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• The program:
- Artin’s braid groups Bn have nice properties, which
can be established from their standard presentation
(Artin, Garside, Thurston, etc.);

→ Look for other groups for which
(i) the results,
(ii) the methods

apply; hopefully: new results + better proofs.

• Successive steps:
- 0. Braid groups (+ free groups);
- 1. Artin groups (Brieskorn, Deligne, Charney);
- 2. (Thin) Gaussian groups (OK);
- 3. (Thin) groups of fractions (in progress).
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• Braid groups: Bn =

〈
σ1, . . . , σn−1

∣∣∣∣∣∣
σiσjσi = σiσjσi for |i − j| = 1

σiσj = σjσi for |i − j| ≥ 2

〉
.

Then, for each braid group Bn:
- the word problem is decidable (Artin);
- the conjugacy problem is decidable (Garside);
- there exists a bi-automatic structure (Thurston);
- the center is monogenic (Chow);
- the group is linear (Bigelow, Krammer), etc.
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• Extension #1: Spherical Artin groups

→ Similar presentations but longer relations:

σiσjσi · · · = σiσjσi · · ·

→ Said to be spherical if the associated Coxeter
group is finite.

• Then, for every spherical Artin group:
- the word problem is decidable (Brieskorn);
- the conjugacy problem is decidable (Deligne);
- there exists a bi-automatic structure (Charney);
- the group decomposes into a product of groups

with monogenic centers ( Brieskorn-Saito);
- the group is linear (Cohen, Digne), etc.
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• Extension #2: Thin Gaussian groups

Two properties of braid groups (Garside, Thurston),
and, more generally, of every spherical Artin group G:

- G is the group of fractions of some monoid M ;
- M is cancellative and it admits lcm’s.

→ Question 1: Do the previous results extend to all
groups of fractions of monoids with lcm’s?
→ Question 2: What corresponds to sphericality?

→ Answer to Question 1: Yes, provided we add the
additional hypothesis that M is Noetherian (= there
is no infinite descending chain for division: trivial for
Artin groups);
→ Answer to Question 2: Thinness (see below).
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Definition: A monoid M is Gaussian if it is can-
cellative, Noetherian, and it admits (left and right)
lcm’s. A group G is Gaussian if it can be expressed,
in at least one way, as the group of fractions of a
Gaussian monoid.

Assume that M is a Gaussian monoid. For x, y

in M , there exists a unique z s.t.

xz = lcm(x, y) :

denote this z by x\y (the complement of x in y.

Definition: A Gaussian monoid M is thin if M ad-
mits a finite set of generators closed under \.

Fact: An Artin monoid is Gaussian; it is thin Gaus-
sian iff it is spherical.

→ Question 3: Other examples?
→ Question 3’: How to recognize (thin) Gaus-

sian groups (or monoids)?
→ Question 4: Do the properties of spherical Artin
groups extend to all thin Gaussian groups?
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Answer to Question 3’: Complemented presenta-
tions.

Definition: A monoid presentation (Σ, R) is com-
plemented if, for all a, b in Σ, there exists in R ex-
actly one relation

a · · · = b · · · .

Coxeter presentations are complemented.

→ Word reversing:

Definition: Assume that (Σ, R) is a complemented
presentation. For w, w′ words on Σ ∪ Σ−1, we say
that w � w′ holds—“ w reverses to w′ ”—if w′ is
obtained from w by iteratively

- deleting some subword a−1a,
- replacing some subword a−1b with vu−1 s.t.

av = bu is a relation of R.

Fact: (i) If w � w′ holds, then w and w′ represent
the same element of the group 〈Σ;R〉;
(ii) If u and v are words on Σ and u−1v � ε holds,
then u and v represent the same element of the
monoid 〈Σ;R〉+.
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Definition: We say that a complemented presenta-
tion (Σ, R) satisfies the cube property if, for all a, b,
c in Σ, we have

Proposition: (i) Every thin Gaussian monoid ad-
mits a complemented presentation (Σ, R) that sat-
isfies the cube property, admits a [pseudolength],
and is such that the closure of Σ under � is finite;
(ii) Conversely, every presentation as above defines
a thin Gaussian monoid.

→ Examples: A thin Gaussian monoid M admits a
Garside element ∆ (the lcm of the closure of the
atoms under \, and it is completeley determined by
the finite lattice made by the divisors of ∆
→ Specify M by this finite lattice.
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• Answer to Question 4 (Do all properties of spheri-
cal Artin groups extend to all thin Gaussian groups?):
Yes—but not obvious, as the Coxeter relations are
very special: they preserve the length, no square
divides ∆, ∆ is the lcm of the atoms, etc.

• Then, for every thin Gaussian group:
- the word problem is decidable by a double re-

versing process: w represents 1 in the group iff we
have w � uv−1 for some positive words u, v, and
then v−1u � ε (D.-Paris) ;

- the group is torsion-free (D.);
- the conjugacy problem is decidable (Picantin);
- there exists a bi-automatic structure associ-

ated with an explicit transducer whose states are the
divisors of ∆ (D.);

- the group decomposes into a crossed product
of groups with monogenic centers (Picantin);

- existence of n-th roots is decidable (Sibert);
- the homology of the group can be computed

explicitly (D.-Lafont).
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• Extension #3: Thin groups of fractions

→ Question: Can we go further?
→ Answer: Yes: renounce to lcm’s, i.e., keep the ex-
istence of common multiples, but skip uniqueness.

Definition: A subset Σ of a monoid M spans M if
Σ generates M and, for all x, y in Σ, if z is a com-
mon right multiple of x and y, then there exist x′, y′

in Σ such that xy′ = yx′ holds and z is a right muli-
ple of xy′.

A monoid M is thin if it admits a finite spanning sub-
set.

→ Every thin Gaussian monoid is thin as above,
→ New examples:

〈a, b; ab = ba, a2 = b2〉
〈a, b, c; ac = ca = b2, ab = bc, cb = ba〉
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What remains valid:

- existence of finite presentations with an effective
criterion for recognizing thinness involving nonde-
terministic word reversing;

- word reversing solution of the word problem, and
quadratic isoperimetric inequality;

- under additional hypotheses (existence of a “Gar-
side” element), automatic structure.
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(spherical) (thin) (thin)
braid Artin Gaussian groups of

groups groups groups fractions

ex.

word pb. Artin47 Brieskorn71

(by word
reversing) D.97 D.-Paris99 D.[00] D.[01]

conjugacy
pb. Garside69 Briesk-Saito73 Picantin00 ??

quadratic
isop. ineq. Thurston88 Tatsuoka92 D.-Paris99 D.[01]

automatic (bi-) (bi-) (bi-) (one-)
struct. Thurston88 Charney93 D.[00] D.[01]

center + Chow68

decomp. Briesk-Saito73 Picantin[00] ??
torsion

freeness Squier80 D.99 (false)
homology Arnol’d70 Goriunov78

(by algeb.) Squier80,95 D.-Lafont[01]

extract.
of roots Stychnev78 Sibert[00]

11



References

P. Dehornoy; Petits groupes gaussiens; Ann. Sci.
Ec. Norm. Sup. Paris, to appear.

P. Dehornoy; Braids and Self-Distributivity; Progress
in Math. vol. 192, Birkhäuser (2000).
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