Patrick Dehornoy Laboratoire de Mathematiques Nicolas Oresme, Caen

Patrick Dehornoy Laboratoire de Mathematiques Nicolas Oresme, Caen

 \bullet Theorem: (Woodin, 2000) If the $\Omega\text{-Conjecture}$ is true, then the Continuum Hypothesis is essentially false.

Patrick Dehornoy Laboratoire de Mathematiques Nicolas Oresme, Caen

 \bullet Theorem: (Woodin, 2000) If the $\Omega\text{-Conjecture}$ is true, then the Continuum Hypothesis is essentially false.

 \bullet The $\Omega\text{-}\mathsf{Conjecture}$ asserts that a certain property is true for each large cardinal axiom;

Patrick Dehornoy Laboratoire de Mathematiques Nicolas Oresme, Caen

 \bullet Theorem: (Woodin, 2000) If the $\Omega\text{-Conjecture}$ is true, then the Continuum Hypothesis is essentially false.

- The Ω -Conjecture asserts that a certain property is true for each large cardinal axiom;
- It is proved for a large fragment of the large cardinal hierarchy.

Patrick Dehornoy Laboratoire de Mathematiques Nicolas Oresme, Caen

 \bullet Theorem: (Woodin, 2000) If the $\Omega\text{-Conjecture}$ is true, then the Continuum Hypothesis is essentially false.

- ullet The $\Omega ext{-Conjecture}$ asserts that a certain property is true for each large cardinal axiom;
- It is proved for a large fragment of the large cardinal hierarchy.
- Question: Is this fragment the whole hierarchy?

Patrick Dehornoy Laboratoire de Mathematiques Nicolas Oresme, Caen

• Theorem: (Woodin, 2000) If the Ω -Conjecture is true, then the Continuum Hypothesis is essentially false.

- \bullet The $\Omega\text{-Conjecture}$ asserts that a certain property is true for each large cardinal axiom;
- It is proved for a large fragment of the large cardinal hierarchy.
- Question: Is this fragment the whole hierarchy?
 Also remains the "essentially"...

The Continuum Hypothesis

• Conjecture: (Cantor, \sim 1890) CH: Each infinite subset of $\mathbb R$ is in bijection with $\mathbb N$ or $\mathbb R$.

The Continuum Hypothesis

- Conjecture: (Cantor, \sim 1890) CH: Each infinite subset of $\mathbb R$ is in bijection with $\mathbb N$ or $\mathbb R$.
- \aleph_0 , \aleph_1 ,... enumeration of infinite cardinals \longrightarrow CH: $2^{\aleph_0} = \aleph_1$.

- Conjecture: (Cantor, \sim 1890) CH: Each infinite subset of $\mathbb R$ is in bijection with $\mathbb N$ or $\mathbb R$.
- \aleph_0 , \aleph_1 ,... enumeration of infinite cardinals \longrightarrow CH: $2^{\aleph_0} = \aleph_1$.
- Consensus: ZFC (Zermelo-Fraenkel) as axiomatic start.
 - → First question: is CH or ¬CH provable from ZFC?

- Conjecture: (Cantor, \sim 1890) CH: Each infinite subset of $\mathbb R$ is in bijection with $\mathbb N$ or $\mathbb R$.
- \aleph_0 , \aleph_1 ,... enumeration of infinite cardinals \longrightarrow CH: $2^{\aleph_0} = \aleph_1$.
- Consensus: ZFC (Zermelo-Fraenkel) as axiomatic start.
 - **→** First question: is CH or ¬CH provable from ZFC?
- Theorem: (Gödel, 1938) If ZFC is not contradictory, then ¬CH is not provable from ZFC.

- Conjecture: (Cantor, \sim 1890) CH: Each infinite subset of $\mathbb R$ is in bijection with $\mathbb N$ or $\mathbb R$.
- \aleph_0 , \aleph_1 ,... enumeration of infinite cardinals \longrightarrow CH: $2^{\aleph_0} = \aleph_1$.
- Consensus: ZFC (Zermelo-Fraenkel) as axiomatic start.
 - **→** First question: is CH or ¬CH provable from ZFC?
- Theorem: (Gödel, 1938) If ZFC is not contradictory, then ¬CH is not provable from ZFC.
- Theorem: (Cohen, 1963) If ZFC is not contradictory, then CH is not provable from ZFC.

- Conjecture: (Cantor, \sim 1890) CH: Each infinite subset of $\mathbb R$ is in bijection with $\mathbb N$ or $\mathbb R$.
- \aleph_0 , \aleph_1 ,... enumeration of infinite cardinals \longrightarrow CH: $2^{\aleph_0} = \aleph_1$.
- Consensus: ZFC (Zermelo-Fraenkel) as axiomatic start.
 - **→** First question: is CH or ¬CH provable from ZFC?
- Theorem: (Gödel, 1938) If ZFC is not contradictory, then ¬CH is not provable from ZFC.
- Theorem: (Cohen, 1963) If ZFC is not contradictory, then CH is not provable from ZFC.
 - → ZFC just incomplete

Additional axioms

- Which axioms?
- → How to recognize a good axiom?

Additional axioms

- Which axioms?
- → How to recognize a good axiom?
- **→** What could be a solution to the Continuum Problem?

Additional axioms

- Which axioms?
- → How to recognize a good axiom?
- **→** What could be a solution to the Continuum Problem?

- Fundamental example: axioms of large cardinals:
 - → analogous to the axiom "There exists an infinite set".

- Which axioms?
- → How to recognize a good axiom?
- → What could be a solution to the Continuum Problem?

- Fundamental example: axioms of large cardinals:
 - → analogous to the axiom "There exists an infinite set".

• Large cardinal axioms are efficient, and true

- Which axioms?
- → How to recognize a good axiom?
- **→** What could be a solution to the Continuum Problem?

- Fundamental example: axioms of large cardinals:
 - → analogous to the axiom "There exists an infinite set".

- Large cardinal axioms are efficient, and true
 - → restrict to axioms that do not contradict large cardinals.

Forcing and incompleteness

• System ZFC = list of axioms about ∈:

Forcing and incompleteness

• System ZFC = list of axioms about \in : \leadsto model of ZFC: any pair (M, E) with E binary rel. on M satisf. the ZFC axioms;

• System ZFC = list of axioms about \in : \leadsto model of ZFC: any pair (M, E) with E binary rel. on M satisf. the ZFC axioms; \leadsto "example": (V, \in) , i.e., true sets, true membership.

• Forcing method:

• System ZFC = list of axioms about \in : \leadsto model of ZFC: any pair (M, E) with E binary rel. on M satisf. the ZFC axioms; \leadsto "example": (V, \in) , i.e., true sets, true membership.

• Forcing method: Extend a ZFC model M into a new model M[G] controlled by some set $\mathbb P$ of M; (cf. algebraic extension of a field)

• System ZFC = list of axioms about \in : \leadsto model of ZFC: any pair (M, E) with E binary rel. on M satisf. the ZFC axioms; \leadsto "example": (V, \in) , i.e., true sets, true membership.

• Forcing method: Extend a ZFC model M into a new model M[G] controlled by some set \mathbb{P} of M; (cf. algebraic extension of a field) \longrightarrow (Cohen): Construct M[G] satisfying $\neg \mathsf{CH}$.

```
• System ZFC = list of axioms about \in: \leadsto model of ZFC: any pair (M, E) with E binary rel. on M satisf. the ZFC axioms; \leadsto "example": (V, \in), i.e., true sets, true membership.
```

• Forcing method: Extend a ZFC model M into a new model M[G] controlled by some set \mathbb{P} of M; (cf. algebraic extension of a field) \longrightarrow (Cohen) : Construct M[G] satisfying \neg CH. \longrightarrow CH not provable from ZFC.

- System ZFC = list of axioms about \in : \leadsto model of ZFC: any pair (M,E) with E binary rel. on M satisf. the ZFC axioms; \leadsto "example": (V,\in) , i.e., true sets, true membership.
- Forcing method: Extend a ZFC model M into a new model M[G] controlled by some set $\mathbb P$ of M; (cf. algebraic extension of a field) \leadsto (Cohen) : Construct M[G] satisfying $\neg \mathsf{CH}$. \leadsto CH not provable from ZFC.
- Frequent manifestation of the incompleteness of ZFC when neither ϕ nor $\neg \phi$ are provable from ZFC: starting from M (arbitrary)

```
    System ZFC = list of axioms about ∈: → model of ZFC:

any pair (M, E) with E binary rel. on M satisf. the ZFC axioms;
            \leftrightarrow "example": (V, \in), i.e., true sets, true membership.
```

- Forcing method: Extend a ZFC model M into a new model M[G]controlled by some set \mathbb{P} of M; (cf. algebraic extension of a field) \rightsquigarrow (Cohen): Construct M[G] satisfying $\neg CH$. **→ CH** not provable from **ZFC**.
- Frequent manifestation of the incompleteness of ZFC when neither ϕ nor $\neg \phi$ are provable from ZFC: starting from M (arbitrary)
 - there exists a forcing \mathbb{P}_1 such that $M[G_1]$ satisfies ϕ ,

- System ZFC = list of axioms about \in : \leadsto model of ZFC: any pair (M, E) with E binary rel. on M satisf. the ZFC axioms; \leadsto "example": (V, \in) , i.e., true sets, true membership.
- Forcing method: Extend a ZFC model M into a new model M[G] controlled by some set \mathbb{P} of M; (cf. algebraic extension of a field) \longrightarrow (Cohen) : Construct M[G] satisfying \neg CH. \longrightarrow CH not provable from ZFC.
- Frequent manifestation of the incompleteness of ZFC when neither ϕ nor $\neg \phi$ are provable from ZFC: starting from M (arbitrary)
 - there exists a forcing \mathbb{P}_1 such that $M[G_1]$ satisfies ϕ ,
 - there exists a forcing \mathbb{P}_2 such that $M[G_2]$ satisfies $\neg \phi$.

The case of arithmetic

• Fact: The properties of $(\mathbb{N},+,\times)$ are invariant under forcing.

The case of arithmetic

• Fact: The properties of $(\mathbb{N},+,\times)$ are invariant under forcing.

(cf. prime subfield of a field is invariant under extension).

The case of arithmetic

• Fact: The properties of $(\mathbb{N}, +, \times)$ are invariant under forcing.

(cf. prime subfield of a field is invariant under extension).

ightharpoonup ZFC is efficient for $(\mathbb{N},+,\times)$: empirically complete —though incomplete by Gödel Theorem;

• Fact: The properties of $(\mathbb{N}, +, \times)$ are invariant under forcing.

(cf. prime subfield of a field is invariant under extension).

TFC is efficient for (N, +, ×): empirically complete
 —though incomplete by Gödel Theorem;
 ****** "ZFC is sufficient at the level of arithmetic".

• Fact: The properties of $(\mathbb{N}, +, \times)$ are invariant under forcing.

(cf. prime subfield of a field is invariant under extension).

ightharpoonup ZFC is efficient for $(\mathbb{N},+,\times)$: empirically complete —though incomplete by Gödel Theorem; ightharpoonup "ZFC is sufficient at the level of arithmetic".

• Question: Can one have the same situation for larger fragments ?

ullet "Definition": Let H be a fragment of V; a good axiomatization for H is an extension of ZFC by axioms compatible with large cardinals, that makes the properties of (H,\in) invariant under forcing.

ullet "Definition": Let H be a fragment of V; a good axiomatization for H is an extension of ZFC by axioms compatible with large cardinals, that makes the properties of (H,\in) invariant under forcing.

 \leadsto "Freezing the properties of H with respect to forcing".

ullet "Definition": Let H be a fragment of V; a good axiomatization for H is an extension of ZFC by axioms compatible with large cardinals, that makes the properties of (H,\in) invariant under forcing.

 \leadsto "Freezing the properties of H with respect to forcing".

Need not exist; if exists, need not be unique.

• "Definition": Let H be a fragment of V; a good axiomatization for H is an extension of ZFC by axioms compatible with large cardinals, that makes the properties of (H,\in) invariant under forcing.

 \leadsto "Freezing the properties of H with respect to forcing".

Need not exist; if exists, need not be unique.

• Notation: H_k family of all sets hereditarily of cardinal $< \aleph_k$

ullet "Definition": Let H be a fragment of V; a good axiomatization for H is an extension of ZFC by axioms compatible with large cardinals, that makes the properties of (H,\in) invariant under forcing.

 \leadsto "Freezing the properties of H with respect to forcing".

Need not exist; if exists, need not be unique.

• Notation: H_k family of all sets hereditarily of cardinal $< \aleph_k$

 \mapsto H_0 (hereditarily finite sets) $\approx (\mathbb{N}, +, \times)$;

- ullet "Definition": Let H be a fragment of V; a good axiomatization for H is an extension of ZFC by axioms compatible with large cardinals, that makes the properties of (H,\in) invariant under forcing.
 - \leadsto "Freezing the properties of H with respect to forcing".
 - Need not exist; if exists, need not be unique.
- Notation: H_k family of all sets hereditarily of cardinal $< \aleph_k$
 - \mapsto H_0 (hereditarily finite sets) $\approx (\mathbb{N}, +, \times)$;
 - \hookrightarrow H_1 (hereditarily countable sets),...

- "Definition": Let H be a fragment of V; a good axiomatization for H is an extension of ZFC by axioms compatible with large cardinals, that makes the properties of (H, \in) invariant under forcing.
 - \leadsto "Freezing the properties of H with respect to forcing".
 - Need not exist; if exists, need not be unique.
- Notation: H_k family of all sets hereditarily of cardinal $< \aleph_k$
 - \mapsto H_0 (hereditarily finite sets) $\approx (\mathbb{N}, +, \times)$;
 - \longrightarrow H_1 (hereditarily countable sets),...
- Fact: **ZFC** is a good axiomatization for H_0 .

- "Definition": Let H be a fragment of V; a good axiomatization for H is an extension of ZFC by axioms compatible with large cardinals, that makes the properties of (H,\in) invariant under forcing.
 - \leadsto "Freezing the properties of H with respect to forcing".
 - Need not exist; if exists, need not be unique.
- Notation: H_k family of all sets hereditarily of cardinal $< \aleph_k$
 - \longrightarrow H_0 (hereditarily finite sets) $\approx (\mathbb{N}, +, \times)$;
 - \hookrightarrow H_1 (hereditarily countable sets),...
- Fact: **ZFC** is a good axiomatization for H_0 .
 - \rightsquigarrow What about good axiomatizations for H_1 , H_2 , ... ?

 \bullet Definition (Consensus ?): Say that a formula ϕ involving H is essentially true

- Definition (Consensus ?): Say that a formula ϕ involving H is essentially true if (neither ϕ nor $\neg \phi$ is provable from ZFC), and
 - (i) there exists at least one good axiomatization for H;
 - (ii) every good axiomatization for H implies ϕ .

- Definition (Consensus ?): Say that a formula ϕ involving H is essentially true if (neither ϕ nor $\neg \phi$ is provable from ZFC), and
 - (i) there exists at least one good axiomatization for \boldsymbol{H} ;
 - (ii) every good axiomatization for H implies ϕ .

"Every axiomatization freezing the properties of H w.r.t. forcing (= neutralizing forcing at the level of H) implies ϕ ".

- Definition (Consensus ?): Say that a formula ϕ involving H is essentially true if (neither ϕ nor $\neg \phi$ is provable from ZFC), and
 - (i) there exists at least one good axiomatization for \boldsymbol{H} ;
 - (ii) every good axiomatization for H implies ϕ .

"Every axiomatization freezing the properties of H w.r.t. forcing (= neutralizing forcing at the level of H) implies ϕ ".

• Remark: CH deals with H_2 , hence involves (possible) good axiomatizations of H_2 .

The case of H_1 (1970–85)

ullet ZFC is not a good axiomatization for H_1 :

The case of H_1 (1970–85)

• ZFC is not a good axiomatization for H_1 : $(H_1, \in) \approx$ projective subsets of \mathbb{R} , and ZFC does not decide their measurability.

- ZFC is not a good axiomatization for H_1 : $(H_1, \in) \approx$ projective subsets of \mathbb{R} , and ZFC does not decide their measurability.
- $\begin{array}{l} \bullet \ \ \mbox{Definition}: \ \mbox{A subset} \ A \ \mbox{of} \ [0,1] \ \mbox{is} \ \mbox{determined} \ \mbox{if} \ \mbox{we have} \\ (\exists a_1)(\forall a_2)(\exists a_3)(\forall a_4)...(\ \overline{0,a_1a_2a_3...} \ \in A) \ \mbox{or} \\ (\forall a_1)(\exists a_2)(\forall a_3)(\exists a_4)...(\ \overline{0,a_1a_2a_3...} \ \notin A). \end{array}$

• ZFC is not a good axiomatization for H_1 : $(H_1, \in) \approx$ projective subsets of \mathbb{R} , and ZFC does not decide their measurability.

• Definition : A subset A of [0,1] is determined if we have $(\exists a_1)(\forall a_2)(\exists a_3)(\forall a_4)...(\overline{0,a_1a_2a_3...}\in A)$ or $(\forall a_1)(\exists a_2)(\forall a_3)(\exists a_4)...(\overline{0,a_1a_2a_3...}\notin A)$. Axiom PD: "All projective subsets of [0,1] are determined".

- ZFC is not a good axiomatization for H_1 : $(H_1, \in) \approx$ projective subsets of \mathbb{R} , and ZFC does not decide their measurability.
- Definition : A subset A of [0,1] is determined if we have $(\exists a_1)(\forall a_2)(\exists a_3)(\forall a_4)...(\overline{0,a_1a_2a_3...}\in A)$ or $(\forall a_1)(\exists a_2)(\forall a_3)(\exists a_4)...(\overline{0,a_1a_2a_3...}\notin A)$.

Axiom PD: "All projective subsets of $\left[0,1\right]$ are determined".

• Theorem: ZFC + PD is a good axiomatization for H_1 .

- ZFC is not a good axiomatization for H_1 : $(H_1, \in) \approx$ projective subsets of \mathbb{R} , and ZFC does not decide their measurability.
- $\begin{array}{l} \bullet \ \ \, \text{Definition}: \ \, \textbf{A} \ \, \text{subset} \ \, A \ \, \text{of} \ \, [0,1] \ \, \text{is} \ \, \text{determined} \ \, \text{if} \ \, \text{we have} \\ (\exists a_1)(\forall a_2)(\exists a_3)(\forall a_4)...(\ \, \overline{0,a_1a_2a_3...} \ \, \in A) \ \, \text{or} \\ (\forall a_1)(\exists a_2)(\forall a_3)(\exists a_4)...(\ \, \overline{0,a_1a_2a_3...} \ \, \notin A). \end{array}$

Axiom PD: "All projective subsets of [0,1] are determined".

- Theorem: **ZFC** + **PD** is a good axiomatization for H_1 .
- Indeed: efficient (by Moschovakis & al. PD implies projective sets are measurable, have Baire property, no choice needed), compatible with large cardinals (by Martin–Steel PD \iff exist ∞ many Woodin cardinals, and provides forcing invariance (by Woodin a proper class of Woodin cardinals makes properties of H_1 invariant under forcing.

The case of H_2 (1980–...)

• $H_2 \approx \mathfrak{P}(\aleph_1) \approx \mathbb{R}^{\aleph_1}$; \longrightarrow non trivial topology on \aleph_1 $(\neq \aleph_0)$.

The case of H_2 (1980–...)

- $H_2 \approx \mathfrak{P}(\aleph_1) \approx \mathbb{R}^{\aleph_1}$; \longrightarrow non trivial topology on $\aleph_1 \ (\neq \aleph_0)$.
- • Large cardinal axioms never are good axiomatization for ${\cal H}_2$ \leadsto forcing axioms.

- $H_2 \approx \mathfrak{P}(\aleph_1) \approx \mathbb{R}^{\aleph_1}$; \longrightarrow non trivial topology on $\aleph_1 \ (\neq \aleph_0)$.
- Large cardinal axioms never are good axiomatization for ${\cal H}_2$ \leadsto forcing axioms.
- Theorem (Baire): If X is locally compact, every intersection of \aleph_0 dense open subsets of X is dense.

- $H_2 \approx \mathfrak{P}(\aleph_1) \approx \mathbb{R}^{\aleph_1}$; \leadsto non trivial topology on $\aleph_1 \ (\neq \aleph_0)$.
- \bullet Large cardinal axioms never are good axiomatization for H_2 $\quad \ \ \, \longrightarrow \ \ \,$ forcing axioms.
- Theorem (Baire): If X is locally compact, every intersection of \aleph_0 dense open subsets of X is dense.
- Axiom MA (Martin): If X is locally compact and every family of pairwise disjoint open subsets is countable, then every intersection of \aleph_1 dense open subsets of X is dense.
- Axiom "Martin Maximum" MM (Foreman-Magidor-Shelah).
- Axiom WMM (Woodin): variant of MM.

- $H_2 \approx \mathfrak{P}(\aleph_1) \approx \mathbb{R}^{\aleph_1}$; \leadsto non trivial topology on $\aleph_1 \ (\neq \aleph_0)$.
- \bullet Large cardinal axioms never are good axiomatization for H_2 $\quad \ \ \, \longrightarrow \ \ \,$ forcing axioms.
- Theorem (Baire): If X is locally compact, every intersection of \aleph_0 dense open subsets of X is dense.
- Axiom MA (Martin): If X is locally compact and every family of pairwise disjoint open subsets is countable, then every intersection of \aleph_1 dense open subsets of X is dense.
- Axiom "Martin Maximum" MM (Foreman-Magidor-Shelah).
- Axiom WMM (Woodin): variant of MM.
- ullet Theorem (Woodin, 1995) If compatible with large cardinals, ZFC + WMM is a good axiomatization for H_2 .

- $H_2 \approx \mathfrak{P}(\aleph_1) \approx \mathbb{R}^{\aleph_1}$; \leadsto non trivial topology on $\aleph_1 \ (\neq \aleph_0)$.
- \bullet Large cardinal axioms never are good axiomatization for H_2 $\quad \ \ \, \longrightarrow \ \ \,$ forcing axioms.
- Theorem (Baire): If X is locally compact, every intersection of \aleph_0 dense open subsets of X is dense.
- Axiom MA (Martin): If X is locally compact and every family of pairwise disjoint open subsets is countable, then every intersection of \aleph_1 dense open subsets of X is dense.
- Axiom "Martin Maximum" MM (Foreman-Magidor-Shelah).
- Axiom WMM (Woodin): variant of MM.
- Theorem (Woodin, 1995) If compatible with large cardinals, ZFC + WMM is a good axiomatization for H_2 .
- invariance under forcing and empirically complete description; missing: compatibility with large cardinals.

Woodin's Ω -logic

• A new logic including invariance under forcing: "sharp view despite the blurring of forcing".

- A new logic including invariance under forcing:
 "sharp view despite the blurring of forcing".
- ullet Definition: $B\subseteq\mathbb{R}$ is universally Baire if, for $f:K\to\mathbb{R}$ continuous and K compact, $f^{-1}(B)$ has the Baire property.

- A new logic including invariance under forcing:
 "sharp view despite the blurring of forcing".
- ullet Definition: $B\subseteq\mathbb{R}$ is universally Baire if, for $f:K\to\mathbb{R}$ continuous and K compact, $f^{-1}(B)$ has the Baire property.
- Borel sets and (CW⁺) projective sets are universally Baire.

- A new logic including invariance under forcing:
 "sharp view despite the blurring of forcing".
- ullet Definition: $B\subseteq\mathbb{R}$ is universally Baire if, for $f:K\to\mathbb{R}$ continuous and K compact, $f^{-1}(B)$ has the Baire property.
- Borel sets and (CW⁺) projective sets are universally Baire.
- Definition: (Woodin, CW⁺) A univers. Baire set B is an Ω -proof for ϕ if ϕ is true in every countable model M of ZFC s.t. B remains universally Baire in every forcing extension of M.

- A new logic including invariance under forcing: "sharp view despite the blurring of forcing".
- ullet Definition: $B\subseteq\mathbb{R}$ is universally Baire if, for $f:K\to\mathbb{R}$ continuous and K compact, $f^{-1}(B)$ has the Baire property.
- Borel sets and (CW⁺) projective sets are universally Baire.
- Definition: (Woodin, CW⁺) A univers. Baire set B is an Ω -proof for ϕ if ϕ is true in every countable model M of ZFC s.t. B remains universally Baire in every forcing extension of M.
- Fact: Provable (in usual logic) implies Ω -provable.

- A new logic including invariance under forcing: "sharp view despite the blurring of forcing".
- ullet Definition: $B\subseteq\mathbb{R}$ is universally Baire if, for $f:K\to\mathbb{R}$ continuous and K compact, $f^{-1}(B)$ has the Baire property.
- Borel sets and (CW⁺) projective sets are universally Baire.
- Definition: (Woodin, CW⁺) A univers. Baire set B is an Ω -proof for ϕ if ϕ is true in every countable model M of ZFC s.t. B remains universally Baire in every forcing extension of M.
- Fact: Provable (in usual logic) implies Ω -provable.
- ullet When B becomes more and more complicated, there are less and less models with the desired property.

The Ω -Conjecture

• A logic = a syntax (provability) + a semantic (validity)

A logic = a syntax (provability) + a semantic (validity)

• Definition: A sentence ϕ is Ω -valid if no forcing extension of V satisfies $\neg \phi$.

A logic = a syntax (provability) + a semantic (validity)

 $\bullet \mbox{ Definition: A sentence } \phi \mbox{ is } \Omega\mbox{-valid if } \\ \mbox{ no forcing extension of } V \mbox{ satisfies } \neg \phi.$

• Fact: (CW⁺) Ω -logic is coherent: Ω -provable implies Ω -valid.

A logic = a syntax (provability) + a semantic (validity)

• Definition: A sentence ϕ is Ω -valid if no forcing extension of V satisfies $\neg \phi$.

• Fact: (CW⁺) Ω -logic is coherent: Ω -provable implies Ω -valid.

• Conjecture: (Woodin, CW $^+$) $\Omega\text{-logic}$ is complete: $\Omega\text{-valid}$ implies $\Omega\text{-provable}.$

- A logic = a syntax (provability) + a semantic (validity)
- Definition: A sentence ϕ is Ω -valid if no forcing extension of V satisfies $\neg \phi$.

• Fact: (CW⁺) Ω -logic is coherent: Ω -provable implies Ω -valid.

• Conjecture: (Woodin, CW $^+$) $\Omega\text{-logic}$ is complete: $\Omega\text{-valid}$ implies $\Omega\text{-provable}.$

"Everything that cannot be refuted by forcing has some witness in the family of universally Baire sets of reals."

Ω -logic and canonical models

Ω -logic and canonical models

" Ω -logic is the logic of large cardinals."

Canonical models for large cardinals (Gödel, Jensen, Solovay, ...)
 → comparison method (Mitchell, Steel)

Ω -logic and canonical models

- Canonical models for large cardinals (Gödel, Jensen, Solovay, ...)
 → comparison method (Mitchell, Steel)
- Theorem: (Woodin, CW⁺) A sentence ϕ is Ω -provable iff it is provable (in usual logic) from some large cardinal axiom for which the comparison method is possible.

- Canonical models for large cardinals (Gödel, Jensen, Solovay, ...)
 → comparison method (Mitchell, Steel)
- Theorem: (Woodin, CW⁺) A sentence ϕ is Ω -provable iff it is provable (in usual logic) from some large cardinal axiom for which the comparison method is possible.
- \bullet Corollary: The $\Omega\text{-Conjecture}$ is equivalent to the possibility of extending the comparison method to all large cardinals.

- Canonical models for large cardinals (Gödel, Jensen, Solovay, ...)
 → comparison method (Mitchell, Steel)
- Theorem: (Woodin, CW $^+$) A sentence ϕ is Ω -provable iff it is provable (in usual logic) from some large cardinal axiom for which the comparison method is possible.
- ullet Corollary: The Ω -Conjecture is equivalent to the possibility of extending the comparison method to all large cardinals.
- Proved for many large cardinals, in particular Woodin cardinals;

- Canonical models for large cardinals (Gödel, Jensen, Solovay, ...)
 → comparison method (Mitchell, Steel)
- Theorem: (Woodin, CW⁺) A sentence ϕ is Ω -provable iff it is provable (in usual logic) from some large cardinal axiom for which the comparison method is possible.
- ullet Corollary: The Ω -Conjecture is equivalent to the possibility of extending the comparison method to all large cardinals.
- Proved for many large cardinals, in particular Woodin cardinals;
- (Woodin) If true for supercompact cardinals, then true.

" Ω -logic is the logic of large cardinals."

- Canonical models for large cardinals (Gödel, Jensen, Solovay, ...)
 → comparison method (Mitchell, Steel)
- Theorem: (Woodin, CW⁺) A sentence ϕ is Ω -provable iff it is provable (in usual logic) from some large cardinal axiom for which the comparison method is possible.
- ullet Corollary: The Ω -Conjecture is equivalent to the possibility of extending the comparison method to all large cardinals.
- Proved for many large cardinals, in particular Woodin cardinals;
- (Woodin) If true for supercompact cardinals, then true.

•• " H_2 is algebraically closed in Ω -logic".

 \hookrightarrow " H_2 is algebraically closed in Ω -logic".

• Theorem: (Woodin) WMM is an Ω -complete axiom for H_2 : WMM $\Rightarrow \phi$ or WMM $\Rightarrow \neg \phi$ is Ω -provable for each ϕ about H_2 .

 \hookrightarrow " H_2 is algebraically closed in Ω -logic".

• Theorem: (Woodin) WMM is an Ω -complete axiom for H_2 : WMM $\Rightarrow \phi$ or WMM $\Rightarrow \neg \phi$ is Ω -provable for each ϕ about H_2 .

• Corollary: If the Ω -Conjecture is true, then ZFC+WMM is a good axiomatization for H_2 .

 \hookrightarrow " H_2 is algebraically closed in Ω -logic".

• Theorem: (Woodin) WMM is an Ω -complete axiom for H_2 : WMM $\Rightarrow \phi$ or WMM $\Rightarrow \neg \phi$ is Ω -provable for each ϕ about H_2 .

• Corollary: If the Ω -Conjecture is true, then ZFC+WMM is a good axiomatization for H_2 .

Theorem $\Rightarrow \neg WMM$ not Ω -provable

•• " H_2 is algebraically closed in Ω -logic".

• Theorem: (Woodin) WMM is an Ω -complete axiom for H_2 : WMM $\Rightarrow \phi$ or WMM $\Rightarrow \neg \phi$ is Ω -provable for each ϕ about H_2 .

• Corollary: If the Ω -Conjecture is true, then ZFC+WMM is a good axiomatization for H_2 .

Theorem $\Rightarrow \neg WMM$ not Ω -provable $\Leftrightarrow (\Omega$ -conjecture) $\neg WMM$ not Ω -valid

 \hookrightarrow " H_2 is algebraically closed in Ω -logic".

• Theorem: (Woodin) WMM is an Ω -complete axiom for H_2 : WMM $\Rightarrow \phi$ or WMM $\Rightarrow \neg \phi$ is Ω -provable for each ϕ about H_2 .

• Corollary: If the Ω -Conjecture is true, then ZFC+WMM is a good axiomatization for H_2 .

 $\label{eq:conjecture} \begin{array}{l} \textbf{Theorem} \Rightarrow \neg \textbf{WMM} \ \ \textbf{not} \ \ \Omega\text{-provable} \\ \Leftrightarrow \ \ \left(\Omega\text{-conjecture}\right) \neg \textbf{WMM} \ \ \textbf{not} \ \ \Omega\text{-valid} \\ \Leftrightarrow \ \ \left(\text{definition}\right) \ \ \textbf{WMM} \ \ \textbf{compatible} \ \ \textbf{with} \ \ \textbf{large} \ \ \textbf{cardinals}. \end{array}$

The Continuum Hypothesis

• (Woodin) WMM implies $2^{\aleph_0} = \aleph_2$.

The Continuum Hypothesis

- (Woodin) WMM implies $2^{\aleph_0} = \aleph_2$.
- (Todorcevic) Weak version of MM \Rightarrow strong version of $2^{\aleph_0} = \aleph_2$: length \aleph_2 well-ordering of \mathbb{R} from one length \aleph_1 sequence of reals.

The Continuum Hypothesis

- (Woodin) WMM implies $2^{\aleph_0} = \aleph_2$.
- (Todorcevic) Weak version of MM \Rightarrow strong version of $2^{\aleph_0} = \aleph_2$: length \aleph_2 well-ordering of $\mathbb R$ from one length \aleph_1 sequence of reals.
- Theorem: (Woodin) If the Ω -Conjecture is true, then every good axiomatization for H_2 implies that CH is false.

- (Woodin) WMM implies $2^{\aleph_0} = \aleph_2$.
- (Todorcevic) Weak version of MM \Rightarrow strong version of $2^{\aleph_0} = \aleph_2$: length \aleph_2 well-ordering of $\mathbb R$ from one length \aleph_1 sequence of reals.
- Theorem: (Woodin) If the Ω -Conjecture is true, then every good axiomatization for H_2 implies that CH is false.
- Proof: For A axiom, let $\widehat{\mathbf{A}} := \{ \phi : \mathbf{A} \Rightarrow \phi \text{ is } \Omega \text{-provable} \}.$

- (Woodin) WMM implies $2^{\aleph_0} = \aleph_2$.
- (Todorcevic) Weak version of MM \Rightarrow strong version of $2^{\aleph_0} = \aleph_2$: length \aleph_2 well-ordering of $\mathbb R$ from one length \aleph_1 sequence of reals.
- Theorem: (Woodin) If the Ω -Conjecture is true, then every good axiomatization for H_2 implies that CH is false.
- Proof: For A axiom, let $\widehat{\mathbf{A}} := \{ \phi \; ; \; \mathbf{A} \Rightarrow \phi \text{ is } \Omega\text{-provable} \}$. If $\operatorname{card}(\mathbb{R}) = \aleph_k$, then $\widehat{\mathbf{A}}$ is definable in H_{k+1} .

- (Woodin) WMM implies $2^{\aleph_0} = \aleph_2$.
- (Todorcevic) Weak version of MM \Rightarrow strong version of $2^{\aleph_0} = \aleph_2$: length \aleph_2 well-ordering of $\mathbb R$ from one length \aleph_1 sequence of reals.
- Theorem: (Woodin) If the Ω -Conjecture is true, then every good axiomatization for H_2 implies that CH is false.
- Proof: For A axiom, let $\widehat{\mathbf{A}} := \{ \phi \; ; \; \mathbf{A} \Rightarrow \phi \text{ is } \Omega\text{-provable} \}.$ If $\operatorname{card}(\mathbb{R}) = \aleph_k$, then $\widehat{\mathbf{A}}$ is definable in H_{k+1} . If A is Ω -complete for H_2 , $\widehat{\mathbf{A}}$ non definable in H_2 , hence $k \neq 1$.

- (Woodin) WMM implies $2^{\aleph_0} = \aleph_2$.
- (Todorcevic) Weak version of MM \Rightarrow strong version of $2^{\aleph_0} = \aleph_2$: length \aleph_2 well-ordering of $\mathbb R$ from one length \aleph_1 sequence of reals.
- Theorem: (Woodin) If the Ω -Conjecture is true, then every good axiomatization for H_2 implies that CH is false.
- Proof: For A axiom, let $\widehat{\mathbf{A}} := \{\phi \; ; \; \mathbf{A} \Rightarrow \phi \text{ is } \Omega\text{-provable}\}.$ If $\operatorname{card}(\mathbb{R}) = \aleph_k$, then $\widehat{\mathbf{A}}$ is definable in H_{k+1} . If A is Ω -complete for H_2 , $\widehat{\mathbf{A}}$ non definable in H_2 , hence $k \neq 1$. Under Ω -Conjecture, good axiomatization= Ω -complete axiom.

- (Woodin) WMM implies $2^{\aleph_0} = \aleph_2$.
- (Todorcevic) Weak version of MM \Rightarrow strong version of $2^{\aleph_0} = \aleph_2$: length \aleph_2 well-ordering of $\mathbb R$ from one length \aleph_1 sequence of reals.
- Theorem: (Woodin) If the Ω -Conjecture is true, then every good axiomatization for H_2 implies that CH is false.
- Proof: For A axiom, let $\widehat{\mathbf{A}} := \{\phi \; ; \; \mathbf{A} \Rightarrow \phi \text{ is } \Omega\text{-provable}\}.$ If $\operatorname{card}(\mathbb{R}) = \aleph_k$, then $\widehat{\mathbf{A}}$ is definable in H_{k+1} . If A is Ω -complete for H_2 , $\widehat{\mathbf{A}}$ non definable in H_2 , hence $k \neq 1$. Under Ω -Conjecture, good axiomatization= Ω -complete axiom.

• Corollary: If the Ω -Conjecture is true, CH is essentially false.

Compare with "There exists an infinite set."

Compare with "There exists an infinite set."

• Case of H_2 : There exists at least one approach (= theorems !): the one by Woodin using Ω -logic, and it leads to $\neg CH$;

Compare with "There exists an infinite set."

• Case of H_2 : There exists at least one approach (= theorems !): the one by Woodin using Ω -logic, and it leads to $\neg CH$;

No similar approach leading to CH

Compare with "There exists an infinite set."

• Case of H_2 : There exists at least one approach (= theorems !): the one by Woodin using Ω -logic, and it leads to $\neg CH$;

No similar approach leading to CH No theorem justifying "CH is meaningless".

Compare with "There exists an infinite set."

• Case of H_2 : There exists at least one approach (= theorems !): the one by Woodin using Ω -logic, and it leads to $\neg CH$;

No similar approach leading to CH No theorem justifying "CH is meaningless".

→ What Woodin (at least) proves: that CH is meaningful.