admits a left-gcd.

3. The greedy normal form, case of positive braids

We are interested in constructing a normal form for (arbitrary) braids, i.e., associating with every
braid a distinguished braid word that represents it. In this section, we begin with the more restricted
aim of finding a distinguished representative for positive braids. The extension to general braids will be
made in the next section.

3.1. Permutation braids. We introduce a special family of positive braids canonically associated
with permutations. We recall from Chapter II that a permutation of {1, ..., n} denoted perm(x) is
associated with each braid x in Bn: perm(x)(i) = j holds if and only if the strand that finishes at
position i in x starts from position j. With this definition, perm is a surjective homomorphism of the
group Bn onto the symmetric group Sn

5. We shall introduce below a distinguished section of this
surjection.

We begin with some notations. First, the transposition that exchanges i and i+1 will be denoted si;
thus si is the permutation associated by the braid σi.

Notation 3.1.— For 1 6 i 6 j, we put

(3.2) σi,j =

{
1 for i = j,

σiσi+1...σj−1 for i < j.

.

Pictorially, the braid σi,j corresponds to the ith strand going right to position j passing under the
intermediate strands. For instance, σi,i+1 is σi. As in the case of σi, we shall use σi,j to denote both the
braid word defined above and the braid it represents.

Lemma 3.3.— For i 6 j < k − 1, we have

(3.4) σi,k σj = σj+1 σi,k.

5We recall that, if f, g are permutations (or, more generally, functions, fg denotes the composition of f and g, i.e.,
g followed by f : for each i, we have fg(i) = f(g(i)). This is why the correspondence between braids and permutations is
defined in this way.
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Proof. We find for j 6 k − 1

σi,k σj = σ(i, j) σj σj+1 σii+2,k σj

= σ(i, j) σj σj+1 σj σii+2,k

= σ(i, j) σj+1 σj σj+1 σii+2,k

= σj+1 σ1,j σj σj+1 σii+2,k = σj+1 σi,k,

which is the expected result. �

Definition 3.5 (permutation braid).— (See Figure 1.) For f a permutation of {1, ..., n}, we define
the positive braid word bw(f) by bw(id) = ε and bw(f) = σf(k),k bw(g), where k is the largest number

moved by f , and g is the permutation of {1, ..., n− 1} defined by

(3.6) g(i) =





f(i) for i < k and f(i) < f(k),

f(i)− 1 for i < k and f(i) > f(k),

i for i > k.

We denote by br(f) the braid represented by bw(f), and call it the permutation braid associated with f .

k

g

f(k)

σf(k),k

bw(g)

Figure 1. Inductive definition of the permutation braid word bw(f).

It is easy to check that br(si) is equal to σi and, more generally, to establish the following using an
induction on n.

Lemma 3.7.— For n > 1, the br mapping is a (set-theoretical) section of perm, i.e., for every permu-
tation f of {1, ..., n}, we have perm(br(f)) = f .

A significant role is played by the so-called flip permutation ωn that maps i to n − i for each i
in {1, ..., n}.

Lemma 3.8.— For n > 1, put ∆n = bw(ωn). Then the braid represented by ∆n is the braid ∆n of (2.3).

Proof. We already observed that the permutation associated with ∆n is the flip ωn. By Lemma 3.7,
the same holds for the braid represented by ∆n. But two positive braids may have the same permutation
and not be equal, so that is not sufficient to conclude anything.

Actually, we check the result using an induction on n. The result is obvious for n = 1. Assume
n > 2. Applying (3.6), we have ∆n = σ1,ng, where g is the permutation of {1, ..., n− 1} defined for
each i by g(i) = ωn(i) − 1 = n − i − 1 = ωn−1(i)). Hence we obtain ∆n = σ1,n ∆n−1. By induction
hypothesis, the braid represented by ∆n−1 is ∆n−1, so the braid represented by ∆n is σ1,n∆n−1, which
is ∆n by (2.3). �

3.2. Simple braids. We introduce a new family of positive braids. At the end, we shall see that
they coincide with permutation braids, but, at first, we start from a different point of view.

Definition 3.9 (simple braid).— For f a permutation of {1, ..., n}, we denote by Inv(f) the inversion
number of f , i.e., the number of ordered pairs (i, j), 1 6 i < j 6 n, satisfying f(i) > f(j). We say that
a braid x is simple if x is positive and |x| = Inv(perm(x)) holds.

Every braid σi is simple, for we have |σi| = Inv(perm(σi)) = Inv(si) = 1. The unit braid 1 is simple
as well, as |1| = Inv(id) = 0 holds. On the other hand, the braid σ2

1 is not simple, as we have |σ2
1 | = 2

and Inv(perm(σ2
1)) = Inv(id) = 0. An induction shows that a positive braid x is simple if and only if any
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two strands cross at most once in any positive braid diagram that represents x. As Inv(f) 6 n(n + 1)/2
holds for every permutation f of n integers, the length of a simple braid in B+

n is bounded by n(n+1)/2,
and, therefore, there exist only finitely many simple braids in B+

n . The main property of simple braids
for our current purpose is that they are closed under left- and right-divisors, as will be proved below.

Lemma 3.10.— Assume that x, y are positive braids and the product xy is simple. Then both x and y
are simple.

Proof. For every permutation f and every integer i, we have

(3.11) Inv(sif) =

{
Inv(f) + 1 if f−1(i) < f−1(i + 1) holds,

Inv(f)− 1 if f−1(i) > f−1(i + 1) holds.
.

This comes from the direct comparison, for each i, of the number of j’s below i satisfying f(j) > f(i)
and the number of j’s below i satisfying f ′(j) > f ′(i), where f ′ is sif .

Formula (3.11) implies inductively that Inv(perm(x)) 6 |x| holds for every positive braid x. It also
implies the inequality

Inv(perm(xy)) 6 |x|+ Inv(perm(y)).

So Inv(perm(y)) < |y| implies Inv(perm(xy)) < |xy|, and, therefore, the hypothesis that xy is simple
implies that y is simple.

The argument is symmetric for left-divisors, using the formula

Inv(fsi) =

{
Inv(f) + 1 if f(i) < f(i + 1) holds,

Inv(f)− 1 if f(i) > f(i + 1) holds
.

which follows from applying (3.11) to f−1. �

Lemma 3.12.— Assume that f is a permutation of {1, ..., n} and br(f) is a simple braid. Then, for
1 6 i 6 n− 1, two cases are possible:

(i) Either f−1(i) < f−1(i + 1) holds, the braid σi br(f) is simple, and we have σi br(f) = br(sif);
(ii) Or f−1(i) > f−1(i + 1) holds, and σi br(f) is not simple.

Proof. By hypothesis, |br(f)| = Inv(f) holds. In case (i), we have |σi br(f)| = Inv(f)+1 = Inv(sif),
so the braid σi br(f) is simple. In case (ii), we have |σi br(f)| = Inv(f) + 1 and Inv(sif) = Inv(f) − 1,
and σi br(f) is not simple.

So it remains to prove that f−1(i) < f−1(i+1) implies br(sif) = σi br(f). We use induction on Inv(f)
(or, equivalently, on the largest number moved by f). The result is true for f = id, as br(f) = 1 holds
then. So, we assume f 6= id. Let k be the largest number moved by f . Then f(k) < k necessarily holds.
By definition, we have br(f) = σf(k),k br(g), where g is as in Definition 3.9. Put f ′ = sif . Five cases are

to be considered.
Assume first i < f(k) − 1. Then the largest number moved by f ′ is k, which is mapped to f(k).

Hence we have br(f ′) = σf(k),k br(g′), where g′ is sig (check it!). By induction hypothesis, we have

br(g′) = σi br(g), so, as σi and σf(k),k commute since i 6 f(k)− 2 holds, we find

br(f ′) = σf(k),k br(g′) = σf(k),k σi br(g) = σi σf(k),k br(g) = σi br(f).

Assume now i = f(k) − 1. This times, the largest number moved by f ′ is still k, which is mapped
to f(k)− 1. With the same notation, we find

br(f ′) = σf(k)−1,k br(g) = σi σf(k),k br(g) = σi br(f).

Third, the case i = f(k) is impossible as, by hypothesis, we have k = f−1(f(k)) > f−1(f(k) + 1).
Next, assume f(k) + 1 6 i 6 k − 1. Then the largest number moved by f ′ is still k, which is moved

to f(k). In this case, one obtains g′ =
ssi−1g

′. Applying Lemma 3.3 and the induction hypothesis, we find now

br(f ′) = σf(k),k br(g′) = σf(k),k σi−1 br(g) = σi σf(k),k br(g) = σi br(f).

Finally, assume ii > k. Then the largest number moved by f ′ is i + 1, which is mapped to i, and we
have g′ = f . Then we find directly br(f ′) = σi br(f). �

Proposition 3.13.— Assume n > 2. For every positive braid x in B+
n , the following are equivalent:

(i) The braid x is a permutation braid;
(ii) The braid x is simple;
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(iii) The braid x is a right-divisor of ∆n;
(iv) The braid x is a left-divisor of ∆n.

Proof. Assume that f is a permutation of {1, ..., n}. We prove that br(f) is simple using induction
on the inversion number Inv(f). For Inv(f) = 0, f is the identity, and the result is obvious. Otherwise,
there exists at least one integer i satisfying f−1(i) > f−1(i + 1). Let g = sif . Because s2

i is the identity,
we also have f = sig, and Inv(g) < Inv(f). By induction hypothesis, br(g) is simple. By Lemma 3.12,
br(f) is σi br(g), and it is simple. So (i) implies (ii).

Conversely, we prove using induction on Inv(perm(x)) that, if x is simple, then x = br(perm(x))
holds. For Inv(perm(x)) = 0, the hypothesis that x is simple implies |x| = 0, hence x = 1, and x is a
permutation braid. Otherwise, write x = σi y. Then we have perm(x) = si perm(y). We have |x| = |y|+1,
and Inv(perm(x)) 6 Inv(perm(y)) + 1 by Lemma 3.12, hence y must be simple, with Inv(perm(y)) =
Inv(perm(x)) − 1. So, by induction hypothesis, we have y = br(perm(y)). By Lemma 3.12, we deduce
x = br(si perm(y)), i.e., x = br(perm(x)). So (ii) implies (i).

Assume f 6= ωn. Then there exists i satisfying f−1(i) < f−1(i + 1), and we have Inv(sif) > Inv(f)
and σibr(f) = br(sif). Applying the same argument to sif and iterating, we find a permutation g
satisfying gf = ωn, hence br(gf) = br(g)br(f). By Lemma 3.8, we have br(ωn) = ∆n, and, therefore,
∆n is a left-multiple of br(f). Hence (i) and (ii) imply (iii).

The previous argument shows that, for every simple braid x in B+
n , there exists a simple braid y that

satisfies yx = ∆n. Let us denote the latter braid by φ(x). Thus φ is a mapping of the set S consisting of
all simple braids in B+

n into itself. As the monoid B+
n admits left cancellation, the mapping φ is injective.

Hence, as S is finite, φ is also surjective. Hence, for every y in S, there exists x in S satisfying ∆n = yx.
In particular, ∆n is a right-multiple of c. So (i) and (ii) implie (iv).

Finally, assume ∆n = xy. Then x and y are simple by Lemma 3.10. �

Corollary 3.14.— Simple braids are closed under right-lcm and right-complement.

Proof. Assume that x, y are simple braids lying in B+
n . By Proposition 3.13, x and y are left-divisors

of ∆n. Hence so is their eight-lcm. By Proposition 3.13 again, it follows that the latter is simple. On the
other hand, we are x · x\y = lcmR(x, y). The simplicity of lcmR(x, y) plus Lemma 3.10 imply that x\y is
simple. �

3.3. The head of a positive braid.

Definition 3.15 (head).— For each positive n-strand braid x, the head of x, denoted H(x), is the
left-gcd of x and ∆n.

The head of the trivial braid 1 is certainly 1, as 1 has no left-divisor except itself. The head of σi

is σi, as, by Lemma III.1.17, σi is a left-divisor of ∆n and it admits no left-divisor except 1 and itself.
The head of ∆n is ∆n.

Lemma 3.16.— (i) For each positive braid x, the head of x is the unique maximal simple braid that
left-divides x; the relation y = H(x) is true if and only if y is a simple left-divisor of x and one has

(3.17) ∀ simple z ( z 4 x⇒ z 4 y ).

(ii) The relation H(x) = 1 holds if and only if x is trivial.

Proof. (i) By construction, H(x) is a left-divisor of ∆n, hence, by Proposition 3.13, it is a simple
braid, and it left-divides x by definition. On the other hand, let z be any simple braid that left-divides x.
By Proposition 3.13 again, z left-divides ∆n, hence it must divide the left-gcd of x and ∆n, which is H(x).
So H(x) is the macimal simple braid that left-divides x, and (3.18) holds.

Conversely, assume that y is a simple left-divisor of x satisfying (3.18). Then we have y 4 H(x) by
definition of the head. On the other hand, (3.18) implies in particular to z = H(x), in which case it gives
H(x) 4 y. Hence we have y = H(x).

(ii) If x is not equal to 1, then it is left-divisible by at least one generator σi. Then σi is a left-divisor
of x and of ∆n, hence of H(x). Hence H(x) cannot be equal to 1. �

In this way, we have obtained, for each positive braid x, a distinguished decomposition

(3.18) x = H(x) · x′,

where the first factor is a simple braid, i.e., equivalently, a permutation braid. By iterating the process,
we shall obtain a decomposition of every positive braid into a product of finitely simple braids.
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Definition 3.19 (normal sequence).— A sequence (x1, ..., xd) of simple n-strand braids is said to be
normal if it is either empty (case d = 0) or, for each k, one has xk = H(xk...xd) and xd 6= 1.

Proposition 3.20 (normal form).— Every positive braid admits a unique normal decomposition; more
precisely, for every nontrivial positive braid x, there exists a unique normal sequence (x1, ..., xd) such that
xd is not trivial and x = x1...xd holds.

We naturally consider the empty sequence () as being the normal form of the trivial braid 1.

Proof. We use induction on |x|. The result is vacuously true for |x| = 0, i.e., for x = 1. It is also
obviously true for |x| = 1, i.e., when x is one of the generators σi. Then x itself is simple, and the length
one sequence (x) is the solution, and it is unique. So assume |x| > 2. By Lemma 3.16(ii), the simple
braid H(x) is not 1. Hence, in the decomposition of (3.18), we have H(x) 6= 1, whence |x′| < |x|. If x′ is
trivial, then, as in the case of σi, we have a length one normal decomposition (H(x)), and we are done?
Otherwise, we apply the induction hypothesis to get a normal decomposition (x2, ..., xd) for x′. Then
(x1, x2, ..., xd) is a normal decomposition for x. This shows the existence.

As for uniqueness, it is clear since, by definition, the first factor of a normal decomposition of x must
be the head of x. �

The unique normal sequence provided by Proposition 3.20 will naturally be called the normal de-
composition of the braid x, or its greedy normal form. This terminology comes from the definition of the
head: at each step, we take as much as we can of the current remainder. For future use, we note the
following convenient characterization, which directly follows from (3.18) in Lemma 3.16.

Exercise 3.21.— Show that the normal decomposition of σ2
1 is the length two sequence (σ1, σ1), whereas

the normal decomposition of σ1σ2 is the length one sequence (σ1σ2). What are the normal decompositions
of ∆k

n, of σk
1 , and of σ2

1 σ2
2 ?

Lemma 3.22.— Assume that x1, x2 are simple braids. Then (x1, x2) is normal if and only if

(3.23) ∀ simple z ( z 4 x1x2 ⇒ z 4 x1 ).

3.4. Local characterization. We shall see below that the greedy normal form enjoys various good
properties. They all follow from the following alternative characterization.

Lemma 3.24.— Assume that (x1, ..., xd) is a sequence of simple n-braids. Then the following are
equivalent:

(i) The sequence (x1, ..., xd) is normal;
(ii) For 1 6 k < dd, the sequence (xk, xk+1) is normal;

Proof. Assume (i) and k < dd. For every sequence of simple braids (xk, ..., xd), we have

(3.25) xk 4 H(xkxk+1) 4 H(xk...xd).

The hypothesis that (x1, ..., xd) is normal implies xk = H(xk...xd). Owing to (3.25), we deduce xk =
H(xkxk+1), so (xk, xk+1) is normal, and (i) implies (ii).

The converse implication is the nontrivial point. We use induction on y∗ > 2. For y∗ = 2, there is
nothing to prove. So we assume y∗ > 3, and (xk, xk+1) is normal for each k. We aim at proving that
(x1, ..., xd) is normal. By the induction hypothesis, the sequence (x2, ..., xd) is normal, and the only result
to prove is x1 = H(x1...xd), i.e., according to Lemma 3.16, we wish to show that each simple braid z left-
dividing x1...xd left-divides x1. So assume z 4 x1...xd. By Lemma 2.12(i), we have (x1x2...xd)\z = 1,
hence, by Lemma 2.12(ii), (x2...xd)\(x1\z) = 1, which, by Lemma 2.12(iii), implies x1\z 4 x2...xd.
Corollary 3.14 implies that x1\z is simple, so the normality of x2...xd implies x1\z 4 x2, which, by
Lemma 2.12(iii) again, implies z 4 x1x2. By hypothesis, (x1, x2) is normal, so we deduce z 4 x1. Hence
(ii) implies (i). �

In a diagram, the property that a pair (x1, x2) is normal will be indicated by drawing a small arc
connecting the target end of the arrow associated with x1 to the source end of the arrow associated with x2:

so x1 x2 means that (x1, x2) is normal. It follows from the characterization of Lemma 3.24 that
a sequence of simple braids (x1, ..., xd) is normal if and only if (xd is non-trivial and) it corresponds to a

picture of the form x1 x2 xd .
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3.5. Computation of the normal form. The normal decomposition yields a distinguished ex-
pression for each positive braid. Indeed, in Definition 3.5, we have chosen a distinguished braid word
representative for each simple braid, hence we obtain a distinguished word representative for every posi-
tive braid by concatenating the distinguished words associated with the successive factors of its normal
decomposition. For instance, the distinguished word representing the braid ∆3 is the word ∆3, i.e., σ1σ2σ1,
so the distinguished word representative of the braid ∆2

3, whose normal decomposition is (∆3, ∆3) is the
word σ1σ2σ1σ1σ2σ1.

In itself, defining a normal form, i.e., choosing a distinguished element in each equivalence class, has
no interest unless one can (efficiently) compute this distinguished element. What makes the interest of
the current normal form is the existence of very efficient algorithms for computing it. This is what we
shall explain now.

First, we have a basic procedure for the case of two simple braids.

Lemma 3.26.— For each pair of simple braids x, y, there exist simple braids x′, y′ satisfying x′y′ = xy
and such that (x′, y′) is normal (or has length one),

Proof. Write x′ = H(xy) and xy = x′ y′. By construction, we have x 4 x′, say x′ = xz. Then we
have xy = xzy′, whence y = zy′. By Lemma 3.10 we deduce that y′ is simple. So (assuming that at least
one of x, y is not trivial) the normal decomposition of xy is either the length one sequence (x′) if y′ is
trivial, i.e., if xy is simple, or the length two sequence (x′, y′). �

In other words, the length of the normal decomposition of xy is at most two. This corresponds to
the possibility of completing every diagram of the following type

x

y

y′

x′

Then we play domino.

Lemma 3.27 (domino rule 1).— Assume that the diagram

x1 x2

x′
1 x′

2

y0 y1 y2 is commutative and

(x1, x2) and (x′
1, y1) are normal. Then (x′

1, x
′
2) is normal as well.

Proof. Assume that z is simple and left-divides x′
1x

′
2. A fortiori we have z 4 x′

1x
′
2y2, hence

z 4 y0x1x2 using the commutativity of the diagram. By Lemma 2.12, we deduce y0\z 4 x1x2. By
Corollary 3.14, y0\z is simple, and, by hypothesis, (x1, x2) is normal. We deduce y0\z 4 x1, whence
z 4 y0x1 by Lemma 2.12, i.e., z 4 x′

1y1 by commutativity of the diagram. As z is simple and (x′
1, y1) is

normal, we deduce z 4 x′
1 and, therefore, (x′

1, x
′
2) is normal. �

Now we can prove the main result.

Proposition 3.28 (left-multiplication).— Assume that (x1, ..., xd) is the normal decomposition of a
positive braid x, and s is a simple braid. Then the normal decomposition of the braid sx is (x′

1, ..., x
′
d, sd)—

or (x′
1, ..., x

′

d) if sd is trivial—where we put s0 = s and, inductively, (x′
i, si) is the normal decomposition

of si−1xi for i increasing from 0 to d− 1 (see Figure 2).

x1 x2

x′
1 x′

2

s0 s1 s2 sd−1 sd

xd

x′

d

Figure 2. Computing the normal form of sx from that of x: starting from s0 = s, take the
normal decomposition (x′

1, s1) of s0x1, then the normal decomposition (x′

2, s2) of s1x2, and so on
from left to right; the sequence (x′

1, ..., x
′

d, sd) is normal.

Proof. First, the existence of x′
1, ..., sd follows from Lemma 3.26. Then, the commutativity of the

diagram of Figure 2 gives x′
1x

′
2...x

′
dsd = s0x1x2...xd = sx, so (x′

1, ..., x
′
d, sd) is a decomposition of sx.

Moreover, each braid x′
i and sd is simple by construction.
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So it only remains to check that the sequence (x′
1, ..., x

′
d, sd) is normal. As for the last two entries x′

d

and sd, this follows from their construction. Now assume i 6 d − 1. Then (xi, xi+1) is normal by
hypothesis, and so is (x′

i, si) by construction. Moreover, always by construction, we have x′
isi = si−1xi

and x′
i+1si+1 = sixi+1. Then Lemma 3.27 implies that (x′

i, x
′
i+1) is normal. �

Corollary 3.29.— For each n, the greedy normal form of a positive braid of length ℓ in B+
n can be

computed in time O(ℓ2).

Proof. There are only finitely many pairs of simple braids in B+
n , namely (n!)2. So, for fixed n,

we can compute the normal form of a pair of simple braids in constant time O(1). By Proposition 3.28,
computing the normal form of σix from that of x requires at most O(|x|) steps, as the length of the
normal form of x is always bounded above by the length of x. Thus, starting from the trivial braid and
applying Proposition 3.28 ℓ times, we determine the normal form of a length ℓ positive braid word in at
most O(ℓ2) steps. �

4. The greedy normal form, general case

We now turn to the case of arbitrary, not necessarily positive braids. We shall define two different
normal forms.

4.1. The Delta-normal form. Using the powers of the braid ∆n, it is very easy to deduce a
distinguished decomposition for each braid from the greedy normal form of positive braids.

Lemma 4.1.— For every braid z in Bn, there exists a unique pair (p, x) where p is an integer and x is
a positive braid in B+

n that satisfy

(4.2) z = ∆p
n · x with ∆n 64 x.

Proof. We observed in Corollary III.1.20 that, if z can be expressed by a braid word containing
k negative letters σ−1

i , then the braid ∆k
nz belongs to the monoid B+

n . Let P be the set of all integers k
such that ∆−k

n z belongs to B+
n . As recalled above, P is nonempty. Choose a braid word w representing z,

and let r be the number of positive letters in w. Then, for k > r, the number of negative letters in the
word ∆−k

n w is larger than the number of positive letters and, so, this word cannot represent a positive
braid. So P is included in the interval (−∞, r) and, therefore, P has a maximal element p. Then we
have z = ∆p

n · x for some positive braid x, and the choice of p implies ∆n 64 x (for otherwise we could
write z = ∆p+1

n x′ for some positive x′).
The choice of p and the fact that the group Bn is cancellative (as is every group) guarantees the

uniqueness. �

Combining Lemma 4.1 with the greedy normal form on B+
n immediately provides a distinguished

expression for each braid.

Proposition 4.3 (normal form).— For each braid z in Bn, there exists a unique integer p and a
unique normal sequence (x1, ..., xd) satisfying x1 6= ∆n, xd 6= 1 and z = ∆p

nx1 ... xd.

Proof. The only point to prove is that, if (x1, ...., xd) is the normal decomposition of some positive
braid x of B+

n , then the condition ∆n 64 x is equivalent to x1 6= ∆n. This follows from the fact that ∆n

is simple, and, therefore, ∆n 4 x is equivalent to ∆n 4 H(x), which is ∆n 4 x1 by construction. �

Definition 4.4 (∆-normal form).— In the context of Proposition 4.3, we say that (∆p
n | x1, ..., xd) is

the ∆-normal form of z.

Recognizing that a sequence (p | x1, ..., xd)n is a ∆-normal form, i.e., there exists a braid it is the
∆-normal of which, is easy: the condition is simply that x1 is not ∆n, (xk, xk+1) is normal for each k,
and xd is not 1. If z is a braid and we have a decomposition that satisfies the above requirements, then
this is the expected normal form.

Example 4.5.— For n > max(i + 1, 3), the ∆-normal form of σi is (∆0
n | σi). Indeed, σi is a positive

simple braid, and it is not left-divisible by ∆n. By contrast, the ∆2-normal form of σ1 is (∆1
2 | 1), as we

have ∆2 = σ1.
More interestingly, for n > max(i+1, 3), the ∆-normal for of σ−1

i is (∆−1
n | x), where x is the unique

positive braid that satisfies xσi = ∆n. For instance, the ∆3-normal form of σ−1
1 is (∆−1

3 | σ1σ2), whereas
that of σ−1

2 is (∆−1
3 | σ2σ1).
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If we insist on having really one distinguished braid word for each braid, then we can use the unique
permutation braid words of Definition 3.5 for each simple braid. So, for instance, the ∆3-normal word
representing σ−1

1 would be the word ∆−1
3 σ1σ2, i.e., σ−1

1 σ−1
2 σ−1

1 σ1σ2 (which is of course equivalent to σ−1
1 ,

but is a different word), whereas the ∆-normal word representing σ−1
2 would be σ−1

1 σ−1
2 σ−1

1 σ2σ1.
The ∆-normal form is easy to compute algorithmically.

Lemma 4.6.— Assume that the ∆-normal form of a braid z is (∆p
n | x1, ..., xd). Then, for each integer e,

the ∆-normal form of the braid ∆e
n z is (∆p+e

n | x1, ..., xd).

Proof. The sequence (∆p+e
n | x1, ..., xd) satisfies the requirement for being a ∆-normal form when-

ever (∆p
n | x1, ..., xd) does, and it provides a decomposition of ∆e

nz whenever (∆p
n | x1, ..., xd) provides a

decomposition of z. �

Lemma 4.7.— For n > 2, denote by Φn the automorphism of Bn that maps σi to σn−i for 1 6 i < n.
Then, for each braid x in Bn, we have

(4.8) x ·∆n = ∆n ·Φn(x).

Proof. The result is true when x is a generator σi (why?), and extends to arbitrary braids as Φn is
an automorphism. �

Proposition 4.9 (computation).— Assume that the ∆-normal form of z is (∆p
n | x1, ..., xd) and s is

a simple braid.
(i) The ∆-normal form of sz is computed as follows:

- Compute the normal form (x′
1, ..., x

′

d′) of Φp
n(s)x1...xd using Proposition 3.28;

- Let q be the largest number for which x′
q = ∆n holds;

- Then the ∆-normal form of sz is (∆p+q
n | x′

q+1, ..., x
′

d′).

(ii) The ∆-normal form of s−1z is computed as follows:
- Determine s′ satisfying ∆n = s′s;
- Compute the (x′

1, ..., x
′

d′) of Φp
n(s′)x1...xd using Proposition 3.28;

- Let q be the largest number for which x′
q = ∆n holds;

- Then the ∆-normal form of s−1z is (p + q − 1 | x′
q+1, ..., x

′
d′)n.

Proof. (i) By hypothesis, we have z = ∆p
nx1...xd, whence

sz = s∆p
nx1...xd = ∆p

nΦp
n(s)x1...xd.

The sequence (x1, ..., xd) is normal, and Φp
n(s), which is s or Φn(s) according to the parity of p, is simple.

So it makes sense to compute the normal form (x′
1, ..., x

′
d′) of this positive braid using Proposition 3.28

(one then has d′ = d or d′ = d + 1). Then, by construction, we have sz = ∆p
nx′

1...x
′

d′ . However,
(p | x′

1, ..., x
′

d′)n need not be the ∆-normal form of sz because the first factors x′
1, x

′
2, .... may be equal

to ∆n. In this case, it suffices to remove these factors and to incorporate them in the initial power of ∆n.
(ii) The argument is similar, owing to the fact that y′y = ∆n implies s−1 = ∆−1

n s′. What we do is
to compute the ∆-normal form of s′z using the method of (i), and then to use Lemma 4.6 to obtain the
∆-normal form of ∆−1

n s′z, i.e., we remove 1 from the initial power of ∆n. �

4.2. The symmetric normal form. The symmetric normal form has many good properties, but
it is not symmetric, and it has the unpleasant property that the normal form of a braid viewed as an
element of Bn need not coincide with the normal form of that braid viewed as an ellement of Bn+1, as
was seen for σ−1

1 in Example 4.5. We shall now define a new normal that avoids such disadvantages.
We already observed that every braid in Bn can be expressed as the quotient of two positive braids6:

for instance, with the symmetric normal form, we obtain such a fractionary expression in which the
denominator is always a power of ∆n (possibly a trivial one). Such an expression is never unique (we can
always right-multiply the numerator and the denominator by any positive braid), but—exactly as in the
case of integers—we can obtain a distinguished expression when we require in addition that the fraction
is left-irreducible, i.e., the numerator and the denominators have no common left-divisor.

Lemma 4.10.— (See Figure 3.) Assume that (x, y) and (x′, y′) are pairs of positive braids satisfying
z = xy−1 = x′−1y′. Then there exist positive braids t, t′, x∗, and y∗ satisfying

(4.11) x = tx∗, y = ty∗, x′ = t′x∗, and y′ = t′ = y∗.

6one says that Bn is a group of fractions for the monoid B+
n , see Ore’s Theorem in Chapter III.
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Proof. In the monoid B+
n , the braids x and y admit a common left-multiple, i.e., there exist positive

braids s, s′ satisfying sx = s′x′. In the group Bn, we have

sy = sxx−1y′ = s′x′x′−1y′ = s′y′.

Now, let st = s′t′ be the right-lcm of s and s′. As sx = s′x′ holds, sx is a right-multiple of s and s′,
hence it is a right-multiple of their right-lcm st, i.e., there exists a positive braid x∗ satisfying sx = stx∗,
hence x = tx∗. As we also have sy = s′y′, the same argument shows that sy is a right-multiple of s
and s′, hence of st, and there exists a positive braid y∗ satisfying sy = sty∗, whence y = ty∗. Arguing
symmetrically with s′x′ and s′y′, we obtain x′ = t′x∗ and y′ = t′y∗. �

s

s′

t

t′

x

y

x′

y′

x∗

y∗

Figure 3. Factorizing fractionary decompositions (proof of Lemma 4.12)

Lemma 4.12.— For each braid z in Bn, there exists a unique pair of positive braids (x, y) satisfying
z = x−1y with gcd

L
(x, y) = 1.

Proof. First, assume that x1, y1 are arbitrary positive braids satisfying z = x−1
1 y1: as recalled

above, such a pair of braids certainly exists. Let z1 be the left-gcd of x1 and y1, and let x, y be defined
by x1 = z1x and y1 = z1y. Then we have z = (z1x)−1(z1y) = x−1y. Moreover, it is easy to check, for
all positive braids x, y, z1, the equality gcd

L
(z1x, z1y) = z1 · gcd

L
(x, y). In the current case, we deduce

z1 = z1gcd
L
(x, y), which implies gcd

L
(x, y) = 1. So we proved the existence of a pair (x, y) of the

expected type.
We turn to uniqueness. So assume z = xy−1 = x′−1y′ with gcd

L
(x, y) = gcd

L
(x′, y′) = 1. Using

Lemma ??, we obtain t, t′, x∗, y∗ satisfying (4.11). By construction t is a common left-divisor of x and y,
so the hypothesis on the gcd implies t = 1. Similarly, we have t′ = 1, whence x = x∗ = x′ and y = y∗ = y′,
the expected uniqueness result. �

Combining Lemma 4.12 with the greedy normal form on B+
n provides a new distinguished expression

for each braid.

Proposition 4.13 (symmetric normal form).— For each braid z in Bn, there exists a unique pair
of normal sequences (x1, ..., xd), (y1, ..., ye) satisfying gcd

L
(x1, y1) 6= 1 and z = x−1

d ...x−1
1 y1...ye.

Proof. The only point to prove is that, if (x1, ...., xd) and (y1, ..., ye) are the normal decompositions
of two positive braids x, y of B+

n , then the condition gcd
L
(x, y) = 1 is equivalent to gcd

L
(x1, y1) = 1.

Now, it is obvious that, if x1 and y1 admit a non-trivial common left-divisor, then so do x and y.
Conversely, assume that x, y admit a non-trivial common left-divisor s. Then s is left-divisible by at least
one generator σi. As the latter is a simple braid, σi 4 x implies σi 4 x1 and, similarly, σi 4 y implies
σi 4 y1. So x1 and y1 have a non-trivial left-gcd. �

Definition 4.14 (symmetric normal form).— In the context of Proposition 4.13, we say that the
sequence (x−1

d , ..., x−1
1 , y1, ..., ye) is the symmetric normal form of z.

Recognizing that a sequence (x−1
d , ..., x−1

1 , y1, ..., ye) is a symmetric normal form, i.e., there exists a
braid it is the symmetric normal of which, is easy.

Proposition 4.15 (characterization).— Assume that (x1, ..., xd) and (y1, ..., ye) are normal sequences.
Then (x−1

d , ..., x−1
1 , y1, ..., ye) is a symmetric normal sequence if and only if the left-gcd of x1 and y1 is

trivial.

Proof. It is obvious that, if x1...xd and y1...yee have no non-trivial common left-divisor, then so
do x1 and y1. Conversely, assume that x1 and y1 have non non-trivial common left-divisor. Let z be a
common left-divisor of x1...xd and y1...ye. If z is not trivial, there exists i such that σi left-divides x1...xd

and y1...ye. As σi is simple and (x1, ..., xd) is normal, this implies that σi left-divides the head of x1...xd,
which is x1, and, similarly, it left-divides the head of y1...ye, which is y1. �



P. Dehornoy, The Braid Isotopy Problem; Section VII.4: The greedy normal form, general case 63

We shall associate to a quotient of the form x−1y, with x, y positive, the diagram x y , and

then we draw x y to indicate that the left-gcd of x and y is trivial. With such convention, a
sequence of signed simple braids (x−1

d , ..., x−1
1 , y1, ..., ye) is symmetric normal if and only if it corresponds

to a diagram of the type xd x1 y1 ye , with xd non-trivial or no negative factor,
and ye non-trivial or no positive factor.

Example 4.16.— The symmetric normal form of σi is (σi). More generally, the symmetric normal form
of a positive braid coincides with its normal form as constructed in Section 3.

In the other direction, the symmetric normal form of σ−1
i is (σ−1

i ). More generally, if z is a negative
braid, then its symmetric normal form is the inverse of the normal form of the positive braid z−1, i.e., it
is (x−1

d , ..., x−1
1 ), where (x1, ..., xd) is the normal of z−1.

Consider now z = σ1σ
−1
2 . We claim that the symmetric form of z is the length two sequence

((σ1σ2)
−1, (σ2σ1)): indeed, σ1σ2 and σ2σ1 are simple braids with no non-trivial common left-divisor and

one has z = (σ1σ2)
−1(σ2σ1).

As in the case of the ∆-normal form, the symmetric normal form is interesting only if one can compute
it effectively—and the more efficiently the better. First, we have a basic procedure for the case of two
simple braids with opposite signs.

Lemma 4.17.— If x, y are simple braids, there exist a unique pair of simple braids x′, y′ satisfying
x′−1y′ = yx−1 and such that (x′−1, y) is normal, i.e., the left-gcd of x′ and y′ is trivial.

Proof. The existence and uniqueness of x′ and y′ is guaranteed by Lemma 4.12, and the only point
that remains to check is that x′ and y′ are simple whenever x and y are. Now, by construction, we have
x′y = y′x, and this braid is a common left-multiple z of x and y. Then gcd

L
(x′, y′) = 1 is equivalent to z

being the left-lcm of x and y. As x and y are simple, z is simple, and so are its left-divisors x′ and y′. �

This corresponds to the possibility of completing each diagram of the type

x′

y

x

y

Next, we observe a simple connection between two forms of normality.

Notation 4.18 (duality).— For s a simple braid in B+
n , we denote by s∗ the unique simple braid such

that ss∗ = ∆n holds.

(This notation is convenient, but slightly dangerous as one has to remember which n is involved.)

Lemma 4.19.— For each simple braid s in B+
n , one has s∗∗ = Φn(s).

Proof. By definition, one has s∆n = s(s∗s∗∗) = (ss∗)s∗∗ = ∆ns∗∗, and s∆n = ∆nΦn(s). �

Lemma 4.20.— For all simple braids x1, x2 in B+
n , the following are equivalent:

(i) The sequence (x1, x2) is normal;
(ii) The sequence (x∗

1
−1, x2) is normal, i.e., the left-gcd of x∗

1 and x2 is trivial.

Proof. Assume (i) and let z be a common left-divisor of x1\∆n and x2. Then x1z left-divides x1x
∗
1,

which is lcmR(x1, ∆n) by definition. As x1 is simple, the latter lcm is ∆n, which implies that x1z is
simple. On the other hand, z left-divides x2 by hypothesis, hence x1z left-divides x1x2. As (x1, x2) is
normal, we deduce that x1z left-divides x1, hence that z is trivial. So (i) implies (ii).

Conversely assume (ii), and let z be a simple left-divisor of x1x2. As z is simple, it left-divides ∆n,
which is x1x

∗
1. It follows that z left-divides the left-gcd of x1x2 and x1x

∗
1, which is x1gcd

L
(x2, x

∗
1). The

latter gcd is trivila, so z left-divide x1, and (x1, x2) is normal. So (ii) implies (i). �

Then, once again, we shall play domino.
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Lemma 4.21 (domino rule 2).— Assume that the diagram

x1 x2

x′
1 x′

2

y0 y1 y2 is commutative, and

(x1, x2) and (y−1
1 , x′

2) are normal.7 Then (x′
1, x

′
2) is normal as well.

Proof. Assume that z is simple and left-divides x′
1x

′
2. A fortiori we have z 4 x′

1x
′
2y2, hence

z 4 y0x1x2 using the commutativity of the diagram. By Lemma 2.12, we deduce y0\z 4 x1x2. By
Corollary 3.14, y0\z is simple, and, by hypothesis, (x1, x2) is normal. We deduce y0\z 4 x1, whence
z 4 y0x1 by Lemma 2.12, i.e., z 4 x′

1y1 by commutativity of the diagram. So z left-divides both x′
1x

′
2

and x′
1y1, hence it left-divides their left-gcd, which is x′

1gcd
L
(x′

2, y1). By hypothesis, the latter is x′
1.

Therefore, (x′
1, x

′
2) is normal. �

Lemma 4.22 (domino rule 3).— Assume that the diagram

x1 x2

x′
1 x′

2

y0 y1 y2 is commutative, and

(x−1
1 , x2) and (y−1

1 , x′
2) are normal.8 Then (x′

1
−1, x′

2) is normal as well.

Proof. Assume that z is simple and left-divides x′
1 and x′

2. A fortiori we have z 4 x′
1y0, hence

z 4 y1x1 using the commutativity of the diagram. Similarly, we have z 4 x′
2y2, hence z 4 y1x2, whence

z 4 y1gcd
L
(x1, x2). The hypothesis gcd

L
(x1, x2) = 1 implies z 4 y1, whence z 4 gcd

L
(x′

1, y1). The
hypothesis gcd

L
(x′

1, y1) = 1 implies z = 1, i.e., the left-gcd of x′
1 and x′

2 is trivial, or, equivalently,
(x′

1
−1, x2) is normal. �

We can now put things together.

Proposition 4.23 (left-multiplication I).— Assume that (x−1
d , ..., x−1

1 , y1, ..., ye) is the symmetric
normal decomposition of a braid z, and s is a simple braid. Then the normal decomposition of the
braid sz is the sequence (x′

d
−1, ..., x′

1
−1, y′

1, ..., y
′
e, se) specified in Figure 4.

s−d

xd xd−1

x′
d x′

d−1

s−d+1 s−d+2 s−1 s0

x1

x′
1

y1

y′
1

s1

y2

y′
2

s2 se−1

ye

y′
e

se

Figure 4. Computing the normal form of sz from that of z: starting from s−d = s, take the
normal decomposition (x′

1, y1) of y0x1, then the normal decomposition (x′

2, y2) of y1x2, and so on
from left to right.

Proof. Start from the left and use Lemmas 4.17 and 3.26 to fill the diagram of Figure 4. The top
sequence is then normal by domino rules 1, 2, and 3. �

We are not yet completely done: it remains to treat the left-multiplication by a letter σ−1
i or, more

generally, by the inverse of a simple braid. As in the case of the ∆-normal form, it is enough to treat the
case of left-multiplying by ∆−1

n (why?).

Proposition 4.24 (left-multiplication II).— Assume that (x−1
d , ..., x−1

1 , y1, ..., ye) is the symmetric
normal decomposition of a braid z of Bn,. Then the normal decomposition of the braid ∆−1

n z is the
sequence (Φn(xd)

−1, ..., Φn(x1)
−1, y∗

1
−1, y2, ..., ye) specified in Figure 5.

Proof. By construction the diagram is commutative, and it suffices to check normality at each
step. As for (Φn(xk), Φn(xk+1)), its normality follows from that of (xk, xk+1) and the fact that Φn is an
automorphism. So there only remains the case of (y∗

1 , Φn(x1)) and of (y∗
1
−1, y2).

As for the latter, (y1, y2) is normal by hypothesis, hence by Lemma 4.20 (direction (i) implies (ii))
so is (y∗

1
−1, y2).

7i.e., in the latter case, the left-gcd of x′

2
and y1 is trivial

8i.e., the left-gcd of x1 and x2, and that of x′

2
and y1 are trivial



P. Dehornoy, The Braid Isotopy Problem; Section VII.4: The greedy normal form, general case 65

Φn(xd) Φn(xd−1) Φn(x1)

xd xd−1 x1

∆n ∆n ∆n ∆n ∆n

y1 y2

y∗
1

ye

Figure 5. Computing the normal form of ∆−1

n z from that of z.

As for the former, (y−1
1 , x1) is normal by hypothesis9, hence so is (Φn(y1)

−1, Φn(x1) as Φn is an
automorphism. By Lemma 4.19, Φn(y1) is y∗∗

1 , so the latter result states that (y∗∗
1

−1, Φn(x1)) is normal.
By Lemma 4.20 (direction (ii) implies (i)) we deduce that (y∗

1 , Φn(x1)) is normal, which completes the
proof. �

As in the case of positive braids, the existence of the incremental rule for computing the symmetric
normal form implies

Corollary 4.25.— For each n, the greedy normal form of a positive braid of length ℓ in B+
n can be

computed in time O(ℓ2).

The existence of a symmetric normal form obeying computation rules of the above type is one of the
aspects of the existence of what is called an automatic structure on braid groups. This is the subject of
another course...

9remember that this just means that the left-gcd of x1 and y1 is trivial, so x1 and y1 play symmetric roles, and the
normality of (y−1

1
, x1) is equivalent to that of (x−1

1
, y1)
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