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• Theorem: (Woodin, 2000) If the Ω-Conjecture is true,
then the Continuum Hypothesis is essentially false.

• The Ω-Conjecture asserts that a certain property is true
for each large cardinal axiom;

• It is proved for a large fragment of the large cardinal hierarchy.
• Question: Is this fragment the whole hierarchy ?

Also remains the “essentially”...
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The Continuum Hypothesis

• Conjecture: (Cantor, ∼1890) CH:
Each infinite subset of R is in bijection with N or R.

• ℵ0, ℵ1,... enumeration of infinite cardinals         CH: 2ℵ0 = ℵ1.

• Consensus: ZFC (Zermelo–Fraenkel) as axiomatic start.
         First question: is CH or ¬CH provable from ZFC?

• Theorem: (Gödel, 1938) If ZFC is not contradictory,
then ¬CH is not provable from ZFC.

• Theorem: (Cohen, 1963) If ZFC is not contradictory,
then CH is not provable from ZFC.

         ZFC just incomplete
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Additional axioms

• Which axioms?
         How to recognize a good axiom?

         What could be a solution to the Continuum Problem?

• Fundamental example: axioms of large cardinals:
         analogous to the axiom “There exists an infinite set”.

• Large cardinal axioms are efficient, and true
         restrict to axioms that do not contradict large cardinals.
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Forcing and incompleteness

• System ZFC = list of axioms about ∈:

         model of ZFC:
any pair (M,E) with E binary rel. on M satisf. the ZFC axioms;

         “example”: (V,∈), i.e., true sets, true membership.

• Forcing method: Extend a ZFC model M into a new model M[G]
controlled by some set P of M ; (cf. algebraic extension of a field)
         (Cohen) : Construct M [G] satisfying ¬CH.

         CH not provable from ZFC.

• Frequent manifestation of the incompleteness of ZFC when
neither φ nor ¬φ are provable from ZFC: starting from M (arbitrary)

- there exists a forcing P1 such that M [G1] satisfies φ,
- there exists a forcing P2 such that M [G2] satisfies ¬φ.
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The case of arithmetic

• Fact: The properties of (N,+,×) are invariant under forcing.

(cf. prime subfield of a field is invariant under extension).

         ZFC is efficient for (N,+,×): empirically complete
—though incomplete by Gödel Theorem;

         “ZFC is sufficient at the level of arithmetic”.

• Question: Can one have the same situation for larger fragments ?
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Good axiomatizations

• “Definition”: Let H be a fragment of V ; a good axiomatization
for H is an extension of ZFC by axioms compatible with large car-
dinals, that makes the properties of (H,∈) invariant under forcing.

         “Freezing the properties of H with respect to forcing”.
         Need not exist; if exists, need not be unique.

• Notation: Hk family of all sets hereditarily of cardinal < ℵk

         H0 (hereditarily finite sets) ≈ (N,+,×);
         H1 (hereditarily countable sets),...

• Fact: ZFC is a good axiomatization for H0.

         What about good axiomatizations for H1, H2, ... ?
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Essential truth

• Definition (Consensus ?): Say that a formula φ involving H is
essentially true

if (neither φ nor ¬φ is provable from ZFC), and
- (i) there exists at least one good axiomatization for H;
- (ii) every good axiomatization for H implies φ.

“Every axiomatization freezing the properties of H w.r.t. forcing
( = neutralizing forcing at the level of H) implies φ”.

• Remark: CH deals with H2, hence involves (possible) good
axiomatizations of H2.
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The case of H1 (1970–85)

• ZFC is not a good axiomatization for H1:

(H1,∈) ≈ projective
subsets of R, and ZFC does not decide their measurability.

• Definition : A subset A of [0, 1] is determined if we have
(∃a1)(∀a2)(∃a3)(∀a4)...( 0,a1a2a3... ∈ A) or

(∀a1)(∃a2)(∀a3)(∃a4)...( 0,a1a2a3... /∈ A).
Axiom PD: “All projective subsets of [0, 1] are determined”.

• Theorem: ZFC + PD is a good axiomatization for H1.

• Indeed: efficient (by Moschovakis & al. PD implies projective
sets are measurable, have Baire property, no choice needed),
compatible with large cardinals (by Martin–Steel PD ⇐⇒ exist ∞
many Woodin cardinals, and provides forcing invariance (by
Woodin a proper class of Woodin cardinals makes properties of H1

invariant under forcing.
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Woodin a proper class of Woodin cardinals makes properties of H1

invariant under forcing.



The case of H1 (1970–85)

• ZFC is not a good axiomatization for H1: (H1,∈) ≈ projective
subsets of R, and ZFC does not decide their measurability.

• Definition : A subset A of [0, 1] is determined if we have
(∃a1)(∀a2)(∃a3)(∀a4)...( 0,a1a2a3... ∈ A) or

(∀a1)(∃a2)(∀a3)(∃a4)...( 0,a1a2a3... /∈ A).
Axiom PD: “All projective subsets of [0, 1] are determined”.

• Theorem: ZFC + PD is a good axiomatization for H1.

• Indeed: efficient (by Moschovakis & al. PD implies projective
sets are measurable, have Baire property, no choice needed),
compatible with large cardinals (by Martin–Steel PD ⇐⇒ exist ∞
many Woodin cardinals, and provides forcing invariance (by
Woodin a proper class of Woodin cardinals makes properties of H1

invariant under forcing.



The case of H2 (1980–...)

• H2 ≈ P(ℵ1) ≈ Rℵ1 ;         non trivial topology on ℵ1 (6= ℵ0).

• Large cardinal axioms never are good axiomatization for H2

         forcing axioms.

• Theorem (Baire): If X is locally compact, every intersection of
ℵ0 dense open subsets of X is dense.

• Axiom MA (Martin): If X is locally compact and every family of
pairwise disjoint open subsets is countable, then every intersection
of ℵ1 dense open subsets of X is dense.
- Axiom “Martin Maximum” MM (Foreman-Magidor-Shelah).
- Axiom WMM (Woodin): variant of MM.

• Theorem (Woodin, 1995) If compatible with large cardinals,
ZFC + WMM is a good axiomatization for H2.

         invariance under forcing and empirically complete description;
missing: compatibility with large cardinals.
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Woodin’s Ω-logic

• A new logic including invariance under forcing:
“sharp view despite the blurring of forcing”.

• Definition: B ⊆ R is universally Baire if, for f : K → R continuous
and K compact, f−1(B) has the Baire property.

• Borel sets and (CW+) projective sets are universally Baire.

• Definition: (Woodin, CW+) A univers. Baire set B is an Ω-proof
for φ if φ is true in every countable model M of ZFC s.t. B remains
universally Baire in every forcing extension of M .

• Fact: Provable (in usual logic) implies Ω-provable.

• When B becomes more and more complicated,
there are less and less models with the desired property.
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The Ω-Conjecture

• A logic = a syntax (provability) + a semantic (validity)

• Definition: A sentence φ is Ω-valid if
no forcing extension of V satisfies ¬φ.

• Fact: (CW+) Ω-logic is coherent: Ω-provable implies Ω-valid.

• Conjecture: (Woodin, CW+) Ω-logic is complete:
Ω-valid implies Ω-provable.

“Everything that cannot be refuted by forcing has some
witness in the family of universally Baire sets of reals.”
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Ω-logic and canonical models

“Ω-logic is the logic of large cardinals.”

• Canonical models for large cardinals (Gödel, Jensen, Solovay, ...)
         comparison method (Mitchell, Steel)

• Theorem: (Woodin, CW+) A sentence φ is Ω-provable iff it is
provable (in usual logic) from some large cardinal axiom for which
the comparison method is possible.

• Corollary: The Ω-Conjecture is equivalent to the possibility of
extending the comparison method to all large cardinals.

• Proved for many large cardinals, in particular Woodin cardinals;
• (Woodin) If true for supercompact cardinals, then true.
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Back on H2

• Axiom WMM: Every sentence ∀...∃... about H2 whose negation is
not Ω-provable is satisfied in H2.

         “H2 is algebraically closed in Ω-logic”.

• Theorem: (Woodin) WMM is an Ω-complete axiom for H2:
WMM⇒φ or WMM⇒¬φ is Ω-provable for each φ about H2.

• Corollary: If the Ω-Conjecture is true, then ZFC+WMM is a good
axiomatization for H2.

Theorem ⇒ ¬WMM not Ω-provable
⇔ (Ω-conjecture) ¬WMM not Ω-valid

⇔ (definition) WMM compatible with large cardinals.
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The Continuum Hypothesis

• (Woodin) WMM implies 2ℵ0 = ℵ2.

• (Todorcevic) Weak version of MM ⇒ strong version of 2ℵ0 = ℵ2:
length ℵ2 well-ordering of R from one length ℵ1 sequence of reals.

• Theorem: (Woodin) If the Ω-Conjecture is true, then
every good axiomatization for H2 implies that CH is false.

• Proof: For A axiom, let Â := {φ ; A ⇒ φ is Ω-provable}.
If card(R) = ℵk, then Â is definable in Hk+1.

If A is Ω-complete for H2, Â non definable in H2, hence k 6= 1.
Under Ω-Conjecture, good axiomatization=Ω-complete axiom.

�

• Corollary: If the Ω-Conjecture is true, CH is essentially false.
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Conclusion

• Case of H1: Axiom PD is true.

Compare with “There exists an infinite set.”

• Case of H2: There exists at least one approach (= theorems !):
the one by Woodin using Ω-logic, and it leads to ¬CH;

No similar approach leading to CH
No theorem justifying “CH is meaningless”.

         What Woodin (at least) proves: that CH is meaningful.
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