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Main idea: For each algebraic identity I, (more gen-
erally, for each family of algebraic identity, actually
for each equational variety), there exists a specific
monoid MI that describes the geometry of I.

→ Studying MI with convenient algebraic tools leads
in good cases to results about I and I-systems (=
those algebraic systems that satisfy I, typically:
- solving the word problem,
- constructing free I-systems.

→ Applies at least to
- x(yz) = (zy)z (Thompson, MacLane, Stasheff);
- x(yz) = (xy)(xz) (→ braid applications);
- x(yz) = (xy)(yz) (new)...
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Free I-systems:

Suppose I is an algebraic identity involving one bi-
nary operation, for instance

x ∗ (y ∗ z) = (x ∗ y) ∗ (y ∗ z). (I)

Fix a set of variables X;
Let TX be the set of all terms constructed from X

and a binary operator;
Let ≡I be the congruence on (the absolutely free
algebra) TX generated by the instances of I, i.e.,
the pairs (t1 ∗ (t2 ∗ t3), (t1 ∗ t2) ∗ (t2 ∗ t3)).

Fact: TX/≡I is a free I-system based on X.

→ What does ”applying I to a term t” mean?
→ Iteratively replacing some subterm of t which has
the form t1 ∗ (t2 ∗ t3) with the corresponding term
(t1 ∗ t2) ∗ (t2 ∗ t3), or conversely: depends on ori-
entation and on position.
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The operators I+
a :

Fix an address system in terms :
→ view them as binary trees and specify a subterm
by describing the path from the root:

the α-th subterm of t

Definition: I+
a is the (partial) operator on TX that

maps t to t′ iff the α-th subterm of t can be ex-
pressed as t1 ∗ (t2 ∗ t3) and t′ is obtained from t

by replacing this subterm with the corresponding
(t1 ∗ t2) ∗ (t2 ∗ t3) (= ”applying I to t at α”); write
I−α for the inverse of I+

a .
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The geometry monoid of I:

Definition: The geometry monoid MI of I is the
monoid generated by all operators I+

a and I−α .

Fact: Two terms t, t′ are ≡I-equivalent iff some el-
ement of MI maps t to t′:

t′ = (t)w,

where w is a finite sequence of signed addresses
(describing how to transform t to t′ using I).

Question: How to use MI? In particular: Can the
study of MI solve the word problem of ≡I?

→ difficult, because (i) MI is not a group, (ii) there
is no uniform connection between MI , which acts
on terms, and terms themselves;

→ solution when (i) MI can be replaced with a
group, (ii) MI contains copies of the terms (in some
sense...)
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The group GI :

Principle: Guess a presentation of MI , then intro-
duce the group GI defined by this presentation:
→hopefully: GI ressembles MI enough.

Geometry relations in MI :
Example: I+

α10βI+
α = I+

α I+
α01βI+

α10β, or simply
α10β · α ≡ α · α01β · α10β.
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Definition: The group GI is the group

〈α ∈ {0,1}∗;RI〉,

with RI the list of all relations:

α0β · α1γ = α1γ · α0β,

α0β · α = α · α00β,

α10β · α = α · α01β · α10β,

α11β · α = α · α11β,

α1 · α · α0 = α · α1 · α.

→ How to study such a group?

→ GI is the group of fractions of a monoid which ad-
mits (right) least common multiples (proving this re-
quires specific algebraic tools, mainly word revers-
ing, reminiscent of Garside’s analysis of the braid
groups.
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The blueprint of a term:

→ How to connect the monoid MI and the group GI?
→ How to use GI for studying I?

Fact: For each t in T{x}, we have tp+1 ≡I t∗xp for
p large enough.

Proof: For t = x, equality. For t = t1 ∗ t2:

xp+1 ≡I t1 ∗ xp

≡I t1 ∗ (t2 ∗ xp−1)

≡I (t1 ∗ t2) ∗ (t2 ∗ xp−1)

≡I (t1 ∗ t2) ∗ xp = t ∗ xp

for p large enough. �

→ Some element of MI , depending on t, must wit-
ness for this term equivalence: use this element, or,
rather, its copy in GI , as the blueprint of t.

Definition: For t in T{x}, the blueprint of t is the
element χt of GI inductively defined by χx = 1,
and

χt = χt1 · sh1(χt2) · ∅ · sh1(χ
−1
t1

)

for t = t1 ∗ t2, where sh1 : α 	→ 1α for each ad-
dress α.
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By construction, we have

(xp+1)χt = t ∗ xp

for p large enough: thus χt, which lives in GI , de-
scribes how to construct t from scratch using I.
(→ not every identity is eligible).

Now, use χt as a syntactic counterpart to t:
Assume t′ ≡I t, hence t′ = (t)w for some w. Then

xp+1 χt′−→ t′ ∗ xp

xp+1 χt−→ t ∗ xp sh0(w)−→ t′ ∗ xp

where sh0 : α 	→ 0α:

→ if we guessed the relations correctly, we should
have χt′ ≡ χt · sh0(w);
→ If this is true, this must be checkable by a direct
computation.
→ This is true.
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Proposition: (solution to the word problem)
For t, t′ in T{x}, the following are equivalent:
(i) We have t ≡I t′;
(ii) In the group GI , the element χ−1

t χt′ belongs to
the subgroup generated by the elements 0α.

→ For which identities does this approach work?
• associativity → Thompson’s group F ;
• self-distributivity → an extension of Artin’s braid
group B∞;
• the current identity x(yz) = (xy)(xz)...
→ In each case: specific algebraic study (the groups
are very different).
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