GAUSSIAN GROUPS

Patrick DEHORNOY

Université de Caen

- The program:
- Artin's braid groups B_n have nice properties, which can be established from their standard presentation (Artin, Garside, Thurston, etc.);
- → Look for other groups for which
 - (i) the results,
 - (ii) the methods

apply; hopefully: new results + better proofs.

- Successive steps:
 - 0. Braid groups (+ free groups);
 - 1. Artin groups (Brieskorn, Deligne, Charney);
 - 2. (Thin) Gaussian groups (OK);
 - 3. (Thin) groups of fractions (in progress).

• Braid groups: $B_n =$

$$\left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{cases} \sigma_i \sigma_j \sigma_i = \sigma_i \sigma_j \sigma_i & \text{for } |i-j| = 1 \\ \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } |i-j| \ge 2 \end{cases} \right\rangle.$$

Then, for each braid group B_n :

- the word problem is decidable (Artin);
- the conjugacy problem is decidable (Garside);
- there exists a bi-automatic structure (Thurston);
- the center is monogenic (Chow);
- the group is linear (Bigelow, Krammer), etc.

- Extension #1: Spherical Artin groups
- → Similar presentations but longer relations:

$$\sigma_i \sigma_j \sigma_i \cdots = \sigma_i \sigma_j \sigma_i \cdots$$

- → Said to be spherical if the associated Coxeter group is finite.
- Then, for every spherical Artin group:
 - the word problem is decidable (Brieskorn);
 - the conjugacy problem is decidable (Deligne);
 - there exists a bi-automatic structure (Charney);
- the group decomposes into a product of groups with monogenic centers (Brieskorn-Saito);
 - the group is linear (Cohen, Digne), etc.

• Extension #2: Thin Gaussian groups

Two properties of braid groups (Garside, Thurston), and, more generally, of every spherical Artin group *G*:

- G is the group of fractions of some monoid M;
- *M* is cancellative and it admits lcm's.
- → Question 1: Do the previous results extend to all groups of fractions of monoids with lcm's?
- → Question 2: What corresponds to sphericality?
- \rightarrow Answer to Question 1: Yes, provided we add the additional hypothesis that M is Noetherian (= there is no infinite descending chain for division: trivial for Artin groups);
- → Answer to Question 2: Thinness (see below).

Definition: A monoid M is Gaussian if it is cancellative, Noetherian, and it admits (left and right) lcm's. A group G is Gaussian if it can be expressed, in at least one way, as the group of fractions of a Gaussian monoid.

Assume that M is a Gaussian monoid. For x, y in M, there exists a unique z s.t.

$$xz = lcm(x, y)$$
:

denote this z by $x \setminus y$ (the complement of x in y.

Definition: A Gaussian monoid M is thin if M admits a finite set of generators closed under \setminus .

Fact: An Artin monoid is Gaussian; it is thin Gaussian iff it is spherical.

- → Question 3: Other examples?
- → Question 3': How to recognize (thin) Gaussian groups (or monoids)?
- → Question 4: Do the properties of spherical Artin groups extend to all thin Gaussian groups?

Answer to Question 3': Complemented presentations.

Definition: A monoid presentation (Σ, R) is complemented if, for all a, b in Σ , there exists in R exactly one relation

$$a \cdots = b \cdots$$
.

Coxeter presentations are complemented.

→ Word reversing:

Definition: Assume that (Σ, R) is a complemented presentation. For w, w' words on $\Sigma \cup \Sigma^{-1}$, we say that $w \curvearrowright w'$ holds—" w reverses to w'"—if w' is obtained from w by iteratively

- deleting some subword $a^{-1}a$,
- replacing some subword $a^{-1}b$ with vu^{-1} s.t. av = bu is a relation of R.

Fact: (i) If $w \curvearrowright w'$ holds, then w and w' represent the same element of the group $\langle \Sigma; R \rangle$; (ii) If u and v are words on Σ and $u^{-1}v \curvearrowright \varepsilon$ holds, then u and v represent the same element of the monoid $\langle \Sigma; R \rangle^+$.

Definition: We say that a complemented presentation (Σ, R) satisfies the cube property if, for all a, b, c in Σ , we have

Proposition: (i) Every thin Gaussian monoid admits a complemented presentation (Σ, R) that satisfies the cube property, admits a [pseudolength], and is such that the closure of Σ under \sim is finite; (ii) Conversely, every presentation as above defines a thin Gaussian monoid.

- ightharpoonup Examples: A thin Gaussian monoid M admits a Garside element Δ (the lcm of the closure of the atoms under \setminus , and it is completely determined by the finite lattice made by the divisors of Δ
- \rightarrow Specify M by this finite lattice.

- Answer to Question 4 (Do all properties of spherical Artin groups extend to all thin Gaussian groups?): Yes—but not obvious, as the Coxeter relations are very special: they preserve the length, no square divides Δ , Δ is the lcm of the atoms, etc.
- Then, for every thin Gaussian group:
- the word problem is decidable by a double reversing process: w represents 1 in the group iff we have $w \curvearrowright uv^{-1}$ for some positive words u, v, and then $v^{-1}u \curvearrowright \varepsilon$ (D.-Paris);
 - the group is torsion-free (D.);
 - the conjugacy problem is decidable (Picantin);
- there exists a bi-automatic structure associated with an explicit transducer whose states are the divisors of \triangle (D.);
- the group decomposes into a crossed product of groups with monogenic centers (Picantin);
 - existence of *n*-th roots is decidable (Sibert);
- the homology of the group can be computed explicitly (D.-Lafont).

- Extension #3: Thin groups of fractions
- → Question: Can we go further?
- → Answer: Yes: renounce to lcm's, i.e., keep the existence of common multiples, but skip uniqueness.

Definition: A subset Σ of a monoid M spans M if Σ generates M and, for all x, y in Σ , if z is a common right multiple of x and y, then there exist x', y' in Σ such that xy' = yx' holds and z is a right multiple of xy'.

A monoid M is thin if it admits a finite spanning subset.

- → Every thin Gaussian monoid is thin as above,
- \rightarrow New examples:

$$\langle a, b; ab = ba, a^2 = b^2 \rangle$$

 $\langle a, b, c; ac = ca = b^2, ab = bc, cb = ba \rangle$

What remains valid:

- existence of finite presentations with an effective criterion for recognizing thinness involving nondeterministic word reversing;
- word reversing solution of the word problem, and quadratic isoperimetric inequality;
- under additional hypotheses (existence of a "Garside" element), automatic structure.

	braid groups	(spherical) Artin groups	(thin) Gaussian groups	(thin) groups of fractions
ex.				
word pb.	Artin47	Brieskorn71		
(by word reversing)	D.97	DParis99	D.[00]	D.[01]
conjugacy				
pb.	Garside69	Briesk-Saito73	Picantin00	??
quadratic				
isop. ineq.	Thurston88	Tatsuoka92	DParis99	D.[01]
automatic	(bi-)	(bi-)	(bi-)	(one-)
struct.	Thurston88	Charney93	D.[00]	D.[01]
center +	Chow68			
decomp.		Briesk-Saito73	Picantin[00]	??
torsion				
freeness		Squier80	D.99	(false)
homology	Arnol'd70	Goriunov78		
(by algeb.)		Squier80,95	DLafont[01]	
extract.				
of roots	Stychnev78		Sibert[00]	

References

- P. Dehornoy; Petits groupes gaussiens; Ann. Sci. Ec. Norm. Sup. Paris, to appear.
- P. Dehornoy; Braids and Self-Distributivity; Progress in Math. vol. 192, Birkhäuser (2000).
- P. Dehornoy; preprints http://www.math.unicaen.fr/~dehornoy/
- P. Dehornoy & L. Paris; Gaussian groups and Garside groups, two generalizations of Artin groups; Proc. London Math. Soc.; 79-3; 1999; 569–604.
- M. Picantin; The center of small Gaussian groups; J. of Algebra, to appear.
 - → http://www.math.unicaen.fr/gdrtresses/