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BRAID ORDER, SETS, AND KNOTS

PATRICK DEHORNOY

Abstract. We survey two of the many aspects of the standard braid order,

namely its set theoretical roots, and the known connections with knot theory,

including results by Netsvetaev, Malyutin, and Ito, and very recent work in
progress by Fromentin and Gebhardt.

It has been known since 1992 [7, 8] that Artin’s braid groups Bn are left-
orderable, by an ordering that has several remarkable properties. In particular,
it was proved in [23] that its restriction to the braid monoid B+

n is a well-ordering.
Many subsequent results were established using different approaches, and the sub-
ject has developed so as to become the whole content of the monograph [11]. The
first main point is that many different approaches, some of them algebraic or com-
binatorial, others geometrical of topological, developed by a number of researchers,
in particular Burckel, Dynnikov, Fenn, Fromentin, Funk, Greene, Larue, Rolfsen,
Rourke, Short, Wiest, and the author, lead to one and the same distinguished or-
dering on braid groups, the so-called Dehornoy ordering, hereafter referred as the
D-ordering. The second main point is that the family of all left-invariant braid
orderings turns out to be an interesting space in which the D-ordering plays a
significant role, as shown in works by Clay, Ito, Navas, Rolfsen, Short, Wiest.

The purpose of the current survey paper is not to repeat the material that is
developed in [11], nor even to give a comprehensive introduction to that text, but
rather to point out some aspects that are not, or not fully, described there, namely
the set-theoretical roots of the D-ordering, as well as its known connections with
knot theory. These aspects are alluded to in Sections III.2 and IV.5 of [11], but the
latter is a quite short introduction, whereas the former is already obsolete due to
several recent developments.
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1. Connections with Set Theory

It turns out that the first proof of the result that Artin’s braid groups are or-
derable groups and the construction of the specific D-ordering of braids stem from
questions of Set Theory involving so-called large cardinal axioms. Here we shall
briefly explain this connection. However, before starting, let us insist that the con-
nection is historical rather than logical, as no set-theoretical axiom has ever been
used in the construction of the braid order, the latter appearing precisely at the
moment when set-theoretical axioms disappeared from the landscape.
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1.1. Braid groups. We recall that, for n > 2, Artin’s braid group Bn is the group
that admits the finite presentation

(1)
〈

σ1, ..., σn−1

∣∣∣∣ σiσj = σjσi for |i− j| > 2
σiσjσi = σjσiσj for |i− j| = 1

〉
.

The elements of Bn are called n-strand braids. The braid group on infinitely many
strands, denoted B∞, is defined by a presentation with infinitely many generators
σ1, σ2,... subject to the same relations. The identity mapping on {σ1, ..., σn−1}
extends into an injective homomorphism of Bn to Bn+1 and, therefore, we can
identify Bn with the subgroup of B∞ generated by σ1, ..., σn−1.

According to the above definition, every braid admits decompositions in terms
of the generators σi and their inverses. A word on the letters σ1, ..., σn−1 and their
inverses is called an n-strand braid word. If the braid β is the equivalence class of
the braid word w, we say that w represents β, or is an expression of β. We say that
two braid words are equivalent if they represent the same braid, i.e., if they are
equivalent with respect to the least equivalence relation that contains the relations
of (1) and is compatible with multiplication.

It is well-known that Bn can be interpreted as the group of isotopy classes of n-
strand braid diagrams [1]. Under this correspondence, the generator σi corresponds
to the (isotopy class of the) elementary diagram in which the strand initially at
position i + 1 crosses over the strand initially at position i, see Figure 1.

σi :
1 2 i i+1 n

... ...

Figure 1. Interpretation of σi as an elementary braid diagram—here
the strands have an overall vertical direction

It is also well-known [1] that Bn can be interpreted as the mapping class group of
a disk with n punctures. Under this interpretation, σi corresponds to the (isotopy
class of the) half Dehn twist that exchanges the ith and the i + 1st punctures
clockwise, and keeps the other punctures as well as every point on the boundary
circle fixed, see Figure 2.

σi : 1 2 i i+1 n... ...

Dn

Figure 2. Interpretation of σi as a Dehn half-twist in an n punctured disk

1.2. The D-ordering of braids. We start from the following notion.

Definition. We say that a nonempty braid word w is σ-positive if all letters σi

with minimal i that occur in w have positive exponents.

For instance, the braid word σ1σ2σ
−1
1 is not σ-positive, since the letter σi with

minimal i occurring in that word, namely σ1, occurs both with exponent +1 and
with exponent −1. On the other hand, the braid word σ−1

2 σ1σ2—which turns out
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to represent the same braid as the previous word—is σ-positive since, in this word,
σ1 occurs with exponent +1 only.

Saying that a braid word w is σ-positive means that, in the braid diagram
encoded by w, all bottom crossings are positive—according to the convention that
the strands are drawn horizontally and numbered from bottom up, see Figure 3.

1

2

3

4

← all bottom crossings (here σ2)
have a positive orientation

Figure 3. A σ-positive braid diagram—here strands are drawn hor-
izontally and numbered from bottom

The main result now is:

Theorem 2. [7, 8] For β, β′ in B∞, declare that β < β′ holds if β−1β′ can be
represented by a σ-positive diagram. Then < is a left-invariant linear ordering
on B∞.

By definition, an order is called linear if any two elements are comparable, and,
assuming that the domain is a group, it is called left-invariant if it is compatible
with multiplication on the left, i.e., β < β′ implies αβ < αβ′ for every α.

For instance, let us consider the braids β = σ1 and β′ = σ2σ1. Then we find
β−1β′ = σ−1

1 σ2σ1, i.e., the braid word σ−1
1 σ2σ1 is one of the possible expressions

of the braid β−1β′. We observed above that this braid word is not σ-positive, nor
is its inverse either, so we cannot conclude anything. Now we also observed above
that the braid word σ2σ1σ

−1
2 is another expression of the same braid, and that this

word is σ-positive. So, by definition, we have β < β′.
It should be clear that, in order to prove Theorem 2, several things are to be

proved. We shall not try to do it now, but rather ask

Question 3. Where does Theorem 2 come from?

And we claim that the answer is the following set-theoretical result of 1986:

Theorem 4. [5] If j is an elementary embedding of a self-similar rank, then the
LD-structure of Iter(j) implies Π1

1-determinacy.

Our aim in the rest of this section will be to explain (a little) the meaning of
Theorem 4 and, mainly, the connection between the latter (mysterious) statement
and the existence of a braid ordering.

1.3. Braid colorings. The path from Theorem 4 to Theorem 2 goes through a
major auxiliary idea, namely using braid colorings, which directly leads to the
self-distributivity law.

Assume that S is a nonempty set and that we wish to use the elements of S as
sorts of colours applied to the strands of a braid diagram. The principle we shall
use is to attach colors to the left (initial) ends of the strands in a braid diagram,
then propagate the colors through the diagram, and compare the right (final) colors
with the initial colors to extract information about the braid represented by the
diagram.
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x

y

z

x

y

z
y∗z x

x

x∗y
x∗(y∗z) x∗y

x x∗z
x

x∗y
(x∗y)∗(x∗z)

Figure 4. Proof of Lemma 5: when the same initial colors are given
to the two diagrams, the final colors are the same provided the self-
distributivity condition is satisfied

If the colors do not change when strands cross, then the final sequence of colors
is simply the image of the initial sequence of colors under some permutation, which
corresponds to the standard fact that each n-strand braid induces a well defined
permutation of the integers {1, ..., n}.

A more interesting option is to assume that colors may change at crossings. In
terms of complexity, the simplest case corresponds to the case when one of the
strands, for instance the back one, keeps its color, whereas the front strand may
change, but the new color only depends on the old colors of the two strands involved
in the crossing. This case has been been considered by many authors, in particular
Joyce [20], Matveev [26], and Brieskorn [3]. It amounts to saying that the set of
colors S is equipped with a binary operation ∗, and that colors change according
to the rule

x

y x

x ∗ y.
Now, as was said above, we wish to get information not about the braid diagram,
but about the braid it represents. This means that we want that the final colors
only depend on the isotopy class of the considered diagram. According to the
presentation of the braid group given in (1), this is true if and only if the colors are
not changed when the braid relations are applied. It is obvious to check that the
relations σiσj = σjσi with |i − j| > 2 lead to no problem. So the point is to have
compatibility with the non-commutative braid relations.

Lemma 5. Colors are preserved under the braid relations σiσjσi = σjσiσj with
|i− j| = 1 if and only if, for all colors x, y, z, we have

(6) x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z).

Equality (6) is called the left self-distributivity law—LD law for short—as it
asserts that the operation ∗ is distributive with respect to itself on the left. The
easy proof of Lemma 5 is shown in Figure 4.

1.4. LD-systems. So we are naturally led to look for algebraic systems (S, ∗)
where ∗ is a binary operation on S that satisfies the LD law. Such systems will be
called LD-systems.

There exist classical examples of LD-systems, and using them to colour the
strands of a braid leads to standard results about braid groups. The first famaily
consists of the (trivial) operation x ∗ y = y on an arbitrary set S. This amounts to
not changing colors in crossings. As was said above, it leads to associate with every
n-strand braid a permutation of {1, ..., n}, thus yielding the well known surjective
homomorphism of the braid group Bn onto the symmetric group Sn.

Another family consists in starting with a group G and using the conjugacy
operation x ∗ y = xyx−1, which is easily seen to satisfy the LD law. This ap-
proach is closely connected with the theory of racks [13] and quandles [20]—yet
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self-distributive systems are used here in a different spirit, since the idea is not to
associate a specific system with each braid or knot, but rather to fix a system and
then use it for investigating all braids simultaneously. A particular case is specially
interesting, namely when the involved group G is a free group and the initial colors
attributed to the strands make a basis of this free group. Then the final colors
also make a basis of the free group, thus associating with every n-strand braid β
an automorphism φ(β) of the free group of rank n. It can be shown that φ is an
injective homomorphism, known as the Artin representation of the braid group Bn.

A third family of examples arises when E is an R-module and the operation
x ∗ y = (1− t)x + ty, where t is a fixed invertible element of the base ring R. Then
the final colors are a linear combination of the initial ones, which leads to associating
with every n-strand braid an invertible n×n matrix with entries in R. In this way,
we obtain a linear representation of the braid group Bn in the linear group GLn(R).
A typical case is when R is the ring of all Laurent polynomials Z[t, t−1], in which
case the representation is the Burau representation.

Definition. We say that an LD-system (S, ∗) is orderable if there is a linear order-
ing < on S satisfying x < x ∗ y for all x, y.

Note that all the LD-systems listed so far are certainly not orderable. Indeed, all
satisfy the idempotency law, i.e., x ∗ x = x always holds, whereas, in an orderable
LD-system, we must have in particular x < x ∗ x 6= x for each x. However, the
following result was established in 1991.

Theorem 7. [7, 8] There exist orderable LD-systems (namely free LD-systems).

1.5. From Theorem 7 to Theorem 2. We claim that Theorem 2 (existence of
the braid ordering) is a direct and natural consequence of Theorem 7. It is not
hard to see that Theorem 2 relies on two main results.

Proposition 8. A σ-positive braid word is never trivial.

Proposition 8 implies that the relation < involved in Theorem 2 is actually an
ordering,

Proposition 9. This ordering is linear, i.e., any two braids are comparable.

Once the existence of an orderable LD-system is granted, it is easy to understand
why Proposition 8 and 9 are true.

Sketch of proof of Proposition 8. Assume that (S, ∗) is an orderable LD-system,
and that w is a σ-positive braid diagram. We wish to prove that w is not triv-
ial. To this end, we use colors from S. Then the diagram looks as follows—here we
assume, without real loss of generality, that the bottom crossings are σ1’s:

· · ·

x

y1

x∗y1

y2

(x∗y1)∗y2

It follows from the definition of an orderable LD-system that we have

x < x ∗ y1 < (x ∗ y1) ∗ y2 < ...,
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i.e., the colors on the bottom strand keep increasing. Hence the final bottom color
cannot be the initial bottom color and, therefore, the braid diagram cannot be
trivial. �

Sketch of proof of Proposition 9. Assume that (S, ∗) is again an orderable LD-sys-
tem and w,w′ are two braid diagrams that we wish to compare. Then we put the
same initial colors x1, x2, ... from S in both diagrams. If (y1, y2, ...) and (y′1, y

′
2, ...)

are the corresponding final colors, then we can use the order of S to lexicographically
compare the two sequences (y1, y2, ...) and (y′1, y

′
2, ...):

x1

x2

x3

x1

x2

x3

y1

y2

y3

y′1

y′2

y′3

Then one of the two sequences is certainly less than the other, unless they are equal,
which can happen only if β and β′ are equal. �

Remark. The above sketches are not formally correct. In the case of Proposition 8,
we hid the question of coloring the negative crossings σ−1

i . If one wishes that every
such crossing may be colored, then one has to require that the left translations of
the color set are bijective—thus the latter LD-system is a rack in the sense of [13]—
which actually discards orderable LD-systems. However, it can be shown with some
work that, even if the latter case, one obtains well defined partial colorings, this
meaning that every initial sequence of colors need not be eligible for coloring a given
braid diagram but, for each such diagram, there always exist eligible sequences of
colors. So the philosophy of the above sketch of proof is correct. Similarly, in the
case of Proposition 9, we correctly argued that one obtains a linear ordering of
braids, but we did not justify the fact that the resulting ordering coincides with
the one of Theorem 2. This again requires some additional developments about
orderable LD-systems, but the result is true and our sketch of proof correctly reflects
the global situation.

So the reader should agree that the orderability of braid groups naturally comes
from the existence of orderable LD-systems. But then the following question arises:

Question 10. Why care about the existence of orderable LD-systems?

1.6. Large cardinal axioms. The answer to Question 10 is: Because Set Theory
told us.

Set theory is the mathematical study of infinity. By Gödel’s incompleteness the-
orem, every axiomatic system for sets, in particular the standard Zermelo-Fraenkel
system ZF, is incomplete, i.e., there are statements that cannot be proved or dis-
proved by that system. Then the question naturally arises of finding additional
axioms that improve our description and understanding of sets (and infinity). Over
the years, a consensus has emerged in the Set Theory community about the oppor-
tunity to consider a family of axioms that assert the existence of larger and larger
infinities, according to a suggestion of Gödel known as Gödel’s program. These ax-
ioms asserting the existence of “hyper-large” sets are usually called large cardinal
axioms.

It is standard that a set X is infinite if and only if there exists an injection j of X
into itself that is not surjective. A typical “hyper-infinite” set—the usual word is
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self-similar—is a set X such that there exists an injection j of X into itself that is
not surjective and, in addition, j is a homomorphism with respect to every notion
that can be defined from the membership relation ∈. Such an injection is called a
(non-trivial) elementary embedding of X.

For instance, the set N of all natural numbers is infinite, as the shift mapping
j : n 7→ n + 1 is a non-surjective injection of N into itself. But this injection is
not an elementary embedding, since it is not a homomorphism with respect to the
addition of natural numbers and, as explained in textbooks of Set Theory, the latter
is definable from the membership relation. Actually, it is easy to check that the
only injection of N into itself that preserves +, and <, both definable from ∈, is the
identity mapping, which shows that N is not self-similar. In fact, any self-similar
set has to be really huge.

1.7. Ranks. Here comes the most bizarre and counter-intuitive notion.

Definition. A rank is a set R such that every function of R into itself is an element
of R.

In the way the above definition is stated, it is not clear that nonempty ranks
exist. Actually, the technical definition is not exactly the one above, but, once
again, we are not cheating the reader and the spirit of the statement is correct.

Now, let us mix the two notions of a self-similar set and of a rank. So assume
that R is a self-similar rank, and that i, j are elementary embeddings of R. By
hypothesis, i applies to each element of R. As j is a mapping of R to R, then, by
the defining property of a rank, j belongs to R and, therefore, i applies to j, thus
yielding a new object i(j). Then, j is a function, being a function is definable in
Set Theory, and i preserves every property that is definable in Set Theory, so i(j)
is again a function. Moreover, being an elementary embedding turns out to be also
definable in Set Theory, hence i(j) is not only a function, but even an elementary
embedding. In other words, the mapping

i, j 7→ i(j)

defines a binary operation on the family of all elementary embeddings of R.
Next, assume that i, j, k, ` are elementary embeddings of R, and we have ` = j(k).

“Being the image under” is definable in Set Theory, hence, as i is an elementary
embedding, ` being is the image of k under j implies that i(`) is the image of i(k)
under i(j), i.e., ` = j(k) implies i(`) = i(j)(i(k)). In other words, we have

i(j(k)) = i(j)(i(k)).

This means that the application operation on elementary embedding satifies the
LD law, and that the family of all elementary embeddings of R equipped with the
application operation is an LD-system.

In particular, if we start with one elementary embedding j of a self-similar rank,
we can consider the closure of {j} under the application operation, i.e., the smallest
family that contains j and is closed under the application operation. This family
consists of applying j to itself in all possible ways, iteratively. Its elements are
called the iterates of j, and the family of all iterates of j is denoted Iter(j). Typical
iterates of j are j(j), j(j(j)), j(j)(j), etc. The previous discussion implies

Proposition 11. If j is an elementary embedding of a self-similar rank, then
Iter(j) equipped with the application operation is an LD-system.
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1.8. A bizarre situation. Let us recall that our purpose is to explain why some
attention had been given to the question of the existence of orderable LD-systems.
The answer lies in the conjunction of two results, established independently and
almost simultaneously in 1989.

Theorem 12. [6] If there exists at least one orderable LD-system, then the word
problem of the LD law is algorithmicatlly solvable, i.e., there exists an algorithm
that, starting with two formal terms t, t′, decides whether t and t′ become equal
when the LD law is assumed.

Theorem 13 (Laver, [22]). If j is an elementary embedding of a self-similar rank,
then Iter(j) is an orderable LD-system.

A consequence of these results is that, if there exists a self-similar rank, then
the word problem of the LD law is solvable. This created a very strange situation.
Indeed, the existence of a self-similar rank is a large cardinal axiom, thus an un-
provable strong logical assumption, whereas the word problem of the LD law is an
algorithmic question that only involves finite objects, and there exists no visible
connection between the set theoretical assumption and a problem of algorithmic
combinatorics.

The reasons for looking for an orderable LD-system should now be clear: it was
natural to look for such an algebraic object because it was needed to establish the
decidability of the word problem of the LD law without appealing to an unprovable
set theoretical axiom. That was done in [8] by introducing a certain group that
describes the geometry of the LD law in some sense, and which is an analogue of
Thomson’s groups F and V —see [9] for more details. As this group turns out to be
an extension of Artin’s braid group B∞, the braid applications, in particular the
existence of the D-order, came as a bonus.

1.9. Is the braid order an application of Set Theory? We have nearly com-
pleted our journey and explained the connection between sets and braids. The
last question to raise in view of Theorems 12 and 13 is: Why care about the LD-
systems Iter(j)? The answer to this last question is precisely Theorem 4. We shall
not explain what Π1

1-determinacy means, but it is enough to say here that this
is a strong set-theoretical property. So Theorem 4 clearly showed that the LD-
systems Iter(j), having strong consequences, must be non-trivial structures worth
a closer investigation—other results in this direction were also established in [21].

We thus now obtained a continuous path from Theorem 4, a result about sets,
to Theorem 2, a result about braids.

As a last question, we can wonder whether the braid order described in Theo-
rem 2 is or not an application of Set Theory. Formally, it is not: braids appeared
when sets disappeared, and they appeared precisely in order to avoid using sets.
But one may also argue that, in essence, the answer is positive. Orderable LD-
systems have been investigated because Set Theory showed they might exist and
be involved in deep phenomena, and one may doubt that such algebraic systems
would have been investigated without the motivation provided by Set Theory.

To conclude this part, let us propose an analogy with a situation that is rather
common with physics, namely using physical assumptions to guess some statement
that is subsequently passed to the mathematician for a formal rigorous proof. The
situation here is quite similar: using logical assumptions (here the existence of a
self-similar rank), one guesses some statement (here the existence of an orderable
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LD-system), and then passes it to the mathematician for a formal rigorous proof,
i.e., a proof that involves no extra logical axiom.

2. Connection with knots

We turn to the second part, namely the recently discovered connections between
the D-ordering of braids and knots and links. We shall mention two lines of research.
The first one, initiated by Malyutin and Netsvetaev, and recently developed by
Matsuda and Ito, consists in showing that, if a braid β is very small or very large in
the braid ordering, then the properties of its closure β̂ can be read easily. So, the
family of knots and links that are closure of very small or very large braids makes
an interesting family for further investigation. The second approach, which is still
at a very preliminary step, consists in using some recently introduced normal forms
on braid monoids to investigate the braid conjugacy relation and, conjecturally,
Markov equivalence.

2.1. The floor. As well as any linear ordering, the D-ordering makes the braid
group Bn into a line. It is not hard to see that the powers of the central element ∆2

n

are unbounded in (Bn, <) and, therefore, they partition Bn into intervals.

Definition. (See Figure 5.) For β in Bn, the floor bβc is the unique integer m for
which we have ∆2m

n 6 β < ∆2m+2
n .

∆−6
n ∆−4

n ∆−2
n 1 ∆2

n ∆4
n ∆6

n

(Bn, <)

β

Figure 5. The powers of ∆2
n partition Bn into a sequence of inter-

vals. The floor of a braid β specifies to which interval β belongs: for
instance, the floor of β above is 1

It follows from the properties of the D-ordering and of those of ∆2
n that the floor

is nearly a homomorphism of the group Bn to the group of integers.

Proposition 14 (Malyutin–Netsvetaev, [25]). Define the stable floor bβcs of a
braid β to be limpbβpc/p. Then the stable floor is a pseudo-character on Bn with
defect 1, i.e., for all braids β, β′, one has bβpcs = p bβcs, and∣∣bββ′cs − bβcs − bβ′cs

∣∣ 6 1

Actually the stable floor is the only pseudo-character on Bn that is positive
on braids larger than 1 in the D-ordering and is 1 on ∆2

n. It is known that the
space of pseudo-characters on Bn is infinite-dimensional, but very few concrete
examples are known, except the exponent sum (which has zero defect, i.e., that is a
homomorphism) and the signature (which, according to Gambaudo–Ghys [17] has
defect n).
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2.2. Very small and very large braids. As was said above, the general philos-
ophy is that, when a braid is very small or very large in the D-ordering, i.e., if the
absolute value of the floor is large enough, then the properties of the closure are
easily readable from the braid.

The point of the argument is that, for every template move M , there exists
a number rM such that, if the absolute value of the floor of a braid β is larger
than rM , then the closure of β is not eligible for M .

Theorem 15 (Malyutin–Netsvetaev, [25]). If an n-strand braid β satisfies β < ∆−4
n

or β > ∆4
n, then the link β̂ is prime and non-trivial.

Idea of the proof. If χ a pseudo-character on Bn with defect d whose restriction
to Bn−1 is zero, then |χ(β)| > d implies that β̂ is not eligible for the exchange
move, whereas the Birman–Menasco theory implies that a non-prime knot can be
transformed into a composite knot by a sequence of exchange moves. Applying this
to the stable floor gives the result. �

Theorem 16 (Malyutin–Netsvetaev, [25]). For each n, there exists r(n) such that,
if an n-strand braid β satisfies β < ∆−2r(n)

n or β > ∆2r(n)
n , then the link β̂ is

represented by a unique conjugacy class in Bn, i.e., β̂′ can be isotopic to β̂ only if
β′ is conjugated to β.

Idea of the proof. Again by the Birman-Menasco Markov Theorem Without Stabi-
lization, there exist finitely template moves for each fixed n, so the supremum of the
corresponding integers rM is finite. When the absolute value of the floor is larger
than this supremum, the only way to transform the braid is to apply conjugacy. �

It is proved in [25] that r(3) 6 3 holds. Then Matsuda (personal communication)
announced r(4) 6 4, Ito announced r(3) = 2 in [18]—which is optimal—and he
conjectured that r(n) 6 n− 1 might hold for each n. More recently, Ito (personal
communication) announced a proof of the inequality r(n) 6 n + 1 for every n.

In the same vein, Ito announced (personal communication) a proof of the fol-
lowing statement: if β is an n-strand braid satisfying β < ∆−2k−2

n or β > ∆2k+2
n ,

then the braid index of β̂ is at least the minimum of k and n. The reason is that
β̂ cannot be eligible for any template move connecting the closure of an n-strand
braid and that of an k-strand braid.

Finally, we mention two more results illustrating the principle that every braid β
that is very small or very large in the D-ordering admits a closure whose properties
can be read from those of β easily. The first one involves the genus of the closure.

Theorem 17 (Ito, [19]). If an n-strand braid β satisfies β < ∆−2k−2
n or β > ∆2k+2

n ,
then the genus of β̂ is larger than (k(n + 2)− 2)/4.

The second result involves the Nielsen–Thurston classification which takes a very
simple form for very small and very large braids.

Theorem 18 (Ito, [19]). If an n-strand braid β satisfies β 6 ∆−4
n or β > ∆4

n and
β̂ is a knot, then β is periodic (resp. reducible, resp. pseudo-Anosov) iff β̂ is a
torus knot (resp. a satellite knot, resp. a hyperbolic knot).

The above simple equivalence fails in general: for instance, the trefoil knot (a
torus knot) is the closure of σ3

1 (a periodic braid), σ1σ2σ3σ1σ2 (a reducible braid),
and σ3

1σ−1
2 (a pseudo-Anosov braid).
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2.3. Two functions. We now come to aother, much more speculative approach
relying on the following deep result about the D-ordering.

Theorem 19 (Laver, [23]). For every braid β and every i, one has β−1σiβ > 1.

This property, called the Subword Property, implies in particular that, for each n,
the restriction of the D-order to the monoid B+

n (the submonoid of B+
n generated

by σ1, ..., σn−1) is a well-order, i.e., every nonempty subset admits a (unique) min-
imal element. It is then natural to introduce the following functions.

Definition. For β in B+
n , put

µ(β) = min{β′ ∈ B+
n | β′ is conjugate to β},(20)

ν(β) = min{β′ ∈ B+
n | β′ is Markov equivalent to β}.(21)

Any method for computing the function µ (resp. ν) would lead to a solution
to the braid conjugacy problem (resp. the link isotopy problem). However, this
approach is of little use as long as no such practical method is known.

2.4. The alternating normal form. The D-ordering of braids is a complicated
object. For instance, this order is not Archimedian, i.e., there exist β, β′ larger
than 1 satisfying βp < β′ for each p, and it is not even Conradian, i.e., there exist
braids β, β′ larger than 1 satisfying β < β′βp for each p. Therefore, whatever this
exactly means, controlling the order effectively is not so easy. For instance, there
is no simple connection between the order and the standard normal form of braids,
namely the so-called greedy normal form(s) associated with the Garside structure(s)
of braid groups [9, 12].

However, the good news are the recent introduction of two new normal forms,
called the alternating and the rotating normal form, for braids. Contrary to the
greedy normal form, these normal forms admit a simple connection with the D-
order, bringing a reasonable hope to compute the functions µ and ν in the future.

The principle underlying the alternating normal form is the observation that, for
each braid β in the monoid B+

n of positive n-strand braids, there exists a unique
finite sequence (..., β2, β1) of braids in B+

n−1, called the Φn-splitting of β, such that,
using Φn for the n-flip automorphism of Bn that exchanges σi and σn−i for each i,
one has

β = ... · Φn(β4) · β3 · Φn(β2) · β1

and, for each k, the braid βk is the maximal right-divisor of ... ·Φn(βk+1) · βk that
lies in B+

n−1—see Figure 6.
By iterating the splitting process, one easily obtains a unique expression, called

the alternating normal form, for each braid of B+
n . For our purpose, the important

point is that the alternating normal form is connected with the D-order in a simple
way.

Theorem 22 ([10], building on [4]). The D-order of B+
n is the ShortLex-extension

of the D-order of B+
n−1 associated with the Φn-splitting: for β, β′ in B+

n , the rela-
tion β < β′ holds if and only if the Φn-splitting of β is shorter than that of β′ or
they have the same length and the splitting of β is lexicographically smaller.

Remark. For Theorem 22 to be readily true, one has to replace the D-ordering
with its ∆n-conjugated version where one compares Φn(β) and Φn(β′) instead of β
and β′. In the latter ordering, σ1 is smaller than σn, whereas, in the original
D-order, σ1 is larger than σn. Of course, the two orders are essentially equivalent.
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1

2

...

n

β1

Φn(β2)

β3

Φn(β4)...

Figure 6. The Φn-splitting of a braid of B+
n : a distinguished de-

composition of every positive n-strand braid into a finite sequence of
(n− 1)-strand braids. One extracts the maximal right fragment that
involves the strands 1 to n− 1, and 2 to n, alternatively

2.5. The rotating normal form. The rotating normal form is analogous to the
alternating normal form but, instead of involving the submonoid B+

n of Bn gener-
ated by the Artin generators σi, it appeals to the so-called dual braid monoid B+∗

n

generated by the Birman–Ko–Lee generators of [2].

Definition (Birman–Ko–Lee, [2]). The dual braid monoid B+∗
n is the submonoid

of the braid group Bn generated by the elements (ai,j)16i<j6n with

ai,j = σ−1
j−1...σ

−1
i+1σiσi+1...σj−1.

The braid ai,j corresponds to a diagram where the jth strand crosses over the
ith strand behind all intermediate strands. It is known that the monoid B+∗

n admits
the same sort of algebraic structure as the monois B+

n , namely what is now called a
Garside structure. Then, there exists for B+∗

n an analogue of the Φn-splitting and
the alternating normal form. In the current case, the flip automorphism Φn has to
be replaced with the so-called rotating automorphism φn that maps ai,j to ai+1,j+1,
where indices are taken mod. n. Provided braids are drawn on a cylinder rather
than on a rectangle, φn corresponds to a (2π/n)-rotation, and the φn-splitting
corresponds to the scheme of Figure 7.

1

2

3

n

n−1

β1

φn(β2)
φ2

n(β3)

Figure 7. The φn-splitting of a braid of B+∗
n : another distinguished

decomposition into a finite sequence of (n− 1)-strand braids

In this way, one obtains a normal form on B+∗
n . Once again, the nice point is

the following connection with the D-order.

Theorem 23 (Fromentin, [14, 15]). The D-order of B+∗
n is the ShortLex-extension

of the D-order of B+∗
n−1 associated with the φn-splitting.

Theorem 23 is more than a counterpart of Theorem 22, because the rotating
normal form has some nice combinatorial properties that the alternating normal
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does not share. Due to the highly redundant character of the Birman–Ko–Lee
generators, selecting a distinguished expression with respect to these generators is
more difficult than doing it with respect to the Artin generators, and, therefore, it
is not surprising that the obtained normal form turns out to be a more powerful
tool.

2.6. A conjecture. With the alternating and rotating normal forms of braids,
we now have practical ways of controlling the braid order, making it reasonable
to hope for explicit computational formulas expressing parameters connected with
the D-ordering in terms of the normal forms. For instance, a typical result in this
direction is that, for β in B+

n , the floor of β defined in Section 2.1 is twice the length
of the Φn-splitting of β diminished by 2 (except for very small values of the latter).

The computation of the µ-function of Section 2.3 has not yet been completed,
but it seems now accessible. Let us mention the following simple formula, that has
been checked experimentally for a large number of braids.

Conjecture 24 (D., Fromentin, Gebhardt). For β in B+
3 , one has

µ(β∆2
3) = σ1σ

2
2σ1 · µ(β) · σ2

1 .

Establishing this formula and various similar computational rules should lead
to the practical computation of the µ function on B+

3 , and subsequently on B+
n .

When this is done, addressing similar questions for the ν function (the one where
conjugacy is replaced with Markov equivalence) might become a reasonable goal.
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