THE GEOMETRY MONOID OF AN IDENTITY

Patrick DEHORNOY Université de Caen

Main idea: For each algebraic identity I, (more generally, for each family of algebraic identity, actually for each equational variety), there exists a specific monoid \mathcal{M}_I that describes the geometry of I.

 \rightarrow Studying \mathcal{M}_I with convenient algebraic tools leads in good cases to results about I and I -systems (= those algebraic systems that satisfy I , typically:

- solving the word problem,
- constructing free *I*-systems.

 \rightarrow Applies at least to

- $-x(yz)=(zy)z$ (Thompson, MacLane, Stasheff);
- $-x(yz)=(xy)(xz)$ (\rightarrow braid applications);
- $-x(yz)=(xy)(yz)$ (new)...

Free *I*-systems:

Suppose I is an algebraic identity involving one binary operation, for instance

$$
x * (y * z) = (x * y) * (y * z). \tag{I}
$$

Fix a set of variables X ;

Let T_X be the set of all terms constructed from X and a binary operator;

Let \equiv_I be the congruence on (the absolutely free algebra) T_X generated by the instances of I, i.e., the pairs $(t_1 * (t_2 * t_3), (t_1 * t_2) * (t_2 * t_3))$.

Fact: T_X/\equiv_I is a free I-system based on X.

 \rightarrow What does "applying I to a term t" mean? \rightarrow Iteratively replacing some subterm of t which has the form $t_1 * (t_2 * t_3)$ with the corresponding term $(t_1 * t_2) * (t_2 * t_3)$, or conversely: depends on orientation and on position.

The operators I_a^+ :

Fix an address system in terms :

 \rightarrow view them as binary trees and specify a subterm by describing the path from the root:

the α -th subterm of t

Definition: I_a^+ is the (partial) operator on T_X that maps t to t' iff the α -th subterm of t can be expressed as $t_1 * (t_2 * t_3)$ and t' is obtained from t by replacing this subterm with the corresponding $(t_1 * t_2) * (t_2 * t_3)$ (= "applying I to t at α "); write I_{α}^{-} for the inverse of $I_{a}^{+}.$

The geometry monoid of I :

Definition: The geometry monoid \mathcal{M}_I of I is the monoid generated by all operators I^+_a and I^-_α .

Fact: Two terms t, t' are \equiv _I-equivalent iff some element of \mathcal{M}_I maps t to t' :

 $t' = (t)w,$

where w is a finite sequence of signed addresses (describing how to transform t to t' using I).

Question: How to use M_I ? In particular: Can the study of \mathcal{M}_I solve the word problem of \equiv_I ?

 \rightarrow difficult, because (i) \mathcal{M}_I is not a group, (ii) there is no uniform connection between \mathcal{M}_I , which acts on terms, and terms themselves;

 \rightarrow solution when (i) \mathcal{M}_I can be replaced with a group, (ii) \mathcal{M}_I contains copies of the terms (in some sense...)

The group G_I :

Principle: Guess a presentation of \mathcal{M}_I , then introduce the group G_I defined by this presentation: \rightarrow hopefully: G_I ressembles \mathcal{M}_I enough.

Geometry relations in \mathcal{M}_I : Example: $I^+_{\alpha 1 0 \beta} I^+_{\alpha} = I^+_{\alpha} I^+_{\alpha 0 1 \beta} I^+_{\alpha 1 0 \beta}$, or simply $\alpha {\bf 10} \beta \cdot \alpha \equiv \alpha \cdot \alpha {\bf 0} {\bf 1} \beta \cdot \alpha {\bf 10} \beta.$

Definition: The group G_I is the group

 $\langle \alpha \in \{0,1\}^*; R_I \rangle,$

with R_I the list of all relations:

$$
\alpha 0\beta \cdot \alpha 1\gamma = \alpha 1\gamma \cdot \alpha 0\beta,
$$

\n
$$
\alpha 0\beta \cdot \alpha = \alpha \cdot \alpha 00\beta,
$$

\n
$$
\alpha 10\beta \cdot \alpha = \alpha \cdot \alpha 01\beta \cdot \alpha 10\beta,
$$

\n
$$
\alpha 11\beta \cdot \alpha = \alpha \cdot \alpha 11\beta,
$$

\n
$$
\alpha 1 \cdot \alpha \cdot \alpha 0 = \alpha \cdot \alpha 1 \cdot \alpha.
$$

 \rightarrow How to study such a group?

 $\rightarrow G_I$ is the group of fractions of a monoid which admits (right) least common multiples (proving this requires specific algebraic tools, mainly word reversing, reminiscent of Garside's analysis of the braid groups.

The blueprint of a term:

 \rightarrow How to connect the monoid \mathcal{M}_I and the group G_I ? \rightarrow How to use G_I for studying I?

Fact: For each t in $T_{\{x\}}$, we have $t^{p+1} \equiv_I t * x^p$ for p large enough.

Proof: For $t = x$, equality. For $t = t_1 * t_2$:

$$
x^{p+1} \equiv_I t_1 * x^p
$$

\n
$$
\equiv_I t_1 * (t_2 * x^{p-1})
$$

\n
$$
\equiv_I (t_1 * t_2) * (t_2 * x^{p-1})
$$

\n
$$
\equiv_I (t_1 * t_2) * x^p = t * x^p
$$

for p large enough. \square

 \rightarrow Some element of \mathcal{M}_I , depending on t, must witness for this term equivalence: use this element, or, rather, its copy in G_I , as the blueprint of t .

Definition: For t in $T_{\{x\}}$, the blueprint of t is the element χ_t of G_I inductively defined by $\chi_x = 1$, and

$$
\chi_t = \chi_{t_1} \cdot \mathrm{sh}_1(\chi_{t_2}) \cdot \emptyset \cdot \mathrm{sh}_1(\chi_{t_1}^{-1})
$$

for $t = t_1 * t_2$, where $sh_1 : \alpha \mapsto \alpha$ for each address α .

By construction, we have

 $(x^{p+1})\chi_t = t * x^p$

for p large enough: thus χ_t , which lives in G_I , describes how to construct t from scratch using I . $(\rightarrow$ not every identity is eligible).

Now, use χ_t as a syntactic counterpart to t: Assume $t' \equiv_I t$, hence $t' = (t)w$ for some w. Then

$$
x^{p+1} \xrightarrow{\chi_{t'}} t' * x^p
$$

$$
x^{p+1} \xrightarrow{\chi_{t}} t * x^p \xrightarrow{\text{sh}_0(w)} t' * x^p
$$

where $sh_0 : \alpha \mapsto 0\alpha$:

 \rightarrow if we guessed the relations correctly, we should have $\chi_{t'} \equiv \chi_t \cdot \text{sh}_0(w)$;

 \rightarrow If this is true, this must be checkable by a direct computation.

 \rightarrow This is true.

Proposition: (solution to the word problem) For t , t' in $T_{\{x\}}$, the following are equivalent: (i) We have $\tilde{t} \equiv_I t'$; (ii) In the group G_I , the element $\chi_t^{-1}\chi_{t'}$ belongs to the subgroup generated by the elements 0α .

- \rightarrow For which identities does this approach work?
- associativity \rightarrow Thompson's group F;
- self-distributivity \rightarrow an extension of Artin's braid group B_{∞} ;
- the current identity $x(yz)=(xy)(xz)...$
- \rightarrow In each case: specific algebraic study (the groups are very different).

References

P. Dehornoy; Braids and Self-Distributivity; Progress in Math. vol. 192, Birkhäuser (2000).

Preprints:

http://www.math.unicaen.fr/∼dehornoy/