HOMOLOGY OF GAUSSIAN GROUPS
Patrick Dehornoy (Caen)

e Aim: to compute the homology of braid groups
~+ done: Arnold, Fuks (1970’s),

... or, more generally, of spherical Artin—Tits groups
(those associated with a finite Coxeter group)
~~» done: Goryunov, Deligne, Salvetti, Cohen,

... using an algebraic approach (no differ. geom.)
~+ done: Squier (1980, 1995),

... SO what?

~» A simple method for constructing resolutions of Z
e for still more general monoids,
e exclusively relying on least common multiples.

~» completes Squier's implicit program;

~+ extends simultaneous indep. work by Charney,
Meier, Whittlesey building on Bestvina (Garside groups);
~~ gives a purely algebraic proof of the exactness of
the Deligne—Salvetti resolution (braid groups).



e Remark (Cartan-Eilenberg, Squier): For GG group
of fractions of M, we have H«(G,7Z) = H«(M,7Z).
~» Compute H. (M, 7Z) for some monoids M.

~~ Construct resolutions of Z by free ZM-modules.

e \Which monoids? Those with good Icm (least com-
mon multiple) properties, typically Artin monoids
(Squier), and, more generally:

e Definition: A monoid M is Gaussian if

(): cancellative,

(ii): division has no infinite \ -chain,

(ii): any two elements have a left and a right lcm.

e Definition: A monoid M is locally Gaussian if
(i) + (i) + (i)~ : two elements with a common left
(right) multiple admit a left (right) lcm.

e Definition: A monoid M is Garside if Gaussian +
contains a Garside element A,

(Divleft(A) — Divright(A)a
Divleft(A) IS finite,
| Divie i (A) generates M.

b




e Examples:

- The braid monoids Bﬂ[ are Garside monoids; ev-
ery finite Coxeter type Artin monoid is a Garside
monoid (an Artin monoid or group is one defined
by relations all of the form abab... = baba...);

- Every Artin monoid is locally Gaussian;
- Every singular braid monoid is locally Gaussian;
... of a different flavour:

- The dual braid monoids (Birman-Ko-Lee, Bessis-
Digne-Michel) are Garside monoids;

- The monoids (a,b,c,... ;aP = b1 =" = ...)
are Garside monoids:

- The monoids (a,b; aba = b2), (a,b; ababa =
b2), ... are Garside monoids.

~» see M. Picantin’s PhD thesis for many examples;
(a conjecture: every finitely generated Gaussian monoid
IS a Garside monoid).



e Construction of a resolution (first method).

~» Hypothesis: M is a locally Gaussian monoid (for
instance, a Garside monoid). We construct

+—Cyr —-(C1 — Cy— 4

where the C, are free ZM-modules and Z is a trivial
Z. M -module.

~» Fix a set X of generators for M that is closed
under left complement, i.e., for x, y in X with a com-
mon left multiple, hence a left Icm z the elements z’
and vy satisfying z = zy’ = yz’ still belong to X
(for M Garside, can take X = Div(AQ) .

~» Then define (), to be the free ZM-module based
on X[”], with

e Definition: Let X[ be the set of all [aq, . . . , an]
withay < ... < ap € X and aq, ..., ap admitting
a left lcm (with < a fixed linear ordering on X’).



e ldea: [xq,...,ap] is an n-cube associated with
the computation of the left lcm of a1, ... , an (Which
exists by hypothesis).
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The 3-cell [o1, 05, 03] in the braid monoid Bé"

~ finite type modules whenever X is finite (so, In
particular, for M Garside).

e \We need:

- a boundary operator 0,, : C), — C,,_1 satisfying
02 = 0;

- a contracting homotopy sy : Cn — C,, 41 satisfy-
ing 0s + s0 = id.



e The boundary is natural (“the boundary of a cube
IS the sum of its faces”) but it requires an ad hoc

formalism.




e The contracting homotopy is more difficult: how to
invent a cube from one face?

~» use a normal form: in every (locally) Gaussian
monoid M, there exists a good normal form, namely
the greedy normal form (Deligne, Adyan, Thurston,
EIRifai-Morton, Charney).

e Every element x of M has a unique maximal left
divisor z1 lying in X, say © = z12/, so, iteratively,
T =x1Tp - Tp

with =1, ..., p € X and z; the max. left div. of
T;Ti41 - Tp lying in X

e Point: The X'-normal formis local: (z1,... ,xp) isS
X-normal iff (z;, x;4.1) is X-normal for each <.

~~+ Corollary 1 (Charney for spherical Artin groups):
Garside groups are automatic.



~» Corollary 2: The X-normal form can be com-
puted using left reversing:

(y Qi Qg1 Qp
1= ﬁo‘ l 1 l i—1 lﬁi lﬁz’ﬂ Bp-1 lﬁp =0
e — “ . > > “ e —_—
ol Vi Yit1 Tp

~~ Contracting homotopy for C:

Problem: Starting from x in M and [A] in xlnl e
from the n-cube [A] translated by x to define an
n + 1-parallelotope of which x[A] is a face:

NF(z A)

~» Solution: s(z[A]) = [NF(xzlcm(A)), A].
(Needs to define [w, A] when w is a word on X,
and not a single letter ~» induction given by Icm’s
formulas:

[uv, Al = [u, A/v] + u/Alv, A])



Proof of exactnes): works because normal forms
everywhere.



e Improvement: Extract a smaller and shorter sub-
complex by restricting to descending cubes: [aq, ... , an]

S.t. an|ag_1]| ... |as|aq

~~ A descending n-cube is an n-simplex:

~» Still form a resolution, because an n-cube can be
decomposed into a sum of n! disjoint n-simplexes:

______________
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::::
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e Proposition: Every Garside group (i.e., group of
fractions of a Garside monoid) is of type FL, i.e., has
a finite free resolution.

e Still OK for a locally Gaussian monoid, but

() the set X may be infinite, and

(if) if common multiples do not exist, there is no as-
sociated group of fractions.

e In the case of a Garside group G, the (improved)
resolution is the one of Charney-Meier-Whittlesey,
after Bestvina’s construction of a flag complex whose
1-skeleton is the Cayley graph of G.
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e Yves Lafont (Marseille): Construction of another
resolution (second method, reminiscent of Kobayashi).

~~ more general: M locally left Gaussian: one-sided
hypotheses: right cancellativity, left Noetherian, and
any two elements with a common left multiple admit
a left lcm;

~~ more flexible: X’ arbitrary set of generators of M
(no closure requirement);

~~ bhut less effective: inductive construction, no ex-
plicit formula, no geometric interpretation (so far).

e Method: (Pre)-well-order the chains:

z[A] < y[B]

if xlcm(A) proper left div. of ylcm(B),
or zlem(A) = ylem(A) and first(A) < first(B).

~~» < has no infinite \-chain: allows <-induction.
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e Definition:

Ont1lo, Al = a/A[A] — s;,_10n(a/A[A]),

’

0 for z[A] irreducible,

yla, Al+sn(ys,—10n(a/A[A]))
otherwise, with o min.left div.
\ of zlcmA and z = y(a/A).

where x[A] irreducible means:
a1 is the min. left div. of xlcm(A).

sn(z[A]) = <

e The point: For z[A] reducible, we have

sn—10n(z[A]) < z[A].

~~ induction possible (think of s,,_10n(x[A]) as a
reduction of xz[A]).

e Proposition (Lafont): ... makes a resolution of Z.
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e Question 1. Does solution 1 works with arbitrary
generators, i.e., when we do not assume the set X
to be closed under Icm and complement?

e Question 2: Has Solution 2 a (natural) geomet-
rical interpretation similar to that of Solution 1, i.e.,
connected with some reversing process and some
normal form?
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