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® a braid = an isotopy class ~~ represented by 2D-diagram,
but different 2D-diagrams may give rise to the same braid.
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~~ For each n, the group B,, of n strand braids (E. Artin, ~1925).
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e The isotopy problem of braids:
Recognize if a braid diagram is isotopic to the trivial diagram
< Recognize if a braid word w represents 1 in the braid group.

~~ Problem #0 for possible applications, e.g., in cryptography

e In a free group, w represents 1 iff w reduces to the empty word:

iteratively delete patterns xx~! and z7 1.
e In a non-free group, does not work:
—-1,.-1_.-—1 - - -1 -1
01020'102 01 02 represents 1 in B,,, but contains no 0;;0;; orOfi o, .

~~ Question: Does some reduction work for B,,?
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...yes, handle reduction.

e The word 0. 0.0.0 o101 contains 0. 0~ 1o}

1727172 "1 72 172 1

A~ 3 pair o ...0— 1 with no o*! in the middle: a al-handle.

1 1 1

[R="C"c=l

e Definition: Reducing a o, -handle Jle*wal_e:

- deleting the initial and final o,
—e +1 e

- replacing each 02i1 in w with g, 0, °0,.
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- It extends free group reduction;
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- Irreducible words are those not containing both o; and 01_ :

e Theorem 1: (D. 1995) Braid reduction always terminates in finite time.
A braid word represents 1 iff it reduces to the empty word.

e Additional rule: nested handles must be reduced first.
e Extremely efficient in practice ~~ suitable for cryptographic applications.

~~ Question: Where does this reduction come from, why does it work?
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BRAID COLOURING

... from self-distributivity.

e Braid colourings: Start with a set ( "colours") S, apply colours at the left
ends of the strands in a braid diagram and propagate to the right. Then
compare the initial and final colours.

e Choice 1: Colours are preserved in crossings:

I\’ .
. /\ y ~~ permutation of colours ~» B, — 5,,.

e Choice 2: (Joyce, Matveev, Brieskorn, ...) Colours change under

I’ . . .
\ where * is some binary operation on S
T \NIT*Y
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e For an action of B,, on S™, need compatibility with braid relations:

yA X VA X
/ \“7 /
*xZ X X Wk A
NE+Y

T s’ *(y*2) x (x*y) * (@ *2)

~» (S, %) must be an LD-system, i.e., satisfy the left self-distributivity law:
rx(yx2z)=(r*xy)*(x*2). (LD)

e Standard examples:
-TxY =1y, leads to B,, — S,,.
-z xy =zYyr !, leads to B, — Aut(F,) (Artin)
-zxy=(1—t)xr+ty, leadsto B, — GL,(Z[t,t™']) (Burau)

Note: in these examples, x *x x = x always holds.
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ORDERABLE LD-SYSTEMS

~~ (Other examples?

e Say that an LD-system (.S, *) is orderable if
there is a linear ordering < on S satisfying < x * y for all x, v.
~~ certainly of a new flavour: £ < T * & # .

e Theorem 3: (D. 1991) There exist orderable LD-systems
(namely: free LD-systems).

e Theorem 2 comes from Theorem 3:
Use an orderable LD-system to colour braids. The points are:

- (A): A braid word with g, and no 01_1 does not represent 1,

- (C): Linearity of the ordering.
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e Proof of (A) : A braid word with o, and no 01_1 does not represent 1

Y2

T <  zxyy < (zxY)*ys < .. #=x
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e Proof of (C) : A linear ordering on braids:

I3 Y3 I3 z3
X2 Y2 T2 z9
I "n I 21

~~» Compare (¥1,¥2,...) and (21, 22, ...) lexicographically.

~~ Question: Why to study orderable LD-systems?
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eArankisaset Rs.t. f: R— Rimplies f € R. (??)

there exists an e.e. of... into itself

/

o If R is a self-similar rank, and ¢, j are e.e.'s of R, we can apply % to j.

- “Being an e.e.” is definable from €, so i(j) is an e.e. too;
~~» a binary operation on e.e.'s defined on R.

- "Being the image under” is definable from €,

so £ = j(k) implies i(€) = i(§)(i(k)), i.e., i(5(k)) = i(5)(i(k)).
~~ this operation satisfies the LD law.

~» For every e.e. j, a new LD-system I(j), the iterates of 5: 5(3), 7(3)(4)...

Proposition: (D. 1986) If 7 is an e.e. of a self-similar rank, then
the LD-structure of I(4) implies II}-determinacy.  ~» “I(3) is not trivial.”
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AN ODD SITUATION

e Theorem: (D. 1989) If there exists at least one orderable LD-system,
then the word problem of LD is solvable.

deciding if terms are equal mod. LD

e Theorem: (Laver, 1989) If 7 is an e.e. of a self-similar rank,
then I(j) is an orderable LD-system.

e Corollary: If there exists a self-similar rank, the word pb. of LD is solvable.

e But the existence of a self-similar rank is an unprovable axiom.
~~ The corollary is not a solution for the word problem of LD (???)
~~ Construct a true orderable LD-system
~~ Theorem 3 (“free LD-systems are orderable”) by investigating
the "geometry group of LD"
~~ As the latter extends Artin's braid group: braid applications
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APPLICATIONS OF SET THEORY?

~~ A continuous path from Set Theory to braid applications.

e Question: Are the braids results applications of Set Theory?

e Formally, no: Braids appear when Set Theory vanishes:
- Set Theory gives a (hypothetical) example of a certain object
(an orderable LD-system),
- Braids and their ordering appear in the process of constructing
an alternative ("true") example.

® In essence, yes: if Set Theory had not shown that the LD law is involved in
deep phenomena, and made the existence of orderable LD-systems plausible,
it is unlikely that such objects would have been investigated...
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AN ANALOGY

e In physics: using physical intuition and/or evidence,
- guess some statement, then
- then pass it to mathematicians for a formal proof.

e Here: using logical intuition and/or evidence (d self-similar rank),
- guess some statement (d orderable LD-system),
- then pass it to mathematicians for a formal proof.

e An argument in favour of Set Theory: For this use of Set Theory,
the point is not that the axioms are plausible, but that they are powerful.

~~ Even if one does not believe in the existence of (hyper)infinite sets,
one should agree that, in this case, they led to applicable mathematics.
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LAVER TABLES

e More about the braid ordering...

e Another similar application of set theory?

1 2 ... N
1 2
2 | 3
e Start with and try to construct an LD table.
N—-1 | N
N |1

- at most one solution for each N ;
- actually an LD-table iff NV is a power of 2, e.g.,

W N =

- 0 N =
N RN
Wk W NW
A IR

~~ Define the n-th Laver table A,, to be the one with 2™ elements.
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PERIODS

e Facts: - Each row in A,, is periodic;
- A, is the projection of A,,+1 mod. 2™.
~~ period of first row in A, 1 = period of first row in A,,.

e Theorem: (Laver, 1995) Assume that there exists a self-similar rank.
Then the period of the first row in A,, goes to co with n.

e Open problem:
- Prove that the period of the first row in A,, goes to co with n...

I

without using any unprovable hypothesis such as “d a self-similar rank”
... or prove that such an hypothesis is necessary.

e Only known negative result (Dougherty 1995):
Not provable in Primitive Recursive Arithmetic (double recursion needed).
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