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The linear ordering of braids, which was first

discovered using results of self-distributive al-

gebra, has now received several alternative

constructions. Here, we mention some of

them, in particular the recent approach de-

velopped by Ivan Dynnikov using laminations.
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The linear ordering of braids

• Standard presentation of Artin’s braid group Bn:〈
σ1, . . . , σn−1

∣∣∣∣∣∣
σiσjσi = σiσjσi for |i − j| = 1

σiσj = σjσi for |i − j| ≥ 2

〉

with geometric interpretation:

1 2 i i+1 n

σi : . . . . . .

Proposition (A) (acyclicity): A σ1-positive

braid is not trivial.

• σ1-positive = admits at least one expression

where σ1 appears but σ−1
1 does not

Proposition (C) (comparison): Every braid

is σ1-positive, σ1-negative, or σ1-neutral.

• σ1-negative = ... σ−1
1 but no σ1 ...

• σ1-neutral = ... no σ1 and no σ−1
1 ...
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• Corollary: Let P1 be the set of all σ1-
positive braids. Let

P = P1 ∪ sh(P1) ∪ sh2(P1) ∪ · · · .

where

sh : σi �→ σi+1 (the shift endomorphism).

Then P is a positive cone:

• Proposition: Define

b1 <L b2 iff b−1
1 b2 ∈ P ;

then <L is a left invariant linear ordering
on B∞.

• Remark 1: If we define

b1 <R b2 iff b2b−1
1 ∈ P,

then <R is a right invariant linear ordering
on B∞ and

b1 <R b2 is equivalent to b−1
1 <L b−1

2 .

• Remark 2 (D. Rolfsen): There can exist
no bi-invariant ordering on B∞:

∆3σ1∆
−1
3 = σ2 and ∆3σ2∆

−1
3 = σ1.
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• Some properties of the linear ordering:

(R. Laver) For each n, the restriction of

the linear ordering <L to the monoid B+
n

of Garside positive braids is a well-order.

→ assigns a unique, well-defined ordinal to

each Garside positive braid;

→ assigns a pair of ordinals to each braid;

but also

→ assigns a pair of ordinals to each conjugacy

class of braids;

→ assigns a pair of ordinals to each Markov

class of braids, etc.
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• Some applications of the linear ordering:

• (The group B∞ is torsion-free.)

• The algebra CB∞ has no zero divisor.

• (E. Formanek) Each group Bn is isolated

in B∞, i.e., bk ∈ Bn implies b ∈ Bn.

• Convergence of handle reduction (a practi-

cally very efficient solution for the braid iso-

topy problem).

• Proving that some representation of braids

is faithful: it suffices to show that the im-

age of a σ-positive brid is not trivial (used

by V. Shpilrain for some Wada’s representa-

tion).
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• What is important in the braid ordering?

- its existence

→ Acyclicity and Comparison Properties,

- its characterization

→ expressions by words with σ1 and no σ−1
1 .

• Natural task: to find other approaches (cor-

responding to other ways of introducing braids),

and, for each of them,

- characterize the order, and

- reprove Properties A and C

(if possible).
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• Example 0: Braid colorings and self-distributive

systems.

[ the original approach, relying on the study

of the identity x(yz) = (xy)(xz);]

- characterization: the one above.

- proofs of Properties A and C.

• Example 1: Automorphisms of a free group.

(D. Larue)

Embed Bn into Aut(Fn), where Fn free group

generated by x1, . . . , xn by

σi(xk) =


xixi+1x−1

i for k = i,

xi for k = i + 1,

xk otherwise.

- characterization: b is σ1-positive iff b(x1)

ends with x−1
1 .

- simple proof of Property A;

- consequence of Property C: faithfulness.
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• Example 2: Mapping class group and curve

diagrams. (R. Fenn, M. Greene, D. Rolfsen,

C. Rourke, B. Wiest)

Introduce Bn as the mapping class group of

a disk with n punctures; for each braid b (=

diffeomorphism of the punctured disk that

leaves the boudary fixed), look at the image

of the main diameter (called the curve dia-

gram of the braid):

1 σ1 σ1σ2 σ1σ−1
2

• Main result: existence and uniqueness of

some standardized curve diagram

σ1 σ1σ2 σ1σ−1
2
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• Then

- characterization:

Proposition: A braid b is σ-positive if and

only if the standardized curve diagram asso-

ciated with b diverges from the main diameter

to the left.

- (easy) proof of Property A:

�→ �→
sh(w0) σ1

- (difficult) proof of Property C [”useful arcs”].

9



• Example 3: Hyperbolic geometry. (H. Short,
B. Wiest, after Nielsen and W. Thurston)

Identify Bn with the mapping class group of
a punctured disk Dn, consider the universal
covering of Dn in the hyperbolic plane; for ϕ
in Bn, look at the action of the lifting of ϕ
on the boundary of D̃n:

Proposition: There exists an action of Bn

on the real line consisting of order preserving
homeomorphisms, and the action is faithful
on an uncountable Borel set U (actually a
dense Gδ), i.e., for every x in U , b1 �= b2
implies b1(x) �= b2(x).

• Then define:

b1 <x b2 ⇐⇒ b1(x) < b2(x).

→ a linear order <x on Bn for every x in U .

• The order <L

corresponds
to the geodesic:
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• Example 4: Laminations. (I. Dynnikov)

Instead of considering the image of the main

diameter, look at the image of a family of

circles L0 starting from the origin and encir-

cling 1, 2, . . . , n punctures respectively.

→ a lamination consisting of n non-intersecting

curves in the disk.

Examples:

σ−1
1�→

σ2�→
σ1�→
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• Encoding laminations:

- count the intersections with fixed vertical

(half)-lines:
xi = # int. with half-line x = i, y > 0

yi = # int. with half-line x = i, y < 0

zi = # int. with line x = i + 1/2

(require xi, yi, and zi to be minimal in the

isotopy class);

- then encode by (a1, b1, a2, b2, . . . , an, bn) with

ai = (xi − yi)/2 and bi = (zi−1 − zi)/2

Examples:

σ−1
1�→

σ2�→
σ1�→

63
34

2
221

10

(0,1,0,1,0,1)

62
463

321
10

(−1,0,0,2,0,1)

62
465

16330

(−1,0,2,0,0,3)

6 4
261

563
30

(1,0,−2,0,0,3)
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Notation: x+ = sup(x,0), x− = inf(x,0).

Proposition: (Dynnikov’s formulas) If L is

coded by (a1, b1, . . . , an, bn), then Lσi is coded

by (a′1, b′1, . . . , a′n, b′n), with a′k = ak, b′k = bk

for k �= i, i + 1, and

a′i = ai + b+i + (b+i+1 − c)+

b′i = bi+1 − c+

a′i+1 = ai+1 + b−i+1 + (b−i + c)−,

b′i+1 = bi + c+

with c = ai − b−i − ai+1 + b+i+1,

(resp., Lσ−1
i is coded by ... and

a′i = ai − b+i − (b+i+1 + d)+

b′i = bi+1 + d−

a′i+1 = ai+1 − b−i+1 − (b−i − d)−

b′i+1 = bi − d−

with d = ai + b−i − ai+1 − b+i+1).
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• Proof: Count the intersections with trian-

gulations; decompose the action of σ±1
i into

elementary flips; the basic formula is:

x y

a

d

b

c

a

d

b

c

x + y = sup(a + c, b + d)

• Dynnikov’s formulas define a right action

of Bn on Z2n

→ can check the compatibility with the braid

relations directly (tedious, but easy).
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Lemma: Assume that b is a σ1-positive braid.

Then the first entry in the sequence

(0,1,0,1, . . . ) ∗ b

is positive.

Proof: (straightforward) The action of σ1 is

associated with

a′1 = a1 + b+1 + (b+2 − c)+

for some c, so a1 ≤ a′1 always, and a1 < a′1
for b1 > 0, which is the initial case.

- characterization:

Proposition: The braid b is σ-positive (resp.

σ1-positive) iff the first non-zero entry of odd

index (resp.the first entry) in (0,1, . . . ,0,1)∗b

is positive.

- proof of Property A: straightforward;

- consequence of Property C: Dynnikov’s ac-

tion of Bn on Z2n is faithful.
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• Application: New solution to the isotopy

problem of braids (from the standard presen-

tation):

- starting from a braid word w, compute the

sequence of integers (0,1,0,1, . . . ) ∗ w using

Dynnikov’s formulas.

Proposition: The word problem of B∞ and

the linear order <L on B∞ are decidable in

quadratic time: deciding for w requires at

most C · lg(w)2 steps, where C is some con-

stant not depending on the number of strands.

→ adding one letter σ±1
i increases each inte-

ger by at most one digit (only additions, no

multiplication).
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