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Additional axioms

e Which axioms?
~+ How to recognize a good axiom?
~» What could be a solution to the Continuum Problem?

e Fundamental example: axioms of large cardinals:
~» analogous to the axiom “There exists an infinite set”.

e Large cardinal axioms are efficient, and true
~+ restrict to axioms that do not contradict large cardinals.
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- there exists a forcing P, such that 1/[G,] satisfies —¢.
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e Fact: The properties of (N, +, x) are invariant under forcing.

~ ZFC is efficient for (N, +, x): empirically complete

~  “ZFC is sufficient at the level of arithmetic”.

e Question: Can one have the same situation for larger fragments ?J
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e “Definition”: Let H be a fragment of I/; a good axiomatization
for H is an extension of ZFC by axioms compatible with large car-
dinals, that makes the properties of (H, €) invariant under forcing.

“ry
e d

e Notation: H; family of all sets hereditarily of cardinal < ¥
~ Hj ~ (N, +, x);
e d H] oo

e Fact: ZFC is a good axiomatization for H.

~» What about good axiomatizations for H,, H,, ... ?
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e Definition (Consensus ?): Say that a formula ¢ involving H is
essentially true if (neither ¢ nor —¢ is provable from ZFC), and

- (i) there exists at least one good axiomatization for H;
- (i) every good axiomatization for H implies ¢.

e Remark: CH deals with H>, hence involves
axiomatizations of 5.

good
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e Theorem: ZFC + PD is a good axiomatization for H;.

e Indeed: efficient Moschovakis

compatible with large cardinals Martin—Steel
, and provides forcing invariance
Woodin
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e Borel sets and (CW™) projective sets are universally Baire.
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e (Todorcevic) Weak version of MM = strong version of 2% = N,:
length N, well-ordering of R from one length N; sequence of reals.

e Theorem: (Woodin) If the Q-Conjecture is true, then

every good axiomatization for H> implies that CH is false.

e Corollary: If the 2-Conjecture is true, CH is essentially false.
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Conclusion

e Case of H;: Axiom PD is true.

e Case of H,: There exists at least one approach (= theorems !):

the one by Woodin using Q-logic, and it leads to —~CH;

~» What Woodin (at least) proves: that CH is meaningful.




