
HOMOLOGY OF GAUSSIAN GROUPS
Patrick Dehornoy (Caen)

• Aim: to compute the homology of braid groups
��������� done: Arnold, Fuks (1970’s),

... or, more generally, of spherical Artin–Tits groups
(those associated with a finite Coxeter group)
��������� done: Goryunov, Deligne, Salvetti, Cohen,

... using an algebraic approach (no differ. geom.)
��������� done: Squier (1980, 1995),

... so what?
��������� A simple method for constructing resolutions of Z

• for still more general monoids,
• exclusively relying on least common multiples.

��������� completes Squier’s implicit program;
��������� extends simultaneous indep. work by Charney,
Meier, Whittlesey building on Bestvina (Garside groups);
��������� gives a purely algebraic proof of the exactness of
the Deligne–Salvetti resolution (braid groups).
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• Remark (Cartan-Eilenberg, Squier): For G group
of fractions of M , we have H∗(G, Z) = H∗(M, Z).
��������� Compute H∗(M, Z) for some monoids M .
��������� Construct resolutions of Z by free ZM -modules.

• Which monoids? Those with good lcm (least com-
mon multiple) properties, typically Artin monoids
(Squier), and, more generally:

• Definition: A monoid M is Gaussian if
(i): cancellative,
(ii): division has no infinite ↘-chain,
(iii): any two elements have a left and a right lcm.

• Definition: A monoid M is locally Gaussian if
(i) + (ii) + (iii)−: two elements with a common left
(right) multiple admit a left (right) lcm.

• Definition: A monoid M is Garside if Gaussian +
contains a Garside element ∆,

���������


Divleft(∆) = Divright(∆),

Divleft(∆) is finite,

Divleft(∆) generates M.
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• Examples:

- The braid monoids B+
n are Garside monoids; ev-

ery finite Coxeter type Artin monoid is a Garside
monoid (an Artin monoid or group is one defined
by relations all of the form abab... = baba...);

- Every Artin monoid is locally Gaussian;

- Every singular braid monoid is locally Gaussian;

... of a different flavour:

- The dual braid monoids (Birman-Ko-Lee, Bessis-
Digne-Michel) are Garside monoids;

- The monoids 〈a, b, c, . . . ; ap = bq = cr = . . . 〉
are Garside monoids;

- The monoids 〈a, b ; aba = b2〉, 〈a, b ; ababa =
b2〉, ... are Garside monoids.

��������� see M. Picantin’s PhD thesis for many examples;
(a conjecture: every finitely generated Gaussian monoid
is a Garside monoid).
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• Construction of a resolution (first method).

��������� Hypothesis: M is a locally Gaussian monoid (for
instance, a Garside monoid). We construct

· · · → C2 → C1 → C0 → Z

where the C∗ are free ZM -modules and Z is a trivial
ZM -module.

��������� Fix a set X of generators for M that is closed
under left complement, i.e., for x, y in X with a com-
mon left multiple, hence a left lcm z the elements x′

and y′ satisfying z = xy′ = yx′ still belong to X
(for M Garside, can take X = Div(∆) .

��������� Then define Cn to be the free ZM -module based
on X [n], with

• Definition: Let X [n] be the set of all [α1, . . . , αn]

with α1 < . . . < αn ∈ X and α1, . . . , αn admitting
a left lcm (with < a fixed linear ordering on X ).
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• Idea: [α1, . . . , αn] is an n-cube associated with
the computation of the left lcm of α1, . . . , an (which
exists by hypothesis).
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σ2σ3

σ3σ2

σ1σ2σ3

σ2σ1σ3σ21

∆4
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σ2

σ3

σ3

σ3σ2σ1

The 3-cell [σ1, σ2, σ3] in the braid monoid B+
3

��������� finite type modules whenever X is finite (so, in
particular, for M Garside).

• We need:
- a boundary operator ∂n : Cn → Cn−1 satisfying
∂2 = 0;
- a contracting homotopy sn : Cn → Cn+1 satisfy-
ing ∂s + s∂ = id.
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• The boundary is natural (“the boundary of a cube
is the sum of its faces”) but it requires an ad hoc
formalism.
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• The contracting homotopy is more difficult: how to
invent a cube from one face?

��������� use a normal form: in every (locally) Gaussian
monoid M , there exists a good normal form, namely
the greedy normal form (Deligne, Adyan, Thurston,
ElRifai-Morton, Charney).

• Every element x of M has a unique maximal left
divisor x1 lying in X , say x = x1x′, so, iteratively,

x = x1x2 · · ·xp

with x1, . . . , xp ∈ X and xi the max. left div. of
xixi+1 · · ·xp lying in X .

• Point: The X -normal form is local: (x1, . . . , xp) is
X -normal iff (xi, xi+1) is X -normal for each i.

��������� Corollary 1 (Charney for spherical Artin groups):
Garside groups are automatic.
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��������� Corollary 2: The X -normal form can be com-
puted using left reversing:

α1 αi αi+1 αp

γ1 γi γi+1 γp

β1 βi βi+1 βp = β1 = β0 βi−1 βp−1

. . .

. . .

. . .

. . .

��������� Contracting homotopy for C∗:

Problem: Starting from x in M and [A] in X [n], i.e.,
from the n-cube [A] translated by x to define an
n + 1-parallelotope of which x[A] is a face:

x

[A]
s

[A]

x

NF(x �A�)

�→

��������� Solution: s(x[A]) = [NF(x lcm(A)), A].
(Needs to define [w, A] when w is a word on X ,

and not a single letter ��������� induction given by lcm’s
formulas:

[uv, A] = [u, A/v] + u/A[v, A]).
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Proof of exactnes): works because normal forms
everywhere.

9



• Improvement: Extract a smaller and shorter sub-
complex by restricting to descending cubes: [α1, . . . , αn]
s.t. αn|αn−1| . . . |α2|α1 (right division).

��������� A descending n-cube is an n-simplex:
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��������� Still form a resolution, because an n-cube can be
decomposed into a sum of n! disjoint n-simplexes:
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• Proposition: Every Garside group (i.e., group of
fractions of a Garside monoid) is of type FL, i.e., has
a finite free resolution.

• Still OK for a locally Gaussian monoid, but
(i) the set X may be infinite, and
(ii) if common multiples do not exist, there is no as-
sociated group of fractions.

• In the case of a Garside group G, the (improved)
resolution is the one of Charney-Meier-Whittlesey,
after Bestvina’s construction of a flag complex whose
1-skeleton is the Cayley graph of G.
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• Yves Lafont (Marseille): Construction of another
resolution (second method, reminiscent of Kobayashi).

��������� more general: M locally left Gaussian: one-sided
hypotheses: right cancellativity, left Noetherian, and
any two elements with a common left multiple admit
a left lcm;

��������� more flexible: X arbitrary set of generators of M

(no closure requirement);

��������� but less effective: inductive construction, no ex-
plicit formula, no geometric interpretation (so far).

• Method: (Pre)-well-order the chains:

x[A] ≺ y[B]

if x lcm(A) proper left div. of y lcm(B),
or x lcm(A) = y lcm(A) and first(A) < first(B).

��������� ≺ has no infinite ↘-chain: allows ≺-induction.
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• Definition:

∂n+1[α, A] = α/A[A] − sn−1∂n(α/A[A]),

sn(x[A]) =


0 for x[A] irreducible,

y[α, A]+sn(ysn−1∂n(α/A[A]))

otherwise, with α min.left div.

of x lcmA and x = y(α/A).

where x[A] irreducible means:
α1 is the min. left div. of x lcm(A).

• The point: For x[A] reducible, we have

sn−1∂n(x[A]) ≺ x[A].

��������� induction possible (think of sn−1∂n(x[A]) as a
reduction of x[A]).

• Proposition (Lafont): ... makes a resolution of Z.
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• Question 1: Does solution 1 works with arbitrary
generators, i.e., when we do not assume the set X
to be closed under lcm and complement?

• Question 2: Has Solution 2 a (natural) geomet-
rical interpretation similar to that of Solution 1, i.e.,
connected with some reversing process and some
normal form?
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