THE GEOMETRY MONOID OF AN IDENTITY

Patrick DEHORNOY Université de Caen

Main idea: For each algebraic identity I, (more generally, for each family of algebraic identity, actually for each equational variety), there exists a specific monoid \mathcal{M}_I that describes the geometry of I.

 \rightarrow Studying \mathcal{M}_I with convenient algebraic tools leads in good cases to results about *I* and *I*-systems (= those algebraic systems that satisfy *I*, typically:

- solving the word problem,
- constructing free *I*-systems.

 \rightarrow Applies at least to

- x(yz) = (zy)z (Thompson, MacLane, Stasheff);
- x(yz) = (xy)(xz) (\rightarrow braid applications);
- -x(yz) = (xy)(yz) (new)...

Free *I*-systems:

Suppose *I* is an algebraic identity involving one binary operation, for instance

$$x * (y * z) = (x * y) * (y * z).$$
 (1)

Fix a set of variables X;

Let T_X be the set of all terms constructed from X and a binary operator;

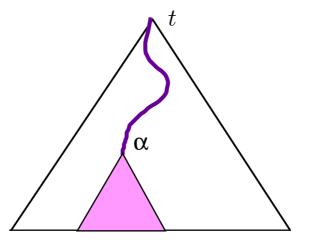
Let \equiv_I be the congruence on (the absolutely free algebra) T_X generated by the instances of *I*, i.e., the pairs $(t_1 * (t_2 * t_3), (t_1 * t_2) * (t_2 * t_3))$.

Fact: T_X / \equiv_I is a free *I*-system based on *X*.

→ What does "applying *I* to a term *t*" mean? → Iteratively replacing some subterm of *t* which has the form $t_1 * (t_2 * t_3)$ with the corresponding term $(t_1 * t_2) * (t_2 * t_3)$, or conversely: depends on orientation and on position. The operators I_a^+ :

Fix an address system in terms :

 \rightarrow view them as binary trees and specify a subterm by describing the path from the root:



the α -th subterm of t

Definition: I_a^+ is the (partial) operator on T_X that maps t to t' iff the α -th subterm of t can be expressed as $t_1 * (t_2 * t_3)$ and t' is obtained from tby replacing this subterm with the corresponding $(t_1 * t_2) * (t_2 * t_3)$ (= "applying I to t at α "); write I_{α}^- for the inverse of I_a^+ . The geometry monoid of *I*:

Definition: The geometry monoid \mathcal{M}_I of I is the monoid generated by all operators I_a^+ and I_α^- .

Fact: Two terms t, t' are \equiv_I -equivalent iff some element of \mathcal{M}_I maps t to t':

t'=(t)w,

where w is a finite sequence of signed addresses (describing how to transform t to t' using I).

Question: How to use \mathcal{M}_I ? In particular: Can the study of \mathcal{M}_I solve the word problem of \equiv_I ?

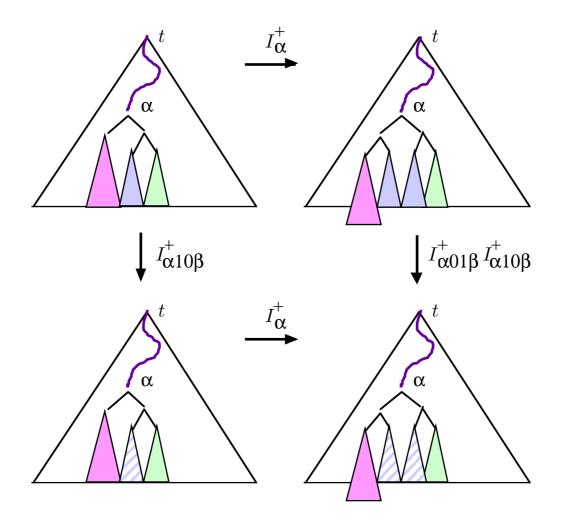
 \rightarrow difficult, because (i) \mathcal{M}_I is not a group, (ii) there is no uniform connection between \mathcal{M}_I , which acts on terms, and terms themselves;

 \rightarrow solution when (i) \mathcal{M}_I can be replaced with a group, (ii) \mathcal{M}_I contains copies of the terms (in some sense...)

The group G_I :

Principle: Guess a presentation of \mathcal{M}_I , then introduce the group G_I defined by this presentation: \rightarrow hopefully: G_I ressembles \mathcal{M}_I enough.

Geometry relations in \mathcal{M}_I : Example: $I^+_{\alpha 10\beta}I^+_{\alpha} = I^+_{\alpha}I^+_{\alpha 01\beta}I^+_{\alpha 10\beta}$, or simply $\alpha 10\beta \cdot \alpha \equiv \alpha \cdot \alpha 01\beta \cdot \alpha 10\beta$.



Definition: The group G_I is the group

 $\langle \alpha \in \{0,1\}^*; R_I \rangle,$

with R_I the list of all relations:

$$\begin{aligned} \alpha 0\beta \cdot \alpha 1\gamma &= \alpha 1\gamma \cdot \alpha 0\beta, \\ \alpha 0\beta \cdot \alpha &= \alpha \cdot \alpha 00\beta, \\ \alpha 10\beta \cdot \alpha &= \alpha \cdot \alpha 01\beta \cdot \alpha 10\beta, \\ \alpha 11\beta \cdot \alpha &= \alpha \cdot \alpha 11\beta, \\ \alpha 1 \cdot \alpha \cdot \alpha 0 &= \alpha \cdot \alpha 1 \cdot \alpha. \end{aligned}$$

 \rightarrow How to study such a group?

 \rightarrow G_I is the group of fractions of a monoid which admits (right) least common multiples (proving this requires specific algebraic tools, mainly word reversing, reminiscent of Garside's analysis of the braid groups.

The blueprint of a term:

 \rightarrow How to connect the monoid \mathcal{M}_I and the group G_I ? \rightarrow How to use G_I for studying I?

Fact: For each *t* in $T_{\{x\}}$, we have $t^{p+1} \equiv_I t * x^p$ for *p* large enough.

Proof: For t = x, equality. For $t = t_1 * t_2$:

$$x^{p+1} \equiv_{I} t_{1} * x^{p}$$

$$\equiv_{I} t_{1} * (t_{2} * x^{p-1})$$

$$\equiv_{I} (t_{1} * t_{2}) * (t_{2} * x^{p-1})$$

$$\equiv_{I} (t_{1} * t_{2}) * x^{p} = t * x^{p}$$

for p large enough. \Box

 \rightarrow Some element of \mathcal{M}_I , depending on t, must witness for this term equivalence: use this element, or, rather, its copy in G_I , as the blueprint of t.

Definition: For *t* in $T_{\{x\}}$, the blueprint of *t* is the element χ_t of G_I inductively defined by $\chi_x = 1$, and

$$\chi_t = \chi_{t_1} \cdot \operatorname{sh}_1(\chi_{t_2}) \cdot \emptyset \cdot \operatorname{sh}_1(\chi_{t_1}^{-1})$$

for $t = t_1 * t_2$, where $sh_1 : \alpha \mapsto 1\alpha$ for each address α .

By construction, we have

 $(x^{p+1})\chi_t = t * x^p$

for *p* large enough: thus χ_t , which lives in G_I , describes how to construct *t* from scratch using *I*. (\rightarrow not every identity is eligible).

Now, use χ_t as a syntactic counterpart to t: Assume $t' \equiv_I t$, hence t' = (t)w for some w. Then

$$x^{p+1} \xrightarrow{\chi_{t'}} t' * x^p$$
$$x^{p+1} \xrightarrow{\chi_t} t * x^p \xrightarrow{\operatorname{sh}_0(w)} t' * x^p$$

where $sh_0 : \alpha \mapsto 0\alpha$:

 \rightarrow if we guessed the relations correctly, we should have $\chi_{t'} \equiv \chi_t \cdot \operatorname{sh}_0(w)$;

 \rightarrow If this is true, this **must** be checkable by a direct computation.

 \rightarrow This is true.

Proposition: (solution to the word problem) For t, t' in $T_{\{x\}}$, the following are equivalent: (i) We have $t \equiv_I t'$; (ii) In the group G_I , the element $\chi_t^{-1}\chi_{t'}$ belongs to

the subgroup generated by the elements 0α .

- \rightarrow For which identities does this approach work?
- associativity \rightarrow Thompson's group F;
- self-distributivity \rightarrow an extension of Artin's braid group B_{∞} ;
- the current identity x(yz) = (xy)(xz)...
- \rightarrow In each case: specific algebraic study (the groups are very different).

References

P. Dehornoy; Braids and Self-Distributivity; Progress in Math. vol. 192, Birkhäuser (2000).

Preprints:

http://www.math.unicaen.fr/~dehornoy/