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BRAIDS

• A 4-strand braid diagram = 2D-projection of a 3D-figure

←

• isotopy = move the strands on the 3D-figure keeping the ends fixed

isotopic to

• a braid = an isotopy class !!!!!!!!! represented by 2D-diagram,
but different 2D-diagrams may give rise to the same braid.
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THE BRAID GROUPS

• Product of two braids:

∗∗∗ :=:=:=

• Then

∗∗∗ === ≈≈≈
↑

isotopic to• and (((
braid

)−1)−1)−1

:=:=:= braid as ≈≈≈

!!!!!!!!! For each nnn, the group BnBnBn of nnn strand braids (E. Artin, ∼1925).
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!!!!!!!!! Question: Does some reduction work for BnBnBn?
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• Facts: - Handle reduction is an isotopy;
- It extends free group reduction;
- Irreducible words are those not containing both σ1

σ1σ1 and σ−1
1

σ−1
1

σ−1
1
.

• Theorem 1: (D. 1995) Braid reduction always terminates in finite time.
A braid word represents 111 iff it reduces to the empty word.

• Additional rule: nested handles must be reduced first.
• Extremely efficient in practice !!!!!!!!! suitable for cryptographic applications.

!!!!!!!!! Question: Where does this reduction come from, why does it work?
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BRAID COLOURING

... from self-distributivity.

• Braid colourings: Start with a set ( "colours") SSS, apply colours at the left
ends of the strands in a braid diagram and propagate to the right. Then
compare the initial and final colours.

• Choice 1: Colours are preserved in crossings:

xxx

yyy xxx

yyy !!!!!!!!! permutation of colours !!!!!!!!! Bn →→ SnBn →→ SnBn →→ Sn.

• Choice 2: (Joyce, Matveev, Brieskorn, ...) Colours change under

xxx

yyy xxx

xxx∗∗∗yyy where ∗∗∗ is some binary operation on SSS
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Note: in these examples,x ∗ x = xx ∗ x = xx ∗ x = x always holds.



ORDERABLE LD-SYSTEMS

!!!!!!!!! Other examples?



ORDERABLE LD-SYSTEMS

!!!!!!!!! Other examples?

• Say that an LD-system (S, ∗)(S, ∗)(S, ∗) is orderable if
there is a linear ordering <<< on SSS satisfying x < x ∗ yx < x ∗ yx < x ∗ y for all x, yx, yx, y.



ORDERABLE LD-SYSTEMS

!!!!!!!!! Other examples?

• Say that an LD-system (S, ∗)(S, ∗)(S, ∗) is orderable if
there is a linear ordering <<< on SSS satisfying x < x ∗ yx < x ∗ yx < x ∗ y for all x, yx, yx, y.

!!!!!!!!! certainly of a new flavour: x < x ∗ x )= xx < x ∗ x )= xx < x ∗ x )= x.



ORDERABLE LD-SYSTEMS

!!!!!!!!! Other examples?

• Say that an LD-system (S, ∗)(S, ∗)(S, ∗) is orderable if
there is a linear ordering <<< on SSS satisfying x < x ∗ yx < x ∗ yx < x ∗ y for all x, yx, yx, y.

!!!!!!!!! certainly of a new flavour: x < x ∗ x )= xx < x ∗ x )= xx < x ∗ x )= x.

• Theorem 3: (D. 1991) There exist orderable LD-systems
(namely: free LD-systems).



ORDERABLE LD-SYSTEMS

!!!!!!!!! Other examples?

• Say that an LD-system (S, ∗)(S, ∗)(S, ∗) is orderable if
there is a linear ordering <<< on SSS satisfying x < x ∗ yx < x ∗ yx < x ∗ y for all x, yx, yx, y.

!!!!!!!!! certainly of a new flavour: x < x ∗ x )= xx < x ∗ x )= xx < x ∗ x )= x.

• Theorem 3: (D. 1991) There exist orderable LD-systems
(namely: free LD-systems).

• Theorem 2 comes from Theorem 3:
Use an orderable LD-system to colour braids. The points are:
- (A): A braid word with σ1

σ1σ1 and no σ−1
1

σ−1
1

σ−1
1
does not represent 111,

- (C): Linearity of the ordering.
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!!!!!!!!! this operation satisfies the LD law.

!!!!!!!!! For every e.e. jjj, a new LD-system I(j)I(j)I(j), the iterates of jjj: j(j)j(j)j(j), j(j)(j)j(j)(j)j(j)(j)...

Proposition: (D. 1986) If jjj is an e.e. of a self-similar rank, then
the LD-structure of I(j)I(j)I(j) implies Π1

1Π1
1Π1
1-determinacy. !!!!!!!!! “I(j)I(j)I(j) is not trivial.”
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• Corollary: If there exists a self-similar rank, the word pb. of LD is solvable.

• But the existence of a self-similar rank is an unprovable axiom.
!!!!!!!!! The corollary is not a solution for the word problem of LD (???)

!!!!!!!!! Construct a true orderable LD-system
!!!!!!!!! Theorem 3 (“free LD-systems are orderable”) by investigating

the "geometry group of LD"
!!!!!!!!! As the latter extends Artin's braid group: braid applications
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!!!!!!!!! A continuous path from Set Theory to braid applications.

• Question: Are the braids results applications of Set Theory?

• Formally, no: Braids appear when Set Theory vanishes:
- Set Theory gives a (hypothetical) example of a certain object

(an orderable LD-system),
- Braids and their ordering appear in the process of constructing

an alternative ("true") example.

• In essence, yes: if Set Theory had not shown that the LD law is involved in
deep phenomena, and made the existence of orderable LD-systems plausible,
it is unlikely that such objects would have been investigated...
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• In physics: using physical intuition and/or evidence,
- guess some statement, then
- then pass it to mathematicians for a formal proof.

• Here: using logical intuition and/or evidence (∃ self-similar rank),
- guess some statement (∃ orderable LD-system),
- then pass it to mathematicians for a formal proof.

• An argument in favour of Set Theory: For this use of Set Theory,
the point is not that the axioms are plausible, but that they are powerful.

!!!!!!!!! Even if one does not believe in the existence of (hyper)infinite sets,
one should agree that, in this case, they led to applicable mathematics.
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LAVER TABLES

• More about the braid ordering...

• Another similar application of set theory?

• Start with

111 222 ... NNN
111 222
222 333
...
...
...

N−1N−1N−1 NNN
NNN 111

and try to construct an LD table.

- at most one solution for eachNNN ;
- actually an LD-table iffNNN is a power of 222, e.g.,

111 222 333 444
111 222 444 222 444
222 333 444 333 444
333 444 444 444 444
444 111 222 333 444

!!!!!!!!! Define the nnn-th Laver table AnAnAn to be the one with 2n2n2n elements.
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• Facts: - Each row in AnAnAn is periodic;
- AnAnAn is the projection of An+1An+1An+1 mod. 2n2n2n.

!!!!!!!!! period of first row in An+1An+1An+1 """ period of first row in AnAnAn.

• Theorem: (Laver, 1995) Assume that there exists a self-similar rank.
Then the period of the first row in AnAnAn goes to∞∞∞ with nnn.

• Open problem:
- Prove that the period of the first row in AnAnAn goes to∞∞∞ with nnn...

↑
without using any unprovable hypothesis such as “∃ a self-similar rank”

... or prove that such an hypothesis is necessary.

• Only known negative result (Dougherty 1995):
Not provable in Primitive Recursive Arithmetic (double recursion needed).
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