DYNNIKOV'S FORMULAS FOR THE BRAID ORDERING

Patrick DEHORNOY Université de Caen

The linear ordering of braids, which was first discovered using results of self-distributive algebra, has now received several alternative constructions. Here, we mention some of them, in particular the recent approach developped by Ivan Dynnikov using laminations.

The linear ordering of braids

• Standard presentation of Artin's braid group B_n :

$$\left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{cases} \sigma_i \sigma_j \sigma_i = \sigma_i \sigma_j \sigma_i & \text{ for } |i-j| = 1 \\ \sigma_i \sigma_j = \sigma_j \sigma_i & \text{ for } |i-j| \ge 2 \end{cases} \right\rangle$$

with geometric interpretation:

$$\sigma_i: \begin{bmatrix} 1 & 2 & & i & i+1 & n \\ 0 & & & & & & \\ \end{bmatrix} \qquad \dots \qquad \begin{bmatrix} i & i+1 & n & \\ 0 & & & & & \\ \end{bmatrix}$$

Proposition (A) (acyclicity): A σ_1 -positive braid is not trivial.

• σ_1 -positive = admits at least one expression where σ_1 appears but σ_1^{-1} does not

Proposition (C) (comparison): Every braid is σ_1 -positive, σ_1 -negative, or σ_1 -neutral.

- σ_1 -negative = ... σ_1^{-1} but no σ_1 ...
- σ_1 -neutral = ... no σ_1 and no σ_1^{-1} ...

2

• Corollary: Let P_1 be the set of all σ_1 -positive braids. Let

 $P = P_1 \cup \operatorname{sh}(P_1) \cup \operatorname{sh}^2(P_1) \cup \cdots$ where

sh : $\sigma_i \mapsto \sigma_{i+1}$ (the shift endomorphism). Then P is a positive cone:

• Proposition: Define

 $b_1 <_L b_2$ iff $b_1^{-1}b_2 \in P$;

then $<_L$ is a **left invariant linear ordering** on B_{∞} .

• Remark 1: If we define

 $b_1 <_R b_2$ iff $b_2 b_1^{-1} \in P$,

then $<_R$ is a right invariant linear ordering on B_∞ and

$$b_1 <_R b_2$$
 is equivalent to $b_1^{-1} <_L b_2^{-1}$.

• Remark 2 (D. Rolfsen): There can exist **no** bi-invariant ordering on B_{∞} :

$$\Delta_3 \sigma_1 \Delta_3^{-1} = \sigma_2$$
 and $\Delta_3 \sigma_2 \Delta_3^{-1} = \sigma_1$.

• Some **properties** of the linear ordering:

(R. Laver) For each n, the restriction of the linear ordering $<_L$ to the monoid B_n^+ of Garside positive braids is a well-order.

 \rightarrow assigns a unique, well-defined ordinal to each Garside positive braid;

 \rightarrow assigns a pair of ordinals to each braid;

but also

 \rightarrow assigns a pair of ordinals to each conjugacy class of braids;

 \rightarrow assigns a pair of ordinals to each Markov class of braids, etc.

- Some applications of the linear ordering:
- (The group B_{∞} is torsion-free.)
- The algebra $\mathbb{C}B_{\infty}$ has no zero divisor.
- (E. Formanek) Each group B_n is isolated in B_{∞} , *i.e.*, $b^k \in B_n$ implies $b \in B_n$.

• Convergence of handle reduction (a practically very efficient solution for the braid isotopy problem).

• Proving that some representation of braids is faithful: it suffices to show that the image of a σ -positive brid is not trivial (used by V. Shpilrain for some Wada's representation).

- What is important in the braid ordering?
- its existence
- \rightarrow Acyclicity and Comparison Properties,
- its characterization
- \rightarrow expressions by words with σ_1 and no σ_1^{-1} .
- Natural task: to find other approaches (corresponding to other ways of introducing braids), and, for each of them,
- characterize the order, and
- reprove Properties A and C (if possible).

• Example 0: Braid colorings and self-distributive systems.

[the original approach, relying on the study of the identity x(yz) = (xy)(xz);]

- characterization: the one above.
- proofs of Properties A and C.
- Example 1: Automorphisms of a free group. (D. Larue)

Embed B_n into Aut (F_n) , where F_n free group generated by x_1, \ldots, x_n by

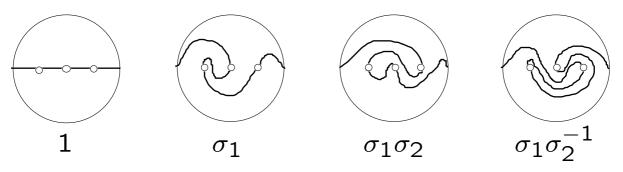
$$\sigma_i(x_k) = \begin{cases} x_i x_{i+1} x_i^{-1} & \text{ for } k = i, \\ x_i & \text{ for } k = i+1, \\ x_k & \text{ otherwise.} \end{cases}$$

- characterization: b is σ_1 -positive iff $b(x_1)$ ends with x_1^{-1} .

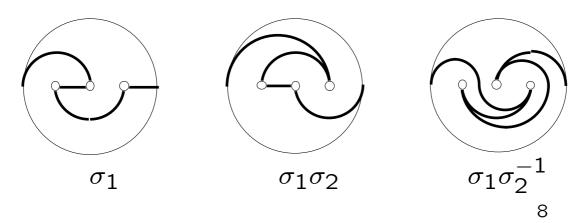
- *simple* proof of Property A;
- consequence of Property C: faithfulness.

• Example 2: Mapping class group and curve diagrams. (R. Fenn, M. Greene, D. Rolfsen, C. Rourke, B. Wiest)

Introduce B_n as the mapping class group of a disk with n punctures; for each braid b (= diffeomorphism of the punctured disk that leaves the boudary fixed), look at the image of the main diameter (called the **curve diagram** of the braid):



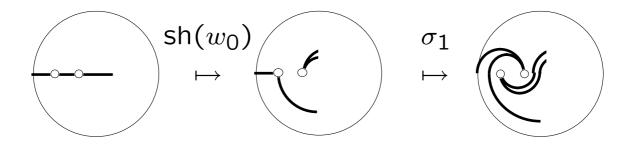
• Main result: existence and uniqueness of some **standardized** curve diagram



- Then
- characterization:

Proposition: A braid b is σ -positive if and only if the standardized curve diagram associated with b diverges from the main diameter to the left.

- (easy) proof of Property A:



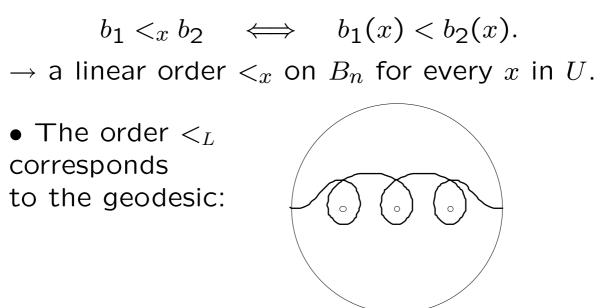
- (difficult) proof of Property C ["useful arcs"].

• Example 3: Hyperbolic geometry. (H. Short, B. Wiest, after Nielsen and W. Thurston)

Identify B_n with the mapping class group of a punctured disk D_n , consider the universal covering of D_n in the hyperbolic plane; for φ in B_n , look at the action of the lifting of φ on the boundary of \widetilde{D}_n :

Proposition: There exists an action of B_n on the real line consisting of order preserving homeomorphisms, and the action is faithful on an uncountable Borel set U (actually a dense G_{δ}), *i.e.*, for every x in U, $b_1 \neq b_2$ implies $b_1(x) \neq b_2(x)$.

• Then define:

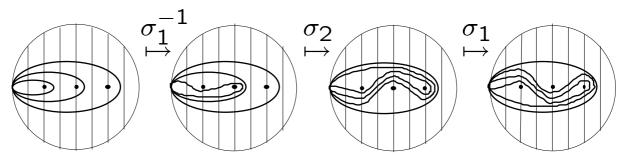


• Example 4: Laminations. (I. Dynnikov)

Instead of considering the image of the main diameter, look at the image of a family of circles L_0 starting from the origin and encircling 1, 2, ..., n punctures respectively.

 \rightarrow a *lamination* consisting of n non-intersecting curves in the disk.

Examples:



• Encoding laminations:

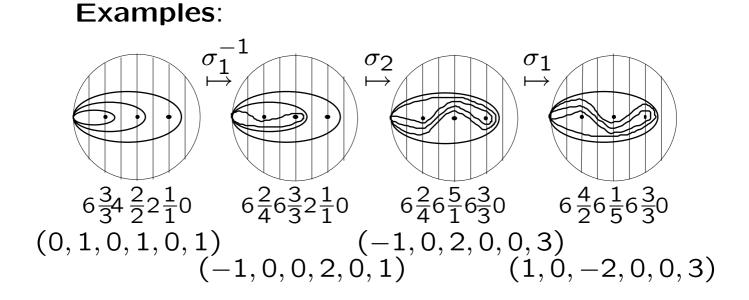
- count the intersections with fixed vertical (half)-lines:

 $\begin{cases} x_i = \# \text{ int. with half-line } x = i, y > 0 \\ y_i = \# \text{ int. with half-line } x = i, y < 0 \\ z_i = \# \text{ int. with line } x = i + 1/2 \end{cases}$

(require x_i , y_i , and z_i to be minimal in the isotopy class);

- then encode by $(a_1, b_1, a_2, b_2, \ldots, a_n, b_n)$ with

$$a_i = (x_i - y_i)/2$$
 and $b_i = (z_{i-1} - z_i)/2$



Notation: $x^+ = \sup(x, 0), x^- = \inf(x, 0).$

Proposition: (Dynnikov's formulas) If *L* is coded by $(a_1, b_1, \ldots, a_n, b_n)$, then $L\sigma_i$ is coded by $(a'_1, b'_1, \ldots, a'_n, b'_n)$, with $a'_k = a_k$, $b'_k = b_k$ for $k \neq i, i + 1$, and

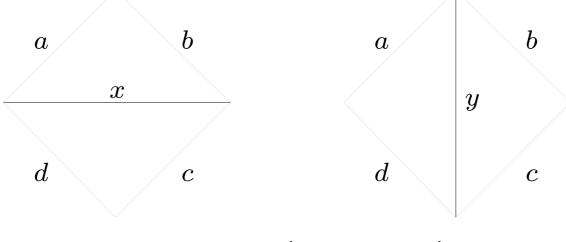
$$a'_{i} = a_{i} + b^{+}_{i} + (b^{+}_{i+1} - c)^{+}$$
$$b'_{i} = b_{i+1} - c^{+}$$
$$a'_{i+1} = a_{i+1} + b^{-}_{i+1} + (b^{-}_{i} + c)^{-},$$
$$b'_{i+1} = b_{i} + c^{+}$$

with $c = a_i - b_i^- - a_{i+1} + b_{i+1}^+$, (resp., $L\sigma_i^{-1}$ is coded by ... and

$$a'_{i} = a_{i} - b^{+}_{i} - (b^{+}_{i+1} + d)^{+}$$
$$b'_{i} = b_{i+1} + d^{-}$$
$$a'_{i+1} = a_{i+1} - b^{-}_{i+1} - (b^{-}_{i} - d)^{-}$$
$$b'_{i+1} = b_{i} - d^{-}$$

with $d = a_i + b_i^- - a_{i+1} - b_{i+1}^+$).

• Proof: Count the intersections with triangulations; decompose the action of $\sigma_i^{\pm 1}$ into elementary flips; the basic formula is:



 $x + y = \sup(a + c, b + d)$

• Dynnikov's formulas define a right action of B_n on \mathbb{Z}^{2n}

 \rightarrow can check the compatibility with the braid relations directly (tedious, but easy).

Lemma: Assume that b is a σ_1 -positive braid. Then the first entry in the sequence

$$(0, 1, 0, 1, \dots) * b$$

is positive.

Proof: (straightforward) The action of σ_1 is associated with

$$a'_1 = a_1 + b_1^+ + (b_2^+ - c)^+$$

for some c, so $a_1 \leq a'_1$ always, and $a_1 < a'_1$ for $b_1 > 0$, which is the initial case.

- characterization:

Proposition: The braid b is σ -positive (resp. σ_1 -positive) iff the first non-zero entry of odd index (resp.the first entry) in (0, 1, ..., 0, 1)*b is positive.

- proof of Property A: straightforward;

- consequence of Property C: Dynnikov's action of B_n on \mathbb{Z}^{2n} is faithful.

• **Application**: New solution to the isotopy problem of braids (from the standard presentation):

- starting from a braid word w, compute the sequence of integers (0, 1, 0, 1, ...) * w using Dynnikov's formulas.

Proposition: The word problem of B_{∞} and the linear order $<_L$ on B_{∞} are decidable in **quadratic** time: deciding for w requires at most $C \cdot lg(w)^2$ steps, where C is some constant not depending on the number of strands.

 \rightarrow adding one letter $\sigma_i^{\pm 1}$ increases each integer by at most one digit (only additions, **no** multiplication).

References

P. Dehornoy; Braids and Self-Distributivity;Progress in Math. vol. 192, Birkhäuser,(2000)

R. Fenn, M.T. Greene, D. Rolfsen, C. Rourke & B. Wiest; Ordering the braid groups; Pacific J. of Math.; 191; 1999; 49–74.

H. Short & B. Wiest; Ordering the mapping class groups after Thurston; preprint (1999).